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Abstract. We reconsider the relation between classical VF-algebras and deformations
of differential operators, emphasizing the consistency with diffeomorphisms.
Generators of the VF-algebra that are fc-differentials are constructed by a systematic
procedure. The method extends, following Drinfeld and Sokolov, to VF-algebras
based on arbitrary simple Lie algebras.

1. Introduction

Among the many relations between integrable systems and conformal field theories,
it seems of interest to investigate the concept of W-algebras introduced by
Zamolodchikov [1] which play an important role in both fields. In spite of a large
number of works pertaining to this subject [2-16], we think that this object has not
yet been completely defined. Our purpose here, in a classical context, is to contribute
to its clarification.

The Virasoro algebra or its H^-extensions appear naturally in the context of
classical integrable systems of KdV types [4-15]. We wish to carry out this analysis
in a covariant way with respect to diffeomorphisms. In a more complete
presentation under preparation, we plan to exhibit these same algebras in a more
geometric framework following the recent work of Sotkov and Stanishkov [16].
We shall briefly sketch here a natural construction of the simplest J^-algebras
pertaining to the fundamental representation of simple Lie groups treating in detail
the SL(n\ S0(2n) and G2 cases. Our work relies heavily on an (admittedly
incomplete) reading of a fundamental paper by Drinfeld and Sokolov [17].

We shall deal with differential (or more generally pseudo-differential) operators
with regular coefficients acting on regular functions. By regular we mean according
to the context, infinitely differentiable or analytic functions, either in a fixed
neighbourhood or in a pointed neighbourhood of a point, or possibly even along
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the real axis (in the real case). One could even use formal series. The important
point is that in any case the notion of derivative be well defined. We also need
the notion of integral taken along a non-trivial cycle denoted generically #, for
instance the real axis for coefficients vanishing fast enough at infinity, or a period
for periodic functions, or else a cycle around a deleted point in the complex plane.
In some instances, the integral may extend over only part of the cycle. The above
shows that the constructions can be carried in a purely algebraic way along the
lines of [18].

Our discussion is carried in three steps. In the case of sl(ή) we first decompose

a normalized nth order differential operator D mapping -- differentials into

- differentials into a canonical sum involving currents w7 of weight j ranging

between 2 and n in correspondence with the generators of the An_^ W-algebra.
We then define associated deformations of D, each one depending on an arbitrary
function, which generalize the KdV flows and in the simplest ^-instance, amount
to localizing the latter. In the last step, using the second Adler-Gelfand-Dikii
Hamiltonian structure [18] one is able to compute the Poisson brackets between
the w generators. This endows the polynomials in the w's and their derivatives with
a Lie algebra structure containing the Virasoro algebra generated by vv2. In a last
section we succinctly present the generalization to an arbitrary simple Lie algebra
and discuss in more detail the slightly more involved case of the Dn Lie algebra.

2. Action of Changes of Variables
n

We consider linear differential operators of degree n, D = dn + £ ajd
n~j with d = d/dx,

7=1

/ I * \
acting on functions /(x). By a change of function, /(x)->exp — I -ia^u^du /(x),

\nj J
one may dispose of the first coefficient a±. Therefore, with no loss of generality,
we shall only consider operators of the form

We are interested to study how D and its coefficients fl, (x)J = 2, . . . , n, transform
under changes of variables x -» t. Let &h denote the space of functions / that
transform as /i-differentials (conformal weight h):

(Here and in the following, we make a slight abuse of notation, denoting with the
same symbol the function before and after the change of variable.)

Proposition 1. There exists a natural transformation of the functions a2, ..,an such

that the operator D maps the space ^ r_ ( M_1 ) / 2 into the space

Proof. Let /ι,/2> ,/n be n linearly independent functions in the kernel of D.
Since α l 9 the logarithmic derivative of their wronskian W vanishes, Wis a constant
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and by a change of normalization of the /'s, may be set equal to 1,

/? 1} •" f(n 1}

r(n-2) ... /*(n-2)

r r \ J 1 -̂  W

545

(2.3)

/i - /.

Let us then define the differential operator D by its action on the function /,

r /r - /<π)

/•(n-l) /•("-!) ... /•(»-

[£>/] =

/.

(2.4)

It is readily seen that D is of the form (2.1), and it is a simple lemma [19] that if
/ι> /2> >/π and / belong to J%, then W ( f ^ f 2 , ...,/„) belongs to ,

and [D/] to ,. The choice of /ι = —
n-\

preserves the condition

(2.3). By identification of the coefficients α2 ? %> 5

 an with minors of the determinant
(2.4), one finds their transformation law, and Proposition 1 follows. Under the
change x -> ί,

Here and in the following we use the following notations: φ(t) denotes the jacobian
dx/dt of the change of variable, b(i) = φ'(t)/φ(i) its logarithmic derivative and the
schwarzian derivative s(ί) reads

f d 3 x \ Id2x\ 2

dx

It I

(2.6)

It is denoted with double pairs of curly brackets to distinguish it from the Poisson
brackets introduced later. We shall say that an operator transforms covariantly
if it obeys (2.5). As a consequence of /eJΓ_ ( / J_1 ) / 2 the quantity dxf[Df~] is a
1-differential showing that its integral over a cycle is a well defined quantity.

