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Abstract. We prove a strict lower bound on the entropy produced when
independent random variables are summed and rescaled. Using this, we develop an
approach to central limit theorems from a dynamical point of view in which the
entropy is a Lyapunov functional governing approach to the Gaussian limit. This
dynamical approach naturally extends to cover dependent variables, and leads to
new results in pure probability theory as well as in statistical mechanics. It also
provides a unified framework within which many previous results are easily
derived.

Introduction

We develop an approach to central limit theorems for dependent as well as
independent random variables based on ideas from dynamical systems and
information theory, and we obtain new results in statistical mechanics and
probability theory using it. The approach is motivated in part by Jona-Lasinio's
study of the relation between renormalization group methods in statistical
mechanics and the classical limit theorems of probability [JoL], and in part by
Linnik's information-theoretic proof of the central limit theorem [Lin59]. In
renormalization group analysis, one considers block summation of random
variables as an iterative dynamics on the state space of a dynamical system whose
states are certain arrays of random variables [Gaw]. What we show here is that
entropy often serves as a good Lyapunov functional for the convergence to a
Gaussian fixed point under this dynamics. This results in a clean implementation
of Linnik's ideas in a broad setting with significant additional consequences.

Our results are based on a detailed study of entropy production in the process
of summing independent random variables; or equivalently, the entropy produc-
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tion of convolution. We then control entropy production in the dependent case by
using strict lower bounds from our study of the independent case to absorb the
effects of dependence.

We first describe our results and methods, postponing to the end of this
introduction most discussion of the relation between our work here and work in
the existing literature. We mention now however that the literature is vast, and that
we draw on it in many places.

The paper is written in three sections. The first contains our results on entropy
production in the independent case. Careful definitions are to be found there, but
recall that the entropy S(X) of a random variable X with density ρ is given by S(X)
= S(ρ)= — $ρlnρ(x)dx. This is always well defined when X has finite variance

provided we allow — oo as a possible value. For random variables X of unit
variance it is well known that S(X) ^ S(G), where G is a unit Gaussian random
variable, and there is equality only when X itself is a unit Gaussian random
variable.

This upper bound on the entropy is especially interesting in conjunction with
the following entropy production inequality conjectured by Shannon [ShWe] and
proved by Stam [Sta]: Suppose X± and X2 are independent random variables
with zero mean and unit variance such that S(Xί)9 S(X2)> — oo. Then

S(λX1+(l-λ2)l/2X2)-λ2S(Xί)-(l-λ2)S(X2)^Q VO<A<1 (0.1)

and there is equality exactly when both X^ and X2 are unit Gaussian random
variables.

Note that the random variable on the left side of this inequality again has zero
mean and unit variance.

The above statement about cases of equality in (0.1) provides a characterization
of unit Gaussian distributions. Our main technical tool is a stability result for the
Shannon-Stam inequality; we show that if the entropy difference in (0.1) is close to
zero, then both X1 and X2 are close to being unit Gaussian random variables in
the relative entropy sense: The relative entropy D(ρ) of a density ρ on Rn is defined
by

_gj Lg_
whereg(x) always denotes (2π)~w/2έΓ*2/2. Since \\ρ-g\\2ιφntdnx}^2D(ρ) [Kul, Csi],
the relative entropy provides a strong measure of the distance from ρ to g.

To state and discuss our stability result more precisely, we first recall that for an
R" valued random variable X with density ρ, the Fisher information of X, I(X\ is
given by

The main result of the first section, contained in Theorem 1.2, is the following:
Suppose X^ and X2 are independent centered random variables with unit variance
such that

(0.2)

Suppose also that there is a function ψ decreasing to zero at infinity so that for all

(0.3)
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for ; = 1,2. Suppose also that the λ in (0.1) satisfies λ^a for some α>0 and

Then there is a δε > 0 depending only on 70, \p9 a and ε so that the entropy difference
in (0.1) is at least δε.

To obtain this result, we first prove such a lower bound for random variables
which are regularized by adding independent Gaussian variables to them and then
renormalizing. Specifically, let G^ and G2 be centered unit Gaussian random
variables independent of one another as well as X± and X2. Fix t >0 and define
reguarlized random variables Xί and X2 by

Xj^e-'Xj + V-e-^Gj 7 = 1,2. (0.4)

We are able to utilize the stability result for regularized random variables, even
though the bounds it provides would appear to depend on the regularization, on
account of the following monotonicity result contained in Theorem 1.1; For any

S(λXi +(1 -λ2γl2X2)-λ2S(Xl)-(\ -λ2)S(X2)

^S(λX, +(1 - λ2)il2X2)~λ2S(Xί)-(l - λ2)S(X2) (0.5)

whenever the top line is well defined; moreover, there is equality just when Xl and
X2 are unit Gaussian random variables. (By increasing ί in (0.4) to infinity, it is easy
to deduce from (0.5) the strict form of Shannon's inequality.)

The inequality (0.5) is what allows us to transfer lower bounds on the entropy
production for regularized random variables back to the original random
variables.

The point of the Gaussian regularization is not so much the smoothing of the
densities it accomplishes - (0.2) already assures us more smoothness than we need,
and can be relaxed - but the fact that the densities ρ of the regularized random
variables satisfy

where the constant A depends only on the variable t in (0.4). This enables us to
show that the closure in L^R^l +x2)dnx) of the regularized densities of centered
unit variance random variables satisfying (0.3) is a compact set on which the
entropy is a continuous function. Moreover, the entropy difference in (0.1)
considered as a function of a pair of densities is continuous on the product of this
space with itself. From here, it is easy to establish Theorem 1.2 once one has (0.5).

To prove (0.5) we first prove a variant of Shannon's inequality for the Fisher
information, and then derive our desired entropy inequalities form these
information inequalities using a relation between entropy and information arising
through the action of the adjoint Ornstein-Uhlenbeck semigroup on probability
densities. This is explained and motivated at the beginning of the first section. Here
we note only that the reasoning behind our proofs of these inequalities consists
almost exclusively of convexity and symmetry arguments. It is useful to introduce
the Fisher information because, while it is closely related to the entropy, it has
better convexity properties in a sense that we will make clear.

In the second section of the paper, we prove several new central limit theorems.
Because of our intended applications, and consistently with our renormalization
group motivation, we consider rectangular arrays of R" valued random variables
{Xnj\n,jeN}. Let 2£n denote the discrete stochastic process {XnJ\jeN}. Block
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summation generates the rectangular array out of #\ by iteration of the map
taking 3£n to 3£n+ί which is given by

H, 2j

Let 2£n be the stochastic process parameterized by N in which the /h random
variable is Xn>j after centering and normalization. Finally, let ^ denote the
stochastic process {Gyly'eN} consisting of independent centered n-dimensional
Gaussian variables with unit variance. We will prove theorems asserting that

lim^π = ̂  (0.6)
n-*oo

in various topologies. We remark right away that our applications will not be
restricted to one dimensional statistical mechanical systems: the parameter j
above can run over some ordering - possibly changing with n - of the points in a
higher dimensional lattice.

To prove a central limit theorem for independent random variables, we need
mainly to be able to apply Theorem 1.2 uniformly in all block summations. It
already follows from the results of the first section that i f I ( Z l t j ) ^ I Q for all 7, then
I(ZHj)£I0 for all n and 7. We must also show such a result for the uniform
concentration condition (0.3). This is done in Theorem 2.1. It gives conditions
under which uniform concentration is propagated by the block summation
dynamics, so to speak; and it amounts to an effective renormalization group
approach to verifying a Lindeberg condition. The result is applicable even for some
fairly strongly dependent variables as well as independent variables. In the case of
independent variables, it is then easy to give conditions on 2£ ± so that with
sn = mf{S(ZnJ)\jeN},

and this leads, under conditions ensuring that s^ > — oo, to lim sw = S(g). Hence
n-»oo

(0.6) holds with all the marginal distributions converging in the relative entropy
sense.

This may seem like a roundabout way of exploiting the strict entropy increase
provided the Shannon-Stam inequality. After all, (0.1) implies

S(2-"12 Y X

is strictly monotone increasing in n for an i.i.d. sequence of centered random
variables with unit variance and finite entropy less than S(g). But then even
knowing the usual central limit theorem, one cannot conclude from this that it
increases all the way to S(g) because the entropy is only a weakly upper
semicontinuous function on Ll(Rn,dnx).

