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Abstract. We analyze the Ginzburg—Landau equation for a superconductor in the
case of a 2-dimensional model: a cylindrical conductor with a magnetic field parallel
to the axis. This amounts to find the extrema of the free energy

o =1/2 [ [I(V—iA)® +|B,* + x/4(| ®|* — 1)*]dx,
Q2

where Q is a bounded domain with smooth boundary in R?, 4=(4,,4,) the
vector potential, B, =0,4, — 0,A, the magnetic field, @ a complex field. We
describe the connected components of the maximal configuration space, i.e. of the
set of all (4, @) with components in the Sobolev space H!(£2) and such that | @| =1
on the boundary, modulo the action of the gauge group. In the critical case k = 1
we give a complete description of the minimal configurations in each component.

1. Introduction

The Ginzburg-Landau model [6] has been proposed in 1950 in order to give a
phenomenological description of superconductivity. It is an experimental fact that
at low temperatures and weak magnetic fields some materials get an infinite electric
conductivity. This phenomenon has been described by Ginzburg and Landau with
the help of a complex valued field @ interacting with the magnetic field B. @ and
the vector potential A which generates B satisfy a system of nonlinear partial
differential equations (see [6, 12 or 13]). The physical interpretation of @ is rather
complicated and was understood only after the appearance of the microscopic
theory of Bardeen, Cooper and Schrieffer. Roughly speaking, this theory considers



2 A. Boutet de Monvel-Berthier, V. Georgescu and R. Purice

superconductivity as being due to some correlations between electrons which tend
to form pairs, and |@(x)|? is proportional to the number density of these pairs.
In this paper we shall consider only superconductors invariant under
translations in a certain direction and magnetic fields parallel to this direction.
For this reason we shall make some simplifications in the equations which will
reduce the problem to a two-dimensional one.
Let 2 R? be an open, bounded set with C® boundary I" such that Q is

locally on one side of I'. We denote 6~=i,D'= —i0; (j=1,2)and V=(0,,0,),
J ax. J J

D = — iV considered as vector differential operators. The magnetic field B is a
real-valued function on Q of the form B=B,=0,4, — 0,A4,, where A=(A,, 4,)
is an R2-valued map on 2. We also introduce the vector differential operators
V,=V—idand D,=D— A= —iV,. Let * be the rotation in R? with an angle
n/2 in the direct sense, ie. #(x;,X;)=(— x,,x;) (we shall use this notation for
x,%,€C also). The Ginzburg-Landau equations (in our simplified setting) can
now be written in the form:

1—|@]?

Did=x®
(1.1)
*VB,= —Re(D,D D)

which is a system of non-linear partial differential equations for the unknown
functions @:Q2— C and A:Q2—R2 Here « is a real parameter (depending on the
temperature, etc.). The solutions of the system have a qualitatively different
behaviour for k <1 and x> 1 (this distinguishes between type I and type II
superconductivity). Equations (1.1) are written at some fixed temperature smaller
than the critical one. @ and x are “reduced” physical quantities (see [13], p. 30)
so that |®| =0 in normal (i.e. non-superconducting) phase and |®@| =1 in the
superconducting one. One expects 0 < |®| < 1 in general (this is rigorously proved
in Theorem 3.2 of this paper). Finally, the free energy is by convention equal to
x/4 in the normal phase, hence in general it is equal to (see [13]):

A (4, D) =% ) (IVAdjl2 +1B4I” + g(ld’l2 - l)z)dx, (1.2)
2

and (1.1) are the variational equations associated with the above functional. We
shall consider a special class of superconductors, namely those with penetration
depth equal to zero (see [12, 13]), which gives |@| =1 on I" as boundary condition
for (1.1). One may think this is a rather strong idealisation, but this is not the
case, because we consider I” not as the real boundary of the material but as an
imaginary surface located well inside the superconducting part. Thus, the only
limitation of the results we obtain is that they are not accurate to describe the
behaviour near the surface of the real material. On the other hand they describe
quite well the vortex (anti-vortex) structure in the bulk.

In the next chapter we shall describe the configuration space of the system.
We make a distinction between the physical and the mathematical configuration
space. The mathematical one is the largest space on which 7, is well defined and
has a rather simple mathematical description. In order to define the physical
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configuration space one must take into account the fact that different mathematical
configurations may describe the same physical situation, due to the so-called
“gauge-invariance” of the system. An interesting physical fact, the flux quantization
(London effect), will emerge from the study of the topology of the configuration
space: flux quantization is an expression of the non-connectedness of the
configuration space. Remark that in the case of finite superconductors we are able
to solve the problem raised by Jaffe and Taubes in the footnote on page 96 of
[8]. In order to prove this result we will use an extension of the definition of the
degree for mappings S* — S* of class H'/2. This is described in the appendix, which
is due to L. Boutet de Monvel and, for one crucial idea, to O. Gabber, and
announced in a lecture by L. Boutet de Monvel at the French—Israeli mathematical
meeting in Jerusalem (April 1984). We thank them for communicating their proof
to us which we present in an appendix of this paper.

In the third chapter we study the stationary points of the functional (1.2) defined
on the mathematical configuration space: we prove their smoothness (modulo
gauge-equivalence) and find some relations between the fields @ and B
corresponding to a stationary configuration which in physical terms can be
interpreted as the Meissner effect.

The case k =1 is more thoroughly studied in Chap. 4 where we completely
classify the absolute minima of the restriction of .«7; to the connected components
of the configuration space. In [2] Bogomol'nyi pointed out that if x =1 then the
solutions of (1.1) may be found by solving two systems of first-order differential
equations. The methods we use are similar to those introduced by Taubes (see
Jaffe and Taubes [8] for a complete account). We would also like to point out
that the results in Chap. 2 and in the appendix of this paper are relevant in
connection with conjectures 1 and 2, p. 34 of [8].

Finally, we would like to stress the fact that the boundary value problem we
study is interesting due to the invariance of the functional <7, under a very large
group (the gauge group is infinite dimensional), which causes difficulties in the
proof of the regularity of the solution especially at the boundary I” (the uniqueness
is, of course, lost). Let us mention that the main results of this paper have been
announced in our note [16].

2. Configuration Space of the System and Flux Quantization

We recall that the physical system under consideration is a complex field @:Q2—-C
(2<R? as in the introduction) interacting with a magnetic field B:2—R. The
interaction is given by the minimal coupling hypothesis, which requires the
introduction of a real vector field 4 = (4, 4,):22—R? such that B= 0,4, — 0,4,.
Then the free energy of the system is equal to (1.2). In order that the free energy
functional be well defined, we must impose some conditions on @ and A.

