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Abstract. We construct a convergent cluster expansion for the two-dimensional
N = 2 Wess-Zumino model, in a region of parameter space where there are multiple
phases. As a result of this expansion, we are able to construct the infinite volume
field theory and demonstrate exponential decay of correlations. We are also able
to investigate the different phases of the model, develop the phase diagram, and
show that the free energy of each phase vanishes.

1. Introduction

In the series of papers [10-13] a series of two-dimensional quantum field models
were constructed, in finite space-time volume, and some of their properties studied.
One of the main results of [10-13] was the existence in these theories, in addition
to the usual symmetries of quantum field theory, of an additional symmetry - the
supersymmetry. The existence of supersymmetry has important consequences for
the behavior of these quantum field models.

The purpose of the present work is of investigate the properties of some of
these quantum field models in an infinite space-time volume, and to ascertain to
the extent possible the persistence of some of the consequences of supersymmetry
in this limit. The main technical tool used in this investigation is the Glimm-
Jaffe-Spencer [5, 6] cluster expansion, which allows control of correlation functions
in the infinite volume limit. This expansion is applied to our model using methods
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previously applied by Cooper and Rosen [3] and Balaban and Gawedzki [1] to
the Yukawa2 model, and using some additional techniques developed in [9] and
in the present paper. We restrict our attention to the N = 2 models for technical
reasons explained in [9, 14].

Let us briefly review the properties of the quantum field models in finite
volume, as studied in [10-12]. The field content of the N = 2 Wess-Zumino models
studied there is one complex bose field φ, and one Dirac spinor field φ, acting as
operators on a Hubert space J4f = fflB®fflF, the tensor product of the standard
free boson representation f̂β and fermion representation JfF. The space tf
may be decomposed ^f = Jf + (g) ̂ f _ into eigenspaces of the unitary generator of
chirality γ5.

In terms of φ9 φ, the Hamiltonian of the theory is given formally by

, (1.1)

where Ho denotes the sum of the free Hamiltonian for the bose field shifted to a
minimum of \V'\9 and the free Hamiltonian for the Fermi field; here F( ) is a
polynomial of degree n. (There will be a choice of representation H=H0 + HI

for each distinct minimum of | V'\.) The results of [10-12] imply that the formal
operator (1.1) may be regarded as the limit in an appropriate sense of a sequence
of regularized selfadjoint unbounded operators on Jf. Furthermore, it was shown
that there exists a selfadjoint Fredholm operator Q on Jf such that Q2 = H. The
operator Q is the supersymmetry generator or "supercharge," and may be written
Q = Q+.+ ρ_, where Q± = |(1 + y5)β(l ± y5), i.e.

β_:Jf_-»Jf+. (1.2)

As Q is Fredholm, it has an index, which was computed in [11]; the result is

| indβ | = n - l . (1.3)

Now by definition of the index,

indβ = dimkerβ+ - d i m k e r β _ . (1.4)

Since H = Q2, | indβ | > 0 implies the existence of a zero energy state in Jf, that
is a state Ω, such that

HΩ=0. (1.5)

If ind Q = 0, there may be no such state; then of necessity the lowest energy state
Ψ satisfies QΨφO; that is, supersymmetry is spontaneously broken. Of course
the vanishing of the index is not sufficient to guarantee broken supersymmetry.

The result (1.3) implies the existence of at least n — 1 such ground states, and
it would be natural to associate these to the zeroes of the polynomial V\ and to
conjecture that there should be precisely n—\ such ground states. This result was
however beyond the scope of [10-12].

In the present work we shall extend the construction of the models shared in
[10-12] to infinite volume, assuming some technical conditions on the super-
potential V. The cluster expansion methods of [1,3,5,6] introduce a space-time
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lattice to interpolate between a theory defined on a large volume A and one defined
on the squares of size / contained in A, with no interaction between the squares.
This enables one to produce estimates uniform in A. Unfortunately we are not
able to carry out this procedure while preserving the supersymmetry, and hence
are unable to establish the existence of supersymmetry. However, using the
techniques of [2] we are able to show that a relic of the supersymmetry is preserved
in the vanishing of the free energy of the theory; this is the analogue of (1.5). We
thus have the following result:

Theorem 1. Consider the two-dimensional N = 2 Wess-Zumino model with super-
potential

2 1

where W, w are polynomials of degree n, W' has n — 1 distinct zeroes, and \ W" \ = 1
at each such zero. Write H = Ho + Hj9 as above, choosing one minimum of V. If
λ and w are sufficiently small, the Schwίnger functions of the model converge to
infinite volume Schwinger functions, which are reflection positive, Euclidean invariant,
exponentially decaying, and satisfy the axioms of [15^. The n — 1 choices of the
Hamίltonian H= Ho + Hj give rise (by the results of [25]) to n—\ single-phase
infinite volume limits. The free energy of each such phase is zero.

Remark. A similar result exists for the Schwinger functions of the antiperiodic
model. A periodic Schwinger function has an infinite volume limit which is the
sum of n — 1 functions satisfying the axioms of [15].

Proof of Theorem 1, Assuming Theorem 2. The proof of Theorem 1 now follows
by standard methods, assuming the results of Theorem 2, by checking each of
the OS axioms. The regularity of correlation functions follows by the bound
(2.21).

To prove Euclidean invariance, we must prove translation invariance and
rotation invariance. We do these separately, introducing periodic boundary condi-
tions for the former and a spatial cutoff in a disc-shaped region for the latter. The
cutoff theories then possess the desired invariance properties, and by the cluster
expansion each converges to the same infinite volume limit.

It remains to prove Osterwalder-Schrader positivity. To check this, we choose
a spatial cutoff in a reflection invariant rectangular region, and note that the
infinite volume limit correlation functions in each phase can be taken to be the
limits of finite volume correlation functions in the cutoff regions, obtained from a
quantum field model with a Hamiltonian equal to the free-field Hamiltonian, with
mass term appropriate to the given phase outside the interaction region, and with
the full interaction inside this region. This can be proved using methods analogous
to those used in [10-12] for the periodic models. These (real time) finite volume
correlation functions arise from a Hamiltonian model and are therefore guaranteed
to be reflection positive. Thus their infinite volume limits, which again exist and
are equal to our infinite volume correlation functions by the cluster expansion,
are reflection positive.

The supersymmetric aspect of the theorem, the vanishing of the free energy,
in proven (using the methods of [2]) in Sect. 7.3.
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2. The Model

We consider the two-dimensional (Euclidean) N = 2 Wess-Zumino model, which
has the formal Hamiltonian

= H0+\(\W{φ)\\φ\ + ψ\
o J ^ I λκψβ\ \ψ\ Ψ^ Q W"λ(φ)*-l

where φ is a complex scalar field, φ is a Dirac (complex) fermionic field, H 0 J s
the free Hamiltonian for a boson and fermion with unit mass. We will require W'
to have n — 1 distinct zeroes, located at λξl9..., λξn_ x, all of which have a second
derivative with absolute value one:

\W"{λξι)\ = l (2.2)

Note that such polynomials do exist, e.g.
n~2 ( πk V 1 n~1

W\z)= Π 2 s i n ^ Π (z-e2*™*-") (2.3)
fc=i\ n-lj k = i

with zeroes at the n — 1 roots of unity, or for the one parameter family of
polynomials of degree 2ή (n = 2ή + 1):

(2.4)

where 0 < β < 1. Without loss of generality, we can assume that ξί = 0 and that
W"(0)=l.

The bosonic potential | W'λ(φ)\2 has minima where W' has zeroes, and the scaling
as λ -• 0 increases the distance between and the depth of the potential wells. For
small enough λ this classical behavior will carry over into the quantum theory.

The restriction to mass of absolute value one is for computational convenience
and clarity; no new phenomena are expected in the general case, which should be
approachable through an extension of our methods (see the appendix to [9]). For
small variations about unit mass, our methods work directly. Instead of the
previous definition, consider

Wλ(x) = λ~2 W(λx) + λ~ W μ * ) , (2.5)

where w is also a polynomial of degree n and mis a small parameter. The per-
turbation w breaks any artificial symmetry introduced by our mass restriction
without significantly altering any of our results.

The partition function corresponding to the above model is

| - J (I ̂ ( ^ > ) | 2 - |0 | 2 ) jdet [1 + SyoZyl(r(^(</>)) - 1], (2.6)

where

and the fermionic propagator is

S = yo(i0 + l Γ 1 (2-8)
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where

with

E Γ° - Π E Γ° f Ί
" i y o = 7 o = L i oj 7 i = L oj

and dμ(φ) is the normalized Gaussian measure with covariance (-Δ+1) *. We
will also consider the case with periodic covariance.

Reordering our formal expression, we get

- J (:| Pî 'λ(</>)|2: - : | 0 | 2 : ) ^ | d e t 3 C l -h ̂ ( φ ) : ^ " ^ (2.9)

where

l l ) (2.10)

and

R= \ dxUW\m2 ~W\{φ)\2:-\φ\2 + :\φ\2^+\Ίτk\φ)-ΊτK{φ). (2.11)

It was shown in [10,12] that the formal expression R is actually finite; i.e. if
R is regularized it has a limiting value as the regularization is removed. In finite
volume the theory corresponding to (2.9) was constructed in [10, 12]. Our goal
here is to prove similar estimates which are uniform in the volume.

In order to make use of the aforementioned finite volume results, we regularize
our theory in the same fashion. Thus we have

? l , (2-12)

where

A** = J dxU W'x(φκ) - φκ\
2 + φ*(W'λ(φκ) - φκ) + φ(W'λ(φκ) - φκ)*l (2.13)

A

φκ = Ξκφ and Ξκ is a cutoff whose Fourier transform has compact support. This
rather unusual cutoff is necessary to avoid explicitly breaking the supersymmetry.

