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Abstract. We describe a rigorous mathematical reduction of the spectral study for
a class of periodic problems with perturbations which gives a justification of the
method of effective Hamiltonians in solid state physics. We study the partial
differential operators of the form P = P(hy,y,D,+ A(hy)) on R” (when h>0 is
small enough), where P(x, y,#) is elliptic, periodic in y with respect to some lattice
I', and admits smooth bounded coefficients in (x, y). A(x) is a magnetic potential
with bounded derivatives. We show that the spectral study of P near any fixed
energy level can be reduced to the study of a finite system of h-pseudodifferential
operators &(x, hD,, h), acting on some Hilbert space depending on I. We then
apply it to the study of the Schrodinger operator when the electric potential is
periodic, and to some quasiperiodic potentials with vanishing magnetic field.

Introduction

The purpose of this paper is to give a rigorous mathematical treatment of an
approximation widely used in solid state physics, namely the method of the effective
Hamiltonian.

Let us briefly describe the essential ideas of this method: a typical problem to
which this approximation is applied is the motion of an electron in a periodic
crystal with a small external magnetic field. This problem is described by the
following Hamiltonian:

3

H= le (D, + Aj(hy)? + V(y), ©.1)

where V is a real potential, I'-periodic for a lattice I" in R® describing the periodic
crystal, and A(x) is a function from IR? into R** (in other words a 1-form), which
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is the vector potential of the magnetic field B=dA. We assume that all the
derivatives (of order = 1) of A are bounded functions.

The effective Hamiltonian approximation is to replace, for h small, H by the
collection of h-pseudodifferential operators:

E{hD, + A(x)) for jeNN, 0.2)

where E;(60) are the Bloch eigenvalues of Dﬁ + V().

In solid state physics, one then usually uses W.K.B. approximations to study
the spectrum of E;(hD, + A(x)). In the case of constant magnetic fields (i.e. when
A; are linear) rigorous reductions from (0.1) to (0.2) have been given by Nenciu
[Ne] (single band case) and by Helffer—Sjostrand [He—Sj1]. These reductions use
Wannier functions.

We refer to the article of Guillot—Ralston—-Trubowitz [Gu—-Ra-Tr] and the
survey by Buslaev [Bu], where the problem of constructing W.K.B. solutions using
an effective Hamiltonian is studied in detail. An extensive bibliography on the
physics literature about the effective Hamiltonian method can also be found in
[Bu].

Our goal in this paper is to give a rigorous way to recover the spectrum of H
near some energy level A, (and possibly also the nature of the spectrum) by studying
systems of h-pseudodifferential operators which have a principal symbol quite
close to E /(¢ + A(x)) — A, where 4 is the spectral parameter.

Using our results we can for example justify the use of the effective Hamiltonian
approximation for (0.1) modulo error terms of order ((h) near a simple band of
the spectrum of D? + V().

Let us now describe our results more in detail:

We consider partial differential operators of the form P, = P(hy, y, D, + A(hy)),
where P(x, y,n) is an elliptic polynomial in #, I"-periodic in y for some lattice I,
and with smooth bounded coefficients in (x, y). A(y) is a vector potential with all
its non zero derivatives bounded. (See Sect. I for the precise hypotheses.)

The observation of Buslaev [Bu] (implicitly also by Guillot—Ralston—Trubowitz
[Gu-Ra-Tr]), which is directly related to the two-scale expansion method is the
following one: if u(x, y)eD'(R} x R}) is a solution I'-periodic in y of:

P(x,y,hD, + D, + A(x))u = Au 0.3)
then i@ = u(hy, y) satisfies:
Poii = Adl. 0.4)

Buslaev then uses this idea to construct asymptotic solutions of (0.4) by considering
P(x,y,hD, + D, + A(x)) as a h-pseudodifferential operator in x with operator
valued symbol. This in turn is related to the study of operators (0.2). While this
procedure gives asymptotic solutions of (0.4), it is not clear how to relate the
spectrum of P, near an energy level 4, to that of P = P(x,y,hD,+ D, + A(x)).

We give a complete answer to this question in two cases. We obtain a N x N
system of h-pseudodifferential operators of order 0, E_ , (x, hD, + A(x), 4, h), (which
will be our effective Hamiltonian) such that the symbol E _ . (x, &, 4, h) is I *-periodic
in & where I'* is the dual lattice of I" (note that this property is shared by the
Ej(¢) in (0.2)) and such that one has the following equivalence:

For h small enough, 1 is in the spectrum of P, (with its natural domain, see
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Sect. I) if and only if O is in the spectrum of E_ , (x, hD, + A(x), A, h) acting on the
Hilbert space (V,)", where

Vo= {u =Y ¢,0(x — hy), (cy)elz(I“)}.
yel”
(See Theorem 3.7 and Corollary 3.8.)

In the case when all the operators P, = P(z + hy,y,D,+ A(z + hy)) are iso-
spectral to P, then the same result holds if we consider now E_ , (x, hD, + A(x), 4, h)
acting simply on L*(R”, C"). (See Remark 1.2 and Theorem 2.4.) This is for example
the case for (0.1) when A is linear. We then apply these general results to Schrodinger
operators. We consider periodic Schrodinger operators with magnetic fields and
also some quasiperiodic Schrodinger operators.

For instance we construct a quasiperiodic Schrodinger operator in one
dimension which yields an effective Hamiltonian arbitrarily close to Harper’s
operator cos hD, + cos x. '

Let us now give the plan of the paper.

In Sect. I, a general reduction scheme is introduced. This reduces the spectral
study of P, to that of P acting on a suitable Hilbert space.

In Sect. I1, a “Grushin problem” is constructed to study the spectrum of P on
L*(RY, L*(R}/I")). This is done by considering P as an h-pseudodifferential operator
in x with operator valued symbol. With the help of this Grushin problem, we
prove Theorem 2.4.

In Sect. II1, the methods of Sect. II are applied directly to the spectrum of P,
to prove the above mentioned spectral equivalence.

Finally some examples are discussed in Sect. IV, including periodic and some
quasiperiodic Schrodinger operators with magnetic fields.

Some technical results on magnetic Sobolev spaces and on pseudodifferential
calculus with operator valued symbols are given in an Appendix.

I. A General Reduction Scheme

In this section we introduce a method inspired by a work of Buslaev [Bu] to study
the spectrum of partial differential operators of the type (0.1).

We consider a function P(x, y,n)eC*(IR3") which is real valued and satisfies
the following properties:

P is a polynomial of degree m with respect to #, (H.1)
P(x,y+v,m)=P(x,y,n) Vyel,
where I is a lattice (P Ze; (H.2)
i=1
for a basis (e,...,e,) of R".
If

P(x,y,m= Y afxyn* and pix,y,m= Y. ax

lalsm lal=j
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then
|080)a,(x,»)| £ Cp, Va,B,7eN" (H.3)

def
p(x, y,1) = p(x,y,n) satisfies:

1
p(x, y,n) = o [n|™ for some Cg,>0. (H.4)
0
We shall also admit a magnetic field and the corresponding vector potential will
be given by A = A(x)eC*(R",R"*),
We assume that

VaelN™\{0}, 3C, such that |0"A|<C,. (H.5)

Before going on, let us say a word about the quantization we use in this work.
We will always use the standard Weyl quantization of symbols: if P(x,7) is a
function on T*R" satisfying suitable estimates, P*(y, D,) is the operator defined by:

P*(y, D,)u(y) = (2m)~"fe'®7>"P (y—;—y* n)u(y')dy’dﬂ (1.1)

for ue S(R™).

Sometimes we will quantize a function P(x,y,&,n) only with respect to the
variables (y,7): in this case we will denote by P*(x, y,¢, D)) the operator obtained
as above by considering (x, £) as parameters.

Finally when P(x,¢) is a function on T*R" (possibly operator valued, see
Appendix B), we denote by P*(x, hD,) the semiclassical quantization obtained as
above by quantizing P(x, h&).

We start by considering the operator P = P*(x, y,hD, + D, + A(x)), which is
the quantization of P(x, y, h¢ + n + A(x)). We will see later in this section that the
operator P, = P*(hy,y,D,+ A(hy)) can be viewed as the restriction of P to the
linear subspace x = hy.