Let us discuss more explicitly how the functions α 2,..., an transform. According
to (2.5) Λ J vanishes in any coordinate system. On the other hand, a2 does not
transform as a 2-differential but has an "anomalous term" proportional to the
schwarzian derivative of the change of variable

(2.7)— \ +ca{{x,t}}.
(A l

and this is reminiscent of the transformation law of the energy-momentum "tensor:"
this is not an accident, see below. In (2.7), the "central charge" cn reads

n(n2-

Ϊ2~
(2.8)
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We recall that under composition of changes of variable, u -> x -> f , the schwarzian
derivatives transform according to:

(2.9)

which implies the consistency of (2.7) and shows that a2(x) transforms as cn{ {u, x} },
with u a fixed coordinate for which a2 vanishes. The other coefficients a3,...,an

of (2.1) have more complicated transformations involving higher and higher
derivatives of b(t). Their variations under infinitesimal change of variable,
x = t + ε(ί), may be written in a closed form

δak = εa' + kε'ak + -

- Σl{( n

Ά\\k-l

However, we have the following

Theorem 1. There exist linear combinations wk of α f c ,α f c _ 1 , . . . ,α 2 and their
derivatives, with coefficients polynomials in a2 and its derivatives that transform as
k-differentials (k ̂  3):

1 = 2

δwk = εwk + kε'wk. (2. lib)

Moreover these relations are ίnvertible and one can express in a similar fashion ak

linearly in wfc, . . . , w2 = a2 and their derivatives, with coefficients that are differential
polynomials of a2.

It is the aim of the rest of this section to establish this result, to give explicit
expressions for the matrix Bkl and its inverse and to show how the remaining
coefficients may be obtained in a systematic way. For illustration, the formulae
for the lowest values of k are displayed in Table I. As these /c-differentials wk will
appear later as the generators of the w-algebra, we shall refer to them as "currents"
and to k as their "spin." It is of course equally well their conformal weight.

More precisely, we are going to prove that any operator D may be written as
a sum of differential operators

n

D = Δ2(a2)+ Σ 4K,α2), (2.12)
fc=3

each of which maps the space «?(n_1)/2 into the space ^(n+i)/2- In (2.12), Δk is
linear in wk and its derivatives.

Let us first consider the term Δ2(a2) that depends solely on a2 (and its
derivatives). Given the function a2(x), let u denote a variable such that a2(u) = 0.
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Table I. wk as functions of ahSU(n) case

n-2
—a'

n-3 (n-2)(n-3) (n - 2)(n - 3)(5/ι + 7) ,
w4 = 04 --- fl' H ----- Λ" -- α,

2 3 10 2 10φ2-l) 2

w - 4 3(n - 3)(n - 4) (n- 2)(n - 3)(n - 4)
w5 =α5 -- a'-\ -- a" -- a"'

5 2 4 28 3 84 2

(n-3)(yi-4)(7π+13),

14φ2 -
+ ΓΓ-Γ^ ((« - 2)fl20'2 - 2α302)

This means that u is a solution of the equation

a2(x) = cn{{u,x}} (2.13)

or that the jacobian φ(x) — du/dx and its logarithmic derivative b(x) are such that

b'(x)-l-b2(x) = a^. (2.14)

The transformation from the function a2(x) to the function b(x) is an example of
a Miura transformation1 and enables one to write d2 + |s = (d — \b)(d + ^fc). In
the variable w where 02 vanishes, the operator z!2 reduces to (d/du)n. Therefore,
since we want the operator to transform covariantly, in the variable x, it must read

= (d -jb)(d - (j - l)b) . (d +jb)9 (2.15)

where we have set n = 2/+ 1. For the consistency of this argument, we have to
prove the

Proposition 2. The expression (2.15) depends upon b only through the schwarzian
derivative (2.13) and hence only on a2 and its derivatives.

Proof. Clearly, Δ2 is a differential operator with coefficients that are polynomials
in b and its derivatives and may be expressed through (2.14) as polynomials in
b, s and derivatives of 5. The proof amounts to showing that these polynomials
reduce to their term independent of b. To see this, in the expression (2.15) we
change b into b + δb, keeping s = b' — \b2 fixed. This implies that δb satisfies the
equation δb' — bδb=ΰ, or equivalently the commutation relation between
differential operators

(d-(k+l )b)δb = δb(d- kb) (2. 1 6)

1 For regular α2, Eq. (2.14) always admits a solution defined, up to a constant PSL(2)
transformation, in a fixed neighbourhood of a point. As the following is only formal algebra,
the introduction of this intermediate variable is clearly legitimate
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for any k. The change of Δ2 is thus
j

δΔ2= £ (d-jb)...(d-(k+l)b)(-kδb)(d-(k-l)b) (d+jb)
k=-j

= 0. (2.17)

(See [14] and [4] for an alternative argument that the product (2.15) does not
depend on the choice of a solution of (2.14).) Under a change of variable, the
operator Δ2 transforms covariantly, thanks to the transformation properties of
the schwarzian derivative (2.6).

We now proceed to the construction of the operators Δk(wk,a2) along similar
lines. Let wk(x) be a fc-differential. In the variable u defined above, the operator
has the general form

n-k

Δk(wk(u),Q)= Σ αuw<''d"-*-', (2.18)
1 = 0

and we seek coefficients α (with the normalization αfc0 = 1) such that after the
change from u to x, it depends on b only through the schwarzian derivative (2. 1 3),

= <^ ί = 0

(2.19)

where we have introduced the covariant derivative taking /z-differentials to h + 1-
differentials:

&f = (d- hb)f (2.20)

thus, @\vk = (d- kb)wk,@
2wk = (d-(k+ l)/b)(d - kb)wk, etc... and Q)n~k~l in (2.19)

maps&r_(n_ί)/2 into ^((n + 1)/2)_k_Γ The square brackets in [^wfc] mean that &
does not act further to the right.