Equivalently,

K S J ω d e t 3 l l + ΞκK(Φκ)l (2-14)

where

j / w = j dx\_:\ W'λ(φκ) - φ κ \ 2 : + :φ*(W'λ(φκ) - φκ) + φ(W\(φκ) - </>κ)*:] + Rκ

(2.15)
and

Rκ = ίTτ(ΞκK(Φκ))2 ~ Tr ΞκK(φκ)

'λ(φκ) - φκ\
2 -:\W'λ(φκ) - φκ\

2: + φ*(Wλ(φκ) - φκ)
A

+ Φ(W\(φκ) - φj* - :φ*{W\(φκ) - φκ) + φ(W'λ(φκ) - ψ κ )* :] . (2.16)

Note that the expression (2.14) corresponds to our formal expression (2.9).
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Our analysis will be simplified if our expression for the regularized partition
function Z* is replaced with another having the same limit as κ->oo. So we
consider

Z?=$dμ(φ)e-*Mdet3ll+K(φκ)l (2.17)

where

JM = f dxί:\W'λ(φκ) - φκ\
2: + :φt(W'λ(φκ) - φκ) + φκ(W'λ(φκ) - 4>κ)*:] + Rκ

A

= J dxl:\W\{φκ)\2:-:\φκ\
2:-} + Rκ. (2.18)

A

Notice that the counterterms Rκ have not been altered (which might change the
limiting behavior); we have only changed terms that are expected to behave well
in the limit κ^> oo. It should be evident that provided both Z* and Z ^ exist their
limits will be the same. The existence of Z* was shown in [10,12] and we will
directly demonstrate the integrability of Z ^ in later sections.

Similar expressions may be derived for Green's functions using the results of
[10-12]. In this case the quantity of interest is

Γ / Ί
\ Λ ll+Kiφjy'Shjigy)

φ^-^D-^Y'pλ (2.19)

where

and

Pj() = DV2Shj(D-1'2g,); (2.20)

the test functions {/J c jtf?_ x and {gj9 hj} a j f are each localized in a unit square.
The insertion of powers of D allows us to compute the determinant of an operator
on the space W = L2(1R2) ® L2(R2) instead of J f = ̂ _ 1 / 2 (1R 2 )® Jf _1/?(1R2). The
# symbol indicates that some of the test functions ft may be associated with
complex conjugated fields - φ*{fι) - instead of only #(/,-). The expression (2.19)
will be the starting point for our investigations.

Although our cluster expansion and the expression (2.19) assume a particular
choice of the minimum of the potential we expand around (we expand around ξγ\
we could have just as easily chosen one of the other n — 2 minima or taken periodic
boundary conditions. For any of these choices, we have the following:

Theorem 2. For λ and w sufficiently small,
(a) The Green's functions Z*({fi9gj9hj}) have a limit as κ->oo, ZA{{fhgj,hj}).
(b) The infinite volume limit of ZΛ({fi9gj9hj})/ZΛ=SΛ{{fi,gj9hj}) exists, and
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has a convergent cluster expansion. Thus the resulting connected Schwinger functions
Sc exhibit exponential decay in the distance between the supports of the functions
{fi>9j>hj} in the form appropriate to

ί{Jψ\chγ Π II/,• Π ( I I 9 j I I * I
j = 1

sup exp -cD\Γ\
D supp {fi ,gj,hj}

(2.21)

for appropriate (positive) values of the constants cB, cF and cD.

This theorem follows via standard methods from the cluster decay bound of
Proposition 7.1 and the lower bound of Proposition 7.3.

3. Cluster Expansion

We proceed to analyze our starting expression (2.19) as in [1, 5-8]. We first define
the block-spin configurations, by restricting the field φ to be near one of the n — 1
minima ξh within blocks of size d.

Let Σ be a function from d-blocks to {l,...,n — 1}, where Σ(Δ) represents
which phase the field φ is in inside A. Let

f o r (3.1)

Since φ is complex, we cannot immediately use the characteristic function of [1]
or [8] to restrict φ to be near one of the ξt. However, we can associate with each
of the minima ξt a neighborhood Ξt so that ^GS,- (see Fig. 1), where the choice of
region is unimportant, so long as they scale with λ in the same way as the underlying
£f. Then define

1
(3.2)

« — i

Note that £ χq(x)=l.
q=l

ξ3

ξ6

Fig. 1. Example of six minima and their associated regions
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Defining the mean-field (φ)Δ = d~2 J φ(x)d2x, we have the characteristic
A

function that restricts φ to a particular block-spin configuration:

(3-3)

Then ΣI\XΣ(A)((Φ)A) is a partition of unity, and Z^({fhgphj}) = YjZΣ, where
Σ A Σ

•/!TrΓ Λ [1 +D1>2Sy0χΛ(ΆW"λ(φκ))- l ) / ) " 1 / 2 ] " 1 ^ ] . (3.4)
L/=i J

We expect ZΣ to have decay in the size of the phase boundary | dΣ |.
Standard analysis of determinants of the type appearing in (3.4) is essentially

an application of the formula

det (1 + x) = exp Tr log (1 + x) (3.5)

and is only effective when Y(W"λ(φk) — 1) is small. However, the characteristic
function χΣ(Δ) can force Wl(φκ) away from 1 when the different phases of the theory
have different masses. Fortunately this is exactly the case we considered in [9,14],
where we saw that a local unitary transformation can "rotate" the determinant
from one minimum to another.

Let

with α e C ^ R 2 ) chosen such that |δα| < 1 and e~2ia= W"λ(ξΣ{Λ)) if Σ is constant
in a neighborhood of Δ. Then we have

Lemma 3.1. Let Ξκ> be the cutoff operator on 3tf' given by

(Ξκ.f)(x) = \e-^'2f{V)p-e*\ (3.7)
Then v }

det3 [1 + K(φκ)l = det3 [1 + SC] exp R'(φκ\ (3.8)

where

Γ - 1 1 Ί 1
R\φJ = lim Tr Ξκ, Sζ - K(φκ) - -(Sζ)2 + - K2(φκ) + — || da | | 2 . (3.9)

K'̂ OO |_ 2 2 J 4π

The preceding lemma combined with our choice of α will allow us to use
standard perturbative techniques to analyze the determinant, since ζ is small when
φ is near a minimum: ζ(ξΣ(Δ)) = O(m) if d(Δ9 dΣ) is sufficiently large (it would be
zero except for our perturbation w).

As a result of the lemma,

!Tr Λ/ ! T r Λ [l + β^SCZT 1 ' 2 ]- 1 ?,. ! (3.10)
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where (as in [9,14])

P;(.) = (D-lf2gj9 -)D1/2Shj (3.11)

and

hj=Uhp gj=U-1gji (3.12)

with

U = eiay\ (3.13)

Notice that there is a formal cancellation in the counterterms so that

R - R' « lim ( bosonic terms + Tr [(Sζ)2/2 -Sζ]+ — \\ doc \\2Λ (3.14)
regularization-^O \ 471 /

again indicating that perturbative methods should be effective. These terms will be
dealt with more carefully later on.

We wish to shift the field φ so that we are near the minimum of the potential
in each block. As in [5-8], let

gc(x) = (^( — A + η)~1h){x\ (3.15)

where η is a constant to be specified later. The function gc is a smooth version of
h, but we would prefer to shift by a function almost as smooth but more
localized - the function g specified by (2.3.3)-(2.3.5) of [8]. Then we have

ί ( \W'λ((φ + g)κ)\2: -:\(φ + g)κ\
2:)dx

U(Φ-
i

•exp -

where

\-9)Hfi)ττ\
1

••,+/[*

1 Λ [1 + JR

L/=i
WΦ

1 + 2

+ 9)κ

Reφ

)] 1Pj

*(-Δ + (3.16)

(3.17)

and

K κ) ~ R'((Φ + θU (3.18)

Since g is smooth, we can make gκ arbitrary close to g by taking K large. Since
we are ultimately interested in K -> oo, we replace (3.16) by the simpler expression

ΠWλ(Φκ + g)\2:-:\Φκ + 9\2:)dx

Λ [l

-Δ + l)g + 21Leφ (-Δ + l)g1dx], (3.19)

where

Rκ = Rκ(φκ + g)-R'(φκ + g). (3.20)
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We leave our notation unchanged although (3.19) is not equal to (3.16) as they
have the same κ-> oo limit. Differences between g and gκ will be 0(κ~N) for some
large N; this shows that even the counterterm divergences behave acceptably.

We also wish to divide the action into terms that give decay along the boundary
of Σ and those that do not. Thus we write

(3.21)

4

and F = Σ Ft with

Fx =η j \h — g\2dx+ J |V^|2dx, (3.22)

F 2 = (l-f,) J \h-g\2dx, (3.23)

F 3 = 2Ref η f 0*to- Λ)ώ + f 0*(-zl)0rfA (3.24)
\ A A J

F 4 = 2(1-ιy) Re f φ*(g-h)dx. (3.25)

Here F 2 and F 4 are boundary terms, F x is the term that gives decay on dΣ, and
F3 is a correction to that. We neglect the difference between φ and φκ in F 3 and
F 4 ; as with the difference in regularizations of Zκ and Zκ discussed previously,
this makes no difference in the K -> oo limit. Thus we write

(3.26)

The Glimm-Jaffe-Spencer [5, 6] cluster expansion is essentially an application
of the fundamental theorem of calculus. For a partially decoupled function F(s)
depending on parameters {sb} we have

(3.27)
Γe@(Σ) 0

where

d. Γ =ΓK, dsΓ=Y\dsb, (3.28)
beΓ beΓ

and we set sb = 0 for all fc^T".
We introduce a decomposed version of ZΣ- we choose (as in [9,14]) to use the

decoupling scheme of [1]. We denote the subset of bounds on which we decouple
by 0&(Σ\ to be chosen later. Let Δ,Δ' be /-lattice squares, and take s e [ 0 , ® { Σ \
Then define

H(s,Δ,Δ')= Σ ΓKΠtt-fr) r<Λ \\ > ( 3 2 9 )

finite ycΛ(ί) bey fc^y C(ZI, Zl J
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where

CΓ(Δ,Δ')= J dx J dyCΓ(x,y\ C r = ( - ^ + mc

2)"1; (3.30)
A A'

ΔD

Γ is the Laplacian with Dirichlet boundary conditions on Γ and mc > 0 is a
sufficiently small constant to be chosen later.