To study P we make the change of variables:

(6, y)—=(X, 7) = (x — hy, y). (1.2)

Then using the invariance of Weyl’s quantization by metaplectic transformations
(see [H6]) we see, by conjugating P by the change of variables (1.2), that P is
transformed into:

P=P*(% + hj, §,Dy+ A% + hy)).

We will see in Appendix A that Pis essentially self adjoint on C*(R?") and self
adjoint with domain

&, = {ue2(R*)|(Dy + A(% + hy)yue 3R>,V |a| < m}.

Using the change of variables (1.2) (which can be realized as a unitary trans-
formation) we get that P is essentially self adjoint on CJ(IR*") and self adjoint
with domain:

& = {ue *(R*")|(D, + hD, + A(x))*ue L*(R?>"),Y|a| < m}.
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To study P we will use the Floquet—Bloch reduction in the y variable (see for
example [Sk]).

For 6eRR™/I'*, where I'* is the dual lattice of I" consisting of all y*eR"™*
such that y*-ye2aZ for every yel, we put:

Uu(x,y,0) =Y 7 %u(x,y —y). 1.3)

vell

 is unitary from L*(R2") into

Fo ={v(x, 3, 0L (R¥)|v(x, y +7,0) = €7 *(x, ,6),

loc
v(X,y,0+7*) = v(x,y,0) and |v(,,-,0)|e 2(R™/I*, (R}, x R"/I"))}

when & is equipped with its natural scalar product.
We see that % commutes formally with (hD, + D, + A(x))% so for every kelN, %
is unitary from &, into

/k;f{vefol(hpx + D, + A(x))*veF,, ¥ |a| < k}.

In particular P with domain &,, is unitarily equivalent to the same formal differential
operator P acting on %, with domain %,,.

In order to eliminate the 6-dependence as much as possible, we now consider
the operator:

U e =0 y(x, y, 6).
Then it is straightforward to check the following facts:

9 is unitary from [*(R2") into

(R3*")v(x,y + 7,0) =v(x, y, 0),

loc

Hy= {UGLZ
o (1.4)
v(x,y,0 +y*) = M p(x, y,0),
|v(x, y, 0)|2dxdydf < + oo }
R7 x R7/T" x R+
@ sends &, into H, = {ve H,y|(hD, + D, + AX)\veHo |a| <m}.  (L5)

{@P@ ~1 = P, where P in the right-hand side is the differential operator (1.6)
P*(x,y,hD, + D, + A(x)) acting on #, with domain #,,. '
We can also write the operator P in the right-hand side of (1.6) as:
®
P= [ Pdo, 1.7
Et

where we consider #, as the space of measurable functions v(f) with values in
the space

Ho= {ueLﬁ,c(Ri,"y)lu(x,y +y=ulx,y), [ lulx,y)|*dxdy < 00}
RY x IR;/I‘
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such that: v(;,, 0 + y*) = A ~»""p(-,- 6) and:
j | v(6) |l§¢0d0< + o0,

Rns/I*
and where E* c R™ is a fundamental domain for I'*.
Accordingly P in the right-hand side of (1.7) is the differential operator
P = P"(x,y,hD, + D, + A(x)) acting in X, which is selfadjoint with domain

H = {ueAo|(hD, + D, + A(x))ue A,V |a| < m}.

Since the spectrum of P in the right-hand side of (1.7) is #-independent, we have
proven the following result:

Proposition 1.1. The spectrum of P acting on L*(R?") with domain &,, is the same
as the spectrum of P acting on X"y, with domain X,,.

(Remark that the nature of the spectrum is not necessarily the same for the two
operators.)

Remark 1.2. Let us now indicate how one can use Proposition 1.1 to study the
spectrum of P, in some cases.

Assume that P(x, y, #) is such that the spectrum of P,=P*(z+hy, y,D,+ A(z + h))
acting on L*(R?}) with domain

H, 4= {ue*(R;,|(D, + A(hy)yue *(R}),aeN", |a| < m}

is independent of z. (P, is selfadjoint in H,, , and essentially selfadjoint on Cg'(IR})
by the arguments of Appendix A.)

This happens when P, is the Hamiltonian of a particle in a constant magnetic
field with a periodic potential or with some class of quasiperiodic potentials. (See
Sect. IV))

Then it is straightforward to justify the following formal identity:

®
P= j P.dz.
Rn

In fact (see [Re-Si]) we just have to check that z— (P, + i)~ ! is weakly measurable,
which follows easily from the second resolvent formula and hypotheses (H.3), (H.5).

Then we get: o(P)=a(P) = U a(P,) = a(P,). So in this case P, has the same

zeR"

spectrum as P acting on X'y, with domain %,.

In Sect. II, we will study P with domain K,, by considering it as an operator
valued h-pseudodifferential operator in x with symbol P*(x, y,¢ + D, + A(x)).

We now consider the operator P, as a restriction of P to the linear subspace
x = hy.

Let us consider P, = P*(hy, y,D, + A(hy)) with domain H,, 4.

In Appendix A, we show that P, is essentially selfadjoint on CZ(R") and
selfadjoint on H,, 4.

Using the change of variables (1.1) it is easy to see that P, acting on L*(R")
with domain H,, , is unitarily equivalent to P acting on the Hilbert space:

{u(p)d(x — hy),ue *(R})}, (1.8)
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with domain:
{u(y)o(x — hy),ueH,, 4}- 1.9)
(The norm of u(y)d(x — hy) is the norm of u in the corresponding space.)
This follows from the fact that

P*(X + hy, 7,D;+ A(X + hj))(0(%) @ u(})) = 6(X) ® P*(h}, §, D; + A(hy))u.

In (1.8), (1.9) we can replace u(y) by v(x) = u<§>, so the Hilbert space (1.8) can be
written as: h

{v(x)8(x — hy),ve[*(R})}, with the norm h™"?||v | 2gn. (1.10)

Similarly the domain (1.9) can be written as:
{v(x)0(x — hy); (hD + A(x))*ve [*(R}), |a]| < m}

1/2
with the norm h"‘”( > (hD, + A(x))*u lliz(Rn)> . (1.11)

lalsm

To further reduce the study of P,, we apply the same method as for P.
The image of v(x)d(x — hy) under the map €™*~"%y is the distribution
v(x) Y. 6(x — hy + hy) which does not depend on 6. From this we get that P acting
vell
on (1.10) with domain (1.11) is unitarily equivalent to P acting on

Ly= { Y. v(x)0(x — hy + hy), veLZ(IR;)}

vell

with obtain
mef{ Y. 0(x)5(x — hy + hy)|(hD + A(x)Y've L*(R}), |a| < m}.
© yel”

Summing up, we have proved:

Proposition 1.3. P, = P*(hy,y,D,+ A(hy)) acting on LZ(]R;) with domain H,, 4 is
unitarily equivalent to P = P*(x,y,hD, + D, + A(x)) acting on L, with domain L,,.

P acting on L, will be further studied in Sect. III.

II. Spectral Reduction of P

In this section we consider more in detail the operator P = P*(x, y, D, +hD,_+ A(x)).
We will give a reduction of the study of o(P) by considering P as an h-pseudo-
differential operator in the x variables with an operator-valued symbol
P(x,& + A(x)) = P*(x,y,D, + £ + A(x)), and by introducing a suitable “Grushin
problem.” A review of some basic results we will use about operator valued pseudo-
differential operators is given in the Appendix, Sect. B.

To describe the estimates satisfied by some operator valued symbols, we
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introduce the following Hilbert spaces with their natural norms:
Ko =L R;}/T),
K, = {ueK,|(D, + &*ueK,,V|a| < mj.

We notice that only the norm on K,, . depends on ¢ and not the space itself and
we have:

lullg,, = CE—m ullx,, YueK,o ¢ neR" 2.1)

If we denote by K,, ;. 4 the same spaces obtained by replacing ¢ by ¢ + A(x),
we see that (2.1) still holds if we replace < —#) by <&—n> +<{x—y>. (We use
here hypothesis (H.5) on A(x).) This means that the spaces K, .. 4, satisfy the
assumptions of Appendix B.