Proposition 3. The operator Δk in (2.19) depends upon b only through the schwarzian
derivative (2.13) provided the coefficients akl are chosen as

f - l V n - / c N

(2.21)

Proof. We proceed as before for Δ2 Variation of b with 5 fixed produces a
differential operator, and imposing that all its independent coefficients vanish yields
recursion relations between the α's

/(/ + 2k - l)αkί = (* + /- l)(n + 1 - k - /)αM_ 1? (2.22)

the solution of which (with the boundary condition αfe0 = 1) is given in (2.21).
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We have thus shown how to construct n—\ independent differential operators
transforming covariantly. Given an operator (2.1) depending on the functions
02,α3, , an, we can thus define the forms wfc by identifying w3 as the coefficient
of dn~3 in D - A2(a2\ w4 as the coefficient of dn~4 in D - A2(a2) - Δ3(ω3, α2), etc... .
This completes the proof of the existence of the decomposition (2.12). This
identification is easy to read off for the linear terms

k

ak= Σ Λ w wj k ~° +non-linear terms,
1 = 2

fc_lVn-Γ

(2.23)
: + /- !

k-l

where by convention, we set w2 = a2. The inverse of the A matrix is the B matrix
of (2.11), and reads (see Appendix):

(2.24)

k-l

Remark L The coefficients α of (2.21) make sense in (2.18) only for k ̂  3. It turns
out that for k = 2 the expression (2.21) gives the terms linear in a2 in the
decomposition (2.12), namely

n-2

Δ2(a2) - dn = Σ α2X2°dn~2~ * + non-linear terms. (2.25)
ι = o

Indeed the linear terms in the right-hand side read

= Σ «2./al?d"-2"' (2.26)
1 = 0

as a result of a simple identity (see Appendix). It follows that the terms linear in
a2 in (2. 11 a) are also given by the matrix B.

Remark 2. One may prove that the differential operators Δk(wk,ty are self-adjoint,
up to a sign:

4M,0) = (-irM*(vvk,0), (2.27)

which follows from the following identity (see Appendix):

Σ(-D' (/C + /'1)! = (k + q-ί}l . (2.28)
,tΌ ll(q-t)\(2k + /-!)! q!(2/c + q-l)!

This property of (anti-)self-adjointness carries over to the operators Δ2(a2) and
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Δk(wk,a2) as is readily verified. Accordingly, one may rewrite (2.18) in a more
compact and symmetric form:

4k(w*,0) = Σ αfc/K
2V"-fc-2']+ (2.29)

0^2l^n-k

with a similar expression for 4k(wk,α2), fc ̂  3.

Remark 3. One may wonder what is the general expression of the polynomials in
the βfc's their derivatives that transform as r-differentials, with r integer larger than 2.
Their form may be obtained following the same method as used above to construct
the w's: write the expression in the coordinate where a2 = 0 as a differential
polynomial in the w's; return to the generic coordinate, transforming the derivatives
into covariant derivatives; derive the conditions on the coefficients that enable one
to reconstruct a r-differential depending only on α2. For example, 4w'3w4 — 3w3w^
is a 8-differential. This method leads to a generating function for the number N(r) of
linearly independent r-differentials:

Π Π d - < 7 A + 1 )
h=3 l>0

3. ^-Algebras as Generalized KdV Flows

3.1. Infinitesimal Deformations of the Differential Operators. In its infinitesimal
form, the previous analysis is a particular case of the following problem: find two
infinitesimal differential operators X and Y mapping JΓ_ ( n_1 ) / 2 respectively
•^(w+D/2 onto themselves, such that after a change of functions: G = (1 + Y)g and
F = (1 + X)f, the equation g = Df takes the form G = (D + δD)F9 with D + δD still
of the form (2.1). The variation of D is thus given by:

δD=YD-DX. (3.1)

The particular case X = Y corresponds to the 5L(π)-generalized KdV flows of [17],
for which the variations δ all commute. In the general situation considered here,
they do not.

Let us recall a few definitions and results from (pseudo)differential calculus
[18]. A pseudo-differential operator is a formal series in d with smooth function
coefficients, involving negative integer powers of d as well, d'1 being defined as
the formal inverse of d. Its commutation with functions is taken to be:

so that iterating it
00 / J r _ u / _ 1 \

<<></-'-*. (3.3)

We call valuation the smallest power of d appearing in the operator, if it is finite.
One denotes by (R)+ the differential part of any pseudo-differential operator R, i.e.
its parts with no negative power of d, and (/?)_= K — (/?) + . The coefficient of d~1
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in R is called the residue of R and denoted Res(Λ). One shows [20] that
pseudo-differential operators commute under the symbol Res, up to total
derivatives:

Res ([^,#2]) = total derivative. (3.4)

This leads to the definition of the trace of a pseudo-differential operator R:

Ύτ(R)=$dxRes(R). (3.5)
<$

Any pseudo-differential operator R has a well defined formal inverse denoted R~l.
Finally the natural Z2 involution *, which leaves the functions invariant, and such
that d*=-d, extends to pseudo-differential operators: for any A and B,
(AB)* = B*A*.

Let us proceed now to the detailed study of (3.1). First of all, it is clear that
the infinitesimal changes of the variable x->x + ε(x) are generated on ^Γ_ ( n_1 ) / 2

respectively J^(π+1)/2 by:
_ 1

χl=εd -- ε' (3.6a)

- e ' = -X*. (3.6b)

This entails:

δlD=YlD-DX1 (3.7)

which summarizes the transformations (2.10) of the coefficients of D under a change
of variable. More generally we look for deformations (3.1) generated by higher
degree differential operators X and Y. By inspection of the powers of d in (3.1),
we find constraints relating X and Y. We have the following:

Proposition. The most general variation of the form (3.1) is built from an arbitrary
differential operator X of valuation 1, and X and Y read:

X = X - - f Res (DX D - 1), (3.8a)
n

Y = (DXD-l)+. (3.8b)

Proof. Suppose X is of degree fe, then the left-hand side of (3.1) is of degree n — 2,
which imposes that Y be of the same degree fe and gives fc + 2 constraints obtained
by setting to zero the coefficients of all powers of d between dn+k and d11"1. It is
easy to see that the fe -f 1 first constraints express the Y coefficients in terms of
the X ones in a triangular fashion. Multiplying (3.1) by D"1 from the right, one
finds that Y - DXD~l = δDD"1. The right-hand side is of degree -2, thus taking
the differential part leads to (3.8b). Taking the part of degree — 1 (the residue) and
writing X = X + ε0, we have

Res DXD ~ 1 = - Res Dε0D ~ 1

= -nε'0. (3.9)

Since the residue of a commutator is a total derivative, it makes sense to integrate
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(3.9) and drop the constant of integration (which does not affect the definition of
δ in (3.1) anyway), which completes the proof of the proposition. As an example
the degree one operators Xί9 Y1 defined in (3.6) obviously satisfy (3.8) with X = εd.
By abuse of notation we will denote by δx = δx the variation (3.1) acting on D
hence on its coefficients.