The remaining results concern dependent random variables, but with conver-
gence in the usual distributional sense. Think of each Xjtn as representing a block
sum of random variables from some fixed underlying spin system. Let the Zn j be
defined as above. When the blocks become large in such a setting, the block
variables XnJ and XHfk are often only weakly dependent. Consider the entropy
difference

,.))/2 (0.7)
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to which Theorem 1.2 does not apply on account of the dependence, however
weak. But let Yn,2j- 1 denote a copy of Zπ 2j - 1 which is independent of everything
else. Then since clearly S(ZW)2./-ι) = S(Yn,2j-ι)> we can bound (0.7) from below by

- \S((Yn,2j- i + Zn,2j)/]2)-S((Xm92J- t +Xw,2j)/σ(Xn,2j_ , + XΛ92J))\ . (0.8)

Suppose, for convenience, that for large n all the random variables in 9Cn have
nearly the same variance so that l/J/2 would be the correct value of λ for
application of Theorem 1.2 in the independent case. Then we can show that if the
random variables in 9£n are only weakly dependent for large n, the second term
above tends to zero with increasing n. The notion of "weak dependence" here is
fairly mild. Then using Theorem 1.2 we can show that the entropy increase given
by the first term is bounded below as long as Zw 2j- 1 and Zn, 2j are n°t both close to
being unit Gaussians. Thus for large n, the entropy increase of adding up
independent blocks dominates the entropy loss produced by then coupling them.
Now one obtains central limit theorems essentially as in the independent case.

However, since we want central limit theorems for discrete random variables,
such as Ising spins, which do not posses a density, we first make a Gaussian
regularization of our random variables, and then employ the strategy just
described. But it is easy to see that in case the regularized random variables
converge to Gaussians in the relative entropy sense for every regularization, then
the original variables converge to these Gaussians in distribution. By giving up
some strength of the sense of convergence, we can extend our treatment to random
variables for which the entropy is not finite. In this way we obtain Theorems 2.3,
2.4 and 2.5. The last two results do not refer to entropy in either their hypotheses or
conclusions. Thus although we prove them here using entropy inequalities, they
could be provable by other methods. However, their particular formulations,
which turn out to be quite useful, were suggested by our proof of Theorem 2.2.
Moreover, we learn in our approach not only that the Gaussian limit holds, but
that entropy works as a Lyapunov functional governing convergence to this limit
in statistical mechanical settings.

In the third section we apply our central limit theorem for sums of dependent
random variables to prove new central limit theorems for extensive variables in a
number of lattice spin systems. There is a large literature on this subject. We refer in
particular to [Dec, GaJl, GaMl, Ne80 and Ne83]; but see the bibliographies of
these papers as well.

Our method is essentially non-perturbative so that we only need to control a
few correlation functions. In many cases finite susceptibility, i.e. summability of the
truncated two point function, suffices, as in Newman's [Ne80] result for
translation invariant FKG systems. However we do not always need the FKG
inequalities. We can treat several multicomponent systems for which, due to the
lack of an ordering on the spin space, there is no FKG inequality. One aspect
setting our work apart from other non-perturbative approaches is that we can
often avoid any translation invariance requirement - even stochastic - so that our
method should be useful for proving central limit theorems for certain random field
systems. Also, our method applies in essentially the same way to other extensive
variables such as energy, for example, and joint distributions of extensive variables
can be handled as well.
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We shall only demonstrate the utility of our approach by applying it in a
number of cases where existing results cannot be used, but shall not attempt an
exhaustive catalog of possible applications. Many of the most interesting
applications may be to percolation and related phenomena; that is, to problems
other than those arising in spin systems as such. Indeed, we consider the fact that
entropy is often a good Lyaponov functional for block summation to be our main
result, and not so much the particular limit theorems we prove here for specifip
classes of spin systems.

We now briefly discuss some related work. The Shannon-Stam inequality
occurs most frequently in the electrical engineering literature where it is simply
called Shannon's entropy power inequality, and - as the name suggests - is usually
written in another form. For the equivalence, see Lieb [Li75] who rediscovered it
and proposed that it might be useful in statistical mechanics.

While no stability result for Shannon's inequality appears to have been known,
stability results for other characterizations of the Gauss law, such as Cramer's
[Cra], have been extensively studied. See the papers of Sapagov [Sap] and
Shimizu [Shi82] in particular.

As noted above, (0.1) was first proved by Stam [Sta] who used the Fisher
information and derived entropy inequalities from information inequalities as we
do here. However, he used a quite different argument based on the relation
between entropy and Fisher information arising through the action of the heat
semigroup on probability densities. Our use of the Ornstein-Uhlenbeck semigroup
has the distinct advantage of leading to the monotonicity inequality (0.5) which did
not occur in previous work.

Lieb used an entirely different method to prove the Shannon-Stam inequality.
His is the only proof not involving Fisher information, but it does not settle the
cases of equality.

The relation between entropy and information arising from the Ornstein-
Uhlenbeck semigroup is the integral identity of Lemma 1.2. It was first noted by
Bakry and Emery [BaEm], and was rediscovered in an equivalent form by Barron
[Bar] in work we discuss below.

In proving Theorem 2.1, we have drawn on some ideas of Brown who proved a
related result for i.i.d. variables [Bro].

The use of entropy and information in the proof of central limit theorems goes
back to the fundamental papers of Linnik [Lin59, LinόO]. His results differ from
ours in many ways, two of which we point out: First, he only considers
independent random variables, and he only obtains convergence in the usual
distributional sense, albeit under the general Lindeberg condition. He does not
obtain the much stronger relative entropy convergence except, as an intermediate
step, for Gaussian regularizations of bounded random variables. Second, his
estimates only yield entropy increase when the variance of one random variable is
sufficiently small compared to that of the other. This makes his method unsuitable
for block summation where the variances are comparable.

Barron [Bar] was the first to prove a central limit theorem with convergence in
the relative entropy sense. He treated the case of independent identically
distributed random variables building on previous work of Brown [Bro]. Though
our approach is different, we have drawn on his ideas in several of our lemmas.
Actually, part of Barron's and Brown's work overlaps with the earlier work of
Shimizu [Shi74] who used Fisher information to prove the central limit theorem in
the i.i.d. case.
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Finally, the relation between entropy and Fisher information has been used in a
statistical mechanical context by McKean [McK] who used it to control the
approach to equilibrium in a caricature of the Boltzman equation. For a recent
related entropy production inequality, see Desvilettes [Des]. There is a consider-
able literature in which entropy is used to study the approach to equilibrium in
such continuous time dynamical settings; see in particular [Hoi] and [GPV]. The
fact that our dynamics is intrinsically discrete, however, requires some differences
in the approach.

For further discussion of information theoretic inequalities and their uses, see
the paper of Dembo [Dem] and the book of Deuschel and Stroock [DeSt].

We would like to add that we have drawn useful inspiration from Elliott Lieb's
work on extremals for Gaussian integral operators [Li89]. For an approach to
proving the sharp Sobolev and related inequalities using a discrete dynamics, see
[CaLo]. Also, monotonicity bounds depending on localization and smoothness
are the main tool in modern scattering theory [SiSol,2]. This approach was
developed in scattering theory over a long time with Enss [Ens] and Mourre
[Mou] making important contributions. In particular the use of strict monotonic-
ity with respect to the free evolution to absorb the effects of interaction is due to
Mourre.

1. Entropy Production by Convolution

This section of the paper contains our lower bounds on the entropy produced
when independent random variables are summed. Since we draw on a wide variety
of facts concerning entropy, Fisher information, the Ornstein-Uhlenbeck semi-
group and its Lebesgue adjoint, we begin by providing some background.

Let X be an RΛ valued random variable on some probability space. Let μ denote
the law of X. We say that X has the density ρ in case dμ(x) = ρ(x)dx. Functions
arising this way are called densities. We denote the mean of X by m(X) and the
variance matrix of X by [σ(X)] . Of course [σ(X)] 2 = E(X- m(X)) (X - m(X))τ. We
say that X has unit variance in case [σ(X)] = lnxn, the n x n identity matrix. We
denote the trace of [σ(JQ]2 by σ2(X). If F is any functional of X depending only on
μ or ρ, we denote its value by F(X\ F(μ) or F(ρ) according to our convenience.
Terminology will be adapted in the same way.
Throughout this paper gt denotes the centered Gaussian density with variance t:

/2e-χ2/2t. (1.1)

+ J x2ρ(x)d"x\ - D(ρ) .
n /

For densities ρ of finite variance, we define the entropy of ρ, S(ρ), by

S(C)=ifnln(2π)+ J x2ρ(x)d"x} -D(ρ) = S(g)-D(ρ). (1.3)
V R" )

We shall simply write g in place of gx.
The relative entropy of ρ with respect to g, D(ρ), is defined by

By Jensen's inequality, D(ρ)^0 with equality just when ρ = g.
When ρ|lnρ| is integrable,
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Clearly if ρ has zero mean and unit variance, — oo ̂  S(ρ) ̂  S(g), and the upper
bound is saturated just when ρ = g. Moreover, when ρ has zero mean and unit
variance, it is clear that

D(ρ) = S(g)-S(ρ). (1.4)

The following representation of D(ρ) due to Donsker and Varadhan [DoVa]
plainly displays the strict convexity and weak lower semicontinuity properties of
the relative entropy:

φ(x)ρ(x)dnx-\n($ e^g(x)dnx\ \ φ e Vb(Rn)\ . (1.5)

The relative entropy is one measure of the distance between ρ and g; another
measure of this distance which we shall use is given by the relative Fisher
information.