Finally we notice that IP(x, £ + A(x)) satisfies:

1030¢P(x, & + AC) I < C, p 2.2)

where the norm || | is taken in Z(K,, ¢+ 4(x)> Ko)-

To construct a suitable Grushin problem for P(x, hD, + A(x)), the first step is
to construct a Grushin problem on the symbolic level, i.e. for P(x, £ + A(x)). This
is done in the next Proposition:

We will fix some energy level i,elR* and denote by #%,, the space
{ueL (R})|u(y+7)=e"""u(y)} for 6cR™/I'*, and by #,, , the space {ue F, | Djue
Fopla] <m}.

Then we have the following Proposition:

Proposition 2.1. There exists NelN, a complex neighborhood ¥~ of A, and functions
@i(x,y,E)eC*(R2", #,, o) N C*(R" x R} x R)) for 1 < j< N, such that for each

x,&

(x, &)eR?", and each Je?¥" the following operator:
P(x,, A)( “_): <‘P "%y, D, + &) — Hu+ R_(x, 5)u*>
u © R, Ou

is invertible from K, .@C" into K,@®C"N with an inverse &(x,&, 1) uniformly
bounded withrespect to (x, , 4) together with all derivatives in £ (K, x €Y, K,, . x CV)
for (x, §eR?, Aev". Here (R,(x,0u);=u,¢xE)>g,, andR_(x,Eu" =

'Zl u; q’j(x9 D) 6)

Moreover the functions @; satisfy the estimates:

{Il 330805l = Cap¥ o PN, X, CER", @1

V'y*er*, (pj(x9y’ f + y*) = e—iyy'(Pj(x’y’ é)
Remark. In fact, we shall see in the proof that we can even choose the ¢;s
independent of x. But sometimes it can be convenient to use ¢;’s depending also

on x. In the proposition, it is also possible to let A, be a compact interval instead
of a number.

Proof. We will follow the ideas of [He—Sj1] Sect. 3.
In fact for A=A, fixed, Theorem 3.1 of [He-Sj1] gives the existence of N
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analytic sections Y ;(y,) of the bundle with base IR™/I'* and with fiber over 0
equal to &, 4, having the following property:
The Grushin problem

_ mj2 — 4 =
{(( 4) Au+Rju=v 2.2y
Riu=v*
is bijective from #,, o x C" into F, 4 x C if we take:
N
(R; u)j = <u, ll/j(.a 6)>9“g,9 and R;u— = Z uj- l//j('s 0)
j=1
More precisely, we have an a priori inequality of the following type:
3C,>0 suchthat Yue#, ,nVect(y,,...,Yy)"
(here ( )* is the orthogonal subspace with respect to £, ), one has:
(=" = A, u) g, ,2 2 llull Fou (23)
Using hypotheses (H.3), (H.4), we get by standard 1nequa11ties:
1
(P*(x,y,D))u,u) 5, ,2 c (=N"uu) 5, ,— Cillull%, ,» 24)
1
uniformly for xelR", ue %, 4.
Hence for ueVect(Y,,...,¥y)* and Ae¥” we get:
1 At
Re{(P*(x,y,D,) — Du,u) 5, , 2 +L_Red—Cy |ull3. .
(P (x, 3, D) — D, u) g, (coa c )u 12,
If we take 1, big enough (and let N increase correspondingly) we get:
Red(P*(x,y, D)) — Au,u) 5, , 2 llull Fo.o 2.5)

with C, > 0, uniformly for xeR", Ae¥", 0eIR™/I"* and ueJm,,,mVect(tlzl,. /7 e

It is easy to see that (2.5) implies that the Grushin problem (2.2) with (— A)"/?
replaced by P¥(x, y, D,) is bijective from &, , x C" into %, o x C" with an inverse
uniformly bounded for xeR", 0eR™/I'*, Je¥ .

Moreover the ; constructed in [He-Sj1] are of the form:

¥y, 0)= Zr O,y —)e’?, (2:6)
YE.
with ¢;(y)eCg(E) where E is a fundamental domain of R"/I, and the ¢;s are
linearly independent.

Then if we take ¢(y, &) = ¥ (y, E)e ¢ it is easy to see that the Grushin problem
in Proposition 2.1 is invertible, with an inverse &, uniformly bounded in
L(Ko x €Y, K,, s X (DN )- Indeed this follows from the fact that urs e~ “u is unitary
from #, ; into K,,

The estimates on 6“6‘;’&, follow easily from similar estimates on 6"629‘ and
the properties (2.1) on ¢; are immediate consequences of the above remark. [



226 C. Gerard, A. Martinez and J. Sjostrand

From now on, we denote by £(x,,1) any operator constructed as in
Proposition 2.1 with functions ¢;s satisfying (2.1). We also denote by
(Eo(x, &A)  Eq(x,84)
E;(x,&A) E;T(x,¢4)
quantization of 2(x, &, 1) and &y(x, &, 4).

Proposition 2.2. The operator &4(x, hD,+ A(x), 2) is continuous from & (R", K , ® C")
into S(R", K, ¢4 40 ®C"), from S’(]R" Ko@®C") into &' (R", Ky ¢+ 4y D C") and
uniformly bounded from L*(R% x R}/ @& L*(R},C") into A, G—)LZ(IR ,CY) for
Ae? and 0<h< 1.

Moreover we have:

P*(x,hD, + A(x), )oEy(x,hD, + A(x),A) =1 + h&"(x,hD . + A(x), 4, h), (2.7)

where X R(x, &, A, h)eS°(RP", Z(K,®CY, Ky x C")) VkeN, and: #(x,& A, h) has
an asymptotic expansion Ro(x,&, 1)+ hR,(x, &, A1)+ --- uniformly with respect to
re?’, with #ReS°(R*, L (K, @ C", K, ®TY)).

Proof. The continuity of &}(x, hD, + A(x), 4)in & and & follows from the calculus
of operator valued p.d.o’s established in Appendix B, where (2.7) is also obtained.

It remains to prove the L? boundedness statement. For that, we remark using
the results of Appendix A (more precisely formulas (A.1), (A.2)) that J¢,, can be
described as

) the matrix elements of &y(x, £, 1). We now turn to the

A ={yeKol((hD, + A(x) + D, ¥*)"ue X o, |a| < m},

(where by ((hD, + A(x) + D)%) we mean the quantization of (h¢ + A(x) + #)*), with
equivalent norms. One can also view ((hD,+ A(x)+ D,)*)* as an h-pseudo-
differential operator with the operator valued symbol ((£ + A(x)+D,)*)*:K,, e+ a0 Ko
From the composition and L?-boundedness results of Appendix B we get that, since

<((§ + A(x) + D))" 0>< Eo(x,E+ A(x),4)  Eg(x, ¢+ A(x),4) )

0 Eq(x,&+ A(x),4A) Eg " (x,&+ A(x), 4)
is in SOR?", Z(K, x €Y, K, x CV)),
(((th + A((;c) +D,))" (1)>ogg(x, hD,, + A(x), )

is (1) in L (A, @ LA(R?, C"), o @ L*(R", C")), which proves the Proposition. []

We can now use R. Beals’ characterisation of pseudodifferential operators
(cf. [Be]) with symbols in S°, in the semiclassical version of [He—-Sj2] and with
operator valued symbols, to see that for 4> 0 small enough:

(14 h®*(x,hD, + A(x), A, h)) "' =1+ h&*(x, hD, + A(x), 1, h),

where %" is an h- pseudodifferential operator with the same properties as 2.
We then replace &(x, hD, + A(x), A) by &}(x,hD, + A(x), A)°(1 + h%*), which
we can write &¥(x,hD, + A(x), A, h) or & for sxmp11c1ty
Summing up, we have proved a part of the following result:

Theorem 2.3. Assume (H1) to (H5).
For h sufficiently small and le¥", ?*(x,hD, + A(x), ) has a uniformly bounded
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inverse of the form &"(x, hD, + A(x), A, h), where
E(x, &, 4, heS’(R>, £(Ko @ CV, K, ®CY))

has an asymptotic expansion &*(x,&Ah)~Y &;(x,E, W, E0=P(x,E, )" as
above. 0

This inverse has the same continuity properties as &y(x,hD,+ A(x), A, h) in
Proposition 2.2.

