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Abstract. For quantum deformations of finite-dimensional contragredient Lie
(super)algebras we give an explicit formula for the universal R-matrix. This
formula generalizes the analogous formulae for quantized semisimple Lie algebras
obtained by M. Rosso, A. N. Kirillov, and N. Reshetikhin, Ya. S. Soibelman, and S.
Z. Levendorskii. Our approach is based on careful analysis of quantized rank 1
and 2 (super)algebras, a combinatorial structure of the root systems and algebraic
properties of g-exponential functions. We don’t use quantum Weyl group.

1. Introduction

Quantum algebras appeared as a generalization of algebraic constructions in
quantum spectral transform method [1,2]. The notion of quantum algebras was
systematically developed by Drinfeld [3,4], Jimbo [5], and by Faddeev’s school
[6]. Later, Drinfeld [4,7] defined a class of quasitriangular Hopf algebras
possessing the universal solution of Yang-Baxter (YB) equation. Namely, a
quasitriangular Hopf algebra is a Hopf algebra o/ with an additional element
Re o/ ® 4/ such that

A(x)=RAx)R™', Vxes, (1.1

(A®id)R=R13R?*, (id®4)R=R'*R2. 1.2)

The element R satisfies the YB equation and is called “the universal R-matrix.” The
method of construction of the quasitriangular Hopf algebra is based on the
quantum double notion [4]. If &/ is any Hopf algebra then the quantum double
W() is a quasitriangular Hopf algebra (~ o/ ® /" as a vector space) with the
canonical R-matrix )

R=Ye®¢, (1.3)

where e; and ¢' are dual bases in &7 and «/’. For any quantum algebra U,(g) (the
Drinfeld-Jimbo deformation of Kac-Moody algebra g) there exists an epimorph-
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ism to U (g) from the quantum double of the corresponding Borel subalgebra:
W(U,b,))—U,g). Thus any quantum algebra U,(g) is a quasitriangular Hopf
algebra.

The problem is to obtain an explicit expression for the universal R-matrix
directly in terms of U ,(g). The implicit form of such an expression was given by
Drinfeld [4,7]. Rosso [8] obtained the explicit factorized expression of the
universal R-matrix for U (sl(n)) by examining the identification of U (sl(n)) with the
quantum double of U (b, ). This formula was generalized in [9,10] for quantum
deformation of semisimple Lie algebras using g-Weyl group.

We deduce the analogous formula for quantum superalgebras (g-deformation
of finite-dimensional contragredient Lie superalgebras). Our approach differs
from that of [8-10]. We don’t use a quantum Weyl group for the superalgebras
which do not have good Weyl group. Our method is based on careful analysis of
rank 1 and 2 quantum (super)algebras, a combinatorial structure of root systems
[11] and algebraic properties of g-exponential functions.

2. (Non)Quantized Kac-Moody (Super)Algebras

Let g(4, 7) be a Kac-Moody (super)algebra with a symmetrizable Cartan matrix 4
[i.e. A=DA”™, where A”™ = (a;)™)is a symmetrical matrix,and D =diag(d,, ...,d,),
d;+0]. Let, moreover, &,,, Ea‘., ieI={1,2,...,n}, be the Chevalley basis in g(4, 7),
which is coordinated with the matrix 4™,

The (super)algebra g: =g(4, ) and its universal enveloping algebra U(g) are

completely determined by the following relations [12]:

(R B 1=0, 2.1

[Eai’ é iaj] =ta7"e,;, 22)

(8,080, ]1=byjhs. (2.3)

(adé.,)é., =0 for i=j, 2.4)

degh, =0, degé,, =0 for i¢t<l, (2.5a)

where degé.,,=1 for ietCl, (2.5b)
1 if aym=agm=0,

ny=12 if a¥m=0, am+0, 2.6)

1—2a8™/ag™ if ay™+0.

Here the bracket [, -] and also the symbol ad denote a supercommutator in
U(g), i.e.
[a,b]:=ab—(—1)3eeadeebpq (2.7a)

(ada)b: =ab—(— 1)teeedesdpg (2.7b)

The quantized (super)algebra g, denoted by U (g), may be considered as a
deformation f (reserving the grading) of the universal enveloping algebra
U@ U(e)-1>U,(@), &1n—ess, hy—h,, which modifies Egs. (23) and
(2.4). More precisely we have [12].



Universal R-Matrix for Quantized(Super)Algebras 601

Definition 2.1. The quantized (super)algebra g: =gl(A, 7} is an unital associative
(super)algebra U (g) with generators e, ,,, h,, i€l, and defining relations:

[hys ho1=0, (2.8)

[ €20,]= e, 29)

[ewy e—o]=0:iks,~ Kk, )/(a— ), (2.10)

(ad, es,)"es,,=0 for i%j,q=q.,q, (2.11)
degh,, =0, dege., =0 for i¢zCI, (2.12a)
dege,, =1 for ietCI. (2.12b)

For superalgebras of rank more then two we have to complete the list of
relations. See Note added in proof.

Here and everywhere we use the notations k,:=¢", k,:=q™", g:=q"'. The
bracket [-,-], and also the ad, denote a deformed supercommutator in U (g):

(ad, e)es=[e, e5], = e,e5—(—1)deg=ieerqg@hPee, (2.13)
where g=¢", and (o, §) is a scalar product of the roots « and f. The parameter # is
called as a Planck constant. Clearly, U (g) reduces to U(g) if #—0 (g—1).