For a centered density ρ with σ2(ρ) = n and j/ρeff^R"), the Hubert space of
functions with square integrable distributional derivative, we define the Fisher
information J(ρ) by

(1.6)
R"

and we define the relative Fisher information of ρ, J(ρ), by

2

dnx. (1.7)

Clearly, J(ρ)^0 with equality just when ρ = g; note that ( F+ — 1 is the "lowering

operator" for the harmonic oscillator hamiltonian which has ]/g(x) for its ground
state. Since σ2(ρ) = n and m(ρ) = 0, J(ρ) = /(ρ) — n. Note that - at least in the presence
of some mild regularity - one can write J(ρ)= J |Flnρ(x)- Vlng(x)\2ρ(x)dnx.

Rn

We shall also have use for the scaling properties of entropy and information:
Since for any α>0, aX has the density (l/α)ρ(x/α),

I(aX)=^I(X). (1.8)

More generally, in case A is any non-degenerate n x n matrix,

S(AX) = S(X) + In |det (A)\ . (1 .9)

Throughout this paper, Gl9 G2, G3, ... will denote independent random
variables with density g which are moreover independent of any other random
variables appearing in any formulas containing them.

If X± and X2 are independent random variables with densities ρ^ and ρ2

respectively, and if 0</1<1, we denote the density of (λX±+(\— λ2)1/2X2) by
£ι *λί?2 Clearly ρ^ *λρ2 is the marginal of a product distribution: Define new
variables u and v by u = λx + (l —λ2)1/2y and υ= — (1 — λ2)ί/2x + λy. Then ρ^ *λρ2

= ί Qι(x)Q2(y)dnv so that

ίi *Ae2(«)= ί Q,(λu-(\ -A2)1/2»)ρ2((l -λψ2u + to)f (1.10)
Rn
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The relation between entropy and information we use arises through the action
on densities of the adjoint Ornstein-Uhlenbeck semigroup {P*|ί^0} - to be
defined below - and can be expressed roughly as

(1.11)

[σ(P*ρ)]2 = / M X M , (1.12)
and

limP*ρ = g (1.13)
ί->oo

for centered densities ρ with unit variance. These facts were used by Bakry and
Emery in their proof of Gross's logarithmic Sobolev inequality - which is
equivalent to the entropy-information inequality (1.39) below.

Integration of (1.11) shall be used to translate sharp inequalities for J(ρ) into
sharp inequalities for S(ρ). Since J(ρ) has a simple quadratic nature, it is easy to
produce sharp inequalities governing the reduction in Fisher information when
random variables are summed, while direct proofs of corresponding inequalities
for entropy increase may be formidably difficult.

To fill in some necessary details, let / be a bounded measurable function on R.
We define an operator Pί5 ί>0, by

Ptf(x) = Ef(e~tx + (l-e-2t)1/2G). (1.14)

It is easy to see that Pt(Psf)(x) = Ps+tf(x), and that each Pt extends to a
contraction on each Z/(R", g(x)d"x) for l^p^oo. {Pf|ί^0} is the Ornstein-
Uhlenbeck semigroup and is strongly continuous on each Lp(Rn, g(x)dnx) for
1 ̂ p< oo, as well as on ^o(^n)? the space of continuous functions on R" which
vanish at infinity.

The Lebesgue adjoint to this semigroup is defined as usual. For any
fel}(Rn,dnx) and f >0, there is a unique function P*feLl(Rn,dnx) so that

$P*f(x)φ(x)dnx= f f(x)Ptφ(x)d"x VφeL°°(Rw). (1.15)
R" R"

Clearly {Pf \ £^0} is a contraction semigroup on Ll(Rn

9d
nx) preserving positivity

and integrals. Two useful formulas for P*/(x) are easily derived from (1.14) and
(1.15):

P*/(x) = £eW(x-(l -e-201/2G))) (1.16)
and

(1.17)
RM

In particular, if X is a random variable with density ρ,

P*ρ(x) = £g(1_β-2t)1/2(x-e-ίJί). (1.18)

Note that P*ρ is the density of έΓ'X + ίl -e~2ί)1/2G. Also, we can use (1.18) to
define Pfμ for any Borel probability measure μ by taking for X any random
variable with this law. The estimates in the following lemma are simple Ornstein-
Uhlenbeck variants of heat semigroup estimates which can be found in [Bar] and
[Bro].

Lemma 1.1. Suppose ρ is a density of the form ρ = Pfμ for some ί > 0 and some Borel
probability measure μ with zero mean and unit variance. Then there exist finite
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constants At, Bt, Cm>f depending only on the dimension n and the indicated parameters
such that

<*), (1.20)
and

ρ(x) ^Cm,(P*ρ(x) Vm^O (1.21)

uniformly in x e R".

Proof. Let X be a random variable with law μ. Since X has unit variance, Pr{\X\

^]/2n}^l/2. Also for any ί>s>0 and any x and j; in R with y2^2n9 gt(x
^As tt(x)9 where AM depends only on 5, t and n. From (1.18) we then have

for any 0<s<(l-<Γ2ί)1/2; taking s = (l-<Γ<)1/2 yields (1.19).
Note that (1.20) is equivalent to \^ρ(x)\2^4BtρPfρ(x). From (1.18) it is easy to

see that ρ is continuously differentiable with

Thus by Schwarz's inequality

φρWf^l-e-^Γ^x-e-'Xfg2,^^

But ((1— e~2t)l/2)~ly2g2ι-e-2t)ι/2(y)/g2

l-e-4t}ι/2(y) is clearly bounded above by a
constant depending only on ί>0.

The final set of inequalities follow in a similar, but even simpler, fashion from
the fact that for any s>0,

dm

where Hm is the mth Hermite polynomial.

The next result, under additional regularity assumptions, is due to Bakry and
Emery. See [BaEm] or [DeSt]. An equivalent result in the general case can be
found in [Bar], but that proof doesn't take full advantage of the available
convexity, and the details are relegated to an inaccessable technical report.

Lemma 1.2. Suppose ρ is a centered density mth σ2(ρ) = n. Then the map ίh->S(P*ρ)
is continuous and monotone increasing on [0, GO) mth

limS(P*ρ) = %). (1.22)
ί-» oo

Furthermore, when S(ρ)> — oo, t\-+S(P?ρ) is continuously differentiable on (0, oo)
and

S(P*ρ) = S(ρ)+μ(Pfρ)ds. (1.23)

In particular,

D(ρ)=]j(P*ρ)dt. (1.24)
o
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Proof. Let ΦQ(φ) denote J φρdnx-\n( J eφgdnx\ Then by (1.15) we have
R« VR" /

ΦP*ρ(φ) = ΦQ(Ptφ)- (Wj *V>Λ -Inf f ^gd-xYj (1.25)
V \Rn / \Rn //

for any bounded continuous function φ. Notice that the right side of the above
inequality is unchanged if we add a constant to φ; we may therefore assume that φ
is non-negative. In that case,

J eφgdnx^ J ePtφgdnx,
R"

since Pt is a contraction on each Lm(Rn, g(x)dnx). It then follows from (1.25) that

and thus since P^R") C #b(R
M) it follows from (1.5) that D(P*ρ) ̂  D(ρ). This shows

that under P* the relative entropy is monotone decreasing, which by (1.4) means
that the entropy itself is monotone increasing.

Similarly, to establish the continuity of S(Pfρ) we first suppose that D(ρ)< oo.
To establish continuity at t = 0, it suffices to show that for any ε > 0 there is a t > 0
such that D(Pfρ)^D(ρ) — ε. Pick any continuous bounded function φ such that

for any ί>0 such that ||P?ρ — ρ||Li(R«,d«;c)^ε/2||</>||oo BY the strong continuity of
{P* 1 1 ̂  0}, such a t exists.

Next we note that since ρh->D(ρ) is weakly lower semicontinuous, and
{P* I ί^O} is strongly continuous,

f-»0

so that in case S(ρ)=?— oo, so does limS(Pfρ).
ί-^O

This establishes continuity of fh-»S(Pf*ρ) at f = 0; clearly the same argument
shows that it is continuous at all t > 0 also. In fact, the second part is unnecessary
for £>0 since by Lemma 1.1 it is clear that S(P*ρ)> — oo.