Let us denote H*? the usual Sobolev spaces of complex functions on £ and
H*% = H*. Then we define H*? as the space of C?-valued functions on Q2 with
components in H*? (H* = H*?). H%2, (respectively H%2) will denote the set of real
(respectively R?)-valued functions in H*? (respectively H*?). Let |||, be the norm
in [’=17(2) and ||'|| = || ,; we denote |a| the modulus of the complex number
a or the euclidean norm of the complex vector aeC2.
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The largest configuration space which we shall consider is the real Hilbert space:
€=H', xH. (2.1)

== real

Then the functional </, is well defined and continuous on %; we may write:
1 2,1 2 K 2 2
(4, <P)=—2-|lDA‘PII +‘2'”BA” +§llld)l —1] 22

and for k 20 we have that 7, is also positive. This follows from the Sobolev
inclusion H! c ﬂ L7, that is true in two dimensions, and from the inequality
1=p<w

|A®| < || All4 || @|l4- We remark that this configuration space is not the largest
one making 7/, well defined, but is the largest one which has a simple mathematical
description. In fact, because of the gauge invariance which we shall require below,
the vector potential 4 has no physical meaning but is introduced only in order
to represent the magnetic field in the form B=0,4, — d,A4,. A particular case of
Theorem 4.2.2 from [4] shows that A+ B, is a surjection of H® onto H*"! for
all s = 1. Since the finiteness of .o/, requires BeL?, we can always find Ae H! such
that B = B . Then the finiteness of the last term in (2.2) implies that ®@eL* This
shows that D, @ is a well defined distribution on 2 and (2.2) again implies that
D, ®cH®. Since AeH', A has components in I? for all p < co, hence A®PeH°.
Clearly then D®eH®, ie. ®eH' which shows that % is essentially the maximal
configuration space which makes «/, finite.

As we have mentioned in the introduction, we shall mainly consider perfect
superconductors, for which the configuration space is given by:

%, ={(A, ®)e¥||®|=1o0n I} (2.3)

The definition makes sense because the restriction map @— ¢| I has a continuous
extension H(£2)—» H'Y2(I'). On %, we consider the topology induced by that of
%. It is a non-trivial fact, following from the results of the appendix, that the
configurations of ¢, with C*(£) components are dense in €.

Proposition 2.1. The subset
%10 =1{(A, ®)e¥,|A and @ are of class C*(Q)}
is dense in €.
Proof. Since
¢, =H}.,x{®PcH'||®|=10n T}

and C*(Q) is dense in H!(£2), it is enough to prove that each function @eH' with
|®@| =1 on I" may be approached in H' by functions @,eC*(£2) with |®,| =1 on
I'. Let ¢ denote the trace of @ on I'. By the last part of Theorem A.3, there is a
sequence {¢,} of functions belonging to C*(I') such that |¢,|=1 and ¢,— ¢ in
HY™(I'). 1t is known (see [15] Theorem 5, Chapter VI, Sect. 3) that there is a
continuous linear application R:HY?(I")— H'(£) such that R(C*(I")) = C*(£2)
and R(f)| = f for all feHY*(I'). Let ¥, = R(p,), so that ¥,—>R(¢)= ¥ in H'
and ¥,eC*(f2). Now & — YeH,, so we can find a sequence £,eC7(£2) such that
¢, »®— ¥in H'. Then &,= ¥, + £,eC*(Q), |®D,||;=12and &,>Pin H'. B
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We shall now refer to the so-called “gauge-invariance” of the system and the
definition of the physical configuration space. We define the gauge-group as the
additive group % = HZ . It has a continuous action on ¢ (leaving ¢, invariant)
given by:

3(4, B)—>(A4, D) = (A + VA, e AD)c¥ (2.4)

for Ae%. Then the physical configurations are in one to one correspondence with
the orbits of this action, so that we can define the physical configuration space as
% =%/%, or in the case of perfect superconductors €, =%,/%.

Let us observe that a function defined on the “mathematical” configuration
space € (or ¥,) is a physical quantity (i.e. depends only on the physical
configuration) if and only if it is gauge-invariant (i.e. invariant under the action
of ¢). This is clearly true for B, and |®|. Since D ,, @, = ¢'*D , @, this is also true
for o/, and for the current:

J=J(A, &)= —Re(D, @ @) =Im(VD @) + A| D|2. (2.5)

The physical quantity defined here is in fact the current density of the pairs, which
have a number density given by | ®@|2. This interpretation comes from a conservation
law one may write for the configurations (4, @) which minimalize the free energy
o, [14]. One should also remark that B and |®| are not enough to uniquely
characterize an orbit (i.e. a physical situation). This can be seen for example from
the fact that (4, @)—(B, | @|) is invariant under the action (4, ®)—(4 + VA, 12 @)
of the larger group 4 x ¥, while |D,@| is not.

We shall now make several remarks concerning the action of the gauge-group
on %. We recall a regularity result which will be repeatedly used in the following:
if A is a tempered distribution on £2 such that VAeH*, seR\{—3, —3,...}, then
AeH**! (see [5]). In particular, if AeH®, if A is a tempered distribution on Q and
if A+VAeC>®(), then AeH**!. Also, this shows that in order that the action
(2.4) of the gauge group leaves ¥ invariant, one must define ¢ as HZ . We would
also like to remark that if B, = B, then there exists at most one A% (up to an
additive constant, which is irrelevant for us) such that 4, = 4, + VA (A exists if
Qs simply connected, but not in general).

The next two propositions contain some technical results which will be needed
later on. We shall denote v = (v;,v,):I" = S* < IR? (where S! is the unit circle) the
exterior normal field on I" and t=(t,,t,): "~ S! the tangent field to I defined
by the condition that {v(x),t(x)} is a positively oriented orthonormal basis in R?
for each xeI". If AeH],,,, then A| is a vector field on I" with components of class
HY2(I'). Hence the scalar product vA = v-A| re HY*(I") is well defined. We always
denote by a dot the scalar product in R? (extended by bilinearity to C?).

Proposition 2.2. Any configuration (A’', @')e¥ is gauge-equivalent to a configuration
(4, ®)e¥ such that: divA=0 and vA=0. Moreover, A and A’ have the same
regularity properties; more precisely, if A’e H*? with s€elN and 1 <p < o or any
real s= 1 and p =2, then AecH*? also.

Proof. In fact, let us take an arbitrary configuration (A4’, @')e% and consider a
gauge transformation Ae% and the new configuration (4, @) givenby: 4 = A’ + VA,
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@ = @'e'2 Then, in order that (4, @) verify the described relations, we must have
divA=divA'+ AA=0
vA=vA'+wWA=0,

where WA = Z—A, and thus A must be the solution of a Neumann problem:
v

AA= —divA4’

(2.6)
6_/1 = —vA'.
ov

Now this problem has a unique solution up to an additive constant, because:
div A’e[*(22), vA'eH'*(I') and the compatibility condition (we denote do the
length element on I'):

[divAd'dx= [ vA'do @7
(7] r

is evidently satisfied. Then the proposition follows from [9]. W

Remark. The gauge transformation A which relates (4, @) to (4’,D’) in the
preceding proposition is unique up to an additive constant.

A configuration (A4, @)e¥ is said to be locally gauge-equivalent to C* con-
figurations if for each xe there is an open neighbourhood U of x in R* and a
function A = AyeH?_ (U) such that A + VA and '@ are class C*® on 20 U.

real

Proposition 2.3. If a configuration (A, ®)e% is locally gauge-equivalent to C*
configurations, then it is gauge-equivalent to a configuration of class C* on £ (i.e.
there is A€% such that A+ VA and '*® are C* functions on Q).

