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Abstract. We use the realisation of the universal bundle for the loop group as the
path fϊbration of the group to investigate the string class, that is the obstruction
to a loop group bundle lifting to a Kac-Moody group bundle. In the case that
the loop group bundle is constructed by taking loops into a principal bundle we
show that the classifying map is the holonomy around loops and give an explicit
formula for the string class relating it to the Pontrjagin class of the principal bundle.

1. Introduction

Consider a principal bundle π:P->M, with structure group a Lie group G, a
basepoint m0 chosen in M and a basepoint p0eπ~1(m0) chosen in the fibre of P
over w0. For any space X with basepoint x0 we denote by ΩX the space of smooth
loops in X based at x0. To be precise, by a smooth loop we mean a smooth path
whose endpoints are coincident and for a based loop the endpoints coincide at
the basepoint. We take the basepoint of G to be the identity e. With these definitions
we can construct another principal bundle p:ΩP-+ΩM with structure group ΩG.
The map p sends a loop y(θ) in P to the loop π(γ(θ)) in M. We shall call such a
principal ΩG bundle a loop bundle.

If G is a compact Lie group then the loop group ΩG has a well-known central
extension (see for instance Pressley and Segal 1986)

»l , (1.1)

and therefore for any principal ΩG bundle there is an induced ΩG bundle obtained,
for^ instance, by composing transition functions for ΩG with the homomorphism
ΩG^ΩG. Given a principal^ΩG bundle then, it is natural to ask when it is
induced in this way from an ΩG bundle. In such a case we say that the ΩG bundle
lifts to an ΩG bundle. An analogous problem arises for the group S0(n) and the
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extension

l->Z2->Spin(?ι)->SO(2w)->l. (1.2)

An oriented Riemannian manifold has a reduction of its frame bundle to SO(ή)
and if this reduced frame bundle is induced by some Spin (ή) bundle we say that
the manifold is spin.

Similarly in this case a principal G bundle P -> M is called string if the associated
bundle ΩP^ΩM lifts.

Let us denote by LX the space of (free) smooth loops in X. Note that ΩX c LX
and that LG is the semi-direct product of ΩG and G. Then all we have just said
also works with Ω replaced by L.

It was shown by Killingback (1987) that for the analogous problem for LG
bundles, the obstruction to a bundle being string is a class in H3(LM,Z). This
class can be defined by considering the central extension (1.1) of groups with Ω
replaced by L. From this is constructed a long exact sequence in non-abelian sheaf
cohomology,

H\LM, U(l))-^H1(LM,LG)-^H1(LM,LG)-^H2(LM, 17(1)). (1.3)

Recall that, in general, the transition functions of an H bundle define a class in
H^(LM,H). So the transition functions of the bundle LP define a class^n
H^(LM,LG) and the bundle lifts if this class is the image of a class in H^(LM,LG)
which, by the exactness of the sequence, is precisely when its image under δ
vanishes. This image defines a class in H2(LM, l/(l)), and using the coboundary map

H2(LM, ί/(l)HH3(LM,Z); (1.4)

from the long exact sequence in sheaf cohomology constructed from the short
exact sequence

l-»Z->£/(l)-»R->0; (1.5)

this is mapped to an element of f/3(LM, Z). Killingback calls this class the string
class of the bundle and shows that the string class is obtained from the Pontrjagin
class of the bundle P-»M in H4(M,Z) by pulling back via the evaluation map

ev LMxS1-^, (1.6)

and then integrating over the circle.
The ideas of Killingback can also be applied to the case of based loops, and

we shall refer to the corresponding class as the string class although really it is the
restriction of the string class in H3(LM, Z) to H\ΩM, Z). The methods we have
developed here do not seem to readily generalise to LG.

This "obstruction theory" approach to characteristic classes is only one of a
number of approaches. We will show that for the loop group another standard
approach involving classifying spaces takes a particularly simple form. Not only
is this useful from the point of view of string structures but it provides a nice
concrete example of a theory that in full generality is rather abstract.