Anywhere below we shall use the following short notation:
9(y): =dege, . (2.14)

Let (*) be an (non-graded) algebra antiautomorphism in a sense of the
associative (super)algebra U (g(4, 7)), such that

(e)=e_,, (e_)*=e,, (h)*=h,, H)*=—h. (2.15)

Then it is not difficult to verify that (*) is an antiinvolution in the quantum

(super)algebra U (g(4, 7)), i.e. the relations (2.8)—(2.12) are invariant with respect to

the operation (*). We call this antiinvolution as the Cartan-Planck adjoint. We use
also an algebra automorphism w in U (g(4, 7)), where

wle)=e_,, wle_)=(—1)e_,, wh)=—h,, oh)=—h. (216)

It may be shown that U/(g) is a Hopf (super)algebra with respect to a
comultiplication 4, an antipode S and a counit ¢ defined as

A(h,)=h,, @1 +1@h,,, (2.17a)
Ale,)=e,®1+k,®e,,, (2.17b)
Ale-,)=e_,Qk, +1Q®e_,,, (2.17¢)
Sthe)=—hy,  Sle)=—kyey, Sle_n)=—e_,k,, (2.18)
e(h,)=¢le,)=¢ele_,)=0, e(1)=1. (2.19)

The quantum (super)algebra U (g) is also a Hopf (super)algebra with respect to a
comultiplication 4, an antipode S and count & defined as

Ah,)=h, ®1+1®h,,, (2.20a)
Hle,)=e,®1+k, e, (2.20b)
Ae_,)=e_,®k, +1®e_,, (2.20¢)
Sth)=—hy  Se)=—Fewr S d=—e_r  @20)

8h,)=8le,)=8e_,)=0, &1)=1. 2.22)
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Hereafter we shall use also opposite comultiplication 4’ and A’ defined by
relations

A=cd4, A=04, (2.23)
where ¢ is a (super)permutation linear operator in U, (g)®U (g), i.e.
o(a®b)=(—1°’POphRa). (2.24)

Note that the definition of Hopf superalgebra differs from that of the usual Hopf
algebra by the supercommutativity of tensor product, i.e.

(a®b) (c®d)=(—1)*®*Ogc@bd. (2.25)

Now we proceed to consider quantized Kac-Moody (super)algebras of finite
growth only.

3. The Cartan-Weyl Basis and Its Q-Analog

LetIT: ={ay,...,a,} be a simple root system of g: =g(4,1); 4, be the system of all
positive roots with respect to II. We denote by 4, the reduced root system which is
obtained from 4, by removing such real roots o for which «/2 are roots.

The Cartan-Weyl basis of g (U(g)) consists of root vectors e, ,, x4, and some
basis in the Cartan subalgebra # Cg. The basis vectors satisfy the following
relations:

[hed=olh)e,, hest, (3.1)
le,e-Jd=h,, aecd,, (3.2)
lewes]=N, gerrp, o fed=—A4,04,. (3.3)

Our task is to construct a g-analog of the Cartan-Weyl basis of U (g), such that,
first, it coincides with the Cartan-Weyl basis of U(g) if g—1 and, second, it satisfies
the relations similar to (3.1) and (3.2) [i.e. such as (2.8)-(2.10)].

The peculiarity of the construction of the Cartan-Weyl basis in U(g) and in
U (g) comes from the following observation.

Proposition 3.1. Consider the (super )algebra g and let o, B, o', f’ are positive roots
suchthat [e,, e5]+0,[e,,e;]1+0.If arealrootye 4, canberepresented asy=a+f
=o'+, then [e,, ez] ~[e,,ep].

Hence for given e,e; and e,,e; the root vector e, is defined up to a
multiplication constant by relation

e}, = C[e“, eﬁ] = C,[eal, eﬂ’] . (3.4)

In the case of the quantum (super)algebra U (g) Proposition 1 does not hold in
general. It turns out in this case that the procedure for construction of the Cartan-
Weyl basis has to be in agreement with the choice of a normal ordering in the
reduced root system 4. To this end we recall the definition of a normal order in
4. [14].

Definition 3.1. It is said that the system 4, is in normal ordering, if its roots are
written in the following way: (i) all multiple roots follow each other in an arbitrary
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order; (ii) each nonsimple root a + f € 4 ., where a A, a, f € 4 ., has to be written
between « and f.

The g-analog of the Cartan-Weyl basis is constructed using the following
inductive algorithm [13].

Definition 3.2. Fix some normal ordering in 4,. Let a, f, ye 4, be pairwise
noncollinear roots, such that y=a+ . Let, moreover, between o and f (in the
considered normal ordering) there are no other roots o’ and ' such that o’ + ' =1y.
Then, if e, , and e, ; have already been constructed, we set

eyz[eweﬂ]qa e—y=[e-ﬂae—a]Q‘ (35)

Remark. Let the root subspace g, of the root a of the Kac-Moody (super)algebra
has a dimension more than 1, dimg,>1. Then for the quantum (super)algebra
U (g) we obtain different vectors e{ labelled by index s=1,2,...,dimg,.

We have the following properties of g-analogs of the Cartan-Weyl generators.

Proposition 3.2. For any ye 4, the relations
(h,e,1=y(he,, (3.6)
e, e, 1=a,k,~K)(q—). (3.7)
are valid where a, is a function of q.
We say that « < fif o is located on the left side of § in the normal ordering 4 ..

