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Abstract. We discuss minimal area problems for surfaces with boundaries and
both open and closed string punctures. We define open-closed string diagrams to
be surfaces with metrics of minimal area under the condition that any nontrivial
Jordan open curve be longer or equal to π and any nontrivial Jordan closed curve
be longer or equal to 2π. It is proven that the double of an open-closed string
diagram is a closed string diagram of covariant closed string field theory.

1. Introduction and Summary

The fundamental problem in constructing quantum field theories of open and
closed strings was the lack of suitable string diagrams. A string diagram is a
punctured Riemann surface together with a choice of local analytic coordinates at
the punctures. A closed string puncture is a puncture in the interior of the surface,
and an open string puncture is one that lies on a boundary component of the
surface. Two coordinate systems around a closed string puncture are said to be
equivalent if they only differ by a constant phase. The string diagrams must satisfy
stringent conditions in order to define a quantum string field theory.

It is typically possible to extract canonical local analytic coordinates from
special metrics on punctured surfaces. Thus a way to obtain a string diagram is to
find a problem that gives, for any surface, a unique metric on it. As emphasized in
[St] it is a fundamental property of minimal area metrics that they are unique. It
was recently proposed that closed string diagrams, relevant to punctured surfaces
without boundaries, could be defined by demanding the metric to be of minimal
area under the condition that all nontrivial homotopy closed curves be longer or
equal than a single length, conventionally taken to be 2π [Zwl]. Such minimal
area metrics were found for all punctured Riemann spheres, where they arise from
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Jenkins-Strebel (JS) quadratic differentials (quadratic differentials with closed
trajectories). The minimal area string diagrams are in fact the diagrams arising
from the Feynman rules of the classical closed string field theory [SaZw, KKS].
This allowed to give a proof that the Feynman rules construct the complete moduli
spaces of Riemann spheres without overcounting or undercounting [Zw 1]. This
minimal area problem defines candidate string diagrams for all higher genus
surfaces. Although for every moduli space of higher genus a large subspace has
metrics of minimal area that arise from quadratic differentials [Zw 1], some
metrics may not arise from quadratic differentials. The minimal area property,
however, may well be sufficient to guarantee that the string diagrams arise from a
quantum closed string field theory [Zw2].

The purpose of the present paper is to clarify some aspects of the closed string
minimal area problem, and to extend the problem to one relevant to surface with
boundaries. We want to discuss a minimal area problem naturally related to the
closed string problem. The resulting string diagrams, denoted as open-closed string
diagrams are defined by the following minimal area problem:

Open-Closed String Diagrams. Consider a genus g Riemann surface with b
boundaries, n closed string punctures and m open string punctures (g, b, n, m ̂  0).
(If g = b = 0, then n ̂  2, and if g = n = 0, fe = 1, then m ̂  2.) The open-closed string
diagram is given by the minimal area metric under the condition that the length of
any open Jordan curve of non-trivial homotopy (relative to boundary segments) be
greater or equal to π, and that of any non-trivial Jordan closed curve be greater or
equal to 2π.Π

We have excluded the sphere with one or zero punctures, the disk, and the disk
with one open string puncture since these surfaces have no nontrivial curves. Due
to the conditions imposed on the metric, the open-closed string diagrams will not
have short open curves nor short closed curves. One of the main results in this
paper will be to establish the following theorem relating the above open-closed
string diagrams to closed string diagrams.

Theorem 1. A string diagram on an open surface R is an open-closed string diagram if
and only if its double is a closed string diagram on the double surface R.

The physical implications of the open-closed string diagrams are interesting
[Zw3]. They give rise to a covariant quantum theory of open and closed strings,
manifestly factorizable both in open and closed string channels. This theory is
different from Witten's open string field theory [Wi], whose string diagrams are
built gluing strips of width π together via a symmetric three string vertex. While
there is considerable evidence that Witten's theory gives a single cover of all
moduli spaces of surfaces with boundaries and punctures [GMW, Og, SB, Sa], it
has been correctly emphasized by Samuel [Sa] that no complete proof exists. Since
the Witten string diagrams may have small closed curves, a natural minimal area
problem for these diagrams would only impose conditions on open curves. We
define open string diagrams by

Open String Diagrams. Consider a genus g Riemann surface with b boundaries and
m open string punctures (g, m ̂  0, b ̂  1). (If g = 0 and b = 1, then m ̂  2.) The open
string diagram is given by the minimal area metric under the condition that the
length of any Jordan open curve of non-trivial homotopy (relative to boundary
segments) be greater or equal to π. Π
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The proof that the string diagrams of [Wi] solve this minimal area problem,
(namely, that they are open string diagrams), together with a new existence and
uniqueness theorem for quadratic differentials that establishes the single cover of
moduli space, is given in a sequel to this paper [Zw4]. Actually, the above
problem, which imposes conditions on open curves only, can also define string
diagrams in the presence of closed string punctures, and it appears that the
solution always arises from a quadratic differential [Zw5].