To establish (1.22), note that by Jensen's inequality and (1.9),

= S(g)-ln(l-β'2ί)1/2. (1.26)

We now turn to the final assertions of the lemma, so we suppose accordingly
that S(ρ)> — oo. By the previous lemma, Pfρ(x) is smooth in x with all of its
derivatives vanishing at infinity for all t >0. Using the formula (1.16) and Taylor's
expansion with remainder to second order, it is easy to see that ίh-»P*ρ is strongly
differentiable in L^RVx), and that

where

It is now a straightforward matter to show, using the regularity results of
Lemma 1.1, that ίι->S(Pt*ρ) is continuously differentiable on (0, oo), and that (1.23)
and (1.24) hold.
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Lemma 1.3. Let Xί9 X2, ...,XN be independent random variables with σ2(Xj) = n,
N

j = l,...,/y. LetQ<λι, λ29...,λN<l satisfy Σ Λj = l. Then
7=1

(1.27)

There is equality in (1.27) exactly when each Xj has the same Gaussian density. If all
the random variables are centered as well,

=l / 7=1

there is equality in (1.28) exactly when each Xj has the density g.

Remarks. The inequality (1.27) is due to Stam [Sta]; his proof was later simplified
by Blachman [Bla]. The proof sketched here is given in detail in [Car].

Proof. The assertions about J clearly follow from those about /. Also it suffices to
explicitly treat the case JV = 2 since the remaining cases follow by an obvious
induction argument. We will only sketch a proof of this assertion since the details
of the following proof can be found in [Car]. Suppose X1 and X2 have the densities
Qi and ρ2 respectively.

The inequality

Σ ί ~-(ίl/(*,y)l2«fy\1/2 fχ£ Σ ί
= 1 R" \VXj \R» / / j = 1 R2n

-f(χ,y) dnxdny

holds for all /e H ί(R2n) where the derivatives are taken in the distributional sense,
and when there is equality, |/(x, y)| = \fι(x)\ \f2(y)\ for some H1(Rn) functions /x and
/2. We apply this lemma by taking f(x,y) = ρl/2(λlx + λ2y)ρl/2( — λ2x + λiy) and
immediately obtain (1.27) on account of (1.10). There is equality only when

for some densities ρ3 and ρ4. This implies [Kac, Ski, Car] that ρ1 and ρ2 are
Gaussian with the same variance.

Theorem 1.1. Let Xl9 X2, ...,XN be independent random variables with σ2(Xj) = n,

j = l,...,N. LetQ<λί, λ2, ...,λN<l satisfy X λj = l. Then
7=1

(1.29)
7=1 / 7=1

Equality holds in (1.29) exactly when each Xj has the same Gaussian density.
Furthermore Jor any f >0, define X^ j= 1,2, ...,#, by Xj = e~tXj + (\ -e~2tγ/2Gj.
τhen

s Σ *.&- Σ tfs(Xj)£s Σ ΛjXj- Σ tfs&j). (i.so)
\7=1 / 7=1 \7=1 / 7=1

Equality holds in (1.30) exactly when each Xj has the same Gaussian density.

Remarks. Again, the inequality (1.29) is due to Stam [Sta] who used a heat
semigroup approach different from our Ornstein-Uhlenbeck semigroup approach
which leads directly to the stronger, and for us crucial, (1.30).
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Proof. If any Xj fails to have a density, there is nothing to prove, so we may
N

assume that £ λjXj has the density ρ. Notice that for all s>0, the density of
N 7=1

Σ λj{e~sXj+(l -e~2sY/2Gj) is P*ρ. Therefore by Lemma 1.2, then Lemma 1.3,
7=1

and then Lemma 1.2 again,

= μ(.Σ ^-s

^ Σ A,φ((e-s*; + (l-e-25)1/2G;))^ + s( Σ

7=1 \7=1

By the conditions for equality in Lemma 1.3, there is equality here exactly when
each e~sXj + (ί — e~2s)1/2G7 has the density g, and this happens exactly when each
Xj itself has the density g. This establishes (1.30) and the statement concerning
equality in it.

Thus unless ρ = g, the left side of (1 .30) - which implicitly depends on t through
the definition of the random variables Xj - is strictly decreasing as t increases. By
the first remark in this proof and (1.22), the limiting value is 0. This establishes
(1.29) and the statement concerning equality in it.

Throughout the rest of the paper, ψ will always denote a positive continuous
strictly decreasing function on (0, oo) with lim ψ(R) = Q. For any density ρ with

Λ->oo

finite variance, ψρ will always denote the function

Vρ(R)= f x2ρ(x)dnx. (1.31)
w=*

We adapt the notation to probability measures μ and random variables X as usual
and note that for any random variable X we can write

2. (1.32)

Let ^(R") denote the set of Borel probability measures on R".
Given a function ψ as above and ί>0 we define JΓφjf by

2(μ) = n, m(μ) = 0, φ^φ}cl,

where the superscript cl denotes the closure in Ll(R"9(ί +x2)dnx). We equip JΓVjί

with the relative topology. We will always assume that ψ is such that Jfφjί is not
empty. Finally we denote by 3ϋt the set of densities ρ which are of the form Pfμ for
some μe^(Rn) which is centered with unit variance. This too is a subset of
L^R^l +x2)dnx), and we equip it with the relative topology.

Lemma 1.4. Let ψ and t>0beas above be given. Jf^ f is compact. Moreover, for any
0<λ<l9the maps ρι— >S(ρ) and (ρl3 ρ2)ι— >ρι *Λ £?2> respectively from 38 1 to R and Jfv>ί

x Jf^ to 8&v are continuous.

Proof. Clearly JΓv>ί is bounded in L^R^l +x2)dnx). Given ε>0, choose R so that
R ~2 4- ιp(R)<ε/3; clearly then for all

I ρ(x)(l+x2)dx^ε/3. (1.33)
= R
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But by Lemma 1.1, JΓv>ί is uniformly equicontinuous on {Jxl^.R}. Thus by the
Arzela-Ascoli theorem we can select a finite ε/6(l + R2) net in ^({|x|^£}) from
among the restrictions of functions in j f V f f to {|x|^R}. This procedure clearly
leads to a finite ε net in Jfv>f.

Next, suppose lim ρm = ρinJ*ί. By Lemma lΛ9\]Άρ(x)\^At(l+x2)foraΆρe3lt
m-*oo

with At depending only on ί. Thus

\^2At J |ρ(x) - ρw(x)| (1 + x2)Λ + J ρjlnρ(x)-lnρw(x)|d"x,

and the first term on the right clearly vanishes as m increases. Suppose the second
term on the right does not. Then there is an ε > 0 so that, passing to a subsequence if
need be,

Jρm(x)|lnρ(jc)-lnρm(x)|d"jc^ε Vm (1.34)
R"

and
lim ρm(x) = ρ(x) a.e..

But ρm(x) |lnρ(x) — lnρm(x)| ̂ 2At(ί + x2)ρm(x), and the latter sequence of functions
converges in !}(Rn

9d
nx) and is therefore uniformly integrable, and thus the first

sequence is also. This together with the almost everywhere convergence above
implies that

lim f ρjx)|lnρm(x)-lnρ(x)μwx = 0.
m-»oo Rn

This contradicts the existence of a subsequence satisfying (1.34), and so ρi— >S(ρ) is
continuous on &t.

Finally, ρ1*λρ2-ρ3* ; ιρ4 = (ρ1-ρ3)*;ιρ2 + ρ3*;ι(ρ2-ρ4). Clearly we then have
lltei -£3) *λQ2\\Li(R»,d"X)^ \\Qι -Q3\\Li(κ»,d"Xy Also

f x2\Qι -Q*\ **Q2(x)dnx=-^ — Ϊ2ΪΪ/2 ί IβiW-βsWI \
Rn A(l —A ) Rn

2
~ i

A similar argument applied to the other terms yields the result.

Theorem 1.2. Let X± and X2 be independent random variables with zero mean and
σ2(Xί) = σ2(X2) = n. Suppose

Let ψbea given function on [0, oo) which decreases to zero at infinity such that ψXl,
ψx2 ̂  ψ. Also let some number a satisfying 0 < a<\be given. Suppose for some ε > 0,

S(Xί)^S(g)-ε. (1.35)

Then there is a δε > 0 depending only on 70, ψ, a and ε so that for any λ with

a^λ2^l-a (1.36)

such that [σ(λXι+(i-λ2)1/2X2)'] = Inχ0 we have

ι +(1 -λ2)ll2X2)-λ2S(XJ-(l -λ2)S(X2)^δε. (1.37)
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Proof. Suppose first that the densities Q± and ρ2 of Xl and X2 both belong to jfVtt

for some f>0.
By Lemma 1 .4, the subset of jfV f f consisting of densities ρ with D(ρ) ̂  ε is closed

and hence compact. Select a A! satisfying (1.36); this determines A2. Thus with A!
fixed S(A1Z1+A2^Γ2)-A?S(Z1)~AiS(^2) depends only on βl and ρ2. We will
denote it by 4Al(ρl5ρ2). By the continuity assertions of Lemma 1.4 it is a
continuous function on JΓφ>ί x JΓφ)ί. Therefore

is attained at some pair (ρAl,ρA2). We then define

Since ρt is not g on account of its positive relative entropy, δλl > 0 by the conditions
for equality in Theorem 1.1.