Proposition 3.3. Let «, fe 4, and o.< B in a sense of the normal ordering in A .., then

[ewele= % Cpnhidi..em, (38)
@<y <..<yn<p

where Zkiy,-=oc+[)’ and the coefficients C ... are functions of q and ones do not
depend on the Cartan elements k,, i=1,2,...,n. Also

[eﬂ’ e —a] = Z C

V1< <yr<a<p<y;<..<ys

] ny Ny
myiiny, v €=yy s €<y,

e em (3.9

€y
where Y (njy;—ny,) = B— o and the coefficients C' ... are functions of q and k, or k.
1

Proof. We propose the following scheme for proof of Propositions 3.1, 3.2. Fix
some convenient normal ordering in 4, and construct the g-analog of a Cartan-
Weyl basis for this ordering. Then we check (3.7)—(3.9) for this basis. Further we
may show that relation (3.7)—(3.9) do not depend on reordering in 4, by using
combinatorial properties of the root system 4, [11]. O

Remark. The Poincure-Bircgoff-Witt theorem follows immediately from Propo-
sition 3.3. For quantized simple Lie algebras the PBW theorem can be found in
(8,16, 17].

4. Quantum (Super)Algebras of Rank1 and 2

The quantized contragredient (super)algebras of rank 1 and 2 play an important
role in our approach to the universal R-matrix. Here we give a list of all finite-
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Table 1
8(A,7) A Odd roots Diagram  dim 4, 4,
A, 2 0 O 3 ® a
B(0,1) @ {o} ) 5 o, 20 a
si(1,1) ©) {o} ® 3 a a
2(0), éi ] (0) {o} ® 4 o a
£(0),9) ©) 0 o} 4 « «

dimensional contragredient rank 1 and 2 (super)algebras and describe commuta-
tion relations for the Cartan-Weyl generators in quantum case.

Basic information about finite-dimensional contragredient (super)algebras of
rank 1 and 2 is represented in Tables 1 and 2a, b. In these tables there are listed the
standard Cartan matrix 4, a symmetrical Cartan matrix 4¥™, an inverse matrix
(A¥™)~ !, the set of odd simple roots (odd roots), the Dynkin diagram (diagram) the
(super)algebra dimension (dim), the positive root system 4, and the normal orders
A, of the reduced root system 4, for every (super)algebras of rank 1 and 2.

4.1. The Rank 1 Quantum ( Super )-Algebras

The quantized rank 1 (super)algebras A4,, B(0,1), and si(1,1) are generated by
the elements {e, e_,, h,> with relations

[hwe:ta]= i(a’a)ej:a’ (41)
Lese-]=(k,—k)/q—q). (4.2)

The quantized rank 1 (super)algebras g((0), {1}) and g((0),) are generated by
elements <e,, e_,, h,, hy) with relations

[haseia];_ (@ w)er,, (4x)=0, (4.3)
[hﬁbeim]: i(a9 ﬂ)eiw (d, ﬁ)*oa (44)
[ene-o]=(k,—k)/(a—q). (4.5)

4.2. The Rank?2 Quantum (Super)Algebras

Remark that there are isomorphisms A(1,0)~A4'(1,0), B(1,1)~B'(1,1). The
(super)algebras A4, A(1,0), and 4(1,0) are called the A-type (superjalgebras, and
(super)algebras B,, B(1,1), B'(1,1), and B(0,2) are called of B-type.

It should be noted also that the matrix A%™ is determined ambiguously and we
can take as symmetric Cartan matrix any matrix of a form A4™™, where 1 is
arbitrary nonzero number. Below we use A¥™ in a form

sym _ (a’ a) (d, ﬂ))
4 <(ﬂ, 0 B.P) o)

The rank 2 quantum (super)algebras U (g) are generated by elements

<eas € eﬁ’ e—ﬂ, haa hﬂ>
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Table 2a
g4 A A (45m) Odd  Diagram dim
roots
4 2 —1 2 —1 1 2 1 0 6*6
2 -1 2 -1 2 3\1 2 8
0 —1 0 —1 -2 —1 « 8
450 <—1 2) (-1 2) <—1 o) © &0 &
0 —1 0 —1 0 —1 a 8
4(1,0) (_1 O) (_1 0) <_1 o) @B e—e 8
2 —1 2 —1 1 1 a
B2 <—2 2) (—1 1) (1 2) 0 6=6 10
0 —1 0 —1 -1 -1 « A
wo (27 (07 () @ et ow
0 —1 0 —1 -1 -1 ¢ 8
v (0 (27) () e eed n
2 —1 2 —1 1 1 e g
50,2 <—2 2) (—1 1) <1 2) # o=e 1
2 —1 6 —3 1/2 3 « 8
G _ =
: (—3 2) <—3 2) 3(3 6) ’ oo
Table 2b
8(4,7) 4, 4,
wa+p, B
A
2 oc,oc+ﬂ,/3 ﬁ,a+ﬁ,a
wo+p, B
A(1,0 o+ P,
(1,0) aou+p, B Boatpa
wo+B, B
A'(1,0 , o0+,
(.9 noth B+ oo
a,a+pa+28,8
B A Lo+ 28,
? wo+fo+28p Boa+2B,0+ B,
oo+ f,a+2p, B
B(1,1 o+ B, 0+ 28,28,
(1,1) a0+ B a+2p,2B,B Bt 2P0+ oo
o, a+pB,0+2p,p
B'(1,1 8 ,a+2B,28,
4.1 %o+ pou+2p,25 B Ba+2B,0+ B, o
'y ’ 2 ’
B0,2) o+ B, 20+ 28, a+26, 28, B wathot2pf
Boa+2B,a+ B,
G, w0+ B, 20+ 36,0+ 26,0+ 3, B o, 0+ f,20+3B,a+2B,a+ 38,8

B+ 3B,00+2B, 200+ 3B, + B,
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with relations

[hperd=t(x,)er,, [h, erp]=1(a, ﬁ)eiﬁ ) 4.7)
[hg,erd=2(B,Wes,, [hpesz]=+(B,Blesp, 4.8)
lewe-d=(k,—k)a—7), [ese-;1=0, (4.9)
[epe—pl=(ky—kp)(a—a), [epe_,1=0, (4.10)
[erw[esmesplyly =0, (4.11)
[[eswesplysesply=0 for g=A-type, (4.12)
[leswesplysesplyresply=0 for g=B-type, (4.13)
[[[esaesplysesplyserplyserply=0 for g=G,, (4.14)

where q'=q, q.