Proof. From the constructions above it is clear that & = &"(x, hD, + A(x), A, h) is
a right inverse for 2*(x, hD, + A(x), 1) with all the properties stated in the Theorem.
We only have to show that & is also a left inverse. If Ae¥" "R, 2*(x, hD, + A(x), A)
is self adjoint on K, ®L*R",C") with domain K, ® L*(R",C"). Then
&™(x,hD, + A(x), A, h) is also a left inverse for Ae¥ N, and also for le¥” by
analytic continuation.

This proves the theorem. []

E(Ah)  E.(4,h)
E_(Ah)y E_,.(A4h)
E_,(ALh)=E" (x,hD,+ A(x),4,h) is a h-pseudodifferential operator with its
symbol in S°(R?", £(CV, C")). In particular E_ (4, h) is bounded on L*R",C").

We come now to the main result of this section, namely the reduction of the
spectral study of P:

We denote by < > the matrix elements of & and remark the

Theorem 2.4. Under assumptions (H1) to (H.5), for Ae¥", h small enough, one has
the following equivalence:

Aea(P)<>0ea(E_ ,(4,h)).
Proof. We use the following formulas which can be checked easily:
(P=A)"'=EAh) —E (LHE_ (Ah)™E_(4h), (2.8)
E_,(Lh~'=—RY(x,hD, + A(x))(P — )" 'R*(x,hD, + A(x)). (2.9

Here R', (x, hD, + A(x)) is the Weyl quantization of R . (x, h¢ + A(x)) in Proposition
2.1. Then (2.8), (2.9) and the continuity properties of & established in Theorem 2.3
imply Theorem 2.4. []

As a preparation for the next section, we will now establish some commutation
properties of &.
Because of (2.1), we have:

{R_(x,é +y*)=e"""R_(x,¢)
R (x,&+7%) =R (x, )™,
On the operator level we get:
e xR (x, hD, + A(x))e™ """ = e~V RY (x, hD, + A(x)),
e = VMRY (x,hD, + A(x))e™ """ = R¥ (x,hD, + A(x))e™ "".
Combining this with the fact that
P¥(x,y,&+y*+ D) =e V7 P¥x,y,¢ + D,)e” 7",

(2.10)
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we get

. . LR AN vyt
e—¢x~y'/hgw(x’ hD, + A(x))etx~y'/h = <€ 0 1>Ww(x, hD, + A(X))(e 0 1)

This can be rewritten as:

ix/h=y)v* 0
[W(x, hD, + A(x)),( . >] =0. (2.11)
0 e /h

Of course (2.11) stays true if we replace 2"(x, hD, + A(x)) by its inverse &, which
is what we will need in the next section.

ITI. Spectral Reduction of P,

In this section, we give a reduction of the study of the spectrum of P, by using
Proposition 1.3. Hence we replace P, by P acting on L, with domain L,, (see Sect. I)
and we shall use the Grushin problem of Sect. II to study this operator.

First, let us remark that a distribution u = ) v(x)d(x — h(y — 7)) in L, can also
vell
be written as ). d(x — h(y — y))v(h(y — 7)), i.e. as an element of #'(R”; K,) where,
vell

as before, K, = L*(R"/I"): indeed, if

peS(R" Ky) = {xDV%pel*(R” x F), YN, a}
(where F is a fundamental domain of R"/I"), then @(X, ﬁ)gqo(i + hy, ) is also in
S(R", K,), and we have:

Cu, 0> =3, [ o(h(§ —)d(—hy, §)dy
yel' F

which can be bounded by seminorms of @ in #(R", K,), and thus also by seminorms
of ¢ in (R", K,).

Hence, we can hope to adapt some results of Sect. II for the study of P acting
on L.

Let us denote by V, the subspace of &'(R") consisting of the distributions of
the form:

wix)= Y. f,00c—hy) (3.1)
vell

with (f,),. re¢XI). V, is equipped with its natural Hilbert space structure, and
we first study this space in more detail. Let 7,. be the operator of multiplication
by e>~"/" We have:

Proposition 3.1. Let yeS°(IR?") be such that there exists a compact set K of R" with
suppy <RI x K, and Y y(x,&+y*)=1
y*eI'*
Then, for u,veV,, the quantity (x*(x, hD Ju, v),2rn is finite, independent of the
choice of y, and satisfies:

1
(x"(x, hD Ju, v)1 2wy = W {u, 0Dy,
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Proof. We have:
("0, hDJu,0)2 = Y. fu) fol) (0”06, hD)S(- — hy), 8(- — hy'))pa,

VY

where f,(y), f,(y') denote the coefficients in (3.1) for u and v.
Thus

(2"(6, kD Ju 0)p = 2h) ™" 3 £, F0)P (0 ¥')
with

., + 9
p(y,y) = e "”%c(h%, é)dé

=Z J‘ ei(v'-v)é)((hy';y JE+ y*)d{,

y* F*

where F* denotes a fundamental domain of R™/I'"*,
Since Y x(x,¢ +y*) =1 for any x, ¢, we then get:
y#

. _ Vol(R™/T'*) S
(x"(x,hD Ju, v) . = Ty ;f W) So()

1

= W u,v)y,. O

We now give another characterisation of V:

Proposition 3.2. For every ueV,, there exists u,e L*(R") such that:

def
If w.=r1.u, then u= ) u. where the sum converges in #(R"). (3.2)
}"Er‘
3C > 0 such that for any bounded set # in S°(IR?") and
any NelN, there exists a constant Cy > 0 such that
VAe2 with dist (Supp 4,R” x {0}) = C we have,

1 A™(x, hD g || .y = Cyh™(dist(Supp A, R" x {0})) ™Y
uniformly for h > 0 small enough. (3.3)

Moreover, the constants Cy can be taken O(|ully,) uniformly with respect to u.
Conversely, if uoe L*(R") satisfies (3.3) and if u,. =t _ .uq, then the sum Y
y*eI'*
converges in &'(IR) towards an element u of V,, with | u|y, bounded by a constant
times h"'? times the sum of || ug | .. and a finite number of the Cy’s in (3.3).

Proof. If ueV,, we take ug=y(hDJu with yeCFR"), > x(¢+y*)=1. Then

y*

uy=Q2nh)™" Yy f,,(y))?(y — %) is in H5(R") for any s (here §(x) = [ e~ **x(£)d¢), and
yel'
satisfies:

VaelN", ||(hD,fuo l2mey S Coh ™ ully,. (3.4)
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The property (3.3) follows then, by integrating by parts in the oscillatory integral
which gives A"(x, hD,)u,, and using the Calderon—Vaillancourt theorem.

To prove (3.2), we only remark that u,. = t.(hD,)t_ .u = y(hD, — y*)u.

Let us now prove the converse statement:

If u, satisfies (3.3), we can find for any y*eI'* a real function
A(EeCF(1¢] <%ly*]) such that the family (A4,4),r+ is bounded in S°(IR?") and

(1 — Apu(hD,))ug ll 2 < Cly*|~ VAN

for |y*| large enough. Then, if peF(IR"), we can write

(U, @)p2 = (o, T— @)1z = (o, A(hD )T _ s @)1z + O(R|y*|7T)
and, because of the condition on the support of 4,., we have
I AphD, )T o |l 2 = O(RY |y*| ™).
We conclude from this that ) u,. converges in #". It remains to show thatu = u,.
is in V.
Let us take y as before, and consider

(X(th)ua" uﬁ‘)L2 = (X(th + a*)uO’ uﬂ‘ —a')Lz'

If we take another cutoff function j such that jy = y, we get:
(X(hD Jugs, uge) 2 = (X(hD + a*)ug, F(hD . + 0*)u g _ )
= (Ta‘—ﬁ‘X(th + “*)uo, Z(th + .B*)uo)-

Hence, using (3.3), we get:

|GUhD Yty tge) 2] < Nl x(BD . + 0*Yug || | H(AD, + B¥)ug |
< Cyh™(loa*| + | p*[) ¥ (3.5

when |o*| +|B*| is sufficiently large. Here, 5,, can be estimated by the sum of
llug|l and a finite number of the C,’s in (3.3).

It follows from (3.5) that ((hD,)u, u), . is well defined and finite, and we conclude
by Proposition 3.1 that u in V,. [

We next study the action of pseudodifferential operators on V,:

Proposition 3.3. Let B(x, £)eS°(R2") with B(x, £ + y*) = B(x, &) for any y*e I'*. Then,
B"(x,hD,) is bounded on V,, uniformly with respect to h small enough.