These pairs (X9 Y) can be safely restricted to be at most of order n — 1 for the
following reason. Applying the Euclidean division algorithm to a general X of
order k^.n, one may write

X = ZD + X ,

Y=DZ+Ϋ (3.10)

with (X, Y) of order at most n— 1, and related by (3.8b). One sees immediately
that Z does not contribute to δD.

We are interested in computing commutators of <5's. From the definition (3.1),
we get:

\_δx>,δx] = δ[X,X} + δχX,_δχ,x. (3.11)

We now want to define a basis δk(η) = δXk(η) such that:

δk(εη'-kηε')9 (3.12)

which amounts to saying that η transforms as a — /c-differential under changes of
variable. The corresponding Xk and Yk are built of covariant pieces mapping
^Γ_ ( n_1 ) / 2» respectively «^(n+1)/2 i

nt° themselves, and could be constructed by a
method similar to that of Sect. 2. Alternatively, we shall determine them by using
a Hamiltonian language. The variations δk will be generated by Hamiltonians of the
form Hk = §dxη(x)wk+l(x), through some appropriate Poisson brackets. (Notice
that the fact that η is a — /c-differential guarantees the invariance of the former
integral). Before doing so, we have to recall some facts about Poisson brackets on
the manifold of differential operators D [21,17].

3.2. Poisson Brackets. Following [21,17], Hamiltonian structures (or Poisson
brackets) are defined first on linear functionals of D, (i.e. of the at and their
derivatives), and then extended by differentiation to arbitrary polynomial
functionals. Let lυ(D] be a linear functional,

= ΎrDU. (3.13)

Since a^ vanishes one can freely add to U a term of the form d~nul. The two
Hamiltonian structures discussed in [21, 17] read

(lv(D)9 /κφ)}1 = Tr(D[l/, K]) = ly(DU - UD)

) + D-D(UD)+). (3.14)

The first one will not concern us here, whereas the second one seems to fit our
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goal: the expression in the right-hand side of the last Eq. (3.14) has the desired
form (3.1), with X = (LΦ) + , Y = (DU) + = (DXD~1) + . Some care has to be exercised,
however, when using the second Poisson bracket on differential operators D with
a vanishing coefficient α x . It is not generally true that the expression
((DU) + D — D(UD)+) respects this property. In other words, the X just mentioned
does not satisfy (3.8a). One may thus decide to add a further term to U [21]:

U = U + d~nu1 (3.15)

which does not affect lu(D) but does modify the second Hamiltonian structure.
Adjusting the value of u± to

x

] (3.16)

is essential to remove the unwanted term of order n— 1 in ((DU)+D — D(UD)+).
(The resulting Poisson bracket turns out to identify with the one inherited from
the Miura transformation [17].) An alternative way consists in introducing a third
Hamiltonian structure:

[lυ(D\ lv(D)}3 = Tr ί f Res [D, 17] J[D, K]

Λ \
- J dx j Res [/), ί/] Res [£>, F]. (3.17)

c \ /

It is easily seen that it has the right antisymmetry. As for the Jacobi identity, it
follows simply from the fact that the new Poisson bracket is "coordinated"2 to
the second one and moreover, that adding it to the second bracket just amounts
to the change of U -> U in the latter:

= Tr(((DU)+ + λ jRes [D, £/])/> - D((UD)+ + λ J Res [A

with U=U + /UΓ" j Res [L/,D]. Ultimately, we choose λ = ί/n.

3.3. Explicit Formulae for the Xk and Ύk. We can now use this formalism to write
explicit formulae for the X's and 7's. We apply the well known fact [17, 14] that
the Poisson brackets between a linear functional lυ(D) and a general differential
polynomial functional Ψ(D), is entirely determined by the former and the gradient
of the latter, namely:

(3.19)

where

,3.20,

2 Two Poisson brackets are said to be coordinated if an arbitrary linear combination of them
also satisfies the axiom of antisymmetry and the Jacobi identity [17]
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and — is a short-hand notation for Y (— d)k - . Note that we are extending the
δcij k δaf

application of (3.14) to the functional lv (D) = Tr (VΨD) which is not linear. Taking
Ψ(D) = Hk = f ώcβwk + 1, we get:

) + , (3.21)

where Vk=VHk with the notations of (3.15)-(3.16). It is now easy to identify
Xk = (VkD)+ and Yk = (DVk) + . Knowing wk+ 1? this gives compact expressions for
the parts Xk and Yk of valuation one of Xk and yk,

/r t-1

Σ jn - i \ I V^
ajd > X

n_i+1

The + + subscript means that we keep only the contribution of valuation one.
From (3.22) the full expression of Xk and Yk may be reconstructed as explained
in (3.8). The above expressions become much simpler if one sets a2 and all w7 to
zero. In that case, one has:

δat

so that the terms independent of w in Xk and Ϋk take a particularly simple form:
k

Xk(a2 = 0,w3 = Q,...,wβ = Q)= Σ Bk + lS+ls
(k~s>ds, (3.24a)

S= 1

k

>

s = l

= (- l)*ί *(fl2 = 0, w3 = 0, . . . , wn = 0), (3.24b)

where the B coefficients have been introduced in (2.24), the C coefficients are:

**+ι.,+1(«->-») (3 25)

and use has been made of the identity (see Appendix):

+ n + J +ι (3 26>
"-^n-s-l

/ = o

A sample of the first Xk and Yk is displayed in Table II.