Proof. All gauge-invariant quantities associated to (4, @) are clearly C* on 2. In
particular B= 0,4, — d,4,eC®(Q). If we denote dA the exterior derivative of the
vector field A (we identify vector fields with 1-forms and 2-forms with functions)
then we can also write B=dA. Known results (see for example [4]) imply that
the equation dX = B will have solutions X of class C*(£2). Two solutions X', X"
of class H' will have the property d(X’' — X”) = 0. Using once again results from
[4] for example, it follows that there is a function feH? and a vector field Y of
class C*(2) such that X' — X" =df + Y (Y is a closed but not exact form). In
conclusion there is Ae H2,, such that A + dA is of class C*(€2). Let us now consider
an open neighbourhood U and a function Ay as in the above definition. Then
(A+dA)—(A+dAy) is of class C* on Un4£2, hence d(A— Ay) has the same
property. Clearly this implies that A — Ay is C® on Un{2. This being true by
hypothesis for exp(iAy)- @, it will also be true for exp(iA)@. Since the sets U cover
0, we finally get exp(iA)@eC>(2). A

In the following we shall define a certain gauge-invariant quantity which may
be given some interesting physical interpretation in connection with the so-called
London effect of magnetic flux quantization. In [8] Jaffe and Taubes study the
magnetic flux inside the superconductor (of type II) and prove that its values are
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only integer multiplies of a certain quantity. In our case the problem is complicated
by the presence of the boundaries and the boundary conditions which in physical
terms are determinated by the field configuration outside the superconducting
material. Making use of the current defined in (2.5) we may define the following
gauge-invariant, and thus physically relevant, quantity:

FA, )= [ Bydx— L [ ©J(4, D)do. 2.8)
21 o 2n r

As we already said, 7-J is the scalar product in IR? of the vectors t and J, and do
is the measure on I” induced by the euclidean structure of IR%. We interpret % (4, @)
as a magnetic flux inside €2, this being in agreement with the second London
equation (see formula (1.11) in [12]) which allows us to give a physical meaning
to the last term in (2.8). On the other hand it is not evident that this term is
mathematically well defined. In fact, 4 and @ being of class H', their restrictions
to I make sense and are functions of class HY?(I') (see [10]). However, the
restrictions of the derivatives d;® to I" does not have any meaning for a general

configuration, hence some problems arise in connection with the term Im(ﬁ-di)
from (2.5). In order to define (2.8) for a general configuration (4, @)e¥, remark

first that r-Vd)=%q—j for C'-functions @ on I', where we have denoted di the
o o

tangential derivative operator on I'. Denote <-,-> ;:H'?(I') x H™Y*(I") > C the
antiduality map (antilinear in the first variable) obtained from the scalar product
in I?(I') by considering the continuous, linear embeddings H'/*(I')c L*(I')
H™Y(I) (ie. {f,g>r= | fgdo if f,gel*(I)). Then we define #:4 >R by:

r

1 1 do 1
F(A,0®)=— [Bydx+—Im{ ®,— ) —— [ 14| D|?*do. 2.9

( ) 2n §; 4 2n < do > r 2n Ij- @l 29)
Since the operation of restriction H!(Q2)— H'Y*(I') and the derivation

d

d—:H”Z(F)—>H"1/2(F) are continuous, and H'/*(I') = L*(I') for all p < oo, we see
o

that & is a continuous functional on the Banach space ¥. From the usual

integration by parts formula (valid for any AeH') we get:

[ Badx= [ (v;A, —v,A,)do = [ (») Ado = | t-Ado, (2.10)
(9] r r r
and thus we can put (2.9) in the following form:
F(A, <D)=—1—Im<d>,@> +—1— [ A1 — | ®|*)do. (2.11)
2n do/r 2nr

If we restrict ourselves to configurations in %, the last term vanishes and we see
that # (4, @) equals the topological degree of the function @|,:I" —»S! of class
H'?, which is an integer. This is a consequence of Theorem A.3 of the Appendix
if we take into account that I' is a finite union of curves diffeomorphic to S*. It
is also an immediate consequence of Proposition 2.1 because & is continuous on
% and F(A,®) is trivially an integer if (4, P)e¥, . Since F:¥,>Z and is
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continuous, we see that the configuration space C, is disconnected. We summarize
these results in:

Proposition 2.4. The functional & defined by (2.9) (formally by (2.8)) on € is
continuous. Its restriction to €, is given by

.?"(A,(D)=—1—Im<(1),d—q)> EL<‘D,d—(D> )
2n do/ r 2mi do/ r

which is equal to the topological degree of the map ®@|:I" — S*. In particular, F |€,
has only integral values, the sets €} = {(A, ®)e¥|F (A, @)= N} (NeZ) are open
and closed in €, ¢} n€Y = ¢ for N#M and ¢, = ) €Y.
NeZ

The subsets ¢ are not connected if £ is not simply connected. We shall now
find the connected components of ¢,. Let I'y, I'y,..., I, (m = 0) be the connected
components of I', I'y being the exterior boundary of £. Each I is diffecomorphic
to S*, hence if f:I;—>S" is of class H'/?> one can define its topological degree
(or winding number) which will be an integer denoted G(f) (see Theorem A.3 of

the Appendix). If f:I" > S" is of class H'/?, put G(f)= ), G(f|,) (remark that
the orientation of I'; is determined by ). Clearly =0

FA,0)=G@|)=Y 21_<<p,d—¢> Z G(®|r,). (2.12)

j=0 2mi do =0

The functions €,3(4, @) G(®P|,)eZ are clearly continuous. If Ny, Ny,..., N,
are integers, let us denote €% "~ the set of elements (4, P)e¥, such that
G(®|r,)=N; for all j. Then (€N° """ Nm are open and closed in €, and €, is the
d1s101nt union of all sets o ”'".

Proposition 2.5. @Yo+~ is connected.

Proof. By Proposition 2.1 and the continuity of (4, @)— G(®| ), the subset of
@No--Nm of configurations with C*(£2) components is a dense subset of @Yoo Nm,
Hence, by an argument similar to that in the proof of Proposition 2.1, it is enough
to prove that the set:

{@eC*(@)[|®|=10n T and G(®|;)=N,, j=0,...,m} (2.13)

is a connected subset of C*(). Let @,, ®, be two functions in this subset and
d>0 small enough. Denote U = {xef|dist.(x, ") <d} and remark that we can
choose d so that |@,| > 1/2 on U for i =0, 1. Clearly (for d small) U is the disjoint
union of open sets difffomorphic to {zeC|1 <|z| <2}. Since Y = @, P, ! eC°°(U)
[¥| = const. >0, |[y|=1 on I and G(y|I;)=0 for all j, it follows that there is a
function geC°°(U) which is real on I” such that ¥ =expig. Now let q, beC°°(.Q)
with suppac U, a=1 in a neighbourhood of I and a+b=1 on £. Since
@, =ad, +bD, =ae’ @, +bd,, the application t— @, = ae? Dy + b(t D, + (1 —1t)D,)
is a continuous path in the set (2.13) going from @, to &,. W

Remark that the gauge group ¢ on %, leaves invariant €% ~¥ hence the
physical configuration space €, has a similar connectedness structure.
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3. Smoothness of the Stationary Configurations

In this chapter we prove analyticity (modulo a gauge transformation) of the
stationary points of the functional ./, defined on € or on a subset of ¥ defined
by boundary conditions on I" only (for example on €,). Then we show that the
stationary points of 7, |%, satisfy some interesting relations which can be
interpreted in physical terms as Meissner effect (we follow Taubes, see [18]).