Proof. Let ueV, and let us write u=) u. as in Proposition 3.2. Then
rﬁ
B*(x, hD,Ju =Y v,., where v,. = B¥(x, hD Ju,.
I"‘

Then since B(x, £ + y*) = B(x, &), we get that v, =1 _ .0y, where v, = B*(x, hDJu,
is in L*(IR"). This shows that v,. satisfy (3.2).

Using standard pseudodifferential operator calculus, we see easily that v,
satisfies (3.3), with constants Cy estimated by similar constants for u,. This proves
that veV, and that |v|l,, < Collully,, by Proposition 3.2. [J

Remark 3.4. An alternative proof of it would have been to conjugate B¥(x,hD,)
by a Fourier transform, and then get a pseudodifferential operator acting on
L*(R™/I'*). However, this kind of proof cannot be easily generalized to the space
L, we have now to consider.
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Remark 3.5. Under the assumptions of Proposition 3.3, the adjoint of B*(x, hD,)
on V, is given by (B)"(x, hD,).

We will now see that essentially the same discussion applies to L,. Indeed if
u=Y v(x)8(x — hy — hy), we can consider for each fixed y:
vell

u,= Y v(hy + hy)d(x — hy — hy).

yell
It turns out that up to the translation by hy, u, is an element of V,, for almost
all y. This follows from the following identity:

lullz,=lolZamm=h" [ lothy +h()Z:qmdy

R/ I”
=k [ w2 ,,dy. (3.6)
R I

If we take now x as in Proposition 3.1, and consider x(x,hD,) as acting on
(R} x RY) with y as a parameter, we see by (3.6) that the analog of Proposition
3.1 holds for L,. Namely:

lullZ, = h"Colx*(x, hD Ju,u) (3.7)

LR} x RY/I)’
We will now prove the analog of Proposition 3.2 for L,. Let T, be the operator
multiplication by e~ and notice that T.u=u for u in L, and y*eI*.

Proposition 3.6. For any ueL,, there exists uge LX(R, x R}'T") such that:

The property (3.2) holds for A = A(x, &) (independent of y,n)
if we replace L*(R") by LR, x R}/I). (3.8)

The constants Cy are O(||u] L,)-
If up=Tuu, then: u= ) u,,
y*el™*

where the series converges in S'(R7, K,). 3.9

Conversely if uoeLZ(R; x R}/I") satisfies (3:8) .and. if Upe = Ty,,u.o, then the series
Y. u, converges in ' (R%, K,) towards a distribution u in Lo with ||u/ ., bounded

y*eI'*

by a constant times h"? times the sum of || u, ||

Cy in (3.8).
The proof is similar to that of Proposition 3.2 and we omit it.
Proposition 3.6 gives a proof of the fact that L, = #'(R%, K,). A more direct

proof can be obtained by computing the scalar product of u = Y v(x)d(x — h(y —y))
vell

with pe (R}, x R}/I") and by estimating it by ||v]| (g~ times a seminorm of ¢
in S(IR’;,LZ(]R;/I“)).
The same argument gives also that
L, ={ueLy|A¥(hD, + A(x))ueL,|a| < m},

where A,(£) is the operator valued symbol ((¢ + D,)*)".
One also gets that:

L(RY <RI and a finite number of the

L, &' (R H"(R!/T)). (3.10)
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We can now state prove the main results of this section, namely the spectral
reduction of P,. We keep the notations of Sect. II:

Theorem 3.7. Assume (HI1) to (H5). Then, for h>0 small enough and
AeV, P¥(x,hD, + A(x), ) is uniformly bounded from L,,® (Vo) to Lo ® (V,)", and
has the uniformly bounded two sided inverse &*(x,hD, + A(x), A, h) from Lo @ (V)Y
to L, ® (V)N

Proof. We already know that 2*(x, hD, + A(x), 1): &' (R"; H(R"/T")) x &' (R"N —
F'(R", 2(R"/I)) x &' (R™" is bijective with inverse given by &*(x, hD .+ A(x), 4; h).
So, we only have to show that 2*(x, hD, + A(x))and &*(x, hD, + A(x)) are bounded
between L, ® VY and L,@® V) as indicated.

We already know that P*(x,hD, + A(x) + D,) is uniformly bounded from L,
to L,. It then remains to show that the following operators are uniformly bounded:

R® (x,hD,, + A(x)):Lo - VY, 3.11)

R” (x,hD, + A(x)):V¥ > L,, (3.12)
E*(hD, + A(x), A h): VY > L, (3.13)

E¥ (x,hD,, + A(x), i h):Lo — VY, (3.14)
E*(x,hD,, + A(x), L, h):Lo— L, (3.15)
E¥ ,(x,hD,+ A(x), L h):V§ > V3. (3.16)

Here (3.16) is a consequence of Proposition 3.3, and (3.11)—(3.15) can all be proved
essentially as in the proof of this proposition. Let us show for instance (3.13). It
suffices to show that for all aeIN" with |a| <m, AY(hD, + A(x))°EY (x, hD, + A(x))
is uniformly bounded from V{ to L,. This composed operator is of the form
C*(x,hD, + A(x), A; h) with C(x, &, 4; h) in S°(R2"; Z(CV; I>(R"/T"))), and further:
TC"(x,hD, + A(x)) = C*(x,hD, + A(X))T,

for all y*eI™* (cf. (2.11) with 2 replaced by &).

Let ueVy, and decompose u=) u,. as in Proposition 3.2. Then we have
C¥(x,hD, + A(X))u=Y v, with

v, = C¥(x,hD, + A(x))u,s = T,x.C*(x, hD, + A(x))u,

and thus we are in a situation where Proposition 3.6 applies and gives the
result. [

Corollary 38. For Ae?" and h> 0 sufficiently small, we have: Lea(P*(hy,y,D, +
A(hy))) (where the operator is equipped with the domain H,, ,) if and only if
Oea(E” . (x,hD, + A(x), A; h)), where this last operator is considered as a bounded

operator: Vi - V5.
Proof. This follows from the last theorem and the two formulas:
(P¥—A)~!=E¥—EL(A)(E” (1) "E~ (D),
(EY, ()™= —RY(P"—A'RY,

where all these operators have to be considered as bounded ones on the spaces
given by Theorem 3.7. (O
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Remark 3.9. Using the same idea as in Remark 3.4, one can also conjugate
E” ,(x,hD, + A(x), 4, h) by the semiclassical Fourier transform

Fu(&,h) = 2nh)™"2 [e= " u(y)dy,
henceforth replacing
E” ,(x,hD, + A(x),4,h)
by
EY _(hDg, &+ A(hDy), A, h),

(see [H6]) and (V)N by L2(R"/I'*,C"), where R"/I'* is given with its manifold
structure. In this form it might be more transparent to derive Bohr—Sommerfeld
type quantization rules to decide when Oea(E” , (x,hD, + A(x), 4, h). We remark
that the Stark ladders of resonances for a periodic crystal in a constant electric
field (which is outside the scope of this work) are obtained precisely in this way.

It is of some interest to see what kind of Grushin problem we obtain for the
original operator if we compose the Grushin operator of Theorem 3.7 with the
earlier identifications. We recall that we have the unitary map L*(R")3u—
f=uv(x)Y 8(x—h(y+v)eL,, defined by v(hy)=u(y). We shall “compute”

yell
R% (x,hD, + A(x)) f in terms of u. In order to simplify the notations we shall assume
that N =1 and write ¢ = ¢,, ¥ =,. (Equivalently, if we do not assume N =1,
we shall compute the j-component of R (x,hD, + A(x)) f for some fixed j). Recall
that @(x, & y) = Y(x, & y)e ™%, that y is I *-periodic in £ and (I, £)-Floquet periodic
in y. We also recall that the Weyl symbol R, (x, £) is given by

Ri(x,Ou= [ u(y)o(x,&y)dy.