This paper is organized as follows. In Sect. 2 we begin by defining precisely
Feynman diagrams, string diagrams, and explaining their relation. We spell out
very explicitly the conditions under which a set of Feynman diagrams give a single
cover of moduli space. We consider separately the possibilities that string
diagrams arise from quadratic differentials or from minimal area metrics. We then
show that if all nontrivial Jordan closed curves on a surface are longer or equal to
2π, then any nontrivial closed curve is longer or equal to 2π. We then discuss
nontrivial closed curves on polyhedra, and finally define the non-trivial open
curves relevant to the minimal area problems. All of the results in this section will
be used in the latter sections or are required in [Zw4].

In Sect. 3 we establish results that relate homotopy classes of open and closed
curves. In Sect. 4 after some brief comments on minimal area problems, we deal
with the issue of regularization that arise because the naive area is actually infinite
due to the presence of punctures. We extend the definition of reduced area of
[Zwl] for the case when there are boundary components with open string
punctures. In Sect. 5 we prove Theorem 1, thus establishing that the open-closed
minimal area problem is naturally related to the closed string minimal area
problem.

Open-closed string diagrams could have been defined directly from the closed
string minimal area problem. Given an open surface R, we double it, find the
unique closed string diagram, and cut it back to obtain a unique diagram, which
would be defined as the open-closed diagram for R. This way we get a unique
diagram for any open surface. Why do we need to establish the minimal area
properties of the open-closed string diagrams? The reason is that having those
string diagrams does not yet guarantee that they arise from the Feynman rules of a
quantum string field theory. The minimal area property essentially guarantees that
one can extract vertices which together with propagators build all the string
diagrams from Feynman rules. The minimal area property also explains the
factorization properties of the off-shell string amplitudes arising from the open-
closed string diagrams. It is interesting that open-closed string diagrams can be
defined intrinsically without any need for doubling. In the case of light-cone, closed
string diagrams are defined via a problem that gives a unique abelian differential
for a given surface [GWJ. Open string diagrams are defined by doubling. It would
be interesting to find an intrinsic definition for these diagrams, and to see if there is
more than one possible definition, as it is the case in covariant open string theory.

2. On String Diagrams and Nontrivial Curves

In this section we begin by presenting results that amount to clarification of some
points of [Zw 1]. In Sect. 2.1 we define Feynman diagrams and string diagrams,
and explain why we need to establish an isomorphism between the set of Feynman
diagrams and the set of string diagrams. This isomorphism, together with an
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existence and uniqueness theorem for string diagrams guarantees the single cover
of moduli space. In Sect. 2.2 we explain why it is sufficient to check that any
nontrivial Jordan closed curve is longer or equal to 2π in order to guarantee that
any nontrivial closed curve is longer or equal to 2π. Then in Sect. 2.3 we show that
certain classes of curves on polyhedra are nontrivial. After discussing all these
points related to [Zw 1], we turn in Sect. 2.4 to definitions and basic properties of
nontrivial open curves.

2.1. Feynman Diagrams, String Diagrams, and Covering Moduli Space

Since minimal area metrics may not arise always from quadratic differentials, it is
important to establish precisely to what degree the uniqueness of the minimal area
metric implies the single cover of moduli space by the Feynman diagrams of a
string field theory. In order to eludicate this point we must begin by defining string
diagrams, Feynman diagrams, and show how they relate to each other.

A string diagram is a Riemann surface with a choice of local analytic
coordinates at the punctures, and is denoted as the pair CR,zf), where R is a
punctured Riemann surface and zt are the local coordinates. When local
coordinates can be extracted from a special metric on the surface, a string diagram
will be denoted as (R, ρ), where ρ is the special metric. When local coordinates arise
from a Jenkins-Strebel (JS) quadratic differential (qd) with second order poles at
the punctures, the string diagram will be denoted as (R, φ), where φ is the quadratic
differential. If we discuss string diagrams that may arise from either quadratic
differentials or metrics we will denote them as (R, φ/ρ). Two string diagrams are the
same if the underlying surfaces are the same and the local coordinates, or quadratic
differentials, or metrics, are the same. Two string diagrams are inequivalent if the
underlying surfaces are different, or, in the case the surfaces are the same, if the
local coordinates, or the quadratic differentials, or the metrics, differ.

Consider now the Feynman diagrams (FD's) of the classical closed string field
theory. They correspond to surfaces built with propagators, which are cylinders of
circumference 2π, joined by polyhedra type vertices. Each Feynman diagram is
defined by the following data: a collection of external states (labeled punctures),
each one representing a semiinfinite tube of circumference 2π, some number of
propagators, each with two parameters, length and twist, a number of vertices,
each one a polyhedron, whose parameters are the number of faces, the number of
vertices, and the edge parameters. The latter give for each edge its length, its two
endpoints, and which faces it connects. Finally we must specify which propagators
and which external strings connect to which face in each polyhedron. All this data
defines the Feynman diagram. We summarize this by FD = (R, D\ where D denotes
the data, which determines also the Riemann surface R.

We say that two Feynman diagrams FDi and FD2 are inequivalent if their data
cannot be made to agree by relabeling. We may relabel the polyhedra, and in each
polyhedron we may relabel the faces, the vertices and the edges. We may relabel the
internal propagators, but we cannot relabel the external states since they
correspond physically to different states (we always consider the case of
distinguishable punctures). It is a basic combinatorial result that the Feynman
rules of a field theory, by means of the symmetry factors, construct each
inequivalent Feynman diagram once.