The result now follows once we have shown that Ah-κ5(A) is continuous, for then
inf{(5(A)|α<A2<l — a] is attained at some <5(Aα)>0; this is the lower bound δε

which we seek.
To establish this continuity, it clearly suffices to show that Ah-»S(A-XΊ

+ (1— A2)1/2Jf2) is continuous. This is a simple consequence of (1.9), Jensen's
inequality, and Theorem 1.1.

To treat the general case we first reguarlize as explained in the introduction,
which amounts to applying P* to the densities ρ1 and ρ2. Clearly

/(P*ρι), I(

Next, we have the elementary estimate

(1.38)

Hence changing φ in a way that depends only on φ, the regularized densities Pfρ^
and Pfρ2 belong to jΓV f f with the modified t/λ Finally, it follows from (1.38) and
Lemma 1.2 that for t sufficiently small we have

Thus the first part of the argument above applies uniformly to all regularized
densities arising this way. By (1.30), the lower bound on the entropy production for
the regularized densities is such that with it in place as δε, (1.37) is satisfied for the
original unregularized random variables.

We shall make use of one more entropy and information inequality in what
follows, namely:

D(X)^J(X) (1.39)

for all centered random variables X with unit variance. The inequality (1.39), due
to Stam [Sta], is equivalent with Gross's logarithmic Sobolev inequality; see
[Car]. To prove it, note that by (1.24) and (1.28),

D(X)= ] ^6^X^(1 -e~2t)1/2G)dt^ ]e~2tJ(X)dt.
o o
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2. Entropy and Central Limit Theorems

We begin by establishing conditions under which block summation dynamics
propagates uniform concentration in the sense discussed in the introduction. This
result, together with the results of the last section enable us to easily prove several
central limit theorems.

Let {Xj I j eN} be a sequence of independent R" valued random variables with
non-degenerate co variance. We define two rectangular arrays {Yn t j \ n, jeN} and
{ZnJ\n,jeN} in terms of {JΓj l jeN} inductively as follows:

Y1J = Xj-m(Xj) Y/eN, (2.1)

r.j=r.-ι.2,-ι + r.-ι.2, πj6N,n>ι, (2.2)
ZnJ=[_σ(Xn^γiγnJ Vn, jeN. (2.3)

It will be useful to introduce the notation

and σ(nJ) = σ(Xn>j). (2.4)

For each n, let tyn denote the sequence of independent random variables
{ Yn j I j E N}, and consider each %/n as a process. In the same way, we introduce 2£n.
Finally, let ^ denote {G l eN}, where the G/s are independent mean zero,
variance one random variables. Our object is to establish conditions under which

limar^Sf (2.5)
n-»oo

in the sense of convergence of laws (as stochastic processes) in various topologies.
The following result is formulated for real valued random variables, but it may be
applied component by component for Rd valued random variables. We preface the
theorem with a helpful observation.

Let Zί and Z2 be independent mean zero, variance one random variables, and
recall the notation ψz(R) = El{\z\^R}Z

2. Then since

^ for all

This allows us to restrict our attention to sequences {Xj \ j e N} of even random
variables in proving the next theorem because if {X'j \ j e N} is an independent copy
of {Jf ljeN}, each Xj—X'j is even.

Theorem 2.1. Let { X j \ j e N } be a sequence of real valued random variables and
derive $/n and 3fn from it as above. Suppose there is a positive continuous function ψ0

on (0, oo ) decreasing to zero so that for all R>Q and all jeN,

Suppose also that for some α>0, σ2(l,7*)^ 1 for all j'eN.
For L >0, define φL by φL(z) = z for |z|^L, and φ(z) = Lsgn(z) for |z|^L. Put

χL(z) = z — φL(z). We suppose further that

nj9 Yw,k) (2.6)

and that £ n .
lim X cov(ZΛtj,ZIIffc) = 0 (2.7)
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uniformly in /ceN. Finally suppose that

*(p,k) (2.8)

for all k, n and all p>n and all L> 1, where C is a constant depending only on a.
Then there exists a function φ on (0, oo) decreasing to 0 so that

(2.9)

for all H, 'eN and all R>Q.

Remarks. In the independent case, the conditions (2.6) and (2.7) are trivially
satisfied. To see that (2.8) is automatically satisfied in this case as well, first recall
that we may assume each Yn j is even so that EφL(Yw>J) = 0. Then

2p-n \ 4 2P-"

Σ (PLσ(n,k2P-n + f)(Yn,k2P-n + j) ) = Σ ^9Lσ(n,k2P'n + f)(^n,k2P-n + j)

2p-n

Σ

More generally, it is easy to see that since φL and χL are both monotone, the
condition (2.6) is satisfied when the underlying random variables satisfy the FKG
inequalities. For background on these inequalities and the type of argument
involved see [Sim, Ne80 and Ne83]. Condition (2.7) will often be easy to check in
statistical mechanical applications as a consequence of finite "susceptibility."
Condition (2.8) can be checked using the FKG inequalities and decay of the two
point correlation function. All of this is discussed in the next section. In fact, it will
be clear from the proof that (2.8) can be replaced by weaker conditions.

Proof. By the remark preceding the theorem, it suffices to treat the case in which all
the YΛtj are even. Choose any ε>0. Then choose n sufficiently large that

Σ EZpjZptk — l^ε/2 for all p>n. By symmetry, it suffices to establish the
j= i
conclusion for 7 = 1. Let T be a positive number to be chosen later. Define Uj
= <Pτ«nMJ and Vj= YnJ- Uj. Also define AR = {| Yp, ̂ Rσfa 1)} = {\ZpΛ\^R}.

Then clearly for p > n,

[ 2P-n 2P-» Ί2 Γ~2P~n ~]2 Γ2P~n ~|2

Σ Uj+ Σ Vλ £2E1AΛ\ Σ UA +2E Σ Vj \ . (2.10)
j=ι j=ι J L J = I J L J = I J

We first estimate the term on the left. By Chebychev's inequality, Pr(AR) <*R~2.
Γ2P-" Ί2 / Γ2P-" ΊΛ 1 / 2

By the Schwarz inequality and (2.8), E\A\ Σ t7, \ ^R'1 ( E\ Σ Ui\ }
LJ=I J \ L J = I J /

^ TR~lCσ2(p, 1), and so the first term in (2.10) is no more than σ2(p, 1)(T/R).

[ 2P-n ~Ί2 2P~n 2P-" 2P~n

Σ Vj\ = Σ EV?+ Σ Σ EVjVk ty the evenness assump-
J = l J j=ί k=ΐ j=lj*k

tion and (2.7)
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Also, since n is fixed it readily follows from (2.6) that there exists a function ψn

decreasing to zero so that ψZm . ̂  ψn for all j and all m^n. We then have, using the

fact that £ σ2(n,j)^σ2(p, 1) on account of (2.6),
7=1

]̂2 ̂  Y *2(n,j) lιpZnJ(T) + β/2] ̂  σ2(p, 1) |>M(Γ) + β/2] .

Combining these estimates and choosing T=Rί/2 yields

φZpι ,(R) ^CR~V2 + ιpn(R^2) + ψn(R) + β/2

for all R>0 and all peN. We can now choose an Rε independent of p so that the
sum of the first three terms above is less than ε/2. Then ψZp t(Λe) ̂  ε for all p e N.