R™T
Hence if E is a fundamental domain of I:
R (x,hD, + A(x)) f(x)

= Quh) " [[ei- PR, (" ; Xy A<x ; >2))f(;z,-)dfalc

= e s ()—Cﬁ,§+A<x;£>;y>dydid§

2

= (2rh) " [[' " Du(R) Y [ 6(%—hy—hy) ¢<x;x,é+A<x;x>;y>dyd£d€.
yelr E

If y = y(%X)erl is the unique element with yd——e-f% — yeE, we see that the sum in the

last integral reduces to

(p<x+x§ A<x;x>-—v( ))

Using then the I'-periodicity in y of ¢, the sum reduces to

x+ X X+X\ X
T era ).
“’(2 : <2>h>
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Hence

R (x, kD, + A(x)) f (x) = k) " ] e“*-ww(%f, £+ A(%) )v(x)dxd«:

Here we recall that v(%) = u<%> so if we make the change of variables X = hj and

the substitution x = hy, we get

(R (x, kD + A(x)) f)(hy) = 2n)*"jjeiw’"<p(h¥’;—y,n+A(hy—“—2Lj> ;) (5)dydn
=(R,u)y)

The distribution kernel of R, becomes:

K(,9) = (2n) ™" 1g <hy ;y,n+A<h—+y);)7>dn

2
= (27.,_.)—nj’ei(y—i)'n+ii(n+A(h(y+§)/2))(/,<hy _; f, n+ A(hXﬁ)f/)dﬂ
- eif‘A(h(y+i)/2)(2n)~n[eiy~nl/,(hy_Jrj,
2

= ei@—ymw(ywvz)(h)—nfeiy-w(h Y 42' Y ;,)d,?.

In general, if f(y) is a I*-periodic function, then

1 o ~ ) ' i
(27[)" H.L e f(ﬂ)d?] = Za},é(y y) with a), —

Since Y(x, n; §) is I'-periodic in y, we get

1 .
e (n)dn.
VolE* bj‘e f(n)dn

g (05
K(y,7) =Y 0 nato+iy2_____ iyn 0¥ dn-o(y —
.y = Z Vol E* zg* W( Ty > n-oly =7

Hf( y+y,n,y v)dn d(y—7)

=Y Ak
" Vol E*

y+y o
= WA.h<h—*2 - ?)5(y -7),
Y
with
WA,h(x, »= e A Wi(x, y),

W) = l(E*) Ef‘!/f(x 1 y)dn.



Mathematical Approach to the Effective Hamiltonian 235

In the situation studied in [He-Sj1] we can take y independent of x and then
W(y) is a Wannier type function used in that work as well as in [Ne].
We get R, u(y)=Y R, u(y)d(y — y), where R ,ue/*(I') is given by:

5 Y+
R u() = [u(®) Wu<h 2y,y y)dy (3.17)

In the situation of [He-Sjl1] we start with a constant magnetic field
5 Y'> b;idx; A dx, with b;, = — b, ;, where contrary to [He-Sj1] we do not assume

that|b; | are small. (In that paper h = 1 at this stage.) We can then take Ax = — }Bx,
and a simple computation shows that

WA,..(hy;’y,y v)—(T"BW)(y)

where T"B is the magnetic translation defined in [He—Sj1]. This means that R,
is the same operator as R"8 in the termxnology of [He-Sj1].

Since the various identifications in our computation are unitary and since
RY (x,hD, + A(x)) = R% (x,hD, + A)*, it is clear that this operator is naturally
identified with R_ = R* . Summing up we have proved:

Corollary 3.10. Define R* =R, by (3.17) or rather the natural generalization of
this relation for arbitrary N. Thus for A in a neighbourhood of A, the operator

(P (hy.3,D, + Alhy) -4 R'):H,,,‘A x L3I C) > L2 x £2(I; CV)
R, 0
: i
E

is bijective with bounded inverse ( ~ > The matrix of E_ , is equal to the

- -+
matrix of E*(x,hD,+ A, A;h) acting on VY, if we identify the latter space with
£2(I; €CN) in the natural way.

IV. The Case of the Schrodinger Operator

In this section, we assume that A(x) is a linear function of x (corresponding to the
case of a constant magnetic field). Let V(x, y)e C*(R?") be I'-periodic with respect
to y and satisfy

10205V (x, )| < Cy p5 4.1)
on R?" for every («, f)eIN?". We are then interested in the operator
2.(D,, +hA[y))* + V(hy,y) = P*(hy,y,D, + A(hy)), (4.2)
where
P(x,y,nm) =n>+ V(x,y). (4.3)

Following the procedure of Sect. II, we fix an energy level z,, and we choose
Ui(x,&Y),...,¥n(x,&y) smooth in all variables, I *-periodic in ¢ and with
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Yi(x, &y +7) = €% (x,& ), such that the problem:

<ZD§, +V(x,y)—z R%(x,%)
R%.(x, &) 0

is bijective for £eIR™*, and z close to z,. Here the spaces #, . are defined in Sect. I
and R% = R%*, (R.(x,&)u); = (u|y;). Let Eq_ ,(x,&,2) be the N x N matrix which
appears in the lower right corner of the inverse of (4.4). Putting P(x, £)= P*(x, y,¢+D,),

. . —z R_
R_(x,8)=e"4RY (x,8), R, (x, )= R%.(x, e, (¢, z)=(P to)mz R 5))
R, (x,8) 0
we then know from Sect. II that when h is small enough,
P*(x,hD, + A(x),2):K,,® (R"; ") > L*(R" x (R"/T')) ® L*(R"; C")

is bijective and has the uniformly bounded inverse &™(x,hD, + A(x),z;h). If
E_,.(x,hD,+ A(x),z;h) is the N x N block in the lower right corner, then
E_ .(x,& z;h)eS° has a complete asymptotic expansion in powers of h and the
leading term is E,_ . (x, & z). Moreover we know that E_, is I *-periodic with
respect to £. The main result of Sect. III tells us that zea(P"(hy, y, D, + A(hy)))
(as an operator acting on L*(R") iff Oea(E™ ,(x,hD, + A(x),z; h))), where E”
now acts on the space ¥} (of functions which are I'*-periodic in the dual variable).
We now discuss two special cases:

):%,g x C¥ > Fo x CV (4.4)

1. The Case of Periodic Potentials. We here assume that V = V(y) is independent
of x (and I'-periodic in y). If we choose ¢; = ¢,(¢; y) independent of x, then the
symbol 2 = 2(¢) is independent of x. The operator #*(hD, + A(x)) then acquires
some additional symmetry properties: We introduce the magnetic translation

Tu(x) = e ™40y (x —v), 4.8)

and check that [T4,hD,, + Aj(x)]1=0, VveR", j=1,...,n. T} may be viewed
as a h-Fourier integral operator associated to the affine linear map: (y,n)—
(v + v,n — A(v)), and we have for symbols g of class S°:

(TH™'q*(,hDITy = q}(x,hD,), q,(x,&)=4q(x +v,& = A(V)). (4.9)

This remains true also for operator valued symbols and in particular #*(hD, + A(x), 2)
commutes with T4, for all veIR". This is then also true for £"(x,hD, + A(x), z; h)
and using (4.9) we conclude that &(x, &; h) is independent of x:

P*(hD, + A(x),z)" ' = E"(hD, + A(x),z; h). (4.10)
In particular for z in a neighborhood of z,:
zeo(} (D, + Aj(hy))* + V(y))<=>0ea(E* , (hD, + A(x),z; h)), 4.11)

where E_ , (&, z; h) is I*-periodic in ¢ and E* | acts on V.
We further notice in this case that the operators P, in Remark 1.2 have the
same spectrum since

YDy, + Afz + hy))* + V(y) = e~ > AOQD,, + 4;(hy))* + V(y))e” 4.
Hence P*(y,hD, 4+ A(x) + D,) has the same spectrum as
YDy, + Ayhy)? + V),
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so we may ignore Sect. III, and consider E* ,(hD, + A(x),z;h) as a bounded
operator on I[?(R™C") in the equivalence (4.11). This result was obtained in
[He-Sj1] by use of Wannier functions and some implicit arguments. See also
Nenciu [Ne].