3.4. W-Algebra. The local, i.e. x-dependent flows δk that act on the differential
operator D do not in general reduce to the KdV flows when the infinitesimal
parameter is taken to be x-independent. The generators of the latter are the
uk + l = Res (Dk/n) which for k= 1,2 coincide with w 2,w 3, [16], but do not in general
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Table II. The generators Xk and Yk, SU(n) case

Π 4 - 1

- εo2 + — (n - l)(w - 2)ε"
2 In 12

Y2 = εd2 + - κ'd + < -εα2 4- — (n + l)(w 4- 2)ε"
2 U 12

s=ε^ 3-—εW 2+ -̂̂ -̂ ε" + -^ -a2ε}d
2 1 10 5φ2-l) J

[3 3(n + 2)(n-7) (n - 3)(4n + 7) (n - l)(π - 2)(n - 3)
4 < - w3ε α' ε α2ε' ε"

(n 10φ+l) 2 5φ+l) 5!

w 6 3«2-7
y = gd3 4 ε'ί/2 4 < ε" + α2ε

2 t 10 5φ2-l)

f 3 3(n - 2)(π + 7) (n + 3)(4n - 7) (n+ l)(n + 2)(n + 3)
H - < - w 3 ε H α « ε H α2ε -I ε'

2 5φ-l) 5!

coincide with w k + 1 . Accordingly, Xk / Yk9 k ̂  3, even for ε a constant (see Table
II). The KdV flows are isospectral in a fixed coordinate frame, a property which
is not invariant under diffeomorphisms. The relationship between the two families
of flows remains to be clarified.

With the explicit expressions of the w's, the JΓs and the Y"s at our disposal,
we can now form the Poisson brackets of the w's among themselves. In general
(wfc(x), wt(y)} is by construction a sum of monomials in the w's and their derivatives
times a derivative of δ(x — y). The set of Poisson brackets {w f c,w l},fc,/ = 2,...,n
defines the VF-algebra (more precisely the Λn_l W-algebra, see below). It always
contains the (classical) Virasoro algebra generated by a2 and the relations
expressing that the w f c,/c ̂  3, transform as /c-differentials:

[a2(y\ a2(x)} = (a'2(x) + 2a2(x)d + cnd*)δ(x - y), (3.27a)

{a2(y\ wk(x)} = (w;(x) + kwk(x)d)δ(x - y). (3.27b)

As for the other brackets {wfc, wj, fe, / ̂  3, it is easier to compute and tabulate them
again in the coordinate u where a2 vanishes. According to an argument used
repeatedly in this paper, if

{wk(ιι), Wι(v)}\a2 = 0 = Δ(wj9du)δ(u - v) (3.28)

with A some differential operator, then in the generic coordinate

K(x), w^)} = φkΔ(φ-^φ-ld)φl~1δ(x - y). (3.29)

(The (5-function has contributed an extra φ~l). The operator A must satisfy certain
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constraints in order that the right-hand side of (3.29) depends only on the
schwarzian derivative of the change of coordinate. We illustrate these considera-
tions on the set of Poisson brackets {wk, wj,/c,/ — 3,4, for generic «,

{w3(t?),w3(M)}|β2:=0

- - .Λ
d5 }δ(u-v\ (3.30)

6!

{w3(z;),w4(t/)}|α2 = 0

+ 2w5 — (14w3J + 14w3d + 6w3d + w 3) }δ(u-v\

_ . , .
" ~rc~W3 207! d7 \δ(u-v),

where all the w's on the right-hand side are evaluated at u and d stands for d/du.
Notice that even for a2 = 0, non-linearities in the w's appear. In general, one can
see that the Poisson brackets {wfc, wj are at most cubic in the w,-, j ^ 3. By restoring
the dependence on a2 and truncating to n = 3, with wz = 0, / > 3, or to n = 4, with
W j = 0, / > 4, one finds respectively the formulae defining the W3 and W4 algebras.
The latter had been explicitly described in [7].

One general feature of the W-algebra which is provided by our approach is
the form of the central term. It is easy to see that the only contribution independent
of the α's in δ^ for / ̂  k -f 1 is

-o=- Σ βιf l i — 0 Z-r \ ι . I I

= -(n-k)(n-k+l)~ (n + k) δk + llε
(lί + l} (3.31)

k + u

as a result of a simple identity (see Appendix). It follows that the central term of
the W-algebra reads

{Wk(y),w,(x)}|centra l term

— &k ιdk + l~1δ(x — y). (3.32)

4. Generalization to Other Lie Groups

Let us start from (2.1) again. We consider instead an equivalent family of first
order matrix operators acting on a n-vector of functions

Id-J + Q, (4.1)
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where I is the n x n identity matrix, J ί j = δij+ί9 and Q is an upper triangular n x n
matrix, i.e. elements below the diagonal vanish (we shall call strictly upper
triangular, matrices with vanishing elements below and on the diagonal). For any
such Q, there exists SeSL(n), with S — l strictly upper triangular such that
S@(Q)S~1 = ̂ (βcan), where βcan can be chosen as a n x n matrix filled with zeros,
except for the first line which reads (0,α2,α3,...,απ). Alternatively, βcan can be
chosen to have as its only non-vanishing column the last one ((— I)n0*,...,0£,0)r,
where (—1)"D* = Σa*dn~p- Of course this S has in general x-dependent matrix

P

elements. The operator D of (2.1) is the "solved" version of ^(βcan) in the sense
that if one looks at the kernel equation @ Ψ = 0, Ψτ = (ψί9..., ψn)9 it is equivalent
to the kernel equation Dφn = 0, all the other components ψ being expressed in
terms of ψn. Note that the kernels of D and D* are related: if one forms the
wronskian determinant of n independent solutions of one of the operators, the
n— 1 xn— 1 minors of the first row are n independent solutions of the adjoint
operator.