We begin by calculating the first and second derivatives of the continuous
functional </, :¢ —IR (¥ is a real Hilbert space) by expanding &, (A +a, @+ @)
around (A4, ®)e¥ for (a, p)e¥. The first derivative, at the point (4, @), is the linear
map 7 (4, P):% >R given by

1—-|@)?

A (A, D)(a,¢)=Re{D,D,D,0 —ad)+{B,,B,>—kRe < D, (p>, (3.1
where ¢-,-) is the scalar product (anti-linear in the first variable) in L*(£2) (or in
the corresponding space of C*-valued functions). The second derivative is the
symmetric bilinear map (A4, @):€ x €—R defined by:

A \(A, P)((@9),(a9))=D40|*—2Re<D,¢,a®) + | a®|?

1 _
—2Re(D,P,ap) + |IB, |’ +§n Repd|?

_ 2

By stationary configuration we shall mean a configuration (4, @)% such that
A (A, D)(a, ) =0 if (a, p) has components in C;’(£2). This is weaker than asking
that the derivative &/ (4, @) be equal to zero. Moreover, if we restrict &7, to a
submanifold 2 of € with the property (4+a, @+ ¢)e2 if (4, )e2 and (a, ¢) has
components in C(£2) (for example 2 = €,), then the points where the derivative
of the restriction is zero are stationary configurations (because the tangent space
to 2 at some point (4, P)eD will contain the configurations with components of
class CJ(£2)).

From (3.1) and a similar relation but with ¢ replaced by ip, we see that (A4, @)
is a stationary configuration if and only if:

1—|@?

{D4®,D,0) — K< o, </>> + (B4, B,> — (Re(®D,,®),ay=0 (33)

for all (a, ) with C (£2) components. This condition is equivalent to the following
system of second order differential equations for (A4, @):

1— |0
121" 5

Did=«k
(3.4)
*(VB,) = — Re(®D , @) = J(4, D).

All the terms of these equations are well defined because (4, @) has components
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in H'< (| I”. In particular we obtain that J(4,®), and hence VB,, has
p<

components of class L(£2) for all g<2. This implies that B,eH" for all g<2.

Theorem 3.1. Each stationary configuration (4, ®)e¥ has the property ®eH? (Q)

and is gauge-equivalent to a configuration with real-analytic components on 2. More
precisely, if (A, @)% is stationary and div A =0 (which can always be achieved by
a gauge transformation, see Proposition 2.2), then A and @ are real-analytic functions
on L.

Proof. In the case div 4 =0 the system (3.4) becomes
_ 2
p20=24-D0— A*0+x 1 g
(3.9
DA =Re(®PD D) — A| ®|?

which is an elliptic system and (4, @) has components in H!. We can obtain the
analyticity of the solution by directly applying a rather difficult theorem of Morrey
[11]. We shall give a simple proof of the fact that the solutions are of class C*(£2)
based on the well-known lemma: if T is a distribution on £ such that ATeL?
for some pe(l,o0), then TeHZP. This immediately implies that (4, ®) has
components in HZ? for all g<2. Since H3? = L2, for 2—gq small enough, we see
that (4, @) has components in L?.. Returning to Egs. (3.5) we observe that D*@
and D?4 are of class L2 , hence (A4, ®) has components in HZ . Now by

differentiating Eqgs. (3.5) and by an iteration procedure we get that the components
of (A4, @) are in H* _for all keN, hence are of class C*(2). W

loc

We pass now to the mathematical formulation of the Meissner effect (see Jaffe
and Taubes [8 and 12-14]). Now the boundary conditions play an important
role. The following argument justifies our choice. We consider only the restriction
of the functional o/, to the set ;. The tangent space to ¥, at a point (4, )%,
is the linear subspace of % consisting of configurations (a, ¢) such that Re p®| - =0
(no condition on a). Taking ¢ =0 in (3.3) we see that in order that the derivative
of o, |%, be zero at (A, @) one must have:

(B4, B, +<J(4, ®),a) =0 (3-6)

for all aeHL,. We already know that for a stationary configuration one must
have B,eH" for all g <2, hence the restriction B,|I" makes sense as an element

of I*(I') and if a is of class C*(£2):
(B4,B,> ={—*VB,a)+ | Bt ado. (3.7)
r

From (3.6), (3.7), the second equation (3.4) and the arbitrariness of a we get
B,|I" =0. This explains the conditions we put in the next definition:

Definition. (A4, @) is a €,-regular stationary configuration if ®eH' NL®,|®|| = 1,
B,eH'B,|I' =0 and is a stationary configuration of </, (remark that these
conditions are gauge-invariant). .
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Theorem 3.2. If (A, @) is a €,-regular stationary configuration, then:
1° Either |®@| =1 on Q, or |®(x)| < 1 for all xeL2.
1—|@)?

L-100)" ,

2° If, moreover, k < 1, then either |B | = on Qor |B,(x)| <

all xeQ.

Proof. We essentially follow Sect. II1.8 of [8]. Let w=1(1 —|®|*)eH(£2). The
first equation (3.4) gives

(D* +k|®*)w=|D®@|* 2 0. (3.8

The maximum principle (Theorem 8.1 in [7]) implies now the first assertion of
the theorem. Then, the second equation (3.4) gives:

(D* +|®*)B, = i(D,®)(+D, ), (3.9)

where (a;,b,)"(a,,b,) =a,a, + b, b, for two vectors in C2. If x <1, we get from
(3.8) and (3.9):

(D? +| D)W+ B,) = (1—k)| ®[*w + |D ,®|? + i(D ,@)-(+D ;) = 0.

Since w, BeH}(€2), a new application of the maximum principle gives the second
assertion of the theorem. W

The fact that the magnetic field B, vanishes in the super-conducting phase
(|@| =1) is called Meissner effect in the physics literature.

4. Vortex—Antivortex Type Configurations

In this chapter we shall apply the techniques of Bogomol'nyi [2] and Jaffe and
Taubes [8] for a detailed study of some of the stationary points of </, in the
critical case k =1 (see the introduction). The general idea is that of Taubes, the
main differences being due to the following situation. In the case studied by Taubes
(2=1R?), the stationary configurations were globally smooth, but there were
difficulties due to the unboundedness of IR?. In our case £ is bounded, but we
have not been able to show regularity up to the boundary (ie. on Q) of the
stationary configurations of #,. So, one of the main points of this chapter will be
to study the boundary behaviour of the absolute minima of </, |¢?} for all NeZ,
see Proposition 4.2. Then we shall give a complete classification of the minima
(Theorem 4.4).