2. Quasiperiodic Potentials with Vanishing Magnetic Fields. We assume that V(x, y)
is I'-periodic with respect to y (as before) and I"-periodic with respect to x, where
I' is a second lattice. We shall not assume that 4 vanishes right away. We can
then choose ¢; in (4.4) with the additional property: ¢;(x +7,&y) = 0,(x,&; y),
Vjel (trivially since we may even take ¢; independent of x). This implies that

2(x,¢,z) appearing in (4.5) is not only “I'*-periodic with respect to £”, but
also I'-periodic with respect to x. Considering magnetic translations T# as in
case 1, we see that 2¥(x,hD, + A(x),z) commutes with all T with vel Then
&%(x, hD, + A(x), z; h) will have the same property and we conclude that &(x, &, z; h)
is I"-periodic with respect to x. In particular:

zea() (D,, + hA;(y))* + V(hy, y))<=>0€a(E* , (x,hD, + A(x),z;h)), 4.12)

where E” , acts on V§ and E_,(x,&h) is I -periodic with respect to x and
I'*-periodic with respect to £.
If
I" + I is dense in R”, (4.13)

then we can let E* , (x,hD, + A(x),z; h) operate on L*(R";C"), the reason being
again that for every xelR", the operator

P,=P*(x+ hy,y; D, + A(x + hy)) = P*(x + hy, y; D, + hA(y) + A(x))

is isospectral to Py,.
In fact, conjugating P, with e ~“4™)"Y we see that P, is unitarily equivalent to:

P*(x + hy,y,D, + hA(y)). 4.14)

Let T4 be defined as T4 but with h replaced by 1/h. Then T4 commutes with
(D + hA(y))“’ Conjugatmg (4.14) with T”,yeF and using also that P(x,y;n) is

I- -periodic in x and I-periodic in y, we see that for all yer, 5erl, the operator
(4.14) is unitarily equivalent to:

P¥(x + hy 4+ 7+ hy,y; D, + hA(y)). 4.15)

Using the assumption (4.13) we can take a sequence (y;, 7;)eI” x I, j=1,2,...such
that x + hy; + §;—0. Then V(x + hy; + §;, )= V(0, y) uniformly and we conclude
that P, is isospectral to P, as stated.

We now take n=1, A=0, and we shall see that we can get an effective
hamiltonian which is close to Harper s operator cos(hD,) + cos x. We take V,(x, y)=
U,(x) + A2W(y), where 4 > 1 is a large parameter. We also let I'=Z, I" = '* =2nZ.
We assume that W(y) = 0 with equality precisely on Z, and also that W”(0) > 0.
We first consider

~

D2+ 22W(y) = 23((hD,)* + W(y)), h= % (4.16)

We can here apply known results concerning the tunnel effect in periodic semi-
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classical situations of Harrell [Ha], Outassourt [Ou], Simon {Si], and we know
that the first band in the spectrum of (4.16) is of the form

[AE(2) — 252 a(A)e ~S°* AE(X) + 232 a(A)e 5047, 4.17)

where S,>0 is a certain complex action between neighboring wells, and
E(A), a(l)eS‘l’)o(lRJr) are real valued classical symbols of order 0 with asymptotic
expansions:

EQ) ~Eg+E A" 4y a(l)~ag+a;i~t+ ) 4.18)

with E,,a,>0. Moreover, for 4 >0 large enough, the band (4.17) is all of the
spectrum of (4.16) in the half axis ] — o0, 2AE,].
The band (4.17) is generated by the Floquet eigenvalue:

12(8) = AE() + 2°"2a(A)e~5o*(cos ¢ + r(4, &), (4.19)
where
[405r(4, )| < Cy o~ (112504, (4.20)
for all k,7.
We take
U = U,(x) = p,(x) — 24E(A). 4.21)

Choosing ¥~ to be a complex neighborhood of the interval (4.17), we can take
N=1 in our choice of Grushin problem with ¢; independent of x,
(D} + A*W)o, = u,(&)¢,, and choose this problem in such a way that

Eo_+(x,&2)=z— A3%a(A)e 5Hcos & +r(4, &) +cosx + r(4, x)).  (4.22)

We are therefore quite close to Harper’s operator. It is quite likely that (4.20) can
be extended to a large band around the real axis and that we get a corresponding
result for E_ , (x, &, z; h). In order to apply the resuits of [He—Sj3], one would also
need Fourier invariance: E_ ,(x,&,z;h)=E_ (£, — x,z;h) (and another simpler
property which may be less important). Perhaps this is also possible to obtain by
means of some delicate correction terms depending both on x and y in the choice
of V,(x,y). A more natural solution would be however to extend the study in
[He-Sj3] to the case without Fourier invariance.

Appendix A. Magnetic Differential Operators and Sobolev Spaces

Here, we shall discuss magnetic Sobolev spaces, and we assume (H.5). We define
for melN:

H7% = {ue *(R");(D, + A(x)*ue L*(R"),|a| < m}.

Using the composition formula for Weyl quantizations, and the fact that for any
aeN", BelN?" |B| = 1, we have:

DL+ AM)) = ) ag(x)(€ + A(X)),

y<a

where the a,z,’s and all their derivatives are bounded functions on R”, it is not
difficult to see (by induction on |a|) that for any aeIN” and any function a(x),
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bounded with all its derivatives:
a(x)(D, + A(x))* = [a(x)(Ds + AX))*1* + Y. [bes(¥)(Ds + A(x))’T", (A1)

B<a

where the b,y’s and all their derivatives are bounded on R".
We can also deduce from (A.1) that:

[a(X)(D, + AX))T" = a(x)(D; + AX) + Y. c(x)(D+ AX),  (A2)
f<a

where the c,;’s have the same property as the b,,’s.
In view of (A.1), (A.2), we then get the same space H”) if we replace (D, + A(x))*
by [(D, + A(x))*]" in its definition.

Proposition A.1. H" is a Hilbert space in which C7 is dense.

Proof. It is enough to prove the density. Let ue H’ and y;eCJ(|x| < j+ 1) with
x;(x)=1for x| < jand |0%y;(x)| £ C, for all aeIN" with C, independent of j (jeN).
Clearly yueH,  (R") < H’. Moreover, for [a| <m:

comp

(D, + AX))*(xju) = Y, Cop(Dlx;) (D, + A(x))*Pu,

BZa
where the C,;’s are constants, and C,, = 1. Thus
(D, + A(x))*(;u) > (D, + A(X))u in L* (as j— + oo).

Hence, every u in H” can be approximated by elements with compact support,
and each u in H”} with compact support can be approximated by Cg’-functions
by means of a standard regularization. []

Notice that we have the inclusion:

H oy = HY = Hig,. (A3)
We next introduce differential operators. Let
P(x,&)= Y a,(x)¢&
. lalsm
with
108a,(x)| £Cy (Yo, B, X). (A.4)

Then [320%P(x, &) £ C,y<E™ 1P (where (&) = (1 4 £2)"/?) for any x, ¢ in R" and
o, B in IN".
We then put pi(x,&)= Y a,(x)&% p=p,, and we assume that m is even and
lal=j
for some C, > 0:

p(x, €)> Iél"‘ xeR", £eR" (A.5)

We are interested in Op ,(P) = Pw(x D + A(x)), which can also be written:
Op(P)= Y b (x)(D,+ A(x))" (A.6)

lal=m

where the b,’s satisfy (A.4), and b, = a, when |a| =
It is easy to see that Op ,(P) is bounded H"; ** - H¥ for every keN.
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If we fix xoeR” and put &, = A(x,), we have:
e 0p,(P)e™™0 = 3 b,(x)(Ds+ A(x) — A(x))" (A7)

lalsm

This operator is bounded: H % — H¥ _, . If Qis an open set of R”, we write:
llu ”Hk @= Z 1Dy + AX)Yul 720
lal sk

Then, thanks to (H.5), we see that the norms ||| Y, (B(30.2) and || || gx(g(xo,2)) aT€

equivalent uniformly with respect to x,. (Here B(x,,2) denotes the open ball of
center x, and radius 2.)
The operator (A.7) can be written:

Y e(x,x0)D2 (A.8)

lajsm

with ¢,(x, Xo) = a,(x) for |a| =m, and |9%¢c,(x)| < C g for any o, xe B(x,, 2), and with
C; independent of x,.