Theorem 2.2. Let { X j \ j e N } be a sequence of independent Rd valued random
variables and derive &„ and 2£n from it as above. Suppose there is a positive
continuous function φ0 on (0, oo) decreasing to zero so that for allR>0 and allj e N,

and that for some 0 < σ0 < σ1 < oo,

σ2^σ2(Xj)^σ2 V eN. (2.12)

In the multivariate case, assume moreover that

l imsupsσ (n,j)
π-*oo (̂

where || || denotes, say, the Hilbert-Schmidt norm. Suppose also that for some
70<oo,

/(Zlf7)^/0 V eN. (2.13)
Then

\im&n = y (2.14)
«->oo

m the sense that
limsup{D(ZIIJ)|j6N} = 0. (2.15)

In particular, lim D
n-oo j = l

Proof. We will first separately treat the case d = 1 . Note that by the definitions (2.2),
(2.3) and (2.4), Zn+lJ = λnJZnί2j_^(l-λn^

2Zn^2j, where

o 2
""

σ2(n,2j-l)

By (2.12) it follows that for some 0«z<l/2,

fl^A2

7^l-α VnJεN. (2.17)

By Lemma 2.1, ψZnj(R)^ψ(R) with φ and t/?0 decreasing to zero. Finally, by (1.27),
I(Zn j)^/0 f°

r aU n* jeN. Thus it follows from Theorem 1.2 that either

(2.18)
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for some δε>0 independent of n and 7, or

ε. (2.19)

Now define sπ by sll = inf{S(ZnJ)|yεN}. Notice that by (1.39),

We now claim that
β)Λ(sn + <5ε). (2.20)

To see this, note that if (2.1 8) holds, S(Zn+ ltj)^sn + δeby the definition of sπ. But in
case (2. 1 9) holds, then by Shannon's inequality, S(Zn + 1 , y) ̂  S(g) — ε. Thus S(ZΠ + ! j)
^ (sn + <5β) Λ (S(g) - ε) for every j, and (2.20) holds.

Since sn+i^sn by Shannon's inequality, it clearly follows that lim sn = S(g);
that is, (2.14) holds. "-*00

To recover a central limit theorem in the standard form - but with a very strong
sense of convergence - we again fix an ε>0, and then choose a k so large that sk

= S(g) — ε. By the above argument, such a k exists. Now with this k fixed, any n can
n

be uniquely expressed as n = m2k + r, 0^r<2fc. Define Y= £ Y1 j and
Z=Y/σ(Y). Then 7=^+1

so that again by Theorem 1.1,

for all n sufficiently large since lim σ(l,rc)=oo by (2.12).
«-»OO

To handle the multivariate case, introduce the matrices

.ΛΓ'CΦ^ -i)],

Φ+1J) A Ί -ir^9Al
**», j= —~(—~̂ r \-σ(n +1 ? JJJ Lσ(n> ZJU j17 0"(rc,2/)

and the random variables

n,2j— 1 n,j n, 2 j — 1 ' n, 2j n,j n,2j

Then with Λ,πJ still defined by (2.16),

and σ2(^)7.) = d. Next define rn = sup{\S(WnJ)-S(ZnJ)\ | jeN} and note that on
account of the scaling property (1.9) of the entropy, and our additional assumption
under (2.10), l imr n = 0.

n-»oo

The reasoning used above then yields sn^(S(g) — ε — rjΛ(SB + δe — rn), and the
rest of the proof proceeds straightforwardly.
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Remarks. In the identically distributed case, (2.11) and (2.12) hold as soon as Xλ has
finite variance. Assume that Xl itself has zero mean and unit variance, and that,
instead of (2.13), S(Xl)> - oo. Then by (1.30), using the notation of Theorem 1.1,

1 £

for any choice of t in the regularization defining Xj. Choosing t sufficiently small,
the last term on the right can be made arbitrarily small by Lemma 1.2. Clearly

/ 1 N \ / 1 N \
I(X1)< oo, so that lim S{ -= Y X< =S(g), so that also lim Si —= Y AT,

jv-oo \ j / j V j = ι 7 #-*°o \yN J=ι /
= S(g). Thus in the i.i.d. case, the condition (2.13) can be relaxed to S(Xί)> — oo,
and our result strictly generalizes that of Barron [Bar].

Note that (2.11) is implied by the Lindeberg condition; however, note that the
Lindeberg condition does not imply (2.14) even in distribution.

We now turn to dependent random variables.

Theorem 2.3. Let {Xj \ j e N} be a sequence of Rd valued random variables satisfying
the hypotheses of Theorem 2.1, and derive tyn ana 2£n from it as above. For each t > 0,
define 2£ by ZnJ = e~tZnJ + (l—e~2t)ΐ/2Gnj. Suppose that there is an array
{λnj \n,je N} of numbers with

^\-a (2.21)

for all n and j and some fixed a>0 such that for all t > 0

lim supίCSί^Λ^j-i+α- V2^..2/)-S(211+1./)]+ |J€N} = 0, (2.22)
H-»00

where Wn 2j ^
 an independent copy of Zn 2j

 and [•] + denotes the positive part. Then,
letting μnj denote the law of ZnJ for all Borel sets A,

limμn>J{A)=$g(x)ddx.
A

Proof. Select any £>0 and define the densities ρnj by ρnJ = P*μnJ for all n, jeN.
Also define ξnj = \S(ρn,2j-ι *λn ,,£«, 2;) -%„+!,;)! and ξn = sup{ξπ'>j|;6N}.

Select any ε>0. By Theorem 2.1, (2.21) and the regularization, the hypotheses
of Theorem 1.2 are satisfied uniformly in n and j. Thus by Theorem 1.2, there is a
<5ε>0 depending only ί, a, ε and the \p supplied by Theorem 2.1 so that either

or both of S(ρπ>2j-ι) or S(ρn>2j) exceed S(g) — ε. By (2.22) there is an Nε so that
ξn < δJ2 for all n ̂  Nε. Note that we must have δε < ε, and that on account of the
regularization and (1.39), S(ρn9J)^S0> — oo for all n and j.

Now, as in the proof of the last theorem, let sn = inf{S(ρnfj) \ j e N}. Then for all
n^Nε and all 7,

As before, this clearly implies lim sn = S(g).
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Finally, by the Kullback-Liebler inequality [Kul], \\ρnj- g\\iι(Rd,ddχ}^2D(ρnJ),
so that lim \\P*μn,j—g\\Liφd9ddx} = 0. Thus for any function

lim f h(x)(dμn^x)-g(x)ddx)
Rd

< lim f (Pth(*)-h(x))dμnΛ(x) + lim f Pth(x}(dμnΛ(x}-g(x)ddx)

lim
H-+OO

where we have used the fact that P*g = g. From the strong continuity of {Pt \ t ̂  0}
on ^0(R

d)> we then obtain our result.

Theorem 2.4. Let {Xj \jeN}bea sequence of Rd valued random variables satisfying
the hypotheses of Theorem 2.1, and derive &„ and 3fn from it as above. Suppose that
there is an array {λnj \ n, j e N} of numbers satisfying (2.21) such that uniformly for y
in an arbitrary compact set

limsup{|^Zn+1/y)-ψZn2J_ιμπ>J.J;)ψZn2J((l-ln

2,/^)||jeN}=0) (2.23)
Π-+00

where φx(y) denotes the characteristic function Eeiy'x. Then the hypotheses of
Theorem 2.3 are satisfied. If moreover for each Λf eN,

(2.24)

as above, then lim $?„ = $ in distribution.

Proof. We use the notation established in the proof of Theorem 2.3. Our first goal is
to establish that lim ξn = 0.

n-»oo

Suppose this is not the case; then we can find an ε>0 and subsequences
{nk I k E N} and {jk \ k e N} of the integers such that

V/cEN. (2.25)

But on account of Theorem 2.1, the regularization, and Lemma 1.4, the set of
densities {ρnj | n, j e N} has compact closure in Lλ(Rd, (1 + x2)ddx). Thus passing to
further subsequences as necessary, we can assume that for densities ρfl, ρb and ρc,

k-» oo
kt 2jk _ ! = Qa , lim ρWk> 2jk = ρb and lim ρnk (2.26)

where all the limits hold both almost everywhere and in L1(Rd, (1 + x2)ddx). Passing
to a further subsequence as necessary, we may also assume that lim λnkjk = λ
exists; clearly a<λ2<\— a. k^°°

We then have

k-*oo

and lim φρnk+ lt{y) = φρc(y),
fc-> oo fc-» oo

for all y. We conclude from this and (2.23) that ρc = ρa *λρb and thus that

(2.27)
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Now by Lemma 1.1, |lnρΠk+ l f/x)| ^^4(1 +x2) for some A independent of k and j.
This together with (2.26) implies

limS(Qnk+1J) = S(Qc) (2.28)
fc->oo

by an argument employed in the proof of Lemma 1.4.
Similarly one sees that

lim S(ρnkt 2jk _ , *Λ Qnkt 2jk) = S(ρa *Λ ρb). (2.29)
fc->oo

Combining (2.27), (2.28) and (2.29) we see that no subsequence satisfying (2.25)
exists. This establishes that (2.22) of Theorem 2.3 holds. Then from (2.24) and
Theorem 2.3, the final conclusion readily follows.

In treating the ferromagnetic systems we discuss in the next section, it is
sometimes useful to work with a version of this result stated in terms of moment
generating functions. In such a setting one often has exponential moment
inequalities which make Theorem 2.1 superfluous; see [Ne75a] and Lemma 3.2 of
the next section.