Proposition 4.1. If for quantized (superalgebras of A-type we fix the following
normal ordering:

a,a+p,p, 4.15)

and in accordance with it we set
erp=Leweplys (4.16)
e, g:=[e_pe_.1s 4.17)

then the root vectors e, y€ 4, satisfy the following relations:

[es ea+ﬂ]q=[ea+ﬂa eﬁ]q=0: (4.18)
[asp -] =(—1)°@*Paesk, (4.19)
[ege_u—pl=—ae_kg, (4.20)
[easpre-umpl= —alkesp)(d—0), (421)
where
a:=(q=P—q“P)/(q—3). 4.22)

The rest of relations is obtained by application of the Cartan-Planck adjoint (*) to
relations (4.18)—(4.21).

Proposition 4.2. If for quantized (super )algebras of B-type we fix the following
normal ordering:

a0+ f,00+26, B, (4.23)

and in accordance with it we set
erp =[enegly,  Curzpi=[earpeply (4.24)
e_,_pi=le_pe_ly, €_n_2p:=[e_pe_,_4ly (4.25)
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then the root vectors e., y € 4, satisfy the following relations:
Lew €arplg=L€s+p ar2p)qg=LCa+2p €51 =0,
[ew €204 plg=(—1)*PPETA(—1)PCTDglcth _q)e2,
[ewspe—a] =(—1)**Pagk,,
[eas2p €-o]=(—1*Pa((—1)*Pg~ P —1)efk,,
[+ 28 e—a—p] =(— 1)s(a).9(p)azeﬂk-a +8>
[epe_o—pl=—ae_,kg,
[epe—o—2p]=—(— 1)9(B)ae~a—ﬂkﬁ )
Lew+p€—a—pl=—alkyr y—kysp)/(g— ),
[ear2p€-a-2p1=(=1)*Pa*(kys 25— ko1 29)/(d— ),
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(4.26)
4.27)
(4.28)
(4.29)
(4.30)
(4.31)
(4.32)
(4.33)
(4.34)

where ais defined by (4.22). The rest of relations is obtained by applying operation (*)

to (4.26)—(4.34).

Proposition 4.3. If for quantized algebra G, we fix the following normal ordering

a0+ B, 20+ 3B, 0+ 2B, o+ 3B, B,
and in accordance with it we set
ea+ﬁ:=[eweﬂ]q, ea+2ﬁ:=[ea+ﬁ7eﬂ]q’
ea+3ﬁ:=[ea+2ﬁ>e[3]q9 €20+35° =[€s1pCuraplys

e—a—ﬁ:=[e—ﬂ,e—u]q: e—a—2ﬁ:=[e—ﬂ:e—a—ﬂ]q9

e—az—3ﬂ L= [e—/}ae—a—Zﬁ]q, e—2a—3ﬂ: = [e-—a—ZB’e—a—ﬂ]q,

then the root vectors e., y € 4, satisfy the following relations:
Lew earplg=L[€sspr€2a+3plg=1C20+3p €+ 2p)q
= [ea+2ﬁa €+ 3ﬁ]q =[e,+ 3p eﬂ]q =0,
[ewerqt 3ﬂ]q =q* B)(q - (j)zbce2+ B>
[ew et Zﬂ]q =—q* ﬁ)/s(q - q_)be021+[i s
[ew et 3ple= deyy 3 (q— Q)aea+ﬂea+ 28>
[ea+ﬂ, €o+ 3ﬁ]q =—g3*PP(q—qg)ab™"cel, 28>
Leza+ 3p €ut 3p]q = q(a,ﬁ)(q - Q)Zab_ 102e2+ 285
Leza+ 3p eﬂ]q = q(a,ﬂ)/s(q —q)ab™ 1Ceazz+ 28>
[ea+ﬂa e_,l= aeﬂEa >
[ezq+ 3p € _J=dae,, 3/xk—a —(q— Q)azem ZﬂeﬁEa >
[e.+ 28 € —ul=— q(a,ﬂ)/S(q - é)ab8575a s
[e,+ 38 € —d= q(a’ﬂ)(q - é)zabceﬁk_a s

2
[e20+3p€—u-pl=—0 eaz+23’€a+[3a

(4.35)

(4.36)
437)
(4.38)
(4.39)

(4.40)
(4.41)
(4.42)
(4.43)
(4.44)
(4.45)
(4.46)
(4.47)
(4.48)
(4.49)
(4.50)
(4.61)
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[est2p€—a—pl=—ab’c™ gk, .y, 4.52)

[e+3p€-a-p]l= q=P(q— Q)azbe§Ea+ﬂ 5 (4.53)

[epe_o—pl=—ae_.kg, 4.54)

(et 2p0€-20-35]1= —a*b*c™e_,_ gk, 2, (4.55)
[e+3p€-24-351= a*b?c72q®PRe_ k, . 3

+(q—a*b*c e, pegkytqp, (4.56)

[eﬁ’ €_2q- 3/3] = q(a'ﬂ)/3(‘1 - q)abeaa—ﬂlzﬂ > 4.57)

[ex+3p€—a—2p] =a2bzc_1eﬁEa+ 28> (4.58)

e e—q-2p]=—b*c"e_,_gky, (4.59)

Leg, e_o—3p]=—ae_,_,5kg, (4.60)

[easpr€-ampl = —alkyes— s g — D, 4.61)