As explained in [Zw 1], each Feynman diagram defines a Riemann surface with
a canonically defined JS quadratic differential of special properties. Each of the
above cylinders are the characteristic ring domains, and the polyhedra are the
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critical graphs. Thus (a) each Feynman diagram (Ri9 Dt) is giving us a canonically
defined string diagram (Ri9 φt.). Conversely, (b) each JS quadratic differential of
special properties (Ri9 φt) defines a canonical Feynman diagram (Ri9 Dt). This is
clear because the closed horizontal trajectories determine uniquely the propa-
gators, and the critical graphs determine uniquely the vertices. This allows us to
extract the data for the Feynman graph in a canonical way. If we denote by 2F the
space of all inequivalent Feynman diagrams (Ri9 D{) and by S the space of all
inequivalent string diagrams (R^φ^ property (a) defines a map ψ:^\-^£f, and
property (b) defines a map ψ~1: Sf ι—>3F. The way the maps are defined explicitly
shows that they are inverses of each other. Namely, ψ°ψ~1 = iy, and ψ ~1 o ψ = f^,
where iy and Ϊ& are the identity maps on if and 2F respectively. The map ψ is
therefore an isomorphism between 3F and ίf.

All of this can be repeated for the case when minimal area metrics define the
string diagrams SD = (#ί? ρc). Two well-defined maps must exist: (a) each Feynman
diagram must define a canonical minimal area metric, and (b) each minimal area
metric must define a canonical Feynman diagram. These two maps must be
inverses of each other. Then it follows that we still have the isomorphism between
& and y.

If the special type of qds/metrics can be shown to arise from a problem giving a
unique qd/metric for any Riemann surface, then the above isomorphism between
3F and Sf guarantees a single cover of moduli space ?̂ (the set of inequivalent
surfaces). This just means that the forgetful map η:^\-^3ί defined by η(Ri9 D{) = Rt,
is a one to one and onto map of sets. Proof. Consider the forgetful map χ : & i—> $
defined by χ(Ri,φi/ρi) = Ri. It is a one to one and onto map of sets, thus an
isomorphism. It is one to one because if two different qds/metrics would yield the
same Riemann surface, it would be a violation of uniqueness. It is onto because for
any surface Rt one can find the corresponding qds/metric. Define now the
composition map η = χQ\p:^\-^M. It is a forgetful map: χ°ψ(RbD^
= χ(Ri9 (Pi/Qi) = RΪ that gives us the Riemann surface associated with the Feynman
diagram. Since it is the composition of two isomorphisms, it is an isomorphism.
Thus it is one to one and onto, as desired.

For the case of minimal area metrics, as compared to the case when we have JS
quadratic differentials, it is harder to find the canonical maps ψ and ψ~1. Under
the assumptions of [Zw 2] we can derive vertices such that the Feynman rules
construct minimal area metrics, thus defining ψ. We expect that each minimal area
metric determines a unique Feynman graph, thus defining ψ'1, since minimal area
metrics appear to give rise to foliations by geodesies of length 2π. These foliations
generalize the horizontal trajectories of quadratic differentials, and should
determine the Feynman diagram. The maps φ and \p ~1 are expected to be inverses
of each other. We will not attempt here to establish any of these results.

2.2. Closed Curves with Self-Intersections

Consider a minimal area metric under the condition that any non-trivial
homotopy closed Jordan curve (a closed curve without self-intersections) be longer
or equal to 2π. It will be shown that, on this minimal area metric any non-trivial
homotopy simple closed curve is longer or equal to 2π. This includes the possibility
of having self-intersections. In fact curves belonging to some non-trivial homotopy
classes must have self-intersections. For example, a closed curve going "n" times
around a puncture must have at least one self-intersection for n > 1. Given a closed
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curve with self-intersections, the intersection points determine a set of arcs in the
curve. We define a closed subcurve of a closed curve Γ as a closed curve made up
with arcs of Γ, where not all arcs need be used, and no arc is used more than once.
The reason any nontrivial homotopy closed curve is longer or equal to 2π is that, as
will be proven below, any such curve must contain a closed subcurve, without self-
intersections, that is also nontrivial. The subcurve must be longer or equal to 2π,
and as a consequence the original curve with self-intersections is also longer or
equal to 2π. This fact will be necessary in Sect. 5.

Lemma 1. A nontrivial homotopy closed curve has a nontrivial homotopy closed
Jordan subcurve.

Proof.1 If the original curve is a Jordan closed curve, this curve is the closed
subcurve. If the original curve is not a Jordan closed curve, it has a finite number of
intersection points. Remove the set of intersection points, getting a collection of
arcs. The number of arcs is a finite number greater or equal to two.

Consider now the set S, whose elements are nontrivial closed curves built
joining the above mentioned arcs. Each arc may only be used once, and curves
need not use all the arcs. The set S is not empty since the original curve is in S. We
demand that the curves in S be parametrized monotonically (such parameteriz-
ation can be obtained by homotopy). Let / be the lowest number of arcs making up
a curve in S. Let Γ(ί) with t e [0,1] be a curve in S with / arcs. If Γ is a Jordan closed
curve we are done. Assume then that Γ is not a Jordan closed curve. We shall find a
contradiction.