In Sect. 2 we recall the definition of the universal principal bundle for a group
and the classifying map and their relationship with characteristic classes. These
ideas are applied in Sect. 3 to the loop group where we show that the universal
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bundle is the path fibration of the group and that the classifying map is the
holonomy. In Sect. 4 these results are used to define the string class of an ΩG
bundle and show that it is the obstruction to it lifting to an ΩG bundle. Finally
in Sect. 5 we connect up with the calculations of Coquereaux and Pilch (1989)
and consider the special case of a loop bundle. We calculate the string class and
show that it is the same as the integral over the circle of the pullback by the
evaluation map of the Pontrjagin form.

2. Classifying Spaces and Characteristic Classes

In general the topological properties of principal bundles depend on the following
result (see for instance Husemoller 1966). Given a topological group G there is a
"universal G bundle" EG -> BG which is determined (up to homotopy equivalence)
by the fact that it is a G bundle and EG is a contractible space. The space BG is
called the classifying space. To say this is a universal bundle means that for any
principal bundle P->M there is a map f:M-*BG9 called the classifying map,
which is unique up to homotopy, and such that P is isomorphic to the pull back
via / of the bundle EG.

The fact that P is isomorphic to /*EG is equivalent to the existence of a map
/:P->EG which preserves the group action and such that the diagram

(2.1)

commutes.
Recall that two maps are homotopic if they can be deformed continuously one

into the other and that two bundles P, P are homotopy equivalent if there are
bundle homomorphisms/:P->P' and #:P'->P such that if fog and g°f are both
homotopic to the respective identity maps. So they are inverses of each other "up
to homotopy."

In general BG is an infinite dimensional space and has a rather abstract
construction. If G = Z the universal bundle is

exp2πi:R->S1, (2.2)

and if G = S1 the classifying space is the space of projective unitary operators on
a Hubert space. An example familiar to physicsts is when G = #, the gauge group
of some gauge theory. Then if j f is the space of connections suitably basepointed
so that the action of 0 is free then

^^^/^ (2.3)

is the universal ^ bundle (see Singer (1978) for the topology and a proof of the
local triviality of (2.3)). The proofs of all these claims follow immediately from the
characterisation of the universal bundle as a G bundle with contractible total space.

The classifying space is related closely to the theory of characteristic classes.
In general we would like a characteristic class c to assign to any G bundle P over
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a space M an element c(P) of the cohomology H*(M). It has to satisfy the
"naturality" property that if f:N-+M is a map with /* the induced map on
cohomology and f*(P) the pull back bundle over N then

c(/*(P)) = /*(c(P)) (2.4)

All characteristic classes arise in the following way. If ξ is a class in H*(BG) then
for any bundle P->M we can choose a classifying map f:M-*BG and define

c«(P) = /*(£)• (2.5)

Notice that although the classifying map of a bundle is not unique because they
are all homotopic the induced map /* on cohomology is unique. So a G bundle
over M determines a unique map #*(£G)-»/ί*(M). It is straightforward from the
uniqueness properties that cξ is a characteristic class. Moreover given any
characteristic class we can take ξ = c(EG) and then

c = cξ. (2.6)

3. The Classifying Map of the Loop Bundle and the String Class

We shall assume from now on that the Lie group G is simply connected. In the
case of the loop group the universal bundle is remarkably easy to describe. Consider
the space PG of all smooth paths in G starting at the identity and the pathfibratίon

PG->G (3.1)

which sends a path to its endpoint. We give the space PG the Frechet topology
and then (3.1) is a principal ΩG bundle, where ΩG acts by pointwise multiplication.
For these and other questions relating to the correct choice of topology we refer
the interested reader to the Appendix.