[es+2p€—a-2p]= ab?c™ (k, 4 28~ Kot 20/4—9), (4.62)

[ent3pe—a-35]= —ab?c™(k, 3p _Ea+3ﬁ)/(q_q)’ (4.63)

where [€20+3p € 2a-34] =03b25—l(k2a+3ﬂ— 20+3p)/(4— Q) (4.64)

a:=(@*P~3*")/q—a), (4.65)

b:=(g**PP—g*PR)/g—g), (4.66)

c:=(g*PP—g*PP)(q—g), (4.67)

d:= q(a»ﬂ) — q(d,ﬂ)/3 _ q(ayﬂ)/3 . (468)

All other relations may be obtained by operation (*).
Proofs. All these Propositions 4.1-4.3 can be obtained by direct calculations. [

Remark. Applying the automorphism w to (4.16)—(4.22), (4.24)—(4.34), (4.36)—(4.68)
we obtain root vectors and commutation relations for the opposite normal
ordering (Table 2b) of 4. for rank 2 (super)algebras.

5. Disentanglement and Reordering of g-Exponents

To verify the quasitriangular properties (1.2) of the R-matrix we shall use in the
next section certain algebraic properties for g-exponents of some elements of a
tensor cube of U ,(g). In this section we give these properties which have also
original interest because they are connected with a problem of obtaining the
Campbell-Hausdorff formula for quantum algebras.

Let us introduce the g-exponent as a formal series of an indeterminate x

exp,(x):= Y x"/(n),!, (5.1a)
n=0
where we set h
m),!'=1),2),...(0),, K),=(1-¢/(1—-9q). (5.1b)
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It is not difficult to verify that exp,(—x) is an inverse to exp,(x), i.e.
(exp,y(x) ™! =exp; (—x)= ZO(—X")/(n)q L (5.2)

(expy(x)) ™" exp, (x) =exp,(x) (exp,(x)) ' =1. (53)

Proposition 5.1. Let x and y be elements of some unital associative algebra </ over
@©(q). There are following addition theorems for g-exponents.

(l) If [X, )’]q3 =Xy—qyx =0, then

exp,(x +y) =exp,(y) exp,(x). (5.4
(i) If [x,y],=z [x,z],=[2,y], =0, where q'=¢?>, then
exp,(X+ ) =exp,(y) expy (z/(2),!) exp,(x). (5.5)
(iii) If [x,y1ly=(q+1)" (g’ —q)z% [x,2z],=[z,y], =0, where ¢'=q>, then
expy (x +y+z)=exp,(y) exp,(z) exp,(x). (5.6)

(IV) If [x: y]q =2z, [x, Z]q’ =0, [Z’ y]q’ =w, [Z, W]li" = [U, Z]q” = [xa U]q” = [Wa y]q” = O’
(v, y],-=az?, [x,w],=az? [v,w].=(1—q)az?, where q'=q% q"=¢° q"=q°
a=(q*—q)(g+1)"", then

exp,(X + ) =exp,(y) expy-(W/(3),!) exp,(z/(2),!) exp,(v/(3),!) expy(x) . (5.7)

Proof. All Egs. (5.4)—(5.7) are verified by direct manipulations on a level of formal
series. [

Proposition 5.2. For any x and y of <f there is a following g-analog of Hadamard
formula

exp, (X)y(exp,(x))~ ! =(Ad exp,(x)) (¥)
= ( z (1/(n)q!)(534x)”) (y)=(equ(5<_14x)> 0, (59

n=0

where we set

(@d,x)°)=y, (@dx)'M=0lxyl, (@d,x)’)=0[x[x 1],

(ad, )’ ) =[x, [x, [x, y11dges - (@dy )" () =[x, (ad . x)" ()] gn
Proof. The relation (5.8) is verified by direct manipulation on a level of formal series
again. []

Proposition 5.3. Let some elements X,z of a tensorial algebra of the rank?2
quantum algebra U (g) satisfy the same commutation relations as the elements

X+ mp s = (— 1)00 MO EmO@OD (o )™ ) ®(€0)" D€ g mp) 5 (5.9)
of a tensorial cube U ,(g)@ U (g)®@U ,(g), correspondingly. Then we have:
equ‘; (xﬂ) equu(xa) = equu (xa) equ, +B (xa + ﬁ) equﬂ (xﬂ) (510)
for quantized (super )algebras of A-type;

equﬁ (x[}) equa (xa) = equ.,, (xa) equ¢ +B (xa + ﬂ) equ, +28 (xnz + Zﬂ/(z)qp ' ) equ,; (xﬂ)
(5.11)



610 S. M. Khoroshkin and V. N. Tolstoy

for quantized (super )algebras of B-type;

equﬂ (xﬁ) equ¢ (xa) = equa, (xa) equ,, +B (xa + ﬂ) equz., + 3‘;/(3)qﬁ ' )
X equa +28 (xaz+ 2ﬂ/(2)q,g ') CquaH_ 3B(xa+ 3ﬂ/(3)q;; ,) equg (xﬂ)
Jor quantized algebra G,. (5.12)

Proof. Multiply the left sides of (5.10)-(5.12) on (exp,,(x4) ' then apply the
g-analog of the Hadamard formula and the addition theorems (5.4)—(5.7); we come
to (5.10)—(5.12) for each quantized (super)algebras, correspondingly. []

Remark. The algebra with generators (5.9) may be viewed as a formal associative
algebra generated by two elements x, and x; and defining relations

(ad,, e)"x, =0, (ad, e)"*x;=0, (5.13)

where (ad,)" is given in Proposition 5.2, and ¢,:=(—1)""g®", the integers
n,; and ng are determined by (2.5) for every rank 2 (super)algebras.
Composed elements X, 1 mg, #+ 0, m=+0, may be constructed in the standard way.
For example if n,;=2 and ng, =4 (case G,-type) we have

Xornp: =(ad,,Xp)"x,, n=1,2,3, (5.14)

. = 2
X2a+3p° =Xa+pXa+ 25— (dp) Xat 2%a+p> (5.15)

Note that for the supercase we have to complete (5.13) by additional relations
(x,)*=0 if (y,y)=0 and 6(y)=1, where y=na+mp, in corresponding rank two
superalgebra. The relations (5.10)—(5.12) have evident classical analogs with
Xno+mp 10 be Cartan-Weyl generators of n,.