If Γ is not a Jordan closed curve, then /^ 2, since it must have at least two arcs.
In addition all nontrivial curves (that do not use arcs more than once) must have at
least / arcs. Consider a basepoint P0( = Γ(0)) of Γ, and begin following the curve.
The curve must intersect itself for the first time at some point P1 = Γ(b)9 with
0 < b < 1 (the value of b cannot be one since then the curve would not have
intersection points). But since P1 was reached before, P1 = Γ(a\ with 0 ̂  a < b < 1.
(α = 0 corresponds to P0 = P1? which is the case when the basepoint is an
intersection point.) Then the subcurve Γ'(ί) = Γ(ί), ίe[α,fe], is a Jordan closed
curve.

How many arcs does Γ have? It may have one, or more, if additional
intersection points (occurring later as one traces the curve) happen to lie in the
interval traced by t e la, b]. At any rate it must have less than / arcs since it does not
include the arcs that lie in the parameter region t e [b, l]u[0, α]. It must therefore
be a trivial subcurve. It can then be "homotopy away," and therefore the original
curve Γ is homotopic to the curve Γ" consisting of the remaining part of the curve
when Γ is deleted, namely it consists of Γ(t) for t e [0, a]u[b, 1]. Since Γ&Γ", the
curve Γ" must be nontrivial. This is not possible, however, since Γ" has fewer than /
arcs (since Γ' has at least one arc). We have reached the desired contradiction and
therefore established the lemma. Π

2.3. Nontrivial Curves on Polyhedra

We now turn to discuss some nontrivial curves in string diagrams defined by
quadratic differentials. Some of the material presented below may be considered as

1 The main idea for the following proof is due to R. Forman and M. Wolf. I thank them for their
help
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detailed explanation of some facts used in [Zw 1], and some of it will also be of
utility in analyzing open string diagrams in [Zw4].

Given a closed string diagram defined by a meromorphic quadratic differential
with closed trajectories, we can pick a closed trajectory from every characteristic
ring domain. Each of these curves are nontrivial homotopy Jordan curves, are not
homotopic to each other and can be chosen not intersect each other [St]. The
surface, of course, must be punctured at the poles of the differential. The critical
graph of the quadratic differential may be disconnected; each connected compo-
nent is a polyhedron [SaZw, KKS, Zw 1]. A polyhedron joins various ring
domains of a quadratic differential, and is thought of as representing an interaction
vertex in the field theory of closed strings.

We now want to explain why a closed Jordan edge-path on a polyhedron is a
nontrivial curve. This is just a closed critical path on the surface having no self-
intersections (its nontriviality was used in [Zw 1]). Suppose we cut the surface
along this curve. If this operation does not separate the surface into two pieces, the
curve must be nontrivial (since a trivial Jordan curve separates the surface into a
disk and another piece). Suppose then that the curve separates the surface into two
pieces. Let the polyhedron on which this curve is defined join n ring domains
together (n ̂  1). Since the curve goes along a critical path it cannot separate a ring
domain into two parts, any ring domain appearing in either of the separate
surfaces must appear fully in it. Therefore, since the curve separates locally, it
cannot go through a critical edge that has the same ring domain to its two sides.
Thus, when it separates, the two resulting surfaces divide the ring domains that
converged into the polyhedron, each surface having at least one of the ring
domains (since the edge-path has at least one edge). Now we show that neither of
the two surfaces can be a disk. Each contains at least one ring domain and the core
curve of that ring domain was a nontrivial curve before the surface was separated.
Once the surface is cut it must remain nontrivial; if it became trivial it would mean
that it bounds a disk in the cut surface, and therefore, also on the original surface,
in contradiction with the fact that it was nontrivial to begin with. Thus each of the
separate surfaces contains a nontrivial closed Jordan curve, and cannot be a disk.
This proves the curve that separated the surface is not trivial.

A case that will be of interest deals with the slightly more complicated curve on
polyhedra shown in Fig. 1. The closed edge path is made of two originally disjoint
closed edge-paths, (that because of the above argument are nontrivial) joined
together by a path that traces back and forth along some edges. This path tracing
back and forth may even be of zero length. The resulting edge-path is not a Jordan
curve, but a small deformation makes the path into one without self-intersections.
This closed path must also be nontrivial, because if it separates it must still carry at
least one ring domain into each of the separate surfaces (note, however, that along
the repeated edges the same ring domain may appear to both sides). The
nontriviality of this type of curves will be used in [Zw4].

Fig. 1. A closed path on a polyhedron made up by joining two nontrivial Jordan closed edge-paths
through a set of edges that are repeated. This closed curve is shown to be of nontrivial homotopy
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2.4. Nontrivίal Open Curves

In our minimal area problems, we impose conditions on non-trivial homotopy
open curves. All open curves must have endpoints on the boundaries of the
Riemann surface. The question of non-triviality is whether the curve can be
shrinked away keeping the endpoints at the boundary. The endpoints are free to
move on the boundary but they cannot slide through punctures lying on the
boundary. Such punctures divide boundary components into segments. This
criterion for deciding whether or not open curves are trivial is that of homotopy
relative to boundary segments:

Definition. Two open curves A(f) and B(t) with t e [0,1] = /, are homotopic relative
to boundary segments, denoted A « B (rel. bound.), if ^4(0) and B(0) are on the same
boundary segment Γ0; ,4(1) and 5(1) are on the same boundary segment /i; and
there is a "homotopy ψs(t)" (a continuous map from (s, ί) e / x / into the surface)
such that ιpQ(i) = A(t\ Ψl(t) = B(t); t/;s(0)eΓ0, and ψ^eΓ,.