The space PG is contractible as we can consider the family of maps

Fλ:PG->PG (3.2)

which send the path ί t— > g(t) to the path ί H* g(λt). This gives a curve joining the
identity (Ft) to the constant map (F0); that is, a contraction. It follows that the
path fibration is the universal bundle for loop group bundles. Moreover, as we
shall see, in the case of bundles of the form ΩP-+ΩM the classifying map also
takes a simple form.

Choose a connection for the bundle P-+M. Then for any loop γ in P there is
a corresponding unique horizontal path yh beginning at p0 with

π°y = π°y fc, (3.3)

namely the horizontal lift beginning at p0 of the loop π°y in M. Define the holonomy
of y, hoi (γ), a path in G, by

y = yΛhol(y). (3.4)

If g is a loop then γg has the same image in M as y so that (yg\ = yh and therefore

79 = (yg)h h°l (y)9 from (3 4) and

(3.5)
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Hence hol:ί2P-»PG is a map preserving the group action of ΩG and therefore
descends to a map ί2M->G, which we shall denote by the same symbol, to define
a commuting diagram as in (2.1),

hoi

ΩP >PG

(3.6)
hoi ^

ΩM >G

It follows that hol:ί2M->G is the classifying map. This map is the holonomy in
the usual sense; given a loop in M we lift it to P horizontally, beginning at p0 and
the difference between the endpoints is the holonomy.

From the general theory described in Sect. 2 we know that the string class
defines an element of H3(BΩG,Z) = #3(G,Z) and we shall show that this is the
standard generator ω, defined as a G invariant form by its value at the identity

ω(X,y,Z)=~<X,[T,Z]>, (3.7)
oTΓ

where <,> is the Killing form normalised so that the square of the length of the
longest root is 2 (see for instance, Pressley and Segal (1986) page 49) and X, Y and
Z are in the Lie algebra of ΩG.

4. Constructing the Lift

Consider the general case where we have an ΩG bundle Q over a space X and
therefore a commuting diagram as in (2.1),

(4.1)

where f:X-*G is the classifying map. Define the string class s(Q)eH3(X,Z) to be
the cohomology class of the form /*(ω), where ω is defined in (3.7). Assume that
this class vanishes; wê  shall show that the bundle Q lifts by giving an explicit
construction of the lift Q. We shall assume from now on that Q is simply connected.

As the string class is zero there is a two form μ with

dμ = f*(ω). (4.2)

If we pull ω back to PG it is, of course, cohomologous to zero as PG is contractible.
If g is a path in G, and X^g and X2g to vector fields along the path, or tangent
vectors at g, then

dX2y-<,X29dX1y) (4.3)

is a right ΩG invariant 2 form on PG satisfying dc = π*(ω). Moreover restricted
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to any fibre this two form is the standard ΩG invariant two form c which defines
the central extension of the loop group.

Consider now the two form F on Q defined by

F = f*c- p*μ (4.4)

which satisfies df = 0. We would like 2πiF to be the curvature of the (7(1) bundle
Q -» Q but for that F needs to be an integral form. Let α1 ? . . . , αr be cycles generating
the two dimensional homology of X and let ά l 9 . . . , άr be lifts of these cycles to Q,
that is p°όti = (Xj. Notice that the choice we have made of μ in Eq. (4.2) is arbitrary
up to the addition of any y satisfying dy = 0. Now choose a cohomology class in
H2(X, Z), represented by a form y, by requiring that

f y = f/*c-p*μ. (4.5)
&i «i

Then if we replace μ by μ — y we have that J F = 0 and moreover on restriction
άi

to a fibre of Q-> XF is equal to f*(c) which is integral. As the vertical cycles and
the ά; generate the two dimensional homology of Q it is clear that F is now integral.

Notice that we could have chosen F to have any integral values on the ά f.
These choices correspond to different string structures. As ΩG is a central extension
of ΩG any (7(1) bundle on X can be pulled back to Q and "tensored" with an
ΩG bundle by regarding (7(1) as being in the center of ΩG. By tensoring here we
mean multiplying transition functions, this makes sense, i.e. the cocycle condition
for transition functions is preserved, because the transition functions of the (7(1)
bundle commute with the transition functions of the ΩG bundle.