6. The Reduced R-Matrix

Let R be a universal R-matrix for a quantum (super)algebra U (g(4, 1)), where
g(A,7) is a contragredient Lie (super)algebra. We represent the R-matrix R in a

form .
R=RK, 6.1)
where

K:=exp (h 5 dijhaj®haj>. 62)
i,j=1

Here (d;;) is an inverse matrix for symmetrical Cartan matrix (afy™) if (a;}™) is non-
degenerated. For a degenerated matrix (a]™) we extend it up to a non-degenerated
matrix (4]™) and take an inverse to this extended matrix. To make this we add
some element to a Cartan subalgebra and use it in (6.2) (see, for example, below the
R-matrix for the quantized rank 1 (super)algebras U, (sl(1,1)), U, (gl(0), {1})),
U e(©0).9).

The element R in (6.1) is called the reduced R-matrix. Let us consider detailed
properties of the reduced R-matrix R and of element K.

Proposition 6.1. For any root vector e,, ye 4., the relations
K(e,®@)K '=e,®k,, K-, @)K '=e_,®k,, (6.3)
K(1®e)K '=k,Qe,, K(l®e_ )K '=k_,®e, (6.4)

are valid.
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Proof. It is sufficient to prove (6.3) and (6.4) for the Chevalley generators. We have
K(e.,,®1)=(e1,,®I)exp (h X 1 (+ 1)dija§}’"ha‘®haj) K
i,j>
=(eiai®kiil)K' I:l

Proposition 6.2. The reduced R-matrix R is non-degenerated and it is determined by
the following relations:

R(h, @1 +1®h,)=(h, 1 +1®h,)R, i=1,2,...,n, (6.5)
R(e,,®k, +1®e¢,)=(e, ®k, +1®e,)R, i=1,2,...,n, (6.6)
R(e_,®@1+k,®e_,)=(e_,®1+k,®e_, )R, i=1,2,...,n, (6.7
(A®id)R=R1PK3R23 (K131, (6.8)
(id®4)R=RVPKPPRZ (K31, (6.9)

where we use standard notations
H12=Zai®bi®1, H13=Zai®1®bi, H23=21®ai®b,-, (6.10)
if H has a form H=Y a;®b,.

Proof. The equalities (6.5)—(6.9) follow from (1.1) and (1.2) on account of
Proposition 6.1 for a quantum (super)algebra U (g). O

Now we should like to establish the uniqueness property of the reduced
R-matrix R in appropriate completion of U, (g)@U ,(g).

Let {e, e_,} be root vectors of the g-analog of Cartan-Weyl basis, built with
respect to any fixed normal ordering in 4, (Sect. 3). Denote by Fract(U (# ® #))
the fraction field of the algebra U (# ® #’), where U (# ® ) is generated by
1®kE!, kX'®1. Consider the monomials

ey ... eff @elue™, ... el ... ey, (6.11)
where a<y<...<f in a sense of chosen normal order, and n,n,,...,m,; are
nonnegative integers. Denote by F (g®g) the vector space of all formal series of
monomials (6.11) with coefficients from Fract(U (# ® 5)), satisfying the follow-
ing condition:

|ng—m,+n,—m,+...+ns—mg < const (6.12)

for each series from F (g®g).
The following proposition holds (cf. [13, 14]).

Proposition 6.3. The linear space F (g®g) is an unital associative algebra with
respect to the ordinary multiplication of formal series.

Proof. By means of Eq. (3.8) it is not difficult to verify that a product result of two
formal series submitted by the restriction (6.12) satisfies this restriction again and
has coefficients from Fract(U (# ®2)), ie. the product result belongs to

F(g®g). O

Now we can state slightly modified Drinfeld’s assertion about uniqueness of
R-matrix [7].
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Theorem 6.4. The reduced R-matrix K is, up to a factor in Fract( U (H# ®H)), the
unique solution of Egs. (6.5)—(6.9) in the space F (g®g).

Proof. It is same as in [7]. [J

We extend the Cartan-Weyl adjoint on a tensor square, cube and so on of U (g)
by the following way

(a®b)* =b*®a*, (6.13)
(@®@b®c)* =c*@b*®a* (6.14)
and so on.

Proposition 6.5. Let the reduced R-matrix R is normalized such that its free term is
equal to unit. Then

R*=R™!, (6.15)
R,=R;' if R=R,. (6.16)

Proof. It is a immediate consequence of Proposition 6.2, 6.4. [

7. The Universal R-Matrix for the Rank 1 and 2 Quantum (Super)Algebras

In this section we give an explicit expression of the universal R-matrix for
quantized rank 1 and 2 (super)algebras listed in Tables 1 and 2. We start from
quantized rank 1 (super)algebras.