Recall that for μe^(R), its logarithmic moment generating function Aμ is
defined by

Aμ(y) = ln($exydμ(x)\. (2.30)
\R /

As usual, in case X is a random variable with law μ, we may write Ax for Aμ.
It is useful for applications in statistical mechanics to have a version of the last

theorem stated in terms of moment generating functions instead of characteristic
functions. This entails only trivial changes in the proof, so we state the following
result without proof:

Theorem 2.5. Let {Xj \jeN}bea sequence of Rd valued random variables and derive
^n and 2£n from it as above. Suppose that for some b > 0, ΛZn (y) ̂  1 for all y with
y fe(0,fr) for i = !,...,</ for all n and j. Suppose also that there is an array
{λnj\n, jeN} of numbers satisfying (2.21) such that uniformly for y in the set
described above

limsupp^J);)-^^ (2.31)
«->oo

Then the hypotheses of Theorem 2.3 are satisfied. If moreover for each JVeN,

lim sup
N N

Σ
k=l k=l

as above, then lim &„ = & in distribution.

= 0 (3.32)

3. Central Limit Theorems for Extensive Variables Associated
with Certain Spin Systems

In this section we introduce a class of lattice spin systems and some associated
extensive random variables, and then prove central limit theorems for them.

Let £f be a compact subset of RD. Let r(^) = sup{|s| | seίf\. 9* will often be a
discrete set of points, but to avoid triviality, with r(^) > 0. For a region V in Zd, the
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spin configuration space Ωv is £fv\ that is Ωv consists of all maps ω : V ->5 ,̂ and is
equipped with the product topology. For each i e V the spin variable St is defined

We take as given data a field of bilinear forms JtJ on RD x RD, (iJ)eZd x Zd

called couplings, and a field of vectors ht in RD, i e Zd, called the applied field. We
write I J\ to denote

sup{jiiχs1,s2)/|s1| |s2| I (i,;)eZd x Zd, Sl, s2eRD};

we write \h\ to denote sup{|/zf| | /eZd}; and we assume |J| and \h\ are finite.
For any region VcRD, we define a Hamiltonian Hv by

Hκ(ω) = - Σ Λ. XSM Sχα>)) - Σ V «ω) , (3.1)
i,jeK ieF

where the centered dot denotes the Euclidean inner product in RD.
We suppose for convenience that the coupling Jitj vanishes unless \i—j\ = l.

With a little more work, rapidly decaying couplings could certainly be treated by
the methods that follow, though exactly how much decay is required is an
interesting question. Here for i = (nl9 ...,nd)eZd, |ί| denotes |flι| + ... + |nd|. For
FcZd, \V\ denotes the number of lattice points in K For Fl5 F2cZd, the distance
between them is denoted d(Vl9 V2). Finally, dV denotes the set {ieV\ \i—j\ = 1 for
some j φV}.

The applied field is called non-negative in case all of the components - in some
fixed orthonormal basis - of each ht are non-negative. The couplings are called
ferromagnetic in case each Jf j is a positive form. The spin system is called
ferromagnetic in case the couplings are ferromagnetic and the applied field is non-
negative.

Now fix a reference probability measure μ on RD which has Sf for its support.
Let μt be a copy of μ for each i e Zd, and for any region V define a reference

probability measure vv on Ωv by vv = Π Mi In what follows, we suppose that μ is
ieV

invariant under each of the reflections

Of course, this implies that &* itself possesses the corresponding symmetries.
For fixed inverse temperature /?, - suppressed in our notation - we define

probability measures Prv on the sample spaces Ωv by

J F(ω)dPrv(ω) = Z(VΓ1 J F(ω)e-βHv(ω)dvv(ω) (3.2)
Ωv Ωv

for all continuous functions F on Ωv; Z(V)= J e~βHv(ω)dvv(ω). We use the
Ωv

standard notation <jF>F= f F(ω)dPrv(ω) for thermal averages. We denote the
ΩV

covariance matrix of any Rm valued random variable F on Ωv under Prv by
[σy(F)]2, and we denote its variance by σ^(F).

The magnetization Mv in the region V is the random variable Mv(ω)
= Σ Si(ω). We denote its covariance matrix simply by [0y]2, and its variance by

ίeV
σγ. The normalized magnetization mv is

mv(ω) = [σF] - \Mv(ω) - <MF >F) . (3.3)
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We will examine the limiting behavior of the law of mVn for sequences of regions
Vn arising in a block spin summation procedure as follows:

Let [e^ . . ., ed} denote the orthonormal basis of Rd generating Zd. We proceed to
define {VnJ\jEN} inductively. First pick any square block containing the origin,
and call it Vlt x. For any n e N, write n=p2d + r,Q<*r<2d. Let VHt 2 be the reflection
of VHt ί about the bounding plane of Vn> ^ possessing er+ ^ as its outward normal in
case 0 ̂  r < d, and possessing — er+ 1 _d as its outward normal in case d^r<2d. We
then put Vn+ltl = VntlvVnt2 Finally, for each n, we cover Zd by translates of VΛt α so
that the boundaries overlap as above, and we enumerate the blocks so that Vn+ ltj

= Vn, 2j- 1 u Vn, 2j f°r all n and j. Note that the volume doubling procedure we use is
balanced so that we obtain (J Vn ± = Zd.

neN
We verify the hypotheses of Theorem 2.2 in this context by estimating the effect

on the distribution of mv . of decoupling the spins in Vn,± 2j-ι fr°m those in
Vn-1.2J.

Define Bn j by

. (3.4)

To avoid an excessive proliferation of indices, we will focus on j = 1, and will write
Bn for BnΛ,Vn for VΛt 1? and Un for Vttf 2. For λ e [0, 1], define a Hamiltonian HVn. λ by

HVn,λ(ω) = HVn(ω)-(\-λ) Σ ΛX^ω), S/ω)). (3.5)
iJeBn

For given j?>0 define probability measures PrVn.λ in terms of HVn.λ as above.
Denote thermal averages with respect to these probability measures by < VM;λ We
denote the variance of the magnetization under PrVn.λ by σ^n.A, and so forth.

We can of course consider PrVn as a measure on Ωzd. Then for β < βc, the critical
inverse temperature, lim PrVn exists, and is the unique equilibrium measure for the

n-»oo

infinite volume system (for the given β). We denote thermal averages with respect
to this measure simply by <•>. For now we restrict our attention to the case β < βc.
However, our method can be applied for pure states with finite susceptibility.

For each n we choose a neighborhood Dn oΐBn in which we shall delete the spins
from the summation defining MVn. The object is to choose Dn so small that this has
a negligible effect on the distribution of wFn, but also thick enough that the
remaining spins are not significantly affected by variation of the coupling on Bn.

Fix an increasing sequence of integers {Ln \ n e N} and define

Dn = {ieVn\\i-j\^LnsomQjeBn}. (3.6)

We denote MVn\Dn by M'Kn, MVn_ΛDn by Myn_1 and Mϋn_ΛDn by M£π_ r We let
m'Fn, m'yn_ 1 and m^n_ 1 denote the corresponding centered and normalised random
variables. For each n, let μn denote the law of mVn under PrVn, and let vn denote the
law of mϋn under Prϋn. Let λn be given by

λn = σy^My^Wσϊ^My^) + σ2

ϋn^(Mυn_^l2 . (3.7)

In order to display the insensitivity of the distribution of, say, m'Vn to changes in
the couplings or field at sites in Bn, we will use certain combinations of the
correlation inequalities which we now recall. For an expository account of such
correlation inequalities, see [G1J or Sim].

We begin with the second Griffiths inequalities in a form due to Dunlop and
Newman [DuNe] valid for one and two component systems. Let 2F denote the set
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of non-negative, non-decreasing functions / on [0, oo). Let ̂  denote the set of
functions F on RN of the form

F(sl9 ..,%) = sgn^Γ/id*! 1). . .SBn(sNY«fN(\sN\) ,

where each /7 e^ and each PJ is either 1 or 2. Let ̂  denote the set of functions F
on (R2)* of the form

F(sl9 . . ., SN) = cosίm^i + . . . + m^/i^i)- . ./^r^) ,

where each w,- is an integer, each fj e J ,̂ and we have used polar coordinates on the
right.