Lemma 3.2. H(s,Δ,Δf) has the following properties [1]:
(a) 0£H{s,Δ,Δ')£l
(b) | d ; f f ( s , 4 4 0 l ^ e O ( V ^ ( * ^
w/iere Gx gwes decay in ί/ie size o/y and is defined in Eq. (5.12).

Definition 3.3. Let Θ be an operator on 3#". Then we define

&S^ΣXA®XA+ Σ H(S,4A')XAGXA..
A AΦA'

We use this definition to produce decoupled versions of the operators K, P, K, stf
and R.

Let W = D1/2SD1/2; note that °U is unitary. Define

(3.31)

(3.32)

with K(s)9 s£(s\ R(s) defined similarly.
Finally, we also have the partially-decoupled measure dμs, defined as the

•normalized Gaussian measure with covariance

= Σ ΓrU Π (l-sb)]cw, (3.33)
\ J

gf(ft)

Tr All+K{s)(φκ + g)y1Pj(s)\det3ll + K(s)(φk + g)l (3.34)

as in [5].
Then the decoupled version of ZΣ is

: Γ Λ

Note that ZΣs factors on connected regions whose boundary consists of bounds
with sb = 0.

Applying the G-J-S expansion to ZΣs gives

Proposition 3.4.

=l=Σ Σ idsrdfZ^. (3.35)
Σ Σ Γe@(Σ)

The s-derivatives in (3.35) can act either on the explicit s-dependence present in
the integrand, or upon the measure dμs:

Z*-i= Σ ίdsΓΣ SlW'dμW-. (3.36)
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A single derivative acting on the measure has the following effect:

J ! j . (3.37)

We will be able to combine this structure with the fermionic s-derivatives more
easily if we adopt the replacement operator notation of [3]. The fields that are
differentiated away in (3.37) are replaced with dummy fields φγ, using the replace-
ment operator ry and the covariance operator Sy\

ί W y ) ί ί 4 ω c = w (338)

where

Σ φ(xί)---φ(xi^ι)φy(xi)φ(xi+1)---φ(xm)φ*- φ*,

(3.39)

(3.40)

and

£yφ*(x)φγ(y) = (dlCs)(x,y). (3.41)

Then, writing

£(π) = (xKy and f(π) = Π r * r y>
yeπ γeπ

Z ^ = 1 = / ! Σ S<kr Σ Σ \dμsS{nb)f{πb)dp-. (3.42)
Γe@(Σ) ΓfCzΓ partitions

πbeί?(Γ\Γf)

Terms in our expansion arising from differentiating fermionic objects will have
the form

k! Tr (Λfc[l + X(s)] " x G) det3 [1 + K(s)] = τk(G)9 (3.43)

where G is an operator valued distribution on AkJff given by antisymmetric
products of operators of the type A, E and P defined below. The result of performing
one differentiation on τk(G) is then [3]

^-τk(G) = τk(ψ) + τk+1(G A Ab) - τk(G dΛkEb)9 (3.44)
dsb \dsbj

where

Λ.-K>(s)d™ Eb = (l-K(s))ψ, (3.45)

dsb dsb

and the operator dΛk identifies Eb with an element of t\kW\

dΛkE = kEΛ\k~\ r ^ l Λ ••• Λ I . (3.46)
k — 1 times
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Similarly,

rbτk(G) = τk(rbG) + T H 1 ( G Λ / ) - τk(G dΛkEb\ (3.47)

where

A b = K2(s)rbK(s), Eb = (l- K(s))rbK(s\ (3.48)

where we use superscripts to indicate the effect of a replacement operator and
subscripts to indicate an ordinary derivative.

To obtain an overall differentiation formula we need to iterate the above
expressions. We expand the derivatives df, and then identify where a particular
derivative acts by writing Γ as a union of partitions [3]. First we write πeΦ(Γ) as

π = π b u π / (3.49)

to indicate fermion and boson derivatives. Fermionic derivatives are specified more
exactly by writing

71f = πf,Λ U πf,E U πf,P U πf,B U πf,S U π/,0 (3.50)

Here A and E sub-partitions produce terms similar to Ab and Eb above, and P
terms represent derivatives acting on projection operators Pj(s). We use πfB to
indicate a derivative acting on st(s) (recall s/(s) includes fermionic counterterms)
and πftS indicates additional derivatives of such terms. Finally, πf0 produces all
additional derivatives.

The bosonic case is slightly more complicated, as we must consider both r and
r* terms. Thus we write

πb

2 = π b u π * , (3.51)

where each subset of bonds appears twice, one of which is reserved for r terms
and one for r*. Then

πl = πb,A u πb,E u πb,B u nbtS u πbt0 u πbtX u πby φu πbfF, (3.52)

where, e.g. πbfA = {γl9y2,..., γm, γ*9γ*9...,y*}. The sub-partitions πbtV πbtΦ and πbiF

refer to derivatives of characteristic functions, test functions, and the F-terms,
respectively.

Putting this all together, we have the following:

Proposition 3.5. We can write dΓZΣs according to the following decomposition:

SΓZΣ,s= Σ Σ
& decompositions

b,oK(P(πftP) Λ A(πf,A, nbJ-d*'E{nItEy π6 > £))], (3.53)

with the notation explained below.

We have

r(πb,x)= Π ' , Π r*., (3.54)

Φ(nb,Φ) = r(πb,φ) Π (Φ + 9)*{ft\ (3-55)
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and

r ( π b , χ ) = r(nbΛ) Π χΣ{Δ)((Φ + 9)A) (3.56)
A

We also have

Π (~ryF) Π ( " ^ n (3.57)

B(πf,B,πbtB)= Π (-3SW) [Ί (-»V«0 Π (~»>0, (3-58)
yeπ/,B yeπb.B y*eπb,B

^ ( ^ / , Λ , % ^ ) = A X2(s)δs

yX(s) Λ X2(s)ryK(5) Λ X2(s)r*K(s), (3.59)

and

/ \
P(nf p) = 1 γ[ δMP^s) Λ Λ P/(s), (3.60)

where each 3J acts on a different factor P t . Additionally,

dΛ'E(πftE9πbtE)= Π ^Λ Γ (1-K(s))3;K(s) f l d'Λr(l~K{s))rγK(s)

• Π d'Λ'(1 - K(s))r*,K(s), (3.61)
y*eπb,E

where r = / + | π / f i l | + |π b > v 4 | and the rfΆ means that terms where E derivatives
precede A derivatives (according to an arbitrary ordering of the bonds) are omitted.
Finally, we have the convention that πf s , πb>5, πy j0 and π b 0 derivatives only act
on already differentiated terms, one term per derivative.

We will be estimating the terms in (3.53) by fixing all the localization squares
in the sum over characteristic functions within the decoupling (Definition 3.3). In
addition to the explicit localizations, we implicitly insert partitions of unity into
the bosonic integrals defining si and F in the B and F3A terms. We indicate such
localized terms by writing Ah Bh etc., and rewrite Eq. (3.53) to make this explicit:

Lemma 3.6. The derivative d ΓZΣ s may be written as the following sum over localized
terms'.

dΓZΣ,s = Σ Σ
πe0>(Γ) decomps

localizations

KoWiM ^ M Γ £ / ( ^ % ) ) ] (3-62)

As ZΣs decouples across bonds with sb = 0, we can reorder our summation to
show this explicitly. Following [1], we label by Z{ the closures of the connected
components of R 2 with the decoupling bonds removed, i.e. the components of
R 2 \ Γ . Then

ZΣ^±\\ZΣ^Zi\ (3.63)
i

where the ± sign results from possible reordering of the fermionic test functions,
and e.g. is + for all regions Z f that do not intersect with the support of any such
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function. If we let Z f = {Zhh(dZi)} be the region Z t with the phase of its boundary
components specified, we can replace £ Σ by first summing over admissible

Σ Γc|(I)

Z; (we will choose $(Σ) to be the maximal subset of bonds of A such that h is
constant within a distance L, to be chosen later, of dZt) and then summing over
all Σ and Γ which leads to TL{\

Σ Σ = Σ Π Σ Σ . (3-64)
Σ Γa^(Σ) {Zi} admissible i Σi restricted I.c^I.-.Z,-)

constrained

where the restrictions on the summations are described in [1]. Then

Z({fhghhi})=±Σ Π P ( Z A (3.65)

where

p(Zt)= Σ Σ idsΓtdf'ZΣJZt\ (3.66)
^restricted Σi<=@(Σi,Zi)

constrained

and ZΣ.s(Zι) is the same as ZΣs except that all the integrals in R 2 have characteristic
functions of Zx and we replace / and J with / z . and ,/Z i, the number of test
functions in Zv The activity p(Z£) depends only on Έx (and the test functions
contained in Zt) - specifically it does not depend on Σ outside Z{.

We write our expansion in the form of (3.65)—(3.66) above because now the
activity of each region Z f is exponentially small in its volume |Z f | . Prior to our
resummation our "smallness" depended not on the size of the region but on the
size of Γ.

4. Combinatorics

In order to estimate the sums in Lemma 3.6, we will make use of the method of
combinatoric factors, as we did in our earlier work [9]. In fact, the discussion here
follows the lines of similar discussions in Sect. 4 of [9] which in turn is based on
[1,3]. We refer the reader to these references for details not contained here.

We begin by replacing the sum over decompositions with a supremum over
decompositions by including an overall factor of O(l) | π | . We move on to localize
(i.e. fix a particular choice of terms from the sum over localization squares) the
F, B, P, A and E terms. The F, B, A and E terms are treated as the A terms were
treated in [9,14]: for all y e π M u π M u u π / i £ we get a factor

0(l) |y | O ( 1 ) Πexpβ^(Λ,y) (4.1)
k

when we estimate the sum over localizations by the supremum, where the product
is over all localization squares in a given term.

Similarly we can localize the P factors with combinatoric factors

0(1) exp εld(Δj9 Δj) + d(Δ'J9 Δ'.)l (4.2)

where Δj and Δ!j are the supports of the test functions hj and gy

This results in
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Proposition 4.1.