Now that we have the 2 form F we will apply a construction analogous to
that in Murray (1988) to obtain Q. Before doing that leUis recall the construction
of Murray (1988) as we shall need it when constructing Q. We start with the group
0>ΩG of paths beginning at the identity in ΩG. Then 0>ΩG x 17(1) is made into a
group with the product

(/,z)(0,ω)^/0,c(/,0)zω), (4.6)

where

fc, (4.7)

and the integral is over any surface with boundary the triangle in ΩG with vertices
1, 10(1) and /(l)g(l) and edges lg(t\ f(t)g(\) and f(t)g(t) with orientation chosen
so that the edge \g(t) points in the positive direction.

Let ΩΩG be the subgroup of all loops in 0>ΩG. Then the set
K = {(0, hoΓ l(g))\gεΩΩG}, where hoi (g) is the exponential of the integral of 2πic
over any two surface with boundary g, is a normal subgroup and the Kac-Moody
central extension QG is the quotient. The obvious projection map defines the
homomorphism ΩG-+ΩG. (Note that although the boundary of the triangle is
piecewise smooth, we do not need to consider this boundary as a loop in its own
right so we do not need to move outside the class of smooth loops.)

Now let 0>Q be the space of all smooth paths in Q beginning at a basepoint
q0 and define an action of 0>ΩG x (7(1) on ^Q x (7(1) by the product

(q, z)(g, w) = (qg, c(q, 0)zw), (4.8)
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where

f f (4.9)

and the integral is over any surface spanning the triangle in Q with vertices q0, q0g(l)
and q(\)g(\) and edges q0g(t\ q(t)g(l) and q(t)g(t) oriented so that the edge q0g(t)
points in the positive direction. Notice that we need Q simply connected to be
sure of finding such a surface and that the integrality of F means that c(q, g) is
independent of the surface we choose.

We have to check that with this group product the action of &ΩG x t/(l) on
&Q x U(l) is really an action, that is

(ft *)((/, w)fef, «)) = ((ft z)(/, ω))to, 4 (4.10)

If one draws all the surfaces of integration one discovers that they form a
tetrahedron and the integrality of F after integration over this tetrahedron gives
the required result. Now, in general, if we have a manifold Q with an integral
closed two form F there is a line bundle over Q with curvature 2πiF. If X is simply
connected there is a standard way of constructing this line bundle using paths.
On the space 3?Q x £7(1) we define an equivalence relation by saying that (q,z)
and (q'9 z') are equivalent if q and q' have the same endpoint and c(q, q')z = z',
where

c(q, q') = exp 2πi \c (4. 1 1)

and the integral is over the surface with edges q and q' oriented so that the^edge
q' points in the positive direction. The set of equivalences classes is denoted by Q.

It is straightforward to check that

1. Thejiction of 0>ΩG x 17(1) preserves the equivalence relation and therefore acts
on β.

2. The isotropy subgroup oϊ&ΩG x U^l) at any point of Q is the normal subgroup
K whose quotient is ΩG so that^ΛG acts on Q.

3. The orbits of the free action of Ω G on Q are the fibres of the projection Q -> M
which sends a path in Q to p of its endpoint. ^

4. The action of ΩG on Q covers the action of ΩG on Q,
^ /\

It follows that Q is the desired lift of the bundle Q to an ΩG bundle.
Now we will prove the converse of this result, that is, if Q has a lift then there

is a two form μ with dμ =J*(ω). We have to show that we can find a curvature
form 2πiF for the bundle Q -> Q that is both ΩG invariant and agrees with 2τri/*c
in the directions tangent to the fibers of p. Assume that this is possible for now.
Then f*(c) — F has the properties that:

i) it is zero on directions tangent to the fibres of p and;
ii) the exterior derivative of it is /?*/*(α>) which is zero on directions tangent to

the fibres of p.