Namely, there is a homotopy that interpolates between the two curves keeping
the endpoints in their respective boundary segments. It then follows that trivial
curves must be defined as follows.

Definition. An open curve with boundary endpoints is trivial if it is homotopic (rel.
bound.) to the open curve w(ί) = P0, t e /, where P0 is a fixed point on a boundary.

It is clear that an open curve whose endpoints lie on disconnected boundary
components is non-trivial. Similarly, an open curve .whose endpoints lie on
different segments of the same boundary cannot be trivial. It is also useful for our
purpose to define homotopy for open curves with fixed endpoints (which may or
may not lie on a boundary).

Definition. Two open curves A(t) and B(t\ with f e/, are homotopic with fixed
endpoints, denoted AπB (fixed endp.), if A(0) = B(Q), A(l) = B(l), and there is a
homotopy φs(ί) such that φ0(ί) = A(*\ V i W = B(*land ψM = ̂ (°)> Vtfl) = ̂ (1),for

allse/.
That is, the two curves must have the same endpoints and be continuously

deformable into each other. Let us conclude this section by discussing an
alternative definition for a trivial open curve (with boundary endpoints). An open
curve A with endpoints P0 and Pj on the same boundary component determines
two segments s^ and s2 on the boundary both beginning at P0 and ending at P^.
The open curve A is trivial if and only if it is homotopic to s1 with s1 free of
punctures, or, it is homotopic to s2 with s2 free of punctures, or both. Namely:

Lemma 2. An open curve A on a Riemann surface with boundaries is trivial if and only
if it is homotopic (fixed endp.) to a puncture-free boundary segment determined by
the curve.

Clearly if A is homotopic (fixed endp.) to such a boundary segment it is
homotopic (rel. bound.) to that segment. The segment, however is homotopic (rel.
bound.) to a point in the boundary segment. It follows that A is homotopic (rel.
bound.) to a point in the boundary, thus A is trivial. If A is trivial, by definition it is
homotopic (rel. bound.) to a point on the boundary segment that contains the two
endpoints. But this point is then homotopic (rel. bound.) to the segment joining the
endpoints lying on the boundary segment.
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3. Relating Open and Closed Curves

In this section we establish a few useful results relating open and closed curves. We
say an open curve is a Jordan curve if it has no self-intersections, and if only its
endpoints lie on boundary components. Let us begin with two simple lemmas.

Lemma 3. Consider a closed curve Ω(t\ t e /, and fix two points on the curve,
Q1 = Ω(t±\ and Q2 = Ω(t2), with 0 < ίt < ί2 ̂  1- Then, the open curve extending from
Qi t° 61 can be replaced by any other open curve homotopic to it (fixed endp.)
without changing the homotopy type of the closed curve.

This is easily proven by writing a homotopy for the two closed curves using the
homotopy that relates the two open curves. This result will be useful in Sect. 5.
Consider now the following property of trivial open curves.

Lemma 4. Consider an open Riemann surface R and a trivial open curve A on it. Glue
this surface to its mirror image R* and denote the doubled surface by R. Let A* denote
the open curve which is the mirror image of A. Then A&A* (fixed endp.) on the
surface R.

The proof goes as follows. Since A is trivial there is a (fixed endp.) homotopy
ψs(t) that relates A to a boundary segment IJ whose endpoints are those of A, and
that is free of punctures. Thus AttΓt (fixed endp.). Consider the antiholomorphic
map <&, which is the automorphism of R that exchanges R and R*. It follows that
# o ψs(t) is a (fixed endp.) homotopy between A* and Γi9 thus A*&Γt (fixed endp.).
As a consequence A&A* (fixed endp.).

The main results we want to establish concern the fate of nontrivial open curves
on a surface with boundaries, when the surface is glued to its mirror image. There
are several important properties, which we have proven in the following lemmas.
They all refer to an open Riemann surface R, its mirror image R* and the doubled
surface R.

Lemma 5. A nontrivial homotopy Jordan closed curve in R is a nontrivial homotopy
closed curve in R (this applies in particular to the boundary components of R).

Proof. Let Ω be a nontrivial closed curve in R. Suppose it is a trivial closed curve in
R. Then Ω must bound a disk D on the glued surface. Some of/) must lie on R*9

since otherwise D would lie totally in R and Ω would be trivial in R. Since the
boundary of D, namely Ώ, lies totally in R, it follows that D must contain R*
completely. Since ,R and R* are connected, R* must be a subdisk in D. But ifR* is a
disk, R, its mirror image, is also a disk, but there are no nontrivial closed curves on
a disk. Thus, we have a contradiction and Ω must be nontrivial in £ Π

Lemma 6. Let A be a Jordan open curve in R and let A = AuA* be the Jordan closed
curve obtained by joining ^4*, the mirror image of A, to A. A is nontrivial if and only if
A is nontrivial.