A natural framework to generalize the above construction to other Lie groups
than SL(n) (or Lie algebra An_ί) has been found by Drinfeld and Sokolov [17].
In general, given a matrix Lie group G acting in a d(G) dimensional complex vector
space, one considers a first order d(G) x d(G) matrix differential operator of the
form (4.1) with J = £ %i> where Xt denote the representatives of the

positive simple roots t

corresponding generators in the representation of dimension d(G) of the
Cartan-Chevalley basis of the Lie group G. The matrix Q is upper triangular and
belongs to the Borel subalgebra generated by the Cartan algebra and the generators
Yi9 both represented as upper triangular matrices. In fact, one considers equivalence
classes of operators of the form (4.1) under the adjoint action of elements 5
belonging to a subgroup with nilpotent Lie algebra generated by the Yt. Note that
again, S — I is strictly upper triangular. The gauge reduction of Q) enables one in
general to restrict Q to some canonical form βcan or alternatively to consider a
solved equivalent form for a (pseudo)-differential operator related to 2. The number
of independent coefficients is equal to the rank of the Lie algebra. More precisely,
for an appropriate gradation, these coefficients will have as degrees the Coxeter
exponents augmented by one unit. (In particular the largest one is the Coxeter
number.)

In the following we study the case of G = SO(2n) with the simply laced Lie
algebra Dn in some detail. In [17] it was shown that thanks to gauge equivalence
& can be "solved" through a psewdo-differential operator D of degree 2n—l
satisfying the properties:

D* - - D, (4.2a)

(D).=(-iγund-lun. (4.2b)

The operator D maps IF _(n_l) into tFn. The appearance of a pseudo-differential
operator results from an elimination between a pair of coupled ordinary differential
operators; see below an illustration. Using (4.2) one can write:

n-l i

D = d2n~ί + Σ ~[^2fc'^2"~2 k~1]+ + (~ l ) n u n d~ l u n . (4.3)
k = l 2
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The reader will notice that the indices of the coefficients of the α's and un run over
one plus the exponents of Dn: 1, 3, . . . , 2n — 3, n — 1. In particular when n is even,
the exponent n — 1 has multiplicity two.

The structure of D implies that /[D/] = \_d(R(f, /))], where R is a quadratic
scalar form in / and its derivatives. This follows from

/[^d2r-1] + / = d(/^-V-W/]d2r"V+ + W2r-2/]fl/) (4.4)

and (fun)[d-l(unffl = ^{_d(d~ X/)2]. Thus R(f, f) is x-independent on the kernel
of D and provides an invariant pseudo-differential quadratic form as expected in
a theory related to SO(2n). At the price of introducing a coupled function, one
could get rid of the pseudo-differential term.

The generalization of the covariance condition reads in infinitesimal form:

δD = YD - DX, (4,5)

where we now allow pseudo-differential operators X, Y mapping respectively
&-{n-i) and 3Fn to themselves. The reparametrizations are now generated by:

Xι = Bd-(n-\y, (4.6a)

y 1 =fid + πf i '=-X*, (4.6b)

and lead to an anomalous transformation of a2'

~
= εα'2 + 2ε'α2 + (4.7)

Example. It is instructive to consider explicitly the equivalence between the cases
of the algebras A3 and D3 in order to match the corresponding coefficients and
to expose the origin of the pseudo-differential term. Starting from a matrix of the
form (4.1) with n = 4 relative to A39

(4.8)

acting on column vectors f = (/4,/3>/2>/ι)τ and g = (04»03>02»0ι)τ> one forms

the combinations

»1 = /1 02 - /201> "I = 2(/304 ~ /403)>

t>2 = /1 03 - /301> "2 = 2(/204 ~ /402)>

^3 = /1 04 ~ /401> M3

corresponding to the 6-dimensional antisymmetric tensor representation of A3

which exhibits its isomorphism with Z)3. Assuming that f and g belong to the
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kernel, one finds that the M'S and v's satisfy

Id -b3 -2b4

559

- I d b2

-1 d

-i 0 d

I Z,

Solving for u = ι/3 and v = vl one obtains

d

-1

"3

W

-0. (4.9)

(4.10)

V2)}v

(4.11)

(4.12)

or equivalently

DD3Ό = (d5 + [b29d*'] +

= 0.

Therefore the operators

are equivalent provided one takes:

a2 = 2b2,

u3=±(b3-b'2),

α4 = - 4b4 + 2&3 - 2b"2 + b\. (4.13)

in agreement with [17].
The analysis of Eq. (4.5) for X and Y differential is exactly the same as in

Sect. 3.1. It is entirely determined by the data of a valuation one differential
operator X, and:

X = X -
2π-l

fResφJΠr1), (4.14a)

(4.14b)

Of course the Z2 covariance of D under the involution * (4.2a) must be preserved
by the variations δ: -δD* = δD = -X*D + DY* = YD-DX, so that (7 + X*)D =
D(7* + X). This implies that Y = — X*. But X and Y have the same degree, hence
it is necessarily odd. The number of possible variations δk as well as the number
of "currents" turns out to be equal to the rank of the algebra.