Standard a piori estimates for elliptic operators then give for any u in
HA™(B(xo,2)):

180 a1y S CeLNOPAPI N e i+ [l sipoy ] (AS)

where C, is independent of x,.
If we also assume, as we shall do from now on, that P is real valued, then
Op ,(P) is formally selfadjoint and the classical Garding inequality becomes:

(Op4(P)u, u)» 2 6- Nl amz— Collul i (A.10)

for all ue&’'(B(xq,2))nH%?, and with C, independent of x,.
Combining (A.9) with a simple covering argument, we get:

Proposition A.2. If ueI*(R") and Op,(P)ueH"(R"), then ueH%*™(R") and we
have:

ltll oo m = CLI OpA(P)u g + ez, (A.11)
where C, is independent of u.

Using a partition of unity, we also get from (A.10) (with a new constant C,):

(OPAPI 3 2 4l — Collul (A12)
(4]
for all ue H”. (The commutator terms are estimated by C|ju|| a1 Nul
we can use that |ul| i <8[|u1| + C, i llull.: for any &> 0).
If we consider Op «(P) as a symmetrxc operator with domain C3(R"), (A.12)
shows that Op ,(P) is semibounded from below, and admits at least one self-adjoint
extension (the Friedrichs one). Proposition A.2 actually shows that Op,(P) is

essentially self-adjoint, and that the domain of its unique self-adjoint extension is
H7. ‘

n and
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Appendix B. Pseudodifferential Operators with Operator Valued Symbols

We review some standard facts. Our main reference is here the unpublished work
of A. Balazard—Konlein [Ba].

We denote a point (x,¢)elR?*" by X. We shall consider a family of Hilbert
spaces oy, X eR?" satisfying:

oy =ofy as vector spaces for all X, YeR?", (B.1)
There exist N, =0 and C = 0 such that
lu]l gy S CLX — YO |lu|l 4 for all uesty, X, YR (B.2)

Let %Ay, XeR?*" be a second family with the same properties. We say that
peC®(R?"; P (4, B,)) belongs to SO(R?"; L(ofy, By)) if for every acIN?", there
is a constant C, such that

1052 ¢y, 0) < Cor  XER (B.3)
If p depends on the additional parameter he]0, hy ], hy > 0, we say that p belongs

to SO(R?"; £ (sfy, By)) if so is the case for every fixed h and if (B.3) holds with
constants C, which are independent of h.

Proposition B.1. Let peS°(R?"; #(Ay, By)), where ofy, By satisfy (B.1), (B.2). Then
Op,(p) = p*(x, hD,) is uniformly continuous & (R"; o) > L (R"; B,).

Proof. We neglect certain standard density arguments like approximating the
symbols by symbols with compact support. In the formula

x+y dyd¢
2 ’€>“( )y

Op,(p)u(x) = [f e“"‘”‘/"p< (B.4)

where ue #(R" o/,) we use the fact that:
(L+1x=y>+ €))7 1A — &hDy + (x — y)-hD,)e'* V" = gilx=0Th - (B.5)
and obtain after N steps:
Opy(p)u(x) = (2mh) ™" [f '~ P[(1 + EhD, — (x — y)hDy)o(1 +|x —y|* +]£?) 1TV

'<p<x7+y,é>u(y)>dydé

= (2nh) ™" [[ =M% g(x, y, &, h)dydE. (B.6)
Here
a(x,y,&h) = O + [E] + [x = y[) VA + x|+ [y[ + [ED*™(L +y))~" in B,.
This implies:
q(x, y, & h) = O()(1 + ) ™MD 2N 4 |x — y[)TM2(1 4 [y[) 7N F2No(1 + | x[)2Ne
é@(1)(1+Iél)‘(N/2)+2Nn(1+|x__yl)“(N/2)+2No(1+lyl)—N+4N0 in gO’
and choosing N sufficiently large we see from this and (B.6) that
10PH(PYu(x) | 5, = O(1)(1 + [x])™¥ for every N.

The derivatives in x can be estimated similarly. [
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The formal complex adjoint of Op,(p) is Op,(p*), and using this remark we
see that under the same assumptions as in Proposition B.1.
Opu(p): &' (R"; ) > L' (R"; Bo).

We next review the composition. Let €y be a third family of Hilbert spaces
which also satisfies (B.1), (B.2).

Proposition B.2. Let peS°(R?"; £(By, % x)), 4eS°(R?"; L (ty, By)). Then Op,(p)°
Op4(q) = Op,(r), where reS°(R*"; £(olx, €y)) is given by

def
= pthd, (B.7)

=y
=n

ih
r= exp(E a(Dm Déa Dy’ D"))(p(x’ 6)‘1(}], 7]))
where o is the usual symplectic 2-form. :
We have the asymptotic formula:

o)

h
e (’ ) (0(Ds, D Dy D, pix, Ha(1)

W (B.8).
k=0

x=y
&=1
in the following standard sense: write S"=h"‘S°.k If s;eS™, j=0,1,2,... with
02 m; N — o0, j— o0, then we write s~ Y s; if s~ s,€S™*" for every k.

0
Proof. The only slightly new fact to check (compared to the scalar case) is that
(B.7) really defines a symbol of class S° and that we have (B.8). Write (x,&) = X

ih . . .
(y,n) =Y. Then exp%a(Dx; Dy) can be viewed as the operator of convolution with

2
C,h~ 2 exp( — ZIG(X ; Y)), where the constant C, only depends on the dimension.

Modulo the usual density arguments starting with the case when p, ¢ have compact
support, we get:

5
P#,q(X)=C,h™*" exp( - ia)*(p(@q)

Y=X
= C,h~ P [[e-@imeXDyx _ X)g(X — V)dX dY. (B.9)
Here we introduce a function yeCg(IR?") which is equal to 1 near 0 and we

introduce x(X )2(Y) as a cutoff function in (B.9). We first examine the contribution
for the remainder, that i 1s for 1 — y(X)x(Y). On the support of the integrand we

then have IXI +] YI gc— for some C, > 0. With
0

_ i (Vzo(X,Y))-Dg + (Vyo(X, ¥))-Dy
2 (Vzo(X, 1)) +(Vio(X, Y))?

we have . o
hLe = (2ilba(X.Y) e—(21/h)a(X,Y)’ (BIO)

and we also notice that
|Vza(X, V)| +|Vsa(X, V)|~ | X |+ Y|
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The contribution to (B.9) under study, then becomes:
B =2nC, ffe GMAEDCLNI (1 — xE)uTNp(X ~ X)X - ¥)1dXaY
= C V2 [[e~@imeX Dy (X X, ¥;h)dX dY. (B.11)
Here
=01+ X[+1Y)™) in LBy zCx-z0L(Ax_1,Bx-7)
sO
ty =01+ X[+ M)A +X)2M(1 +| V) in L(oLy, Gy).

The contribution (B.11) in therefore O(h¥) in £ (/y, €x) for every N, and the same
holds for all derivatives with respect to X.
We then turn to the main contribution, from x(X )x(Y), which we write as

i ~ ~
CXP<—2~ G(D;?;DY)>(u(X, X, YDlg=g=xo (B.12)
with
u(X, X, ¥) = x(X = X)pX)x(X - Na(¥). (B.13)
Here u has its support in a domain |X — X|+|Y — X| < const., so we can work

directly in L (By,Cx)o L (Ax, By) = L(Hx,€x), and analyze (B.12) by using the
Fourier transform. [

The [?-boundedness can be established exactly as in the scalar case:

Proposition B.3. Assume oy = o/, By = B,V XeR?*". If peSO(R*"; L(o4,, Bo)),
then Op,(p) is uniformly bounded:

LZ(Rn; o)~ LZ(]R"; Bo).

This is the classical Calderon—Vaillancourt result which can be proved as usual
with the help of Cotlar’s lemma. We also have the following result proved in
[He-Sj2] in the scalar case:

Proposition B.d. Let o/y = o/, By =By, and assume that Y, \,, p belong to
bounded sets of SO(IRZ" L (Bo, Bo)), SCR™, L(shy, o)), SR L(ty, Bo))
respectively.

We also assume that dist(supp ¥/, supp¥,) = &, > 0 for some fixed ¢,. Then for
every NelN there exists a constant Cy, such that

| Opw(¥/1) Opu(p) Op,(¥,) | < Cyh" dist(supp ¥y, supp y,) ™.
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