Theorem 7.1. The universal R-matrix for the rank 1 quantum ( super )algebras U (g)
has the following form:

where R=RK=R,K, (7.1)
R=R,=exp, (—1)"(¢— ) (e,®e-,)

,,Z‘ (—1)Pmtn+ 1)/2 (‘f - q" @®e), (72)

K =exp(—h(ha®ha)/(oc, o) for " g=A4,, B(0,1), (7.3)

K =exp(h(h,®hs+h;®h,)[(«, ) for g=_gl(0),{1}),8((0),0). (74)
Here and further we use denotation q,=(—1)*@g®?,

Remarks. (i) The formula (7.2) may be simplified for the quantum superalgebra

U,(gl((0), {1}))
R,=exp_1(§—q)(e,®e-.)=1+(—q)(e,®e_,), (7.5)

since e2=0 in this case.
(i) For the quantum algebra U (g((0),0))) the expression (7.2) reduces to the
ordinary exponent:

Ra =CXp ((q - q_)ea® e_ a) (76)

since (¢, a)=0 and g,=1.
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(iii) In the case of U (sl(1, 1)) the element K does not exist in U (# ® #’) since the
Cartan matrix is degenerate in this case. The enlarging of Cartan subalgebra leads
to U,(gl((0), {1})). Thus for U(sl(1,1)) we can use the R-matrix of U (gl(0),{1})).

Proof of Theorem 7.1. By direct calculations it is easy to verify that the element
(7.2) satisfies Egs. (6.5)—(6.7), i.e.

R, A'(h)=A'(h)R,, (7.7)
RaZl(ei a) = Al(eia)R{a ’ (78)
where A’ and A’ are opposite coproducts to 4 and 4, correspondingly. The

factorization properties (6.8) and (6.9) for R, are equivalent to the addition
Theorem (5.4) for g-exponents. []

Remark. In fact Egs.(7.7) and (7.8) define the element R, completely, ie. the
factorization properties (6.5)—(6.7) are a consequence of Egs. (7.7) and (7.8) in this
case.

Now we consider quantum (super)algebras of rank 2.

Theorem 7.2. The universal R-matrix for the rank 2 quantum (super )algebras U (g)
has the following form:

R=R,R,,;R;K (7.10a)

= Iiﬂlf; HJ{,K for g=A-type, (7.10b)
R=R,R,,;R, ;KK (7.11a)
=R,R,, 4R, . ;R;K for g=DB-type, (7.11b)
R=R’aR’a+ﬂR’2a+3ﬁRa+ZﬂRa+3ﬂRBK (7.12a)
=RﬁR;+3ﬂR;+2ﬂR'2a+3ﬂR;+pRaK, Jor g=G,, (7.12b)

where the element K is given by (6.2) and the elements Ry and K;, y€ 4, have the
form

R,:=exp,(—1)"(a,) " (g —q) (e,®e_,). (7.13a)
R;: =exp, (—1)°P(a)~ (g —q) (¢,®€_,)). (7.13b)

Here the root vectors e, (e,), y€ 4 ., are constructed in accordance with the same
normal orders as the products are taken in(7.10)—(7.12). The coefficients a, and a, are
defined from the relations

[e}” e- )’] = ay(ky - Ey)/(q - ‘j) ’ (7143)
[e} e, 1=a,k,—k,)/(g—3). (7.14b)

In particular the coefficients a, can be taken from Propositions 4.1-4.4. For
definition of d, see the Remark to Proposition 4.4.

Proof. By direct calculations it is not difficult to verify that the reduced R-matrices
in (7.10)—(7.12) satisfy Egs. (6.5)—(6.7). The factorization properties (6.8) and (6.9)
for R are equivalent to the addition theorems (5.4)«(5.7) and rearranging
identities (5.9}5.12) for g-exponents. []

As consequence of Theorem 7.1, 7.2 we have the following statement.
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C(l)rollary 71.1. For quantum (super Jalgebras U (g) of rank 2 there are the following
relations:

R.R;=R,R, for g=g,®g), (7.15)
R.R,, BI{, =R BR;+ ,,Ra for g=A-type, (7.16)
Raliaﬂ,liﬁ zﬂliﬁ = ﬁ,,l{;)r 2K, +,,Iia for g=B-type, (7.17)
RaRa+BK2a+ 3ﬂRa+ ZBRu+ 3pRp=RﬂR;+ 3p§;+ 2ﬂR’2a+ 3pl'ia+ﬂRa for g=G,
(7.18)
on a level of formal series, and also
[4(exa)s Ry s pRy1=0, (7.19)
[4esp) Ko pRI=0 for g=A-type; (7.19b)
[4'(e1+a); Ros pRos25Rg1=0, (7.20a)
[4esp) RosspRis sR1=0 for g=B-type; (7.200)
[4'(exd): Ra+ pR2«+ 3ﬂRa + ZBRa+ 3ﬂRﬂ] =0, (7.21a)
[4'(e+p) R, 3ﬂR;+ ZBR’,2a+ 3ﬁR;+ﬁKa] =0 for g=G,. (7.219)

Here in (7.15) g, and g} are (super)algebras of rank 1.

7 8. The General Case

Now we consider a case of any quantized finite-dimensional contragredient
(super)algebra g(4, 7).

At first we recall an important combinatorial property of the reduced root
system 4, for g(4, ).

Lemma 8.1 [11, 13, 14]. Any two normal orderings in A, can be transformed into
each other by the following elementary inversions of neighbouring roots:

o, fe> B, a, (8.1a)
o, o+ f, B0+ P, o, (8.1b)
o, a+f,a+28, o pa+2p,0+ B0, (8.1¢)

o, a+p,2a+38,a+2p,a+3p, B0+ 38,042,200+ 38,0+ B, 0, (8.1d)
where o — f is not root.
Proof. See the paper [11]. O

We fix a normal ordering in 4, and construct the root g-vectors e, ,, ye 4.,
with respect to this normal ordering by Definition 3.2. The root g-vectors have the
following properties.