We still have to check that the variation of the "tail" of D: δ(und~~1un) =
δ(un)d~ 1un + und~ 1δ(un) is compatible with the form of (4.5). The only contributions
to (YD — DX)_ come from Δ = (Yund~1un — und~1unX)- = [Yun]d~1un—(und~iunX)-9

where \_Yun~\ is the function obtained by letting the differential operator Y act on
un. But we know that this expression is odd under Z2, so: Δ = — Δ* = und~1 [Yun~\ —
(X*und-1un)_,andX*= - 7, so that we finally get: Δ = [7wJ<ΓX + und~llYunl
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which shows the compatibility between the negative parts in (4.5), and gives the
variation of un\

lYunl (4.15)

Applying this to the first variation <5 l 5 we get:

δ1(un) = εu'n + nε'un (4.16)

which shows that un is a π-differential.
We can now proceed in two steps as before. 1) Write D as a sum of weight 2k

contributions at a2 = 0, and find their form by requiring that after a change of
coordinates which restores the a2 dependence, they only depend on the schwarzian
derivative of the jacobian. 2) "Diagonalize" the variations δ so that they are
compatible with Poisson brackets with 2/c-differentials.

Both steps can be carried out completely, we only quote the results:

1) Writing:

rt-l

£ Δ2k(w2k,a2), (4.17)

where Δ0(un,a2 = 0) = und
 lun = Δ0(un,a2) is automatically covariant, due to the

fact that un is a ^-differential, and

2«-2fe- l

1 = 0

for k ̂  2, where w2k are 2/c-differentials, we finally get:

M

/

/4/C + /-

V /

(4.19)

One restores the a2 dependence after a change of coordinate, by replacing the
schwarzian derivative of the jacobian by 3a2/n(n— l)(2n— 1).

There is another more convenient method to obtain the w2fc, A; = 1,2, . . . , n — 1
of the S0(2n) (Dn) case, from the w's of the SL(2n— 1) (A2n_2) case. It relies on
the remark that the covariance condition of the D operator (4.3) splits into two
independent covariance conditions for D_ = (— l)nund~ ^un and D + , expressing that
both operators map — (n—1^differentials onto ^-differentials. The former means
that un is a ^-differential. The latter involves the differential operator D + of degree
2n — 1, which can be seen as the Z2-odd projection (antiself-dual with respect to *)
of the degree 2n— I differential operator (2.1) of the A2n_2 case, which precisely
maps -(n- ^-differentials onto ^-differentials. Such a projection is easily performed
using the form (2.29), in which we set w2/ +1 = 0, for 1 ̂  / ̂  n - 1, leaving only anti-
commutators of functions and odd powers of d, that are manifestly antiself-dual.
We proceed by eliminating a2l + ί (A2n _ 2) from w2 / +1 (A2n _ 2) = 0 and substituting in
w2/042π_2), 1 ̂  / ̂  n - 1. We get as a result w2/(DJ as a function of the a2j(A2n_2).
The final answer must be expressed in terms of the a2j(Dn) defined by (4.3), which
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are related to a2l(A2n_2) through:

ί=ι 2 2l n +

2«- 1

so that:

a2i+l(A2n-2) = ~ Σ ( ̂  " 2l + )a(2i-2j(Dn)' (4'21b)

Substituting (4.2la) in w2l above yields the desired result. Note that the relation
(4.2Ib) is equivalent to the above elimination from w2 / + 1(,42/ j_2) = 0. The first
few w's are displayed in Table III. As an example, w4(Z)π) (Table III) can be
obtained from w 4 (y4 2 w _ 2 ) (Table I, with n-+2n— 1), by substituting o,^(A2n_2) =
2n-3

a'2(A2n_2) (w3(;42π_2) = 0), and going back to the a2i(Dn) coefficients, using

2) Using the Poisson brackets of Sect. 3.2, we can obtain the infinitesimal
variations:

,Z>}=δ X ϊ k + 1 D (4.22a)

)} = ̂ 0D (4.22b)

and the differential operators X2k+lί ^2/c + ι are calculated from ^2^ + 1(^2^-2)

Table III. w2/c in terms of a2i for the S0(2n) case

(2w-3)(w-2) (2w-3)(n-2)(5n+l) ,
-\ -- a" -- a*

5 2 10φ-l)(2n-l) 2

2(2π-5)(π-3) „ (2π-3)(2n-5)(π-2)(π-3)
- -- --- -

(2n - 5)(2n - 3)(w - 2)(n - 3)(14w +

126φ-l)(2n-l) \ 5 4

(2n - 5)(2n - 3)(π - 2)(n - 3)(35n2 + 21n -f 4) .
SJ->

210(φ-l)(2n-l))2 2

(2n - 5)(n - 3)(3n -H 2)

3φ-l)(2w-l)
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Table IV. The X2k + ί operators and the Poisson brackets (in the coordinate where a2 = 0) in
the D4 = so(8) case

Xί=εd-3ε'

X5 = εd5 - ε'd4 + f ε"d* - ±ε'"d2 + ̂ εwd - ^c(5) + f

, w4(x) } = ( - 2(V;, d-] + + 3[tι4, ί/
3] + )<5(x -

{w4(y),w4(x)} =(6</7 + 3[w6, d}+ + 2[w;,fl+ - 3[w4,J
3] + )

K(Λ w6(x)} - (^(2w4^
5 + f w'4d* + f w j3 + f w^2) + ^(5

(f ι/2^ + u4u'4) - 1(| w2^ + w4*g)<S(x - y)

2,d3]+ - [24w4w; + 39w;2,^]+)

1(22 [ι/2, d^ + - I24u4u'4 + 39«4

2, d] + )(5(x -

72fe + 1(^2n_2) using the above procedure: one simply has to substitute (4.21a-b)
in the expressions (3.22). As an example, X^(Dn) is obtained by setting w3 = 0 in
X^(A2n_2) (Table II, n-+2n — 1), and one reads directly the correct result, due to
02(^2*-2) — a2Φn}- ^o> ^o are two pseudo-differential operators, easily computed
as:

XQ=-±εd-lun,

Y0=-^und-^=-X^. (4.23)

We still have to check the compatibility between the variation of the tail of D,
(— \)nδQ(und~lun\ and (Ύ0D — DX0)_. A straightforward calculation shows that
they are compatible, provided:

<50un^(-l)"[D + ε]. (4.24)

This completes the description of the D classical VF-algebra in its infinitesimal
form. For definiteness, we have listed in Table IV the form of the X generators
and the Poisson brackets for the D4 algebra in the coordinate where a2 = 0. One
observes a certain symmetry between the roles played by the two currents u4

(rescaled by y/Ϊ2) and w4 of weight 4, and the fact that the central terms of the
Poisson brackets are still diagonalized. To the best of our knowledge, this algebra
had never been made explicit.