It was an important remark of Bogomol’nyi that in the critical case k = 1 one
may replace the second-order non-linear system (3.4) by a first-order system which
can then be studied much more easily using the methods of Taubes. The first step
is to put the functional ./, into a form which involves explicitly the total flux &
and gives better lower bounds for &/, on the open sets €Y, NeZ. For this, recall

. a —a .

that *:C? - €2 is given by *( 1) = ( 2) (from now on we think of the elements
a; a,

of €2 as column vectors and we provide €2 with the usual scalar product, antilinear

in the first variable: <a|b) = a,b, + a,b,). Thus * is the unitary operator in C?

defined by the matrix * = 0
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1Fi /1 +i
Ifp, = +i =§< - _ll>’ then p, are orthogonal projections in €2, p, is
i
orthogonal to p_ and * =ip, —ip_. This implies:
~i{D@,*D @) =lp. D4@|>— |p-D,@|? (4.1)
ID4@12=1ip+ D PII*> + | p-D,@|>. 4.2)

Assume for the moment ®@eH? and integrate by parts the left-hand side of
(4.1). Since D ,-*D , = — (D 4),(D ), + (D 4),(D 4); = — iB 4 and *v(x) = 7(x) for each
xel, we get

—i{D ®,*D @) = — i{®,D -*D ,@) + | ®[v-*D ,Pldc
r
= —{(®B,®)— | O[*v-D,P]do
r
=—<{|®%B,y— | ®tD, Pdo.
r

Since this is a real quantity (see (4.1)), taking the real part and using (2.5), (2.8), we get
—i{D4@,*D @) ={1 — |®|*,B,> —2nF (A, D). 4.3)

We know that #:4, » R is continuous and that configurations with C*(£2)
components are dense in ¥. Hence (4.3) remains true for all (4, ®)e¥%, (not only
for those with @eH?). Then (4.1), (4.2) and (4.3) imply:

2|psD4@|* = |D4@|? £ <1~ | P, B, F 21 F (4, D). (4.4)
This allows us to put (2.2) in the following form:

A (A, D)=1/4|D,PF i*DP|*+ 1/2||B,F w|* + (k—1)2||w|? £ nF (4, D)
4.5)

for all (4, ®)e%,. The notation w = 1/2(1 — | @|?) will be systematically used from
now on.

Let us restrict ourselves to the critical case x = 1. Since % is the disjoint union
of the open subsets €3, NeZ (see Proposition 2.3), the stationary configurations
of o/,|%, can be found by studying the restrictions ;|%¢}. Let us fix an integer
n =0 and consider for «,|€%" the form (4.5). Since # |€{" = + n, we get:

oA (A, ®)=1/4|D,®Fi*xD,®|*+ 1/2|B,Fw|*+nn, forall (A P)eF;"
4.6)
From the above representation one sees that o/, on ;" is bounded below by

nn and this minimum is effectively reached for those configurations (4, @)e% ;"
which satisfy the following system of first-order non-linear equations:

By=+w=11/2(1—-|0]%) @7

Remark. €i" being open subsets of ¢;, any minimum of o/, in ¥;" is also a
minimum of &/, in %,, and thus any solution of (4.7) is a stationary configuration
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of «,, i.e. verifies (3.4) with k =1 (of course this can also be proved by direct
calculation). The following can be shown (we do not give details, because this is
outside the main subject of the paper): a € ,-regular stationary configuration (4, @)
of o/, in €{" with @eH? satisfies (4.7) (i.e. is an absolute minimum of .o/, |¢ ")
if and only if

| v-x[(2|®|/ov)* —1/2|D ,®|*]do = 0. 4.8)

The configurations (4, ®)e€;" on which o/, |€E" assumes its absolute
minimum 7n are the object of our study from now on. We shall confine ourselves
to the case &/, |4, the other case being obviously similar.

So, let us fix an integer n = 0. A configuration (4, @)e¥ realizes the absolute
minimum 7nn of &/, |%] if and only if:

{(DA~i*DA)<D=O

4.9
B,=+w. *9)

We shall study this system by the complex variable method of Taubes. Let

z=x,+ix,eC,0= i =(1/2)(0, —i0,), 0= i_= (1/2)(0, +i0,) and a=(i/2)(A, +iA,).
0z 0z
Observe

az—lal—lAz—Al 0 _2l a_a
On the other hand

B, =idivA —40a. 4.11)

In conclusion, in order to classify all the configurations (A4, @) such that
o,(A, @)= nn it is enough to describe all the solutions o, @ of the system:

{@—@¢=0
Redo = — (1/4)w = (1/8)(| ®|? — 1).

The unknowns are the complex functions « and @ on £, such that
o, @eH',|@|=1 on I and G(@|I')=n. We have denoted G(f) the topological
degree of a function f:I"— S of class H'/*(I') defined by Theorem A.3 of the
appendix (see also (2.12) and the remarks preceding it). Remark that the condition
B,|r=0 (see the definition of a ¥,-regular stationary configuration) is auto-
matically satisfied.

Remark also that the system (4.12) has a very large invariance group: if
Ae%9=H2, and «, @ are solutions of (4.12) (with all the boundary conditions
satisfied, in particular with the n given a priori) then the functions o, = a+i0A,
@, = ¢'A® (obtained after a gauge transformation on (4, ®@)) also verify the system
(and the same boundary conditions, with the same n). In particular a general
solution of (4.12) cannot be smooth.

The system (4.12) will be solved using Taubes’ procedure of factorizing the
solution into a holomorphic part and a factor which is different from zero. As we
said at the beginning of this section the main difficulties in our case are due to
the presence of the boundary I'. In order to overcome them, we shall first study

4.12)
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some properties of holomorphic functions of Sobolev class H! in . The main
technical point is part (a) of the proposition below.

Proposition 4.1. (a) Let F be a bounded harmonic function in £ of Sobolev class H*(£2).
Assume that on a neighbourhood in I of a point x,€I” we have |F|| = const. > 0.
Then there is a neighbourhood of x, in £ on which |F| = const. > 0.

(b) Let V={fel?()|0fcL*(£)} provided with the norm || ||, = (| f 1>+ | of I)*/>.
Then C*(2) is dense in V and the application C*(2)3 f f | reC®(I') has a unique
continuous extension to an application of V into H™'*(I').

(c) Let f be a holomorphic function on Q which is bounded and of Sobolev class
HY (). If | f| = const. > 0 on T, then f has only a finite number N of zeros in 2 and
we have the usual formula:

1@y, Y (4.13)

r f(2) K=1

where n, is the multiplicity of the k'™ zero and the integral is interpreted in the
distributional sense.