Proposition 8.1. If the positive roots in chosen normal ordering are neighboured as
(8.1a—d), where a.— B is not root, then corresponding the root g-vectors generate
quantum (‘super )algebras of rank?2, i.e.

[ee_51=0. 8.2)
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Proof. It is the same as for Proposition 3.2. []
For any root ye 4, and for a given normal ordering in 4, let a, be a factor in
the relation

[ew e—y] =ay(ky—Ey)/(q—Q): (83)
and let
Rvy L= equy (( - 1)9(}])(‘1}’) - 1(q - q_) (ey ®e_ y)) > (84)
where g,=(—1)’Vg" .
We put R:=1] RY , (8.5)
yed+

where the order in the product coincides with the chosen normal ordering. The
element (8.5) has the following properties.

Proposition 8.2. (i) The element Re F (g®g) does not depend on the normal ordering
of the root system 4., i.e. all elements of the form (8.5), constructed for different
normal orders, are equal as formal series.

(if) For all simple roots we have

[d(ey,), R, 'R]=0 for Vaell, (8.6)
or
RA'(e,)=A )R, for Vaell, (8.7
and hence
RA(x)=A'(x)R, for VYxeU(g). (8.8)

Proof. The assertion (i) follows immediately from Proposition 8.1, Lemma 8.1, and
Corollary 7.1. Since the element (8.5) does not depend on the chosen normal
ordering in 4, we take this element in the following form:

R=R, ( I Ify) , (8.9)

a<vy

where o is any simple root. Using Corollary 7.1 and Lemma 8.1 again we obtain for
(8.9),

[A(es+), R 'R]=0 for Vaell. (8.10)

It is evident that the relations (8.7), (8.8) are an immediate consequence of
Eq.(8.10). [

Proposition 8.3. The following identities are valid for any root a4 ,:

Ale)= (y];[aliy)(1®ea+ea®k_a) (ygaziy>— 1 (8.11)
Ale,)= (F(Iaﬁ?)(li@eﬁea@l)(I(Izlifl)‘l. (8.12)

Proof. For rank two case identities (8.11) and (8.12) generalize (8.6) and may be
obtained by direct computation. For the general case we use induction on height of
root a. []

As a result we have the following basic theorem.
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Theorem 8.1. For any quantized (super)algebra U (g(A,1)), where g(A,7) is the
finite-dimensional contragredient Lie (super )algebra, and for any normal ordering
of its positive root system 4 . the universal R-matrix can be written in the following
form:

R=KK=( I Ry>K, (8.13)

ved+

where Rr isdefined by (8.4), K is defined by (6.2) and the order in the product coincides
with the chosen normal ordering. Moreover, the expression (8.11) does not depend on
the normal ordering of the root system and has the uniqueness property in the space
F (s®g).

Proof. We have to prove that K satisfies (6.5)—(6.9). The properties (6.5)—(6.7) are
verified in Proposition 8.1. By Proposition 8.3 and (5.4) we have:
(A®id)R, = (I Rﬁ‘)ﬁésﬁ?(n R%‘)“l, (8.14)
a a<y

<y
where
RP=K"“RP(K"3) '=exp, (—1)'a,) " Hq—Kk,Qe,®e_,). (8.15)

Applying formulas (5.10)—(5.12) to (8.14) we express (4 ®id)liy as a product of
g-exponents. Then we rearrange both sides of (6.8) or (6.9) by means of the same
formulas (5.10)—(5.12) and show that (6.8) and (6.9) are identities. []

Remark. The Cartan matrix A may be degenerated [if g(4,1)=sl(n,n), for
example]. In this case we have to add some Cartan element 4 _, to enlarge 4 up to
nondegenerated matrix. Theorem 8.1 holds for this enlarged algebra.

9. Conclusion

We prove that the universal R-matrix for any quantized finite-dimensional
(super)algebra Lie can be written in the factorized form (8.9). At first we check this
formula for the rank 1 and 2 case by means of solving Egs. (6.5)—(6.7) for the
reduced R-matrix and using the addition Theorems (5.4)—(5.7) and the rearrange
(5.10)—(5.12) for Egs. (6.8), (6.9). In the general case the quasitriangular property
directly follows from the rank 1 and 2 case. For other properties (1.2) we use the
characteristics of g-exponents again.

We note that our proof looks similar to the proof of properties of extremal
projectors [11, 13-15]. Instead of equation e,p=pe_,=0, where p is an extremal
projector, we consider Eq. (1.1), instead of p?> = p we have the YB equation, or (1.2).

Moreover we have an analogy in the forms of the extremal projector and the

R-matrix, for example, lim p(e) =m(id® S)R for U (sl,), where m is multiplication,

@00
§ is an antipode, p(g) is a “shifted projector.” This analogy is likely to be
understood. Another connection between extremal projectors and R-matrices was
considered in [19].
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Note added in proof. Kac-Moody superalgebras, just as their quantization, are not defined by the
relations (2.1)}«2.5) or (2.8)2.11). The additional, forth degree relations looks as follows.

For any subdiagram
%i—1 & Qi+

@) ® O

of Dynkin diagram, if (at;, 06) =(0t; 4 1,0~ 1) =(04;, & _ ; + ;4 1) =0 we have

[[ej:ap €4a_ 1] B [eiap €igs 1]] =0
in nonquantized case and

[[eiai’eia;_ 1](1" [etmpeiu,-+1]q‘]q’ =O, ql=qi1

in quantized case.
We are grateful to Prof. V. G. Kac for mentioning the necessity of additional relations and to
Prof. V. Serganova for fruitful discussion of the subject.