It can be readily checked in local co-ordinates that these conditions imply that
f*(c) — F is pulled back from some two form on the base say μ. So we have

p*dμ = d(f*(c) - F) = p*/*(<4 (4.12)

and therefore dμ = /*(ω) as required.
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The remainder of this section is devoted to proving the existence of such an
F. The reader willing to take this on faith may continue directly to Sect. 5.

We first prove a simple result about central extensions of Lie algebras. Let

be a central extension of Lie algebras. We are interested in the case where M is
isomorphic to the Kac-Moody algebra and M is isomorphic to the loop algebra;
but what we have to say here js quite general. Given such a central extension we
can choose a splitting σ:M -> M, that is a linear map with β°σ equal to the identity
and define a cocycle c by

c(X, Y) = σ(\_X, 7]) - iσ(X), σ(7)] (4.13)

for all X and Y in M. If σ' is another splitting then we have σ — σ' = α°y for some
y:M-»R and

c(x,Y)-c'(x,y) = 7([x,Y]). (4.14)
It follows that if two splittings give rise to the same cocycle then we must have
y([X9 y]) = 0 for all X, Y in M and therefore if M is spanned by all such
commutators (as the loop algebra is) that the splittings are the same. It follows
that the cocycle determines the splitting. ^

Consider now a (7(1) bundle P-> 7, where ΩG acts freely and transitively on
P covering a free transitive action of ΩG on Y. Then we claim that for any ΩG
invarianM wo form on Y representing the Chern class of the bundle there is a
unique ΩG invariant connection on P whose curvature is 2πi times that two form.
Certainly there are invariant connections with this property; just fix a basepoint
and identify everything with ΩG-+ΩG. Then the uniqueness follows by realising
that the ΩG invariant vector fields on P and the ΩG invariant vector fields on Y
are copies of the Kac-Moody algebra and the loop algebra respectively. The
projection map sends invariant vector fields on P to those on Y and the invariant
two form on Y defines a cocycle. Now we can use the result above to show the
uniqueness of the invariant connection.

From the fibering Q -> Q we can define a map of vector bundles

Γβ/Z/(l)->Γβ (4.15)

over Q and a connection is a splitting of this map (Atiyah (1957), pp. 187-188). If
we factor further we obtain another map

TQ/ffc^TQ/ΩG (4.16)

of vector bundles over X. An ΩG invariant connection on Q -» Q is a splitting of
this map. Inside each of the bundles in (4.16) we can consider the vectors tangent
to the fibres of p:Q^X and p. These subbundles are, in fact, the adjoint bundles
of Lie algebras,

adβ->adQ. (4.17)

The map in (4.16) restricted to these subbundles defines, on fibres, a mapping
between a Lie algebra isomorphic to the Kac-Moody algebra and a Lie algebra
isomorphic to the loop algebra. Moreover the two form f*(c) defines a cocycle
on each of these Lie algebras as it is an ΩG invariant form on each fibre of Q -> X.
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On each fibre above some xeX, this is the situation we were in above with
P = p ~ l ( x ) and Y = p~l(x). It follows from our previous discussion that there is
a splitting of (4.17) determined by f*(c). This can be extended to a splitting of
(4.16) and this defines an ΩG invariant connection on <2~>(λ Because we have
extended from a splitting determined by f*(c) the curvature of the connection
agrees with 2τπ/*(c) on each fibre of p as required.

5. Explicit Formulae for the Loop Bundle

We want to conclude with an explicit calculation of the pullback of the three form
ω on G by the classifying map hol:ί2M-»G.