(1/2mi) §

Proof. (a) Since the assertion is purely local, we shall consider a smooth simply
connected open set U in 2 whose boundary contains a neighbourhood of x, in
I'. Then we map U on the upper half-plane using a conformal transformation.
Thus it is enough to prove the following fact: if Qis the upper half-plane, f:R - C
is a bounded function which is of class H'/> on some open interval I =R, then
for any xel and any neighbourhood J of x in I the distance from f,(x) to the
image f(J) tends to zero as ¢ — 0, where

fox) = (¢/m) f fOx—1)® +¢*) " at

and the connection with our problem is given by the formula Fi (x+ty) Sfy(x),
where F is the harmonic extension of f to Q. Let P,(x) = ¢/(n(x* + &2)) be the
Poisson kernel for the upper half-plane. For each a >0 we define A>0 by the
equality:

[ P(x)dx=1/n[n—2arctg /2] =a.

|x|>ed/2

Since P,(x) < (em)” !, we have for all x, yelR:

Lf) =S = nf(Pg(x—t)lf(t)—f(y)Idt
Sme)™t [ [fO-fO)dt+ [ Pfx—t)dt-2sup|f()]

|x—t]Sei/2 |x—t|>ei/2 teR
=(7t8)_1' II |f(®) = f(y)ldt + 2asup| f].
x—t|Sei/2

Thus if we denote
I(x) = (x—Ae/2, x + A¢/2)

and

1/2
ME(X)=[ ) If(y)—f(t)lzly—tl_zdtdy] ,

I.xI,
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we have

(Ae)” 1flf(X) SOy = 2asup | f|+ (Hm)(Ae)~2 [ 1))~ f(y)|dtdy

I.xI,

1/2
<2asup|f]+ (?L/ﬂ)[(ﬁﬁ)‘2 IJ1f0- f(y)lzdtdy]

I x1It

1/2
§2asup|f|+(i/n)[IHI lf(t)*f(y)lzlt—yl‘zdtdyJ

because A¢ = |t — y| in the domain of integration.
Remark that M,(x) — 0 as ¢ » 0 uniformly for x in compact subsets of I, because
feH'Y?(I). Now, as in the appendix

Hyel ) fox) — f(M] 2 B} = (Re/B)[2asup | | + (/)M (x)].

Hence:

{yel ()11 f:(x) = (I < B} = Ae[1 — Qasup S|+ An~ M (x))f "]

which is strictly positive if 2a sup | f'| + (4/m)M (x) < B. This can clearly be achieved
for any f>0 and all x in a compact subset of I by taking first a small (which
fixes 4) and then letting ¢ —»0. This proves (a).

(b) The density of C*(2) in V follows from the “weak equal strong” lemma of
Friedrichs. Let v=v, +iv,:I"> €, which is a C* function on I" with |v(x)| = 1.
An integration by parts yields for f, ge H*(Q):

9,01 > + <09, > = (1/24g, % >

where vf is the usual product of complex functions on I'. Thus there is a constant
¢, such that:

[<guf>rI 20 gh1af 11 + 2100 1 f I S cilglma i f v

There is a linear continuous application R:HY*(I")— H'(2) such that
(R@)| = o for all e H*(I"), so

K@, vf)rI=ci[Ro ”H‘(.()) I1flly<cille “H1/2(n £y,

for all pe H'/*(I"). Replacing ¢ by ve and taking into account that ve C*(I") and
[v(x)| =1, we get:

”f“H-l/Z(r) scliflly

for all feH!(Q) and some finite constant C. This proves (b).

(c) By (a), | f| will be bounded below by a strictly positive constant on a
neighbourhood of the boundary I" in £, hence it has only a finite number of zeros
in Q. Clearly f'eL*(Q) and is holomorphic, so, by part (b), f'|I" is a well defined
element of H™V*(I"). Also, since |f|=const.>0 on I" and feH'*(I"), we also
have f~!|eH"*I). We shall interpret the integral appearing in the left-hand
side of (4.13) using the anti-duality map <{," > :HY} (") x H™ V¥ > C:

§rf (z)d — (T ey = (L df fdod @.14)
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where =1, +it,: I > C is a C® function and d/dg is the tangential derivative
on I' (we have f't=(d/dg)f for holomorphic f). In order to prove (4.13), let
I',={zeN|dist(z,I') = ¢}. For ¢ small enough, (4.13) is true with I" replaced by
I',. If we make ¢—0 in the left-hand side we get (4.13) by a simple continuity
argument. W

Let us now return to the boundary value problem, (4.12). Our first result
concerns the zeros of @.

Proposition 4.2. Let o, ®cH! satisfy (4.12) with | ®|=1 on I' and G(®|)=
n(n=0,1,2,...). Then ®cH?_ and either |®(z)| =1 for all zef2 or |P(z)| <1 for
all zef. Moreover, @ has only a finite number of zeros z,,...,z, in §2 and there are
integers ny,...,m 21 such that ny + --- + n, = n, and a function ®,eH} (2)nH*
with |@y(z)| = const. > 0 on 2, such that:

k
®(z) = [[1 (2 — 2,)" ®y(2). (4.15)

Proof. Let p(z) = (nz) ! be the fundamental solution of d in R?, ie. d(p x f) = f
for feL'(R?) with compact support (here and below x denotes the convolution
product). We shall use the following known properties: if f e L{R?) for some g > 2,
then p x f is continuous; and if feH'(R?) then p x feH} (R?). Let ape H'(R?)
have compact support and ay|o=0o. We put by =exp(p x ap). It is clear that
boe HE (R?), by = aoby. Moreover by * =exp (—p x ao)e HZ, (IR?). We put b=by |,
and define h:Q2— € by the condition @ = bh. It follows that h is a holomorphic
function in 2 of Sobolov class H!. Moreover |h|=|b"'| is a bounded function
on I" such that |h| = const. >0 (because b is continuous and non-zero). Hence
heL*(Q2) also. Using part (c) of Proposition 4.1 it follows that @ has a finite
number of zeros, the same as those of h. By an argument similar to that from the
end of the proof of Proposition 4.1 (i.e. calculate the degree by replacing I” by I,)
one can easily prove that

G(®|r) = G(blp) + G(hly) = Gl ),

since b is a pure exponential and is of class H2. In order to prove n=n, + --- + n,
we use Proposition 2.4 and formulas (4.13) and (4.14). Finally, Thecrem 3.2 may
be applied because B, =w=(1/2)(1 —|®@|*)eH!, so that (4, ®) is a ¥,-regular
stationary configuration. W

In order to give a complete classification of the solutions of (4.12) we make
two more remarks. First, if ye HY*(I" ;) and |y/| = const. > 0, we define its winding
number by:

G(Y) = (1/2ni) Y~ ", dy/day . (4.16)
As in Theorem A.3 this is an integer. Secondly, let yeH'(2)nH2 (£2) be such

loc
that || =const. >0 and G(y|I;)=0 for all j=0,1,...,m. Then there is a
0cH'(2)n H2 (£2) such that  =¢°. In fact, let 2, = {zeQ|dist(z, ') > ¢} with ¢
very small. Then 002, =T, = U I';, and it is easily seen that G|, )=G(¥|r,)=0.
ji=0
Since ¥ is continuous on £2,, it is well-known that there is a continuous function
6 on £, (unique modulo an additive constant) such that y = ¢’ on £,. Making
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¢—0 we extend 6 to a continuous function on 2 such that the equality remains
true. It is easy to show that VO = ~'Vy. The right-hand side belongs to L*(£2)
because ¥ ~! is bounded. So e H'() and the fact that e H} () follows from
the same identity.

Let us assume that we are in the conditions of Proposition 4.2 and denote
G(@|)=NeZ, i=0,1,...,m (see the end of Sect. 2). Then G(®@|)=n=N,+
N;+ -+ N,,. Choose {,,...,{, m points in the bounded domains limited by the
curves I'y,..., I, and define y:2— C by

m

k
o@)=1¢-2) [] Y (z). (4.17)

Clearly yeH' nH} (£2) and 0 < const. < |§(z)| < const. < co. Moreover G(y/| ) =0

foralli=0,1,...,m (use the equality with G| T, e) for small ¢, see above and the
end of the proof of Proposition 4.1). Hence y = ¢’ with 6e H' nH}, (). Clearly
0y =00 and the first equation (4.12) implies o = 86. The second equatlon 4.12)
becomes ARe O = —w = (1/2)(|@|*> — 1).