\d[ZΣ,s(Z)\ = 0(1)'

υπb'F

Γ | Σ sup
π decomps,

localizations

Π

fz

J = l

1

S. A. Janowsky and J. Weitsmai

(l)expε[ίi(4,,^) + ^ , 4 ; . ) ]

\ k /

: i , , ; e )Φ(π 6 > φ )F3 i 4 j / (π 6 ) F )^ s r(π i , j S )β ί (π / j i ί ) π 6 i B )

We will use additional combinatoric factors to restrict the internal structure of
many of our terms, as well as additional derivatives (πb0 πftS). These estimates
all make use of exponential pinning, similarly to those on p. 301 of [1].

We begin by bounding the exterior derivative - reducing the sum over terms to
the supremum of such terms. To count the number of terms, let eL(Δ) be the number
of £ terms with left-most localization square Δ. Then the number of terms in d' ArEt

is bounded by

Lλ (4.3)

where ΔL is the left-most localization square corresponding to the E factor being
differentiated (by y).

Similarly we can restrict the sum generating P derivatives. There are /z factors
and | π / t P | derivatives, so there are less than ( 2 / z ) | π / p | possibilities. We have the
exponential pinning bound

(2/z)l*/,pl^o(l)'π''*' + ̂  Π exp[εmin{φ,4),Φ,4)}], (4.4)
γeπ/,p

where Δt is one of the localization squares corresponding to γ chosen via (4.2),
and Δx is the corresponding test function square. The distribution of "additional"
derivatives is also restricted. For δ π / o r ( π b 0 ) there are less than [O(\)(πfAκj
%^^7Γ/,£^%,£)] | π / ' o U π b > o 1 factors, and for dπf'sr(πbtS) there are less than
[ 0 ( l ) ( π / β u π b β ) ] | π / s u π b ' s l factors, for which we have estimates similar to
(4.4):

;g 0(1)1*1 [Ί exp[εmin{φ,4),φ,4)}], (4.6)

where Δx and Δ\ are the localization squares chosen via (4.1) or its equivalent that
surround the factor being differentiated by γ.

We also need to fix our choice of derivatives generating χ and Φ terms. As in
[1], pp. 306-307, the number of terms making up χφ(πbfχ) is bounded by

Π O(l2)explεd(y,ΔL)l (4.7)
yeπb,x
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and the number of terms making up Φ(πbφ) is bounded by

0(1)'* Π 0(/ 2 )exp[εφ,Λ L )] . (4.8)

Finally, because each K(s) has three decouplings each term can actually be
differentiated a number of ways, so that the partitions πbtΛ, πftA9..., must be divided
into sub-partitions. However, this simply gives a factor of 0(1) ' Γ | , and we will
leave our notation unchanged for the time being.

The above discussion can be summarized by the following proposition:

Proposition 4.2.

π decomps, derivatives j = 1
localizations

sup sup Y[
ecomps
alizatic

expεd(y,ΔL)

0(/2)exp[εφ,4t)]

'S'r'(π6,s)-βί(π/,B> πb,β)
β primes on χφ, Φ,AhcΓ ΛrEh etc., indicate that we take only one term form

each summation.

5. More Estimates

We now wish to simplify and estimate the terms appearing in Proposition 4.2.
First of all, the τr expression now consists of exactly one term, as the primes and
Γs indicate. Thus we write

τr(Q) = d^'r'(nb0)Tr(P^p) Λ ^ί(π/ f i l,π f c i i l) dΛ^;(π / i £ ,π w )) , (5.1)

where

Q = Q l Λ β 2 Λ - Λ β r (5.2)

and Qi is of the form

Q^A^E^E^-'-E?' (5.3)

or

Q^P^E^E^.E^. (5.4)

The expression A\ may result from fermion derivatives:

K](s)dlKx(s\ KAsidfKMdϊKtis), dl'KMdϊKMdϊKts), (5.5)
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or from the action of the replacement operators:

Kfis^Ktis), K^K^Us), r^K^K^Us), (5.6)

or mixed, for example:

K^d^K^r^KAs). (5.7)

It represents the original derivative in πftA or πbA as well as those from π / 0 and
π M . The expressions P* and E* are similar.

For convenience we introduce the following notation:

(5.8)

with

ΦX(πb,χ) = Π (ψγ)Δy Π (φ**W* (5-9)

We split χφ(πbχ) in this fashion so that χ(nbχ) can be associated with the action
while Φχ(πbχ) is associated with the Φ'(πbφ) and F3Λtl(πbtF) terms.

We also note that the replacement covariances ${πb) can be written (in two
different ways) as a linear combination of measures, as in [1,3]. Thus

£(μb) = (x) £ + dμγ'p(φy). (5.10)
yeπb p

The sum producing the linear combination of measures can be eliminated with a
combinatoric factor 0(1)' r ' . Thus we can write

Proposition 5.1.

)(1)|Γ| + A + Λ ^ s u p s u p

π decomps, derivatives j= 1
localizations

Π expεd(γ,ΔL)

Π O(l2)c*p[ed(y,ΔL) ]

jdμs(φ)® (X) dμy'"(φy)[χ(πbt

Since we have expressed rf(π6) as a linear combination of measures, we can
bound the above expression using inequalities for measures. Specifically, let || \\Lq

represent an Lql dμs(φ)®(><)dμy'p(φγ)\ norm. (More accurately it represents the
\ y /

geometric mean of the two different ways of expressing £ as a combination of
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measures, as in [3].) Then we can use Holder's inequality to get

$dμs(φ)® (X) ^ ^ (

, π M )

43

S II X(nbje- *-"τr(Q) \\LP ||

• II Φ*KX) IL, II Φ'K ) IU

for some p > 1 and - + - ̂  1.
P 1

5.1. Gaussian Integration Estimates. Let

σeS|} |

(5.12)

where Sn denotes the permutation group on n elements, and where the "size" \lσ(γ)\
of the linear ordering of y determined by the permutation σe5 ( y | is defined in [3],
p. 12. The Gι factor gives the primary decay in the number of derivatives.

We begin to estimate the Lq norms on the terms in Eq. (5.11). We will make
use of the following result (essentially from [1]):

Lemma 5.2. There exists δ>0 such that for all q: 1 < q < oo,

(5.13)

where Δ is the l-block containing the unit-lattice block Δ.

The above inequality allows us to prove the following lemmas:

Lemma 5.3. Let Δy# be the localization square corresponding to the differentiation
at y#. Then

^ (5.14)H Φ ' K Z ) I I L . ^ Π

Proof. The norm can written

I IΦ'OOIIM Π <
yeπb,χ

ύ Π (5.15)

ysπb,x

due to Holder's inequality, as each field appears at most twice. Now by (5.13),

IIM*#IIL*. ̂  OilVηOiiyv^expi-^δmΛy^Δ^G^δμi (5.16)

and the proof is complete. •
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Lemma 5.4. Let <f(Δ) be the number of test functions localized in the square A. Then

) Λ Π Il/Ίly Π
4 c Z

• Π O(l)^'θ(/)exp{-A«5mcφUv*)}GM<S/4). (5.17)

Proof. The operator Φ'{πbφ) has both original and replacement fields:

Φ ' K Φ ) = Π (Φ + θf(fι) Π <P%fi) (5-18)

Thus we have

*(/!) ΠΦJCΛ)

The replacement field term is bounded as in Lemma 5.3:

(5.19)

fiW^ (5.20)

For the original field, we make use of checkerboard, Holder and hypercontractivity
estimates (as was done in [1]). Thus

ΔcZ
Π (Φ + ώHfϋ

ω = l L*'

J(Δ)

^ Π Πl

^ π π
ΔcZω=l

^ Π
Jf(Δ)

I I ^ / J I I ^ (5.2i)

Combining (5.20) and (5.21) we complete the proof. •

Lemma 5.5. Choose K>0; let λ be sufficiently small Then

ύ Π W (5.22)

Proof. F'3Al is a product of terms of the form

- 2Re j φ* \_(η(g -h)- Δg)χΛ+ (1 -η)(g-h)( ί -χΛ)^dx. (5.23)

Thus

J φ%l(η(g ~ h) - Ag)χΛ+(l - η)(g - Λ)(l - χA)fdx

ύ Π Wχ-Δillί(r,(g-h)-Δg)χΛ+(l-η)(g-h)(l-χΛ)B^

(5-24)



Wess-Zumino Model 45

Let Z° be the set of unit squares in Z within a distance L of a phase boundary,
i.e. such that within a distance L the configuration Σ is not a constant. The
functions within the L2 norm are identically zero unless

γ ^ ^ (5.25)

if we take L = O(|log2|2). Since @(Σ) does not intersect Z°,d(y#,Δy#)>±\logλ\2

dand

exp {- \δmcd{y#, Δy#)} ̂  λκ' exp {- \δmed(y*> 4#)} (5-26)

for any Kf > 0, if λ is sufficiently small.
The L2 norm is O(lλ~ι)\ we bound

κ'ύλ\ (5.27)

which completes the proof. •

5.2. Estimates for Derivatives of the Action. Sπf's'r'(πhiS)B'1(πfyB, πbB) is a product of

terms, each of which is of one of the forms below:

r({y#}) ί '-'WjOίΦ + #)( χ ))^*((Φ + 9)(y)):dl<ϊj(s)(x9y)dxdy (5.28)
Δι *Δ2

or

•flf)(x))|2:dx (5.29)

(as well as boundary corrections which are bounded by const, x | | χ 4 3α| | | ) . The
polynomials iV^ have the property that if we expand them around 0 = 0, away
from the phase boundary (i.e. where g = h) we obtain the small factors which are
needed to ensure convergence of our expansion. For the purely bosonic terms like
(5.29), we get a factor λ (or w) since if g (approximately) minimizes the potential,
the constant, linear and quadratic terms (almost) cancel, leaving behind terms of
order λ~2\λφ\n> + O(m) for n ' ^ 3 . Near a phase boundary we can get a big
factor- O(λ~2)~ which is controlled, however, by exponential decay factors
e~ί/λ\

Counterterm Estimates. Obtaining small factors from the counterterms is a little
more delicate (their finiteness was demonstrated in [10] for the fully-coupled case
and in [19] for the decoupled case). However, we can simplify matters by only
considering those terms which are field independent - every field is associated with
a factor λ and the polynomials arise from dn' Wλ for ri ^ 2 and thus have coefficients
0(1) or smaller. Thus only terms containing, e.g. W"λ(g) are important for this
discussion.