Consider the evaluation maps

evp .S1 xΩP-+P (5.1)
and

evP:[0,l]xί2P->P, (5.2)

and similarly for P replaced by M. Here of course we are regarding the circle S1

as the interval [0, 1] with endpoints identified, hence the abuse of notation. We
can pullback the bundle P-+M with evM to the space [0, 1] x M and then it is
trivial. In fact a section is given by

(5.3)

where f is the horizontal lift of y to P beginning at p0. Let

Pont(F) = -^<FΛF> (5.4)
oπ

denote the Pontrjagin form for the curvature of the G bundle P. Here if /, g are
Lie algebra valued functions and α,β are forms we define </®α Λ 0®j?> =
</,#>α Λ β. If ιd/dt denotes contraction with the vector field in the [0, 1] or S1

direction we have

f ιa / ΛevJPont(/OΛ= f ^ev£Pont(F)A
S1 [0,1]

= f ιa/ΛPont(ev£(F))A. (5.5)
[0,1]

If A is the connection form on P we can pull it back to ev*(P) and then back to
[0, 1] x ΩM to obtain

A = h* G\}(A). (5.6)

Because [0, 1] x M is a product manifold we can invariantly decompose the
differential forms on [0, 1] x M into components with a dt and components with-
out a dt. Under this decomposition A has no dt component and we decompose
ev^(F) as

|-GΪ)ΛA + F. (5.7)
dt
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The reason for calling the component of ev^(F) without a dt F is that if we regard
A, for fixed ί0, as a connection form on ΩM and compute its curvature we get F
evaluated at ί0.

If one substitutes (5.7) into (5.5) and uses the definition of Pont (5.4) one obtains

J ιa/ΛevtPont(F)Λ = 2 f ιd(dt( -~(A) Λ dt Λ F\ (5.8)
[0,1] [0,1] \ Ot /

Expanding F = dλ + [>4,Λ], where this d is only acting in the ΩG directions one
finds that (5.8) is a sum of two terms;

2 J (-~(A)ΛdA\ (5.9)
[o,i] \ dt I

and

2 f /-£tf)Λ[X,X]\. (5.10)
[o,i] \ dt I

The form <,> is invariant so satisfies (X, [7,Z]> = <[Jf, Γ],Z> and applying
this to the second term (5.10) and integrating by parts gives

Kίdholίhol'1 Λ [(dholJhoΓMdholJhoΓ1]). (5.11)

Here this is hol:ί2M-*G and we use the facts that A(Q9 ) = 0 and A(0,y) =
Λ(l,y)hol(y) so that

D, ) = ad(hol"1)4(l, ) + hoΓldhol, (5.12)

and therefore

A(l, )= -(dhol)hoΓ1. (5.13)

For the other term (5.9) integration by parts in both the ΩM and [0,1]
directions gives

/ Λ \ -J

-d f (-(A)*A }--<(rfhol)hoΓ1Λ[(rfhol)hor1,(rfhol)hoΓ1]>. (5.14)
[o,i] \dt I 3

Finally we recall the definition of ω (3.7) and c (4.3) to obtain

hol*(ω) = j* ιm ev£ Pont(F)dt + dc(h*A, h*A). (5.15)
s1

This shows that the string form is cohomologous to the integral over the circle
of the pullback by the evaluation map of the Pontrjagin class. These formulae
should be compared with those in Coquereaux and Pilch (1989).

Appendix. Frechet Manifolds

We follow Hamilton (1982) for the theory of Frechet manifolds.
If M is a manifold then ΩM is a Frechet manifold as follows. Regard functions