We define u =log|y|* = 2Re 6 which is clearly in H' nHZ  and:

k m
a(z) = n IZ_ZjIZ"’ H lz—CiIZM-
i=1 i=1

Then aeC*(R) and a(z) >0 on I'. Let ¢ = —Ina|eC®(I'). Hence u is a solution
of the following boundary value problem:
{— Au+ ae* =1

ulr=¢

(4.18)

We shall prove later on the following general result:

Theorem 4.3. Let k= —1 be an integer. Assume three real functions ac HXQ),
veHYR2), peH***¥(I') are given such that a =0 and acL!'**) for some &> 0.
Then there is a unique real function ue H'(Q) such that:

{ —Au+ae*=v
ulr=¢
Moreover, we have ueH***(Q). In particular, if a, veC®(2) and peC*™(I"), then
ueC*(£2).

We can now describe all the configurations in ¢’ on which &/, assumes its
absolute minimum 7n.

Theorem 4.4. Let n =0 an integer and No,N,,...,N,€Z such that Ny + N +

+ N, =n. Let z{,...,z,€8 and {; in the bounded domain limited by I';,i=1,...,m
Finally,letn,,...,n = 1 beintegers withn, + --- + n, =n(if n=0,theset {zy,...,z}
is empty by definition). Let u be the unique solution of (4.18) with a and ¢ defined
as above. Then

(4.19)

D(z) =[] (z—z)" ﬁ (2 — L)Vt 2
- . (4.20)

A(2) = (= 1/2)*Vu(2)
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defines a configuration (A, @)e®y° "™ such that o/,(A, @)= nn. Moreover, any
configuration in €Yo "N on which o/ | assumes its absolute minimum nn is gauge
equivalent to one of those described above. In particular, any such configuration has
the property ®cH? |®|*cC*(2) and B,eC>() and is gauge-equivalent to a
configuration with C*(Q) components.

Remarks. The points {; are not determined by the function @; they may be chosen
a priori and considered as fixed. This follows from the construction of ¥ in (4.17).
Solutions (4.20) with N, = .- = N,, =0 are called of multi-vortex type. The other
ones are of mixed vortex-antivortex type in general (if some N; are negative) and
do not appear in the case of simply connected regions. If n < 0, one must replace
in the preceding analysis “holomorphic” by “antiholomorphic” and z —z;, z —;
by z2—2z;, 72— (;.

Theorem 4.4 follows easily from Theorem 4.3 and the construction we have
done before. We only want to observe that 0 is of Sobolev class H2. In fact,
a«=00cH" and Ref=u/2eC>(2) so dImOecH'; Imh being real, this implies
ImfeH? Making a gauge-transformation A= —Im6, we may suppose
0 = Re 0 = u/2, which gives the unique solution (4.20).

We finish by giving the proof of Theorem 4.3. From now on we shall work
only with real functions, so we simplify the notation: H*? = H}? | [P =LF_,, etc.
We shall use the following inequality (see [7] p. 155): there is a constant ¢ depending
only on  such that for all ue H'(£2),

Iexp[c_lllullm lul?ldx<c

(because we can extend u to an element fieH! (.Q) for some fixed Q2 open, bounded,
with Q< Q). Then taking ¢ = 2¢ ! lullzZ we get for any p < co:

€ 1 _
pluiéilul2 2P =c 1|Iu||,,1|u|2+—|| ullZ

In conclusion, we get:

e Loy < cPexp Lepllullf o] (4.21)

with the same constant as before, all p < oo and all ue H'(£2). In particular, the

application exp:u—e" sends H' into () L. Moreover, for each p, exp: H! - 7
p<oo

is continuous and even continuously Frechet derivable, its derivative at the point

ucH' being the linear continuous application: H!sve*vel?. In order to prove

this we use the inequality |e* — 1 — x| < |x|%e!™! valid for all real x and denote by

the same letter c all the irrelevant constants. We get:

T —et— e =le(e’ — 1 — )L

lle
S llev?e s < e llpapllvlZep €l oo
Scllvlgiexplellull +cllvlz).

Since I’ « H™ ! if p > 1, it follows that exp considered as an application from H!
to H™! is also continuously Frechet derivable.

Let us define T:H (2)— H () by T(u) = — Au + ae". Since ael? for some
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p>1, it is easy to see that T is well defined, continuous and even continuously
Frechet derivable.
Let To=T|H(£2). If u,veH}:

Cu—v, Tow) — To(®)> = |V —0)|* + !) a(e” — °)(u — v)dx

Z V-0 *zcllu—vlf, (4.22)

where we have used the assumption a = 0, the fact that (¢* — e”)(x — y) = 0 and the
boundedness of 2. Here ¢ > 0 is a constant. The above inequality and a well known
theorem of F. Browder (see [1] for example) implies that T,:Hy(£2) > H () is
a homeomorphism.

Remark. The result of Browder we use is a non-linear variant of the Lax—Milgram
lemma. More precisely, it says that if X is a real Hilbert space, X* its dual and
F:X — X* is continuous and has the property: {x—y, F(x)—F(y)>2c|| x—y||3 for
some constant ¢ > 0 and all x, ye X, then F is a homeomorphism of X onto X*. We
use this result only for a continuously Frechet derivable F and in this case the proof
is very easy. We give it for completeness. First, from c||x — y||3 < <{x —y, F(x) — F(y)> <
Ix = ylx | F(x) — F(y)llx- one gets | F(x) = F(y)llx»2cllx —yllx so F is injective,
with closed range F(X)=Y = X* and continuous inverse F~!:Y X (even
Lipschitz). We have to show that Y= X* But it is clear that the derivative
F'(xo):X — X* at any point x, will have the property c||v|% < <v, F'(xo)v). Now
the linear variant of the Lax—Milgram lemma implies that F'(x,) is a linear
homeomorphism of X onto X*. The inverse mapping theorem assures us that F
has open image, so Y = X*.

The preceding arguments show the existence and unicity of the solution in the
case ¢ =0. In order to prove uniqueness in general, consider u,,u,eH" solutions
of (4.19) and denote u = u; —u,eH}, b = ae*. Since ae L* for some p > 1 and e’ L1
for all g< oo, we have b=0 and bel” for some p>1. Clearly we have
— Au+b(e*—1)=0. Let S:Hy — H ™! be given by S(u) = — Au + b(e* — 1). Exactly
as before we see that S is well defined (even continuously Frechet derivable) and
u—v,8(u) — S@)> 2 clu—v||Z, hence S is injective. This implies u =0, i.e. we
have uniqueness of the solution of (4.19). To prove the existence let u,e H** 2 with
uo|I" = ¢ and look for u of the form u =w + u, with weH}. The w must satisfy
— Aw + ae*®e” = v + Au,. Since k + 2 = 1, we have e“°e L? for all g < o0, so ae*°el?
for some p > 1 and is positive. Also v + Auge H* and k > — 1. Hence the existence
of a solution weH; follows from the properties of T (in which a is replaced
by ae*°).