Proof. Let us first show that A nontrivial implies A nontrivial. Consider a
nontrivial open Jordan curve A9 with boundary endpoints P1 and P2 Assume the
two boundary endpoints are in the same boundary component Γ, which is a
Jordan closed curve on R. The curve A crosses Γ precisely in the two points Pί and
P2> which divide Γ into two boundary segments. Assume A is trivial on R. Then it
must bound a puncture free disk D on R. Since Γ crosses A9 and there are only two
intersection points, one of the two boundary segments must lie entirely inside D
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(Fig. 2a). It follows that A is homotopic to a puncture free boundary segment, and
is therefore trivial on R. This is the desired contradiction.

Assume now the two boundary endpoints of A lie on different boundary
components, P0 e Γ0 and PI e Γt. Thus λ intersects Γ0 once only (in P0) and 7"i only
once (in PJ. Assume λ is trivial in R. Then it bounds a disk D. But then the closed
curve Γ0 must lie partially in and partially out ofD, since it intersects A, which is the
boundary of D. This is impossible since Γ0 and A intersect only once (Fig. 2b). This
is the desired contradiction. We have therefore established that A nontrivial
implies A nontrivial.

Now the other case. If A is nontrivial it must imply that A is nontrivial. Suppose
A is trivial. Then A together with a puncture free boundary segment Γ bound a disk
D lying fully on R. It follows from the existence of the mirror map that A* is also
homotopic to Γ, and A* and Γ bound a disk D*, lying on /?*, which is the mirror
image of D. The union of D and D* is a disk D whose boundary is AvA* = A. But if
A, bounds a disk, A is trivial, in contradiction with our initial assumption. Π

Fig. 2a, b. Understanding why the double A of a nontrivial Jordan open curve A is a nontrivial
closed curve. The endpoints of A are P0 and Pl9 and may lie on the same boundary component (a),
or in different boundary components (b)

Fig. 3. Understanding why the nontrivial closed curve A cannot be homotopic to a boundary
component # that it does not intersect

Lemma 7. The curve A (of Lemma 6) is not homotopic, in R, to any boundary
component of R it does not intersect.

Proof. The nontrivial curve A cannot be homotopic to a boundary component # of
R that it does not intersect. Suppose it is, then A and ̂  must bound a puncture free
annulus, as shown in Fig. 3. The heavy dots on A, represent the two intersections it
must have with boundary components of R. These points divide A into A and A*.
Since the boundary components that cut A must enter the annulus, they must
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actually join, making up the curve #'. They cannot leave the annulus since they
cannot intersect # (boundary components never intersect). But then, the two
intersection points lie on a common boundary component #', and then A is
homotopic to a puncture free segment of a boundary component, since A and <$'
bound a disk. This shows A is a trivial open curve, in contradiction with the
original assumption, and establishes the desired result. Π

Lemma 8. Let A and B be two nontrivial nonintersecting and nonhomotopic open
Jordan curves in R. Then A and B (constructed by doubling) are two nontrivial,
nonintersecting and nonhomotopic Jordan closed curves in R.

A A

Fig. 4a-c. Showing that two nontrivial nonhomotopic and nonintersecting open Jordan curves A
and B, lead, by doubling, to two nontrivial nonhomotopic and nonintersecting closed Jordan
curves A and β. The points P l5 P2» ̂ 3> and P4 are the intersections of the curves with the boundary
components. In the three cases shown here we assume A&B and we find contradictions

Proof. The fact that A and B are nontrivial closed curves was shown in Lemma 6.
They are clearly nonintersecting Jordan closed curves. We now have to show they
cannot be homotopic. Assume they are, then they must bound a ring domain, as
shown in Fig. 4a. Both A and B intersect the boundary of R two times each. Thus
we have four intersection points that have to be joined by curves, representing
parts of boundary components of R, that do not intersect each other. Note that the
points, labeled Pl9 P2, P3, and P4, divide the curves A and B into their respective
halves A and A*9 and B and B*.

Let us first show that any other boundary component of JR, that does not
intersect A or B cannot show up in this annulus. Assume a boundary component
shows up. Since it does not intersect either A or B, it must be fully contained in the
annulus. Since it cannot be homotopic to either A or B (Lemma 7), it must just
bound a disk inside the annulus. This, however implies that the boundary
component is a trivial closed curve, in contradiction with Lemma 5. Thus, no other
boundary component can appear in the annulus.

We need, therefore, to concentrate only in the boundary components that
intersect the curves. Point P1 may be joined to P2, and P3 to P4, as shown in
Fig. 4a. If this is the case, it would follow that A* and B* are homotopic, since they
are the opposite sides of a quadrilateral whose other two sides are boundary
components. This is in contradiction with our original assumption. Note that one
can perform Dehn twists, namely Pl can join P2 after going around the curve B n
times (clockwise or counterclockwise) and similarly for the curve joining P3 to P4.
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This does not change our conclusion, since Dehn twists do not alter the structure
of the quadrilaterals.