from S1 into M instead as sections of the trivial bundle Sl x M. The point of
doing this is that sections are imbeddings, that is, they are injective with injective
derivative, so thier image is a submanifold. Let γ:Sl->M be such a map and
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Γ'.S1 ->M x S1 be the induced section of the trivial bundle. Let Tv be the vector
bundle over M x S1 which consists of the tangents to the vertical (M) directions.
Then there is a natural identification of y~lTM and Γ~1TV. We can choose a
tubular neighbourhood of the image of Γ and identify this with an open
neighbourhood of the zero section in Γ~1TV. The sections that lie in this tubular
neighbourhood are thereby identified with sections of Γ~l(TΌ). The space of all
sections of Γ~l(Tv) forms a Frechet space with the smooth topology and the set
of sections that lie in an open neighbourhood of the zero section form an open
set in this topology. This construction therefore defines co-ordinate charts on ΩM.
In Hamilton (1982) it is shown that these co-ordinate charts make ΩM a Frechet
manifold. Another result, also in Hamilton (1982) (p. 91, Example 4.4.5), that we
shall use repeatedly is that if M is compact and φ:M-+ N is a smooth map then
the induced map ΩM -+ΩN, y\-^φ °γ is a smooth map of Frechet manifolds. We
also use Hamilton's definition of a Frechet principal bundle (Hamilton (1982)
Definition 4.6.5, p. 98).

Consider now the path fϊbration

PG-»G (A.1)

of (3.1). The projection map here is evaluation at the endpoint which is continuous
in the Frechet topology and the action of ΩG on PG is also continuous. We want
to show then that this is a locally trivial ΩG bundle. We claim first that if B is
an open ball about the origin in Euclidean space of the same dimension as G then
for any g in G there is a smooth map </>:[0,1] x#->G which has the following
properties. For ίe[0,1/3) the map takes the constant value the identity in G, for
ίe(2/3,1] the map φ(t, ):£-> G is a diffeomorphism onto its image and φ(l90) = g.
Indeed if we replace G by any ball in Euclidean space, and the identity and g by
points in this ball such maps can be constructed. For the general case just take a
ball around g and join the edge of it to the identity by a curve and then patch in
one of the functions from the open ball case. Let us denote by U the open ball
about g which is the image of 0(1, ) and by V the pre-image of this under the
projection PG -> G. Note then that the map φ defines a section s over £7, where
h = φ(l9b)in U gets mapped to the path s(h) = φ( 9b). From this section we define
a local trivialisation by

UXΩG-+V,
(h,x)-+s(h)x. (A.2)

Notice that the theorems of Hamilton (1982) cited above show that this is a smooth
map of Frechet manifolds. The inverse of this map is defined as follows. Take y
in V c= PG, then it is a path ending in U, at h say. So also is the path s(y)9 so the
path s(y)~1y is a loop. Then y is the image of the pair (s(y)9 s(y)~l y) under the
trivialisation (A.2). Again Hamilton's results give the required smoothness and it
follows that this is a diffeomorphism so the bundle is locally trivial and hence a
Frechet principal bundle.

If P(M, G) is a principal G bundle then there is an obvious pointwise action
of ΩG on ΩP with quotient ΩM. By the results above ΩM, ΩP, and ΩG are
smooth Frechet manifolds, the projection map ΩP -> ΩM is smooth and the action
of ΩG on ΩP is smooth. To prove that ΩP(ΩM, ΩG) is a Frechet principal bundle
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it remains to show local triviality which we do as follows. As above we want to
work with sections rather than maps, so we consider the principal bundle
S1 x P(S1 x M, G). Then choose an element γ in ΩM and an element γ in the fibre
of ΩP above γ. So the image of γ is a loop in S1 x M and the image of y is a loop
in the total space of the bundle S1 x P above it. So it defines a section of this G
bundle above the image of γ. Take a tubular neighbourhood N of the image of y
then the bundle S1 x G restricted to this is trivial and we can extend the section
defined by f to a section s over the whole of N. Now we have the corresponding
open set U in ΩM which is the neighbourhood of y consisting of all loops in N.
Let V be the open set in ΩP of all loops in π~1(ί/). Define a map

ΩGx U-+V,

fo,α)->(so«)0. (A.3)

The results of Hamilton (1982) show that this map is smooth. It is clear that it
has an explicit inverse that is also smooth. Again this follows from Hamilton's work.
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