First consider the fully coupled case (s = 1). We need to examine terms of the
form

ΎτSy0XSy0X, (5.30)

where one or both of the propagators has a cutoff and X = X1 + iy5X2 represents
Y{W"λ{g))-\oτe2i«y>r{W"λ{g))-\.

We wish to commute X through S in order to obtain a local expression. We
neglect the commutator of X with a cutoff; since X is smooth this vanishes as
K-+CO. Similarly [X,S~] introduces terms dX which are boundary terms. Taking
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the Dirac structure into account we get (as the local part of (5.30))

( 5 3 1 )

Therefore the relevant counterterm contribution is

' ^ - ' ^ ί ^ + ^ w - ' ^ l f T (5 32)

from the bosons,

(2π) 2p 2 + l ' J ( 2 π ) 2 p 2 +

Λ2n t?2(n\

(2π) (p* + 1

from the initial fermions, and

d2P ΞK,(P)

(5.33)

(In)2 p2 + 1

+ (I W\(g) - 112 - \e2i*W"λ(g) - 112) f ^ ^ |

- 2[(Re(W";(0) - I)) 2 - ( R e ί e 2 1 " ^ ^ - I)) 2 ] J — ^ ^ 2 ( 5 3 4>

from our unitary transformation.
Adding (5.32), (5.33), (5.34) gives us

(5.35)

As κ,κf^> oo the first term of (5.35) goes to zero, and the last term is either O(m)
or a boundary term since e2iaW"λ(g) = 1 far from dΣ. •

Now consider the case of partially decoupled counterterms. The bosons are
not affected by this procedure. For the fermions, the decoupling does not affect
diagonal terms - only terms in different /-blocks. The off-diagonal parts are more
regular than the diagonal parts; thus e.g. Tr(K2(s) - K2(s = 1)) has a limit as we
remove the cutoff (cf. Lemmas 6.4, 6.5) so that the difference in cutoffs between
Rκ (2.16) and R' (3.9) is irrelevant (as κ->oo). Therefore our formal cancellation
(3.14) properly describes the behavior of the off-diagonal terms; since ζ(g) is O(m)
except near phase boundaries we are done.

The kernels dγ

sσj(s)(x,y) all come from the counterterms, and are in LPσ{Λι x Δ2)
for some pσ > 1 as in [10] and decay exponentially. The derivative dγ

s will give an
added factor of

eod)0{1)\y\ ^ ft eχp{-δmed(yι9x9y)}G1(yi9δ) (5.36)
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for mc sufficiently small, as dy

sOj arises from terms like Ίτdy

sK
2{s\ i.e.

dl Π H(s9ΔhΔi+ί)χΔί%χΔ2D-^χΔ3ζD-^χΔSXΛ5D-1I2χΛ6ζD-^2χΔ7, (5.37)
ί = l

and dy

sH has the decay properties indicated by Lemma 3.2. (These terms are trace
class although K2(s) is not since d]H{s, A, Δ) = 0; see the computation of SB in the
proof of Lemma 6.5.)

With the above discussion in mind, we have the following lemma:

Lemma 5.6. Let q be a positive integer; let λ9 w be sufficiently small. Let MB(Δ) be
the number ofsubterms localized in the square Δ arising from the derivatives of the
action. Then

1 exp { - ±δmcd(y#, Δ*t, Δ
2

§)} G6(y#, δ/4),

(5.38)

6
where

G6(γ,δ)= sup (5.39)

Proof. Using Theorem 8.5.5 of [4], and making use of our discussion about the
counterterms to pull factors of λ from the kernels djσ,- we have

π

OμpiuM#zo}i

ά^z^l\{nqMB{Δ))\. (5.40)

The term I I Π X A * ' 1 ' ' ' ? * ! ^ ' S bounded using Lemma 5.2 and Holder's inequality
(each field appears at most twice):

. (5.41)

We also have

Σ (5.42)

using our estimate^ on the kernels 3Jσ7 . As in (5.25)-(5.26), we only get factors of
/Γ 1, where d{y#,Δy#)>\\\ogλ\2 so these bad factors are cancelled by our
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exponential decay:

Y\(nqMB(Δ))l\
A J

eχ p {-±δm c d(y*, A\»Δ2

γ#)}G6(y# (5/4). (5.43)

Using Stirling's formula to bound the factorial completes the proof. •

5.3. Estimates for Wedge Products. We need to estimate the operator Q; we begin
with the following lemma:

Lemma 5.7. Let MQi(Δ) be the number of subterms localized in the square A from
the term Qt; let G9 be defined analogously to G6. Then for mc sufficiently small,

II II Qi II i I I L ^ Π e x p [ ( 4 n M Q i ( ^ ) 9 / 8 O ( l o g ^ ) ] Π ^ O ( I ) O(1) '* # I
A y# causing Qi

•exp[ -$&M(y# A),, Δ1^ G9(γ«, δ/4) Π exp[ -δd(A\», Δ$')]
i

Λλ-'Wl^hj^expL-δldiΔlΔ^ + diΔlΔtm}, (5-44)

where the term in braces is present only ifQt contains a projection operator (P term).

Proof. We bound || Q£ || x by

I (5.45)
or

IIPΓΊIJIBril-llfiMI. (5.46)
The A term is a product of three K terms, so we can write

Mflli^ Σ X[\\rffUs)h

^ Σ Tl\\ry^ιh Σ Πl^#M?>4+ 1)l (5.47)

We estimate the field dependent piece, assuming here that all the characteristic
functions are near each other. If they are not, we obtain similar estimates with
exponential decay in the distance between the blocks through the use of Lemma A.2,

ύ \\χΛ2D-ll4\\12\\D-^χΔ3ryζD-1/2χΔ4\U. (5.48)

The fourth power of the 4-norm appearing in (5.48) may be written as

J ^(xi,...,X4)(^0(^i)(ry0*(x2)(^0(x3)(^0*(x4)^i ^ 4 , (5.49)
^ 3 X 4 3 X ^ 3 X AT,

where i^eLp((Δ3)*) for some p> 1. We obtain our needed factors of λ since each
ζ is 0(λ) unless it is localized near a phase boundary. In fact it is the requirement
that terms like (5.48) be small that forced us to implement our unitary rotation
which produced ζ from
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£ * is of the form

(l-K,(s))ry iδfKz(s) (5.50)
or

rγ^/K^sjr^d^Kiis). (5.51)

In either case we can bound this as we did with the A terms, with terms like

ίirίx^.-.^J^/ίίxJ^/fίx^^Ofe)^/)*^)^!...^

Ί\\d?H(s,Δk9Δk + 1)\. (5.52)
k

Finally the projection operator P* is clearly bounded:
2

IIP?II ̂  I I Z , . 0 ~ 1 / 2 W , J L W Z V D 1 / 2 ^ M I . W > Π l^if(s,A 5A
?)l

where π = y1uy2l the term in braces is absent if π is empty. When we combine
this with reasoning identical to the proof of Lemma 5.6 we complete the proof. •

For more than one Qi9 we have the obvious generalization:

Corollary 5.8. Let M^(Δ) be the number of P, A or E subterms localized in the
square A. Then

II I I Q I I i WUPU- ^

exp{ -±δmcd(γ#, Δ\§, Δ
2

y§)} G9(γ*, δ/4) f ] exp{-δd(Δy§, Δyt ̂
i

Sz
.λ\κb,AUπb,Euπb,oyjπf,Avπf,E<jπf,o\ ] ~ | || g . || ̂  || ̂  || ^

At)l}. (5.54)

6. Vacuum Energy Bound

We wish to calculate an LP(dμ) norm of

e-"-Fχ(*b,x)τrm (6.1)

uniformly as κ,Λ-+ oo. In this section we will estimate the LP norm of

f = e-*-Fχ(πbtX)\\ Λ'[l + K(s)]" 1 det 3[l + K(s)] ||, (6.2)

which is sufficient to bound (6.1) as we can estimate

| τ r ( Q ) | ^ r ! | | Q | | 1 | | Λ ' [ l + X ( 5 ) ] - 1 d e t 3 [ l + K ( S ) ] | | (6.3)

using operator and trace norms, and the trace norm in (6.3) is estimated in Sect. 5.3.
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Let c3Γ = || zr || be the operator norm of (6.2). Let nΔ be the number of times
the characteristic function χΣ{Δ)((φ + g)Δ) is differentiated, and let Z' be the union
of the blocks where nΔ > 0. We will prove the following:

Proposition 6.1. There exists p> 1 such that for λ, w sufficiently small,

. )W)° ( 1 ) lexp[O(iμ |Z | ]exp[-O(iμ- 2 |Z°uZΊ].

(6.4)

The basic idea behind the proof of Proposition 6.1 is that the fermionic
determinant is relatively unimportant compared to the bosonic terms in the action.
Following [1,3,10,17,19] we can bound the determinant by terms which have
small coefficients and are of lower degree in the field φ than the bosonic potential;
the result then follows from standard results oϊ0>(φ)2 models [4-8]. Compare this
with the trivially obtained bounds on the determinant in [9].

We begin by splitting K(s) into its diagonal and off-diagonal parts. We write

K(s) = A + B, (6.5)
where

A _ V v 0/v Π~1/2v m~1/2v (fsfsλ

M---M
Λ\ Φ 4 2 OΓ ^ 2 *

or Δ$ Φ Δ4

and

H(s, ΔU...,Δ4) = H(s, Δlt Δ2)H{s, Δ2, Δ3)H(s, Δ3,44); 0 g H(s, Δu..., Δ4) ί 1.