The next possibility, that P1 join P3 and that P2 join P4, as shown in Fig. 4b, is
also inconsistent. The region in the annulus near A* must belong to #*, and the
region near B must belong to R. In this type of connection, however, these two
regions are in the same quadrilateral. This is impossible, since R and R* must
always be separated by a boundary component.

The last possibility is that P1 joins P4, and that P2 joins P3. This also leads to
contradictions. The joining can only be done in two different ways, with both
curves to the left or to the right of the inner boundary of the annulus (otherwise the
regions R and R* are not separated properly). One of these cases is shown in the
Fig. 4c. However, the pattern shows that A* and B* are trivial, since they are
homotopic to puncture free boundary segments. This is a contradiction and
concludes our proof of the lemma. Π

4. Minimal Area Problems

With all the definitions in hand, we can now discuss the minimal area problems
posed in the introduction. In the open-closed problem, the Riemann surface has
punctures both in the boundary components and in the interior of the surface. No
curve can be moved through a puncture in the interior of the surface, and no
endpoint can be moved through a boundary puncture. There are length conditions
both on nontrivial Jordan open curves and on nontrivial Jordan closed curves. In
the open string minimal area problem stated in the introduction there are only
punctures in the boundary components of the surface. The main difference
between open-closed and open string diagrams is that in the latter there are no
conditions on the lengths of closed curves. In open string diagrams one can have
closed curves that are very tiny and whose length can go to zero.

For the case of tree diagrams, where the relevant surfaces are disks with
punctures on the boundary, there are no closed curves of non-trivial homotopy.
Therefore open-closed and open string diagrams are identical. For higher genus
this is not always the case. Any open string diagram that happens to have all its
nontrivial Jordan closed curves longer than 2π will be also an open-closed
diagram. But whenever there are closed curves shorter than 2π on the open string
diagram, the open-closed diagram must be different.

Regularization of the Area. Since we will be dealing with surfaces with punctures
that can lie on boundary components and will demand that non-trivial open
curves should not be shorter than π, the area of the minimal area metric will be
infinite and requires regularization. We need coordinates around the punctures in
order to be able to subtract away the leading divergence. The case of punctures
inside the surface was studied in [Zwl]. For a puncture Pi on a boundary
component Γ of the surface we must have a local coordinate zi vanishing at the
puncture z^Pj) = 0. The coordinate z, must map a neighborhood of Pj in the surface
into the upper half plane with the boundary going into the real axis. An important
property of such a coordinate is that in the double surface one can define a local
coordinate around Pi that transforms by complex conjugation under the
antiholomorphic map <β which sends the surface into its double keeping the
boundary fixed pointwise. This means that if ̂  takes P-+P, then zί(P) = [zI (P)]*.
Coordinates around boundary punctures will always be assumed to be of this kind.
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Consider a Riemann surface R with boundary components, punctures Pt

(i, 1, 2, . . ., m) on the boundaries and a metric ρ (recall the length element dl is given
by dl = ρ I dz\). The case when there are also punctures that are not on the boundary
adds no complication so it will not be treated explicitly in the following. Associate
to every puncture a constant At and demand that non-trivial open curves
homotopic to Pt be longer or equal to At. In order to satisfy this condition typically
the metric ρ near a puncture diverges as

In order to obtain a finite value for the area for metrics with such behavior one
defines the reduced area s/R(ρ,At) as follows:

J e

2dxdy+Σ—^r\, (4.2)
-ΣHτ(r) i H J

where Hfc) denotes the half-disk flj(r) = {|zί|^r}n{Im(zί)^0} around the ith

puncture, and the integral in the above expression extends over the surface R with
the half-disks H^r) removed. The second term subtracts away the leading
divergences of the integral in the limit as r->0. As was the case for closed string
punctures, the reduced area is dependent of the choice of coordinates around the
punctures. Under a change of coordinates, however, the reduced area varies by a
constant independent of the metric. Thus a metric of least reduced area is so for any
choice of local coordinates.

The above definition leads to a simple behavior for the reduced area when the
surface is doubled. For ordinary area, if a surface with boundaries and a finite area
metric is glued to its mirror image, and the metric is extended via the map # it is
clear that the area of the doubled surface is twice that of the original surface. We
show next that the same holds for reduced area.

Consider the doubled surface .R with a metric and coordinates defined by use of
the map (6. To each puncture Pi we now associate the constant 2At. The reduced
area, (Eq. (2.1.8) in [Zw 1]) now reads

J
-ΣDt(r)

(4.3)

where Dί(r) = {|z/|^r}, are now full disks around the punctures in the doubled
surface. It follows that

Aft(e,2^ = 2^R(e,4), (4.4)

because our definition of the metric and the coordinates on the doubled surface is
tailored to make the expression in brackets in Eq. (4.3) twice that of Eq. (4.2) for
any value of r. Thus the reduced area of the doubled surface obtained by extending
coordinates and metric with the antiholomorphic map is twice that of the original
surface with boundaries.

5. Relating Open-Closed and Closed String Diagrams

In this section our aim is to establish the relation between the open-closed string
diagrams, and the closed string diagrams. A proof of Theorem 1 will be given, thus
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showing that the double of an open-closed string diagram is a closed string
diagram, and that a closed string diagram for a surface R, which is the double of an
open surface R, induces on R an open-closed string diagram. In order to establish
this result we will proceed in stages. Two preliminary results are needed.