We have proved the existence and uniqueness of the solution ueH' of the
system (4.19). We must prove now that ue H**2. Of course, we can assume k = 0.
First we make a reduction to the case ¢ =0 introducing a function u, as before.
Then v + Auge H is trivial and ae*°e H* is proved by induction on k (if k = 0, then
u,eC°(£2), hence the assertion is trivial; if k = 1: V(ae*°) = Va-e* + aVu,-e*c H®,
so ae*°eH’, etc...). So, we may consider ¢ =0 and k = 0. ueH|, has the property
Au = ae* — v and a,ve H*. Then ae“eL” for all p <2. Theorem 8.16 of [7] implies
ue L. But then ae* — ve L?, so ue H* due to H*-regularity for the Dirichlet problem.
In particular ueCo(Q). If k = 1, then V(ae*) = Va-e* + aVue"eL? because a and Vu
are of class H', hence are in L? for all p < co. So ae*eH! which implies AueH®.
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Since ueH}, we get ueH. If k = 2 we shall use two facts: 1) H* is an algebra for
the usual multiplication of functions; 2) if ueH**! then e“*eH*. The first is
well-known and easily proved by induction. The second is a consequence of the
first because it is enough to show Ve* = Vu-e*e H*~! which is clear by induction.
In conclusion, if ueH**! and aeH*, then ae*e H*. The proof of Theorem 4.4 is
finished by a new induction procedure. MW

Appendix

As mentioned in the introduction the result of this appendix is due to L. Boutet
de Monvel, and for one crucial point, to O. Gabber. It was exposed orally in a
lecture by L. Boutet de Monvel in the Franco—Israelian Congress on P.D.E.’s in
Jerusalem, April 1984. We thank them for providing us with this material.

A.1. Let S* denote the unit circle in the complex plane €. With its geodesic measure
S! is also identified with R/2nZ. We will say that a measurable function f from
S* to R" belongs to VMO, the space of functions with vanishing mean oscillation,
if the following condition holds:

. 1
For any interval I = S* we denote |I| the length of I, and f; = ~_f f the mean
of f over I; then feVMO if 11

L@ —fldx—0 if (110, (A1)

Nz(f)=”|1

(The integral is taken with respect to the Lebesgue measure of S', for which the
total length is 27.)
We will set

w(e) = sup N,(f), thus lirr;w(e):O if feVMO. (A2)

[I=e

If f is a locally integrable function we set

F(x,6) = f(x) = —::(j; f(x + t)dt. (A3)

Let us notice that for any interval I and any number ¢ > 0, the set I, =1 of

1
points yel such that |f(y)—f;l>c is of length |I|<-N,(f)|I|, since
IN/(f)= | If —f1| = c|]]. From this we get ¢
I

Proposition A.1. If fe VMO the distance of f,(x) to the range of f is < w(e), for any
xeS! and ¢> 0.

Indeed we have f,(x)= f; with I =[x, x + ¢], and if ¢ > ¢ the set of yel such

that | f(y) — f;| = c is of length = e(l — w—(6~)> > 0, hence non-empty.
c
If we now suppose that f takes its values in a smooth submanifold M < R",

e.g. thecircle §! = €, it follows from Proposition A.1 that for small ¢, F(x, ¢) takes its
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values in a small fixed tubular neighbourhood of M (which is of course homotopic
to M). Hence f, defines a constant (independent of ¢) homotopy class of M, and
we can take this as a definition of the homotopy class [ f]en,(M), although f
may be discontinuous (F is of course continuous if ¢ > 0).

A.2. From now on we specialize to the case where f belongs to the Sobolev space
H''2, which is the useful case for us.

Proposition A.2. We have H'?> =« VMO.
Proof. If feH'? we have

f6)—f0)?

x___

dxdy < 0. (A4)

St x St
Equivalently

flx+e)— f(x) 2dxd8< 0 (Ad)bis
€

StxR

(where we have, in the notation identified S* and R/2nZ).
Now for any interval I = S* we have, by Schwarz’ inequality

/2

If(x)—le— <|I|Ilf(x) f(y)lzdy> ,

|1

hence also

/2

Nz(f)—mflf f1|<<

fIf - f,12>

1]
1/2
<| e §f 1fx)— f(y)lzdxdy>

IxI
é( ﬁ f)—f») dedy>1/2.
[x=yl < x=Yy

The last inequality holds because |x — y| < |I|if x, yel. Since integral (A.4) is finite,
the last integral tends to 0 if [I| -0, so f satisfies (A.1). W

We will now prove the following theorem:

Theorem A.3. Let f be a function of Sobolev class H*'? from the circle S* to itself.
Then there exists an integer n and a real function ge H''? on S*, unique up to an
integral multiple of 2n, such that f = z" expig. The winding number n is given by

— 1 f—laf

2mi St 0x

The integral is defined in the distribution sense since f~!=feH!? and

af eH™ 1/2 )
ox



22 A. Boutet de Monvel-Berthier, V. Georgescu and R. Purice

It also follows that smooth functions from S* to itself are dense in H''? such
functions, for the H''? topology (one may approximate g by smooth real functions).
x+e

Proof. Let us first notice that the function F(x,e)=~ [ f(f)dt introduced above
& x

oF 1 .
belongs to the Sobolev space H'. Indeed we have ™ = g( f(x + &) — f(x)), and this
X

belongs to L? by (A4)bis. On the other hand we have

E—aj_lj'(f( +1)— f(x))dt = js (xse)ds
¢

ox
Hence
OF ! 2||oF
oF _OF < fsl|l—(x,s9)| ds==|—| ,
Ox Oell2 o ||0x L2 311 0x |2
since
a—F(x s€) ——1— oF
ox 7l Jslloxlle
This being so let us set
of
= 1 — ! sd for small ¢).
" omid L = 2mi s'[ fogedx | %

The function F is continuous, does not vanish for small ¢ (|F| = 1 — w(e)), and its

1
winding number is n. It follows that the logarithm G =- Logz™"F is well defined
i

(up to an integral multiple of 2x), and continuous. In fact we have GeH" since
dG = F~'dF has L? coefficients (for small ¢). Letting ¢ >0 we get

f=z"expig
with g the boundary value of G. We have ge H'/? since GeH?, and g is real (a.e.)
since | f|=1.
We finally prove the uniqueness statement in the theorem. It is enough to
prove that if ge H'/2 and expig = 1, then g is constant. If this were not so, since

the values of g are of the form k2% with keZ, there would exist an integer m such
that both sets A ={g<2nm} and B={g=m+ 1} have no zero measure. Let

h= inf<<2i — m> , 1>; then he H''? and h only takes the values 0 (on A) and 1
n +

(on B). It follows from the Lebesgue density theorem that there exist arbitrarily
small intervals I such that h; is close to 0, or to 1. Since h; depends continuously
on I, there also exist arbitrarily small intervals I such that h; = 1/2. Since he VMO
(Proposition A2), this contradicts Proposition Al. This ends the proof.
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