(6.8)

Using this decomposition, we have a determinant inequality:

Lemma 6.2. There exist constants a,c>0 such that

(6.9)

Proof. Using Lemma V.5 of [1], there exist a',c>0 such that

(6.10)

Here

OA = A + A* + A*A, (6.11)

and 0 * is its positive part. Using standard determinant inequalities, we have

In det3 [1 + O+

A ] ̂  ± Ύr(O+)2 ̂  \ Ύr(OΛ)
2=\ Tr(/1 + A*)2+\ Ύτ(A*A)2 + 2 Re Tr A* A2.

(6.12)
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Thus we can replace (det 3[l + O^]) 1 / 2 i n ( 6 1 ° ) yielding

(6.13)

Setting a = a' + l yields (6.9). •

Ordinarily an inequality involving a trace quadratic in A would be useless, as
A is not a Hilbert-Schmidt operator (almost everywhere). However, (A + A*) is
Hilbert-Schmidt (a.e.) as the singularities cancel. We see this by writing

(6.14)
where

-V2χh (6.15)

-ll2XiίD-ll2h. (6.16)
j,k,l

jΦkoτkΦi
oτiΦl

Then

^XiCD'112 (6.17)

is of the form of the finite volume K from [10], where it is shown that the
singularities cancel. The remaining terms are sufficiently regular since at least one
pair of characteristic functions must be off-diagonal.

We wish to estimate the determinant by a product over blocks of operators
that only depend on the field within that block. This will allow us to prove
Proposition 6.1. The A and K terms are already of this form, but we have to show
that the B and AB terms can be estimated in this fashion:

Proposition 6.3. For ε > 0 there exists p>\ such that (almost everywhere)

1 det 3 [ l + X(s)] || ^ c\ \\ EA{φ\ (6.18)
A

where EΔ(φ) only depends upon φ within A. Furthermore

£i</.t)^expconst.x/o<£)[||^(W";(</»κ + ̂ 2 - - l ) | | 2 + ε + | | ^ α | | 2 + 6 ] (6.19)

and we can write

= exp J i
\_Δ*Δ

comlxloto\\χΛda\\2

2+\9 (6.20)

where δ(-)elP(Δ x Δ).

Although the proof of Proposition 6.3 is quite long, it is actually just a
straightforward application of the regularity of the bosonic covariance. The
difficulty arises in transferring regularity across characteristic functions. The



52 S. A. Janowsky and J. Weitsman

techniques to do this are taken from [1], but must be refined due to the
non-Gaussian nature of the interaction.

To derive (6.18), we need to estimate || ABI^ and II -β | | | by a sum over blocks.
We begin by moving some regularity from B to A. Let v > 0 be small. Then

\\AB\\± =

Now

while

\\AD-Ί\2 =

ijklmnp
iΦjorjΦkorkΦl

IΦm or mΦn or nΦp

km
Σ

ijlnp
iΦjorjΦkorkΦl

IΦm or mΦn or nΦp

(6.22)

(6.23)

If d(Δk, ΔJ ^ y/2l, we bound the norm in (6.23) by || D2vBk | | 2 1| Bm | | 2. If this is not
the case, then either Δk, Ax or Δh Δm don't touch. Choose the pair with the greatest
separation. Then using Lemma A.2 (essentially Lemma 2.2 of [17]),

Σ
iβnp

iΦjorjΦkorkΦl
IΦmoxmΦnoτnΦp

^const. x £ || Bk | |21| Z)2\Bm

l i

^ const, x || B* || 2 1 | Z>2\Bm || 2

where

Thus

(6.24)

(6.25)

ί const, x

ίconst. xΣ(\\D2vBi||
2

\ + ||Bt\\\)

(6.26)

Of course (6.23), (6.24), (6.26) hold for v = 0, so || B || \ is bounded in the same way.
So combining (6.9), (6.14), (6.21), (6.22) and (6.26), we have

| | Λ ' [ H - X ( s ) ] - 1 d e t 3 [ H - ί : ( s ) ] | |

(6.27)

yielding the block structure we need for (6.18).
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We now move on to the proof of (6.19), where we bound Ei(φκ) in terms of 2 + ε
norms. The basic structure follows that of Proposition A.I.I of [1], which we
unfortunately cannot use directly as their bounds in terms of 4-norms (|| | |4) are
insufficient for our purposes. We also note that the added Dirac structure resulting
from our unitary transformation eiΛys does not alter the results of [1] and [10] in
any significant sense.

We will need the following lemma:

Lemma 6.4. Choose ε>0 small. Then there exists v>0 and constants (depending
on ε) cA,cB,..., such that for /eL2 + ε(]R2),

(a) WχβXiD-^χifD-'ihiD^h^cJ^WχJh^. (6.28)

ifiφjJΦKorkΦl

(b) WD^χ^XjD-^χJD-^χtWz

^ cBl°
iε) II Xif II2 + ε exp - dB\d(Δi9 Δj) + d(Δp Δk) + d(Δk, Δt)l (6.29)

and

(c) W*D-1'2χιfD-2\\2Zcsl
Oί'>\\χtΩ2+. (6.30)

Parts (a), (b) and (c) represent bounds for A9 B and B terms, respectively. We reserve
the proof of Lemma 6.4 for an appendix.

It is now clear that a short computation to separate the terms arising from
the Dirac structure yields bounds of the form (6.19) for all the terms in (6.27)
except for Tr(Kt + Kf)2. This term, however, was specifically designed so that the
bounds of [10] would apply. Thus we essentially duplicate Eq. (36) of [10]:

Tv(K^K) + K*(φκ))2^ const, x J l\Wλ(φκ + g)e2iΛ-l\2 + \d*\2]dx9 (6.31)
At

and complete the derivation of (6.19). •

To complete the proof of Proposition 6.3 we need to determine the LP properties
of the kernels of the operators making up E^φ). If we didn't have to worry about
the characteristic functions within the operators of Ei9 such properties would be
obvious. Unfortunately, the characteristic functions obscure the behavior of &(x, y).

We get around this problem in a fashion similar to that used in the appendix,
in the proof of Lemma 6.4. We commute the covariance operators through the
characteristic functions, and eventually obtain terms with commutators and terms
without (extra) characteristic functions. Where we have no characteristic functions
the bounds are simple to derive. Where we have commutators we have extra
regularity that allows us to obtain the bounds we need.

Let δκ(-) be the kernel of Tr(Xf + K*)2^A{ ) be the kernel of \\AiD~v\\l9 and
similarly for SB( ) and <fg( )

Lemma 6.5. There exists p>l such that

£#{')eU{Δ x Δ)

for# = K,A,BandB.

Proof. The lemma follows directly from the results of [10] for Sκ and is straight-
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forward for $%, we we will concentrate on the other two cases. First

*Λ(x, y) = Φ~ 1/2XiD - 2v

XiD ~ U2)(χ, y)(D ~ ll2χβ*χβχP ~ 1 / 2 )(*, y)Xt(x)Xiiy) (6.32)

Now

D-ll2χiD-2"χiD-ll2 = D-?>vl2{D-ll2 + ^l2χiD-2xχiD-ιl2l (6.33)

where we can clearly see that the operator in parentheses is Hubert-Schmidt. As
2)-3v/2 j^g a k e r n e i m £4/(4-3v^ w e c a n u s e γ o u n g ' s inequality to show that the

left-hand side of (6.33) has a kernel in L 4 / ( 2 " 3 v ) .
The other factor making up SA can be written

(6.34)

Using Lemma A.I, the term in parentheses is easily seen to be Hilbert-Schmidt,
so its convolution with D~ί/10 is in L 2 1 . For the other term, we commute some
more, giving

(6.35)

With Young's inequality we can show that D~1/2χiD~3lί0χiD~2/1° has a kernel
in L 2 " ε for any ε ' > 0 , while as the parenthesized term is once again
Hilbert-Schmidt, we once again determine that the right-most term is in L 2 1 .

Combining the above results we see that the kernel of D~ 1 / 2 χ I ^ * χ ι ^ χ ί D " 3 / 1 0 D " 1 0

is in L 2~ ε for any ε '>0. If we also use Holder's inequality with the bound on
(6.33), we finally see that ^ G L 1 + 3 V / 4.

We now move on to the kernel of | |Z>2 v^£ | | | :

jklmn
j Φ i or i Φ k or k ΦI
mΦ n or nΦioτ jΦi

iχtD-1'2χk**χ,D2*χm<KχlJ>-1i2χi){x,y). (6.36)

First let us consider χiD~ll2χjD~ll2χi. For i = j ,

faD-WxjD-WxdtfeL2-'- (6.37)

for any ε' > 0. If i φ j ,

pD-1/2]). (6.38)

The parenthesized term is Hilbert-Schmidt so that similarly to the case for SA we
obtain an L 2 1 bound for (6.38). Furthermore, if i and j do not touch, χp~lί2Xi
has an L°°-norm which is exponentially small in the separation between i and j .
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Thus

( Σ XiD-WχjD-VhiXϊeL2-1. (6.39)

We move on to the other half of SB. If all the characteristic functions are the
same (in which case i Φ j),

^

= XiD ~1 + 2vXi + sum of commutator terms. (6.40)

The kernels of the commutator terms are all in (say) L2Λ (if v is small enough),
similarly to (6.38). Additionally, (x f i)- 1 + 2 v ^ ) ( ) e L 2 - 4 v .