Lemma 9. Consider an open Rίemann surface R and a metric (not necessarily of
minimal area) satisfying the length conditions of the open-closed problem. On the
doubled surface with a metric extended by the map Ή every non-trivial Jordan closed
curve is longer or equal to 2π.

Proof. Denote the two components of the doubled surface exchanged by the map ̂
by (+) and (—). Any non-trivial closed curve that remains in one of the two sectors
is automatically longer or equal to 2π. We need only concern ourselves with the
closed Jordan curves that cross the boundary components separating the ( + ) and
(—) regions.

The intersection points of the curve with the boundaries divide the curve in
segments. There are two exclusive possibilities: (a) at least one segment goes from
one boundary component to another boundary component, and (b) all segments
being and end on the same boundary component. Case (a) is easily taken care of.
Suppose the boundary segment goes from boundary component Γt to Γ2. Since
the complete curve is closed there must be at least another segment from Γ2 to
another boundary component (perhaps Γx). There are, therefore, at least two
segments going from one boundary component to another. Such segments are
non-trivial Jordan open curves; as a consequence each is longer or equal to π and
the original closed curve must be longer or equal to 2π.

Consider now case (b), where the endpoints of all segments lie on the same
boundary component. A segment is nontrivial if it is not homotopic to a puncture
free boundary segment. There are three mutually exclusive possibilities: (bO) no
segment is nontrivial,2 (bl) one segment is nontrivial, and (b2) two or more
segments are nontrivial. The idea is to force the curve to lie on a single component
of the doubled surface. Since any trivial segment is homotopic (fixed endp.) to its
image under ̂  (Lemma 4), a trivial segment can be replaced by its image without
changing the length or the homotopy type of the closed curve (Lemma 3). The
resulting nontrivial closed curve may have self-intersections, Lemma 1 guarantees
it must be longer or equal to 2π, thus establishing that the original curve is also
longer or equal to 2π. Consider the case (bO): here we just reflect all the (—)
segments the whole curve lie on the (-f) component. In case (bl) pick the nontrivial
segment, say it lies on the (+) component, then flip all the (—) segments. Finally, in
case (b2) there is no need to flip segments. Each nontrivial segment is guaranteed to
be or equal to π. With two such segments the closed curve is assured to be longer or
equal to 2π. Π

Lemma 10. Consider a closed string diagram on a Riemann surface R, which is the
double of an open Riemann surface R. Then

(i) The metric on R is invariant under the antiholomorphίc automorphism <$ of R.
(ii) On the open surface R the induced metric satisfies the length conditions of the

open-closed problem.
(iii) The metric induced on R defines an open-closed string diagram.

2 Such curve need not be trivial, an example is a closed curve in .R homotopic to the boundary
component in question, and crossing it an even number of times
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Proof. Part (i) holds because of uniqueness of minimal area metrics [St, Zw 1]. If
the metric was not invariant, the automorphism would yield a different metric
satisfying all the length conditions and with the same area. This is impossible.
Consider now (ii): Any non-trivial Jordan open curve on R can be reflected into the
double in order to form a Jordan closed curve. This closed curve must be non-
trivial (Lemma 6) and therefore longer or equal to 2π. As a consequence, the open
curve must be longer or equal to π. Any nontrivial closed Jordan curve on R is a
nontrivial Jordan closed curve on R (Lemma 5), and therefore must be longer or
equal to 2π. Finally, consider (iii). Let 2A be the reduced area of the surface R, as
computed with the help of suitable fixed local coordinates around the punctures,
for the minimal area metric. Due to Eq. (4.4), the reduced area of .R is A. Assume the
metric induced on R is not of minimal area. Then there is another metric on R with
lower reduced area A < A satisfying the open-closed length conditions. Because of
Lemma 9 if this metric is extended to the double it would satisfy the length
conditions on closed curves and would have reduced area 2A < 2A, in contradic-
tion with the assumption that the original metric was of minimal area. This
establishes (iii) and concludes our proof of the lemma. Π

It is now straightforward to establish the following result.

Lemma 11. Given an open-closed string diagram on a Riemann surface R, double the
surface and extend the metric to the double R using the map ^. On R the resulting
metric defines a closed string diagram.

Proof. Let A be the reduced area of R. The doubled surface R will have reduced
area 2A, and due to Lemma 9, all non-trivial closed curves will be longer or equal
to (2π). Assume this is not the metric of minimal area. Then the metric of minimal
area will have reduced area 2A < 2A, and as a consequence of Lemma 10 (iii), it
induces on R a metric of minimal area, with area [Eq. (4.4)] A < A, in
contradiction with the assumption that the original metric on R was of minimal
area. Π

The above result says that the double of an open-closed string diagram is a
closed string diagram. Moreover a closed string diagram on the double of a surface
R induces on R an open-closed string diagram (Lemma 10 (iii)). All in all this shows
that a string diagram on an open surface jR is an open-closed string diagram if and
only if its double on the doubled surface .R is a closed string diagram. This is the
content of Theorem 1.

Acknowledgement. I am indebted to M. Wolf for helpful conversations and suggestions.
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