To summarize, we have obtained n currents w2 = α2, w 4,.. ., w 2 n _ 2 , un, of weight
J -f 1, j running over the set of Coxeter exponents of D = SO(2n). The extension
to the Cn and Bn Lie algebras is straightforward following [17]. The D operator
becomes a self-dual differential operator of degree 2n, respectively an anti self-dual
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differential operator of degree 2n — 1 (which amounts to taking un = 0 in the D
case). One gets in all these cases, rank(G) currents of weight j + 1, running over
the Coxeter exponents of G, the first current a2 being anomalously transformed
under reparametrizations and the other currents being j + 1-differentials.

A further example is provided by the G2 Lie algebra. It is a rank 2 algebra of
Coxeter number 6 and exponents 1 and 5. One thus expects two currents, α2 and
w6, and in the coordinate where α2 = 0, the differential operator is simply

D = d7 + i[w6,fl+. (4.25)

The operator D is covariant, mapping J*_ 3 into J% and returning to the generic
coordinate, one recovers the form written in [17].

The case of G2 may also be obtained from the one of D4 in the same way as
Dn was obtained from A2n_2. Here one has to impose the vanishing of vv4 and u4.
Thus from the formulae of Table III taken for n = 4, one eliminates α4 by imposing
that w4 = 0, and one finds

^(G2} = a6-^al^a2a^^-^al (4.26)
61 2) 6 14 2 588 2 2 784 2 686 2 l '

and

The Poisson bracket of w6(G2) with itself may be obtained from the one of D4

(last line of Table IV) by restricting it to w4 = u4 = 0.
It is well known that G2 may be embedded in SO(1). As discussed above (4.4),

one may construct a differential quadratic form of weight 0 conserved on the kernel
ofD:

The group G2 is the automorphism group of octonions and leaves invariant an
antisymmetric ternary form. Accordingly, we find that given three functions /, g
and h in the kernel of D, the following scalar form is conserved

^(/, g, h) = (4,3,2) - (5,3,1) + (5,4,0) + 2(6,2,1) - (6,3,0) + (7,2,0), (4.29)

where the symbol (j, /c, /) denotes the determinant

gw

r<*> g(»

fd) g(D

g

(4.30)

On the two cases of the D and G2 algebras, we thus see the remarkable consistency
between the form of the differential operator and the geometry of the underlying
group.

After completion of this work, some recent papers that overlap with the present
one have come to our attention [22] and [23]. For earlier references and an
alternative treatment of the problem of Sect. 2, see [24].
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Appendix

1. Proof that BA = I (Eqs. (2.23), (2.24).)
Both Akl and Bkl vanish for / > k. Thus for k ̂  m

kl im
k

V

-2)\

(*-/)!(

For k > m, the last sum reads

1 *"m _^k~m\(k + m + l-2)l

(fc^m)! i = 0

1

- m)\(l
. (A.I)

k — m

jc=l

(k-m)l\dx

= 0

whereas the expression (A.I) for k = m is equal to 1. This completes the proof that
the A and B matrices are inverse to one another.
2. Proof of the identity (2.26)
One may write

d ^ , dz

d , dz

*=ι

^ 2 \ / + l

(A.2)

which is the desired identity.
3. Proof of the identity (2.28).

(2k—1)1
After multiplication of (2.28) by '-q\ one has to show that

(fc-1)!

Σ(-D'
k(k+l) (k + l- k(k+l) (k + q-

(A.3)
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The generating function of the right-hand side is the hypergeometric function

Z* (A.4)

whereas the same sum on the left-hand side yields

Ό / = o / ! (4-/) !2 fc(2k+l) (2fc + /-

= y ( iv k(k+i). (k+l-i) " _ !̂

* k(k + l) ~(k + l-l) ( z V

(A 5)

and it is a classical identity that F(k, 1,2k; 2) = - Fl k, 1,2k;
1— z V z—

4. Proof of the identity (3.26).
Using the expression (2.24) the identity to be proven amounts to

(k-/-s)!(/ + s)!/!s! ( k - s ) l ( s \ ) 2

Once again one introduces a generating function of both sides. Multiplied by zs

and summed over s from 0 to oo, the right-hand side yields in fact the degree k
Legendre polynomial

£ γ_^,_v^,2_^_^>z> = F(k+l,-k,l;-z)
s = o s l s l

whereas the left-hand side leads to
k k s / / i / i \ i ^ / / ι \ ι ι

(_!?-.-_ __=

m =o (fc-m)!(m!)2

Jt'o\s

= Pk(l + 2z). (A.8)

The desired identity follows from the parity properties of the Legendre polynomials.

5. Proof of the identity (3.31)
For / ̂  k we have to compute

k / n

n
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4 = 0

^AY'V'-^-Y'W _ l
\dx) X \dx)

= 0. (A.9)

For / = fe + 1, the same method shows that, as a function of n, the result must
vanish for n = — 1,..., — /c,

, Ό (2k)\(k+ί + q) \q

For n = — / , / = 1, ..., /c, the factor k+ I + q appears in the numerator and

^dx,

= 0 (A.ll)

and the coefficient of (n 4- l) (n + k) is computed to be:

V

(n + l)...(π + fc) , = 0 (/c -f ^ + ί)(2k)\\q

- k l

(2k)! o

(k!)2

= (-1) — , (A. 12)
(2k)!(2k+l)!

which is the announced result (3.31).
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