If the characteristic functions are not all the same, we essentially repeat the
above procedure, except that there will be no non-commutator term left over. We
can also get exponential decay as we did before, which results in

JΦioriΦkorkΦl
y m Φ n or n Φ i or j Φ i

and complementary bounds for χiD~1/2χjD~i/2χi. Together, these yields (for v
small enough)

^ ( )eL1-0 2, (6.42)

completing the proof of Lemma 6.5 and therefore Proposition 6.3 as well. •

With a bound for the determinant in terms of a product over blocks, we are readily
to proceed with the proof of Proposition 6.1. We notice that

+ ^ i 2 -- 2 ! ! ! ) (6.43)

if ε is sufficiently small (recall that n is the degree of the superpotential), so that
for large φκ the terms arising from the determinant are bounded by the leading
term of the bosonic potential. Thus we have Wick lower bounds which are just
the integrated versions of those in [8], derived in exactly the same way, provided
that our perturbation w is small enough:

J C:|^Λ(
A

g - const, x / 2 + O ( ε )(ln κ)n~ \ (6.44)

and for nΔ>09 there exists K such that

J CI ̂ Λ ( 0 . + ̂ )l2:-^7 10. + ̂  - Λ | 2 :D^ - In £:^(0K) - l n Z ^ } ( ( 0 + )̂̂ )
Δ

S const, x 12+O(ε){a(η)λ-2 - In KnΔ\ - (In K)"''). (6.45)
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This lower bound, combined with the LP estimates on <ί#, satisfy the hypotheses
of Theorem 8.5.3 of [4], so that letting

= lnEΔ(φ)-lnEΔ(φκ)

where
(6.46)

(6.47)\dμs{φ){ΛMκ)
2 ^ const, x κ~ω

uniformly in s,λ and w for some ω > 0 .
Using hypercontractivity,

|| ΔMK \\p

p ^ const, x κ~pω{p- \ ) n ~ * (6.48)

for all p ^ 2 . Then, by Proposition 8.6.4 of [4], there exists b>0 such that

J dμs(φ)^e-bκω/n, (6.49)

and thus

£^k ( #i)(^^ ( 6 5°)

uniformly in s, λ and w.
We now use multiple reflection bounds in order to take our blockwise bounds

and get bounds on the whole volume. Theorem 1.1 of [17] states that

where β — 4/(1 —e ι)2. Thus we have

Lemma 6.6.

X(nbtX) II A T ' det3[

(6.52)

So far we have neglected the counterterms R. However, the counterterms obey
exactly the same types of bounds as the B terms. As with the A terms, we can
write our counterterms as a sum of terms like those in [10] plus off-diagonal terms.
The terms from [10] obey the proper bounds, as do the β-like terms. The only
concerns are the terms involving $α, which are field independent and can be shown
to be finite, and overall factors of λ9 which we demonstrated in Sect. 5.2. Thus
Lemma 6.6 remains valid if we include the counterterms on the left-hand side.

We have also neglected e~F, which is responsible for the decay in the size of
the phase boundary. Recall that Fx = η J \h-g\2dx + J \Vg\2dx, and that at a
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phase boundary h changes by O(λ~1). Thus either \h — g\2 or | Vg\2 is large (O(λ~2)).
As in [7,8], Fx dominates F and we have

Lemma 6.7. For p sufficiently close to 1,

^ const, xexp - O ( i μ ~ 2 | Z ° | . (6.53)
z

Combining Lemmas 6.6 and 6.7, we have (using Holder's inequality)

Ί l (6.54)

The final step in the proof of Proposition 6.1 is to show that the vacuum energy
is 0{λ\ not 0(1). This is done, as in (say) [1], by inserting additional decoupling
factors t(Δ) into the interaction wherever we would expect to get a factor of λ. By
essentially repeating the cluster expansion procedure that got us this far, we obtain
factors of λ for all blocks in Z \ ( Z ° u Z ) . Thus we can replace the 0(1) |Z| in (6.54)
with 0(λ)\Z\9 and we have proven Proposition 6.1. •

7. Convergence of the Expansion

7.1. Decay of Cluster Activities. In this section we will combine the results of the
previous sections to arrive at the following estimate:

Proposition 7.1. Let I be sufficiently large; let A, w be sufficiently small. Then there
exists δ>0 such that

(Note that I2 is the size of the smallest cluster.)
We begin with a lemma:

Lemma 7.2. Let I be sufficiently large; let λ9 w be sufficiently small. Then there exists
<52>0 such that

\ZξZΣ^Z)\^O{\f^**\Jz^
2 Π IIMjrllM* ΓΊ Λ-Ί/IIIL'

j = l i = l

exp[O(iμ |Z |-^ 2 / |Γ |-O(iμ- 2 |Z° | ] .

Proof. Combining Proposition 5.1 and the inequalities (5.11) and (6.3), we have

expεd(y,4L) [ ]
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Π
b,puπ/,p

• H H ^ Ί I L P I I I I Q I I I I l L . I I ^ '

• II Φχ(πb,χ) Hi, II Φ ' K Φ ) ||Lβ/2 II F ' 3 , 4 , K F ) IIL (7.1)

1 6
for some p > 1 and - + - ^ 1.

P q
The factors involving M^(Δ) in Corollary 5.8 and nΔ\ in Proposition 6.1 are

bounded using exponential pinning, as we did in (4.3). This introduces additional
factors of the form

(7.2)

These new factors of exp εd(y, Δ)9 as well as existing factors, are all controlled by
decay factors e~

δmcd(y>Δ) and e-**(Ai>Ai+1) arising in Lemmas 5.3-5.6 and Corollary
5.8, if ε is sufficiently small (requiring / large). Similarly the factors of expεd(Δ,Δ)
are beaten by the factors e-W(Δι>Δ2)+d(Δ3>Δ4κ [n Corollary 5.8. This gives us, when
combined with Proposition 6.1,

π j=l i=1

O(l)ιG9(y#,δ/4)exp{-δ'mcd(y*,Δγ«)}

\ 0 / | ] . (7.3)

The factor exp — O(l)λ~2\Z'\ gives us smallness in the number of differentiated
characteristic functions, but we would prefer an estimate in the number of
differentiations. However,

y γ\ (7.4)
y#eπb,χ yueπb,χ

(for / large and λ small) by exponential pinning. Thus

Π O(l)'G9(γ«,δ/4)

.Al«\<«». ' - " t / . ' ) l exp[O( iμ |Z | -O( iμ~ 2 |Z 0 | ] . (7.5)

Now G9(y#,<5/4)^O(l)iG9(y#,r51)ίr<i2ί|1'*1, and

Σ ΓΊG 9 (y # Λ)^0(i) | / Ί (7.6)
γ#eπ



Wess-Zumino Model 59

Thus

• sup

.χ\A(πt.φv*f.r)\GXp[θ(l)λ\Z\--O(l)λ-2\Z0\']. (7.7)

Using the factors of λ to beat the factors 0(1)*, we have the lemma. •

To complete the proof of Proposition 7.1, recall from Eq. (3.66) that

Σ Σ [ (7.8)
Σ restricted Γ constrained

The sum over Γ is constrained so that Z cannot be separated into separate
decoupled regions. Thus for Z consisting of more than one block, 12\Γ\ is
O(|Z\Z°|), and O(l)λ\Z\ <δ2l\Γ\ + O(l)λ~2\Z°\. Since the number of possible
Γ'sisexpO(|Z|//2),

ύ
e x p - y | Z | Σ exp[-O(iμ- 2 |Z° | ] . (7.9)

* Σ restricted

Finally, the number of block-spin configurations is bounded:

Σ exp[-O( iμ- 2 |Z 0 | ] ^O( l ) ' z ' / ί 2 , (7.10)
Σ restricted

and the proposition follows. •

7.2. Lower Bound. In order to obtain useful information from the cluster
expansion, we need to bound the single square vacuum cluster activity from below.
We obtain the following bound:

Proposition 7.3. Let λ, m be sufficiently small, and let Έ be a single-phase vacuum
cluster (no test functions) of size I2. Then

Proof Write

Following [8], the last term is exp —Θ(λ~2\ while the second term is bounded by
O(λl2) through a repeat of our vacuum energy calculation. •

7.3. Calculation of the Free Energy. It remains to prove the supersymmetric aspect
of Theorem 1, the vanishing of the free energy. In order to make use of the
machinery of [2], we need a cluster expansion for the model with periodic boundary
conditions, not just for the Dirichlet-like condition we have imposed. We will
indicate roughly how to proceed.
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Let A be a rectangle in the ΊL2 lattice, with edges 7,m. We begin with the
periodic covariance

CP(χ,y) = χΛ(χ)χΛ(y) Σ C(x,y + ί(/,m)), (7.12)

ίeZ2

where

ί(/,m) = ί 1T+ί 2m. (7.13)
Given a set γ of bonds of Z 2 n Λ, we introduce the periodic covariance with
Dirichlet conditions on γ as follows: let γ be the set of bonds in TL1 which are
translates of γ by il +jm, iJeE. Let O be the ordinary covariance with Dirichlet
conditions on the bonds of % and let

CUx,y) = XΛ(x)XΛ(y) Σ d(x9y + ί(/,m)). (7.14)
ίeZ2

The covariance Cy

p is the periodic covariance with Dirichlet conditions on the
bonds of γ. We may interpolate between Cγ

p and CP in the usual way by introducing
the covariance

Π d-s 6 ) lc f^r ( 7 1 5 )
J

This covariance gives rise to a measure dμP(s) which satisfies the usual integration
by parts formulae. Furthermore, the covariance CP(s) and its s-derivative are easily
shown to satisfy all standard bounds satisfied by Cs, provided the distance are
replaced by the torus distance

dτ(x, y) = min d(x, y + ί(/, m)). (7.16)
ίeZ2

This fact follows immediately from the "sum of translates" representation (7.14)
for CP(s).

We have a similar representation for the Fermi determinant. The determinant
appearing in the period partition function is

d e t 3 [ l + S P r ( ^ ( 0 ) - l ) ] , (7.17)

where SP is the periodic fermionic covariance and has an expression in terms of
translates similar to (7.12),

SAx,y)= Σ S(x,y + t(l,m)\ x,yeΛ. (7.18)

The unitary transformation method of [9, 14] again shows that it suffices to
consider

det 3 [ l+ SPC] (7.19)

as in Lemma 3.1. The determinants appearing in (7.17) and (7.19) must be considered
as determinants on the Hubert space ^^\I2{Λ)® Jf?[/2(Λ) of functions on the
torus Λ; however, by examining the Fredholm series for the determinant, we may
note that

det3[l + S P C ] | ^ , ( / 1 ) θ ^ , ( Λ ) = det3[l + S / ] | ^ (7.20)
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where the operator SP is given by the kernel

SP(X, y)=Σ S(χ, y + t(l, m))χA{y) (7.21)
ίeZ2

and ζ = ζ, considered as a function on 1R2 supported in A a JR2. Then, as in Sect. 3,
we have

, (7.22)

Consider the translation operator Tt:Jf'-+J(ff defined by

(Ttf)(x) = f(x + t) (7.23)
for ίeR 2 . Then

. (7.24)
ίeZ2

We produce a decoupling of this operator as in (3.31):

KP(s) = ( Σ D^SD^THUm)) (D-^UίD- 1 7 2 ) .- (7-25)
\teZ2 Js

We note that this operator is not periodic. However, the last three terms in (7.25)
are precisely those appearing in the definition of X(s), (3.31). As for the first term,
we note that it is equal to

( Σ «TmΔ = Σ Σ H(s,Δ,Δ')χ^χΔ.+H,m)THltmr (7.26)
\reZ2 Js ίeZ2 Δ,Δ'c:Λ

Since || Tt(l>m) || = 1, the norms of the operators appearing on the right-hand side
of (7.26) may be estimated just as in the nonperiodic case, using the estimates
proved in the appendix, which yield the necessary exponential decay. The correction
term exp — R may be treated similarly.

In view of the above remarks it is clear that the periodic partition function Zfi
(and its corresponding Green's functions) satisfies a cluster expansion of the type
satisfied by Z Λ .

The clusters of this periodic cluster expansion differ from those of the ordinary
expansion in two ways. First, there are the clusters which "wrap around" the torus
Λ, which do not appear at all in the nonperiodic expansion. Second, there is the
effect of the boundary on the individual clusters due to the differences between
periodic and nonperiodic covariances. Recalling (7.14) and (7.25), these differences
can be expressed as a sum of translates, which will produce corrections that are
exponentially small in the distance to the boundary, and hence will not affect any
of our basic estimates.

With this in mind, we sketch the arguments from [2] that lead to our main
results.

The index theorem of [11, 13] relates the partition function of the model with
periodic boundary conditions to the index of the supercharge Q of (1.2), namely

Z ^ = i n d β = n - 1 . (7.27)
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Therefore the free energy fP of the periodic model is

fP=- lim - i - l o g Z * = 0 . (7.28)
2\Λ\

We compare this exact calculation of the free energy to the free energy as
computed via our polymer expansion, which is convergent by Propositions 7.1
and 7.3. By examining the form of the expansion, we see that the expansion can
be reorganized as a sum over all stable phases (which contribute equally to the
periodic partition function), and a correction term for the large clusters (where
there is no natural choice of the correct phase) which vanishes in the thermodynamic
limit so that [2]

Z?~ Σ β-^Ml, (7.29)
q stable

where fp is the contribution to the periodic free energy from contours in the qth

phase. Equations (7.27) and (7.29) clearly imply that f% = 0 for q = 1,..., n - 1.
Now we consider the non-periodic case. Since we have a convergent polymer

expansion, with activities that are exponentially small in the size of the polymers,
the boundary conditions cannot affect the bulk properties and fq = f\ = 0 for all
q. Thus any ratio of partition functions that would appear in the re-summed
polymer expansion is less than eO(dΛ\ which is a sufficient condition to construct
any of the n — 1 phases (if we had initially chosen appropriate boundary conditions),
and to demonstrate exponential decay of correlations in each of the phases.

Note that this also shows that the infinite volume limit of the periodic model
results in a state that is the equal mixture of the stable states.

Acknowledgements. We would like to thank John Z. Imbrie and Paolo da Veiga for their
assistance on this project.

Appendix: Proof of Lemma 6.4

We begin with the proof of (6.30), which is the simplest case. It is only slightly
complicated by our desire to end up with a 2 + ε norm.

Using the Holder inequality,

where 1/p = 1/2 — 1/(2 + ε). Now | |^D~1 / 2x t \\p is clearly bounded, and we bound
||χI / D ~ 2 | | 2 + ε using Lemma 2.1 of [17] (essentially Young's inequality):

\\χJD-2\\2+Λ£\\χJ\\2+ε

1
(A.2)

2+ε

(p2 + l)~2<2+ε) is integrable, so we arrive at Lemma 6.4c:

We now move on to (6.28). As χβii is a bounded operator (with norm ^1),

^χ.D^h^WD-^χJD-^χβ^h. (A.3)
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In [16] we learn that DδχiD~v is a bounded operator provided that v > 2δ. Thus

^ const, x

= const, x

= const, x [ T r χ ^ - ^ D - ^ J Z ) - ^ , / ] 1 / 2 (A.4)

by the cyciicity of the trace. (We treat / as a positive function; clearly our results
extend to general /.) Using Holder's inequality, this is less than

COnSt. X || XiD foH^/εH^ XifWl + ε* (A.5)

which we can bound using Lemma 2.1 of [17] by

C O n S t X ΓΓ-WS ll2\\XiWl2/2ε < 2 1

1M/2 WXtfh+ε- (A.6)
(P + l) 2/e (P + l) 2+ε

If 2^ > ε, then the norms of the p2 + 1 terms are bounded, yielding

t x Z e / 2 | | fc/ | | 2 + e , (A.7)

which proves Lemma 6.4a. •

Finally we come to the most difficult part of the proof, the derivation of (6.29).
We will need the following two lemmas which are extensions of lemmas in [1]
and [17].

This extension of Lemma A.I.4 of [1] and Lemma 2.3 of [17] follows by
duplicating the steps of the proof in [17]:

Lemma A.I. Let n be an integer ^2. If 0^v<2~n and λ - 2v > 2~n then

The same is true if D~λ is replaced by ύUΏ~λ.

We also have an extension of Lemma A.I.5 of [1] and Lemma 2.2 of [17],
which differs only in that the result is uniform in the blocksize /:

Lemma A.2. Let A, A be non-touching l-blocks. Fix /c, a positive integer. Then for
λ^.0 and I sufficiently large we have

II ^iX^^>"AX^'«2 II i ̂  O(l)exp[ - ^£ β ^

for any complementary q,q'. The same is true if D~λ is replaced by °UΏ~λ.

We need to estimate

»= Wlβip-mljϋ~mlι\\i, (A.8)

where at least one pair of ij9 j , k and fc, / is distinct. The case where no such pair
represents touching squares and which yields exponential decay will be dealt with
later; first we treat with the three "touching" cases.

Case 1-kΦl. Recall that D±v and °U commute, so
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gconst. x I I D - 1 ' 2 * 9 ^ / 1 ' 2 ! ! * ^ ! ! / 1 ' ^ ! ) - 1 ' ^ , ! ! ^ , , (A.9)

using Holder's inequality. Then for δ » v we have

where

Choose the smallest λ such that Λ>c5/(4-<5) and λ is of the form A = 5 2""/4.

4-<5
Then for p = we have

l ( 4 δ ) / 2 "

^ t . x

using Lemma A.I and Lemma 2.1 of [17]. Now using trace cyclicity,

S x £ const, x wW*

5Ξconst, x

= const. x ΠxJWlJl + σrD-^^D-'^xfi-^^xJ2)1'^. (A. 13)
The operators D~* have positive definite kernels with well-known properties. Thus
we can write out the trace in (A. 13) as an integral. After discarding a characteristic
function (allowed'since the integrand is positive) we have

$D-3'2+3λ(x,y)D- ιl2+x(x,y)f2(x)χk(x)χι(y)d2xd2y. (A.14)

Now D-3'2+3λ(x,y)D-ll2+λ(x,y) has a singularity like \x-y\-2~4X. When we
integrate d2y we are left with a singularity of the form (d{x,Δ,))~4λ which is in D
for any q < I/A. Thus the entire integral is bounded if, say, χkf

2eL1 + 2\ yielding

» ! gconst. x ΓJIχjΊI^2 + \\χj\\l'24λl (A. 15)

By choosing v and δ properly, we can finally bounded IB by a 2 + ε norm as desired:

The /-dependence arises from using Holder to get our 2 + ε norm exactly:

llz/ll<^llzllo(.)llz/ll2+,> ( A 1 7 )
finishing case 1.

Case 2-jφk. In a fashion similar to the previous case,

SB = WD^D-^D^XjD-^xJD-^Xth

Zconst, x | |D 3 %/>- 1 / 2 &/D- 1 / 2 χ, | | 2

fΞconst. x | | D 3 % / r 1 / 2 χ J 1 / 2 | | 4 - J * J 1 / 2 β - 1 / 2 | | 4 + a . (A. 18)
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We commute some regularity through χy.

S ^ c o n s t . x \\D3\D-λ

χj + lχj,D-λ-i)D-ll2+λlJll2\U-i

and are now left with a situation almost identical to case 1.

Case 3 - i φj.

j j f D - V 2 \ \ 2 . (A.20)

Because the operator °U has no regularity by itself, we have to repeat the above
procedure:

Using Holder and pulling out some bounded operators, we have

S ^ c o n s t . x | | χ t / 1 / 2 D - 1 / 2 I U + a ( | | D v [ χ l , * D - A ] χ J D - 1 / 2 i χ l k / I U

+ \\D3τχj,D-λlD-ll2+λχJll2h-δ), (A.22)

which we can now bound as before since [χ,D~A] and \_χ,°UT>~λ~\ obey the same
bounds in Lemma A.I.

Case 4 - Exponential Decay. When at least one pair of ij j , k or fc, / do not touch,
we actually have so much regularity that we can estimate a 1-norm:

j W x Λ i . (A.23)

Thus these estimates are actually simpler than cases 1-3, and we will only briefly
sketch their proof.

If i does not touch j we use Lemma A.2 to obtain

»^0(l)exp[-c'd(4Λ^^ (A.24)

otherwise we use the bound

E^const. x WD^χjD-WχJD-Wχth (A.25)

as before. Now iϊj,k and kj touch or coincide, we bound the right-hand side of
(A.24) as before, If, on the other hand, j doesn't touch k (for example)

^const. x \\D^χjD-2UD-2

χkfD-^2

χι\\2Qχpl~cfd(ΔpΔk)l (A.26)

We continue this procedure until we have accounted for all possibilities, and obtain
exponential decay for all pairs of characteristic functions. Thus, combined with
cases 1-3, proves Lemma 6.4b. •
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