Then for all ferromagnetic spin systems with one or two components which are
based on a reflection invariant reference measure μ,

<F(sίl, ...9silr)G(siί9 ...Λgv^<F(slV ...Λgv<G(slV ...,sjv (3.8)

for all {il9 . . ., iN} C Vc Zd and all F, G e &%, D = 1, 2.
The most basic correlation function is the truncated two-point function

<Sf; S, V = <S, S; V - <SfV <S; V - (3.9)

Certain inequalities which yield monotonicity of this and other correlations
functions in the parameters - couplings and field strengths - of ferromagnetic
systems are useful to us. For example, let <S,; S/VCO denote the truncated two-
point function considered as a function of the applied field h. In some cases

<S£; Sj\(h) £ <Sf; SjVίA') W - h ̂  0, h ̂  0 . (3.10)

When D = l, this follows, for example, from the GHS inequality [GHS, EINe]
which states that for all ferromagnetic spin systems with scalar spins based on a
reference measure μ of the form dμ(s) = e~φ(s)ds with φ even and continuously

differentiable and with -τ-φ(s) convex on (0, oo), we have that
as

(3.11)

for all I,;, fc e Vc Zd. Of course, we only need μ to be a weak limit of such measures.
In case D > 1, we say the GHS inequality holds in case for any fixed u 6 RD, (3.1 1)
holds with each Sm replaced by u - Sm, and the averages are conditional averages
given the configuration of the components of the spins orthogonal to w, with
respect to the orthogonality defined by the Jίtj. We shall have to assume that they
are all multiples of one another to do this consistently. Then the parallel and
orthogonal components of the spin decouple in the Hamiltonian, so by condition-
ing on the other components of the spins, it is easy to extend the above criteria for
validity of the GHS inequality in the scalar case to the multicomponent case.

A number of other correlation inequalities are useful to us, in particular the
Lebowitz inequality [Le74], and Bricmont's inequalities [Bri], as well as various
Gaussian domination inequalities in [Ne75b, BFS] - which apply for multi
component systems as well. These inequalities provide monotonicity of the
truncated two-point function in the couplings, at zero field at least. Instead of
recalling them now, we simply cite them when we actually use them.
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Finally, we will require some inequalities expressing the decay of correlations.
In many instances, we only need the finite susceptibility condition; i.e. for some
finite constant C

Σ (S S V^c (3.12)
ieV

for all F 'GFandal l eF'.
In other cases we require more: For any AcVcZd, let 3tA be the σ-algebra

generated by the spins in A; that is, &A = σ{St \ i e A}. Suppose that whenever F is
bounded and ΆA measurable and G is bounded and J*B measurable with \A\,
|B|<σo, there are finite positive constants c(|4|,|B|) and r(|4|,|B|), which are
independent of F, G and V, and depend on the couplings and applied fields only
through \J\ and \h\, so that

KFG>F- <FV<GVI £ PΊi β || G|| „ C(\A\, \B\)d(A, BΓ(^ m . (3.13)
Then we say our spin system has decay of correlations with rate r(\A\9 |B|) (at least).
We only require this for \A\, |B|^2 below - at least when we are studying
fluctuations in the magnetization. Therefore we never require bounds on the
growth of c(m, n) and r(m, ή) as we would in a perturbative approach.

Lemma 3.1. Consider a spin system with a bounded applied field. Suppose

Vye7 (3.14)

and that the finite susceptibility condition (3.12) holds. Then there exist constants c±
and c2 with 0<c1^c2<oo such that

cί\V'\^σ^(MVf)^c2\Vf\ VV'CVCZ*. (3.15)
fr

Proof. Note that

σ2

v(Mv,)= Σ (St Sjϊr. (3.16)
i,jeV

The upper bound follows immediately from (3.12) with c2 = C.
For the lower bound, note that by (3.14),

ieV

For each ie Vn, let &di denote the σ-field generated by the spins neighboring Sf:

Clearly the conditional expectation <|S4 — <Sί>Γn. λ\
2 \ ^aί Vmί λ is bounded below, as

a function of the neighboring configuration, by a positive constant depending only
on β, |J|, |Λ|, r(Sf} and sup{α2μ(|S| ̂ α) | α>0}. The last quantity is positive by our
assumptions on μ. Denote this constant by c1? and then by (3.16), the lower bound
in (3.1 5) follows.

Lemma 3.2. Consider a spin system for which either (3.10), monotonicity in the
applied field, is satisfied, or for which decay of correlations, (3.13), holds with r(2, 1)
> 3D. Let \h\ be given, and for any specification of ht for i e V with \ht\ ̂  \h\ for all
i e V, define Xh= £ Λ; St. Then for some finite constant C independent of V and

ieF

depending on the ht only through \h\,

(3.17)
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Remark. Under the monotonicity condition, this result is due to Newman [Ne75a].

Proof. Since the region is finite, \κ(ehmv\ is a smooth function of h. By Taylor's
theorem,

V<^^V-<mFeίl^>^) (3.18)

h2

for some ξ with 0 ̂  ξ^ h. The term multiplying — is precisely the ratio of the

variance of Mv in an applied field with ht = (ξ/σv)u for all i e V to the variance of Mv

in zero applied field.
Clearly when (3.10) holds, this is non-negative and no more than unity, so the

result is established.
Now suppose that (3.13) holds with r(2, 1)>3D. Clearly to establish (3.17), it

suffices to establish that the variance of the magnetization in an applied field is
continuous in the applied field strength. This can be established by a method of
Lebowitz [Le72]:

By considering correlations for different combinations of components sepa-
rately, it suffices to treat scalar spins. The derivative of <Sf; S7 > in the strength of
the applied field at site k is

which, upon expansion, is seen to be symmetric in ij and k. Since it is also clearly
bounded in absolute value by (r(^))3c(2, l)d((i,j),(fc))"r(2fl), we may permute i,j
and k and then take the best case. Let dί^d2^d3 denote the lengths of the sides of
the triangle with vertices ij and k. The best case is when the distance is d2. Since
d^1 ^(4/3)(d1d2d3)~ 1/3, we obtain a bound of the form

Γ*2' 1)/3

Thus for some constant K depending on the applied field only through its strength,

Σ |<(5(- <S;V)(Sj- <Sj\)Skyr- <5t; Sj\<Sk >y\ZK\V\ .
i,j,keV

Lemma 3.3. Consider a spin system for which (3.17) and (3.14) are satisfied. Let
[An \ n e N}, {A'n \ n e N} and {Fn \ n e N} be any sequences of regions with AnvA'n C Fn

CZ d VneN, lim \An\ = ao, and lim \AnΔA'n\/\An\ = Q. Let Xn and Yn denote (MAn

-<MAnyFJ/σFn(MAn) and (M^ - <M^^>FJ/σFn(M^n) respectively. Then

lim |ln<ehjr">Fn - ln<ehy">FJ = 0

for all 6 [0,1].

Proof. We define Wn by Wn = Xn-Yn. Clearly

WH= Σ (Si-<SiyFn)/σFn(MAn)- X (Si-<Sί>F>Fn(MAFi)
ίeAn\A'n ieA^\An

+ (σFn(MAn)/σFn(MA,N) - 1) YH = W^ + W™ + W™ .

From Lemma 3.1 we have σ^n(Wn

(i}) + σin(Wn

(2))^c2\AnAAf

n\ and clearly σ2

Fn(W™)
^(σFn(MAn)/σFn(MA^) — I)2. Again using Lemma 3.1 and obvious estimates, we
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\A ΔA'\
obtain σpn(Wn)^K n n where, as in the rest of the proof, K denotes a finite

\An\
constant, changing from line to line, depending only on cί and c2.

Next, for ξ e [0, 1] and Λ^O, define /„(£, h) = (eh(X»+ξW»^Fn. It suffices to prove

that lim (/„(!, fc)-/Λ(0,Λ)) = 0, and so it suffices to prove that lim -—fn(ξ9h)
π-*oo n-*oo \vζ

uniformly in ξ.
By (3.17), f(ζ,h)£C uniformly in Q£ξ, h£2. Thus

=0

by the Schwarz inequality and the estimates above since Wn has zero mean.

Lemma 3.4. Consider a spin system satisfying either of the following sets of
conditions: (I) There is zero applied field, the second Griffiths inequality holds, the
GHS inequality holds (in the sense specified following (3.10) for multicomponent
systems) and the infinite volume state has finite susceptibility.
(II) Decay of correlations (3.13) holds with r(2, 1) > 3D and (St; S7 > ̂  0 for all ί andj.

Then
lim \\κ(ehm'vnyVn-\κ(ehm'v»\n.Q\=Q, (3.19)

lim |ln <£>*« \n - In <ehm^\^Bn\ = 0 (3.20)
n-»oo

for all fte[0, 1]. Moreover, the analogs of (3.19) and (3.20) for Un also holds.

Proof. We first treat both sets of conditions in the special case D = 1 to avoid an
excess of indices. We then separately deal with the complications entailed by D > 1.
To establish (3.19), define fn(λ,h) = (ehm'v«\n.λ. Then

v

k,k'eBn

r<Λ>fe^5ky^>F,A Ί
/>»κn\ -- \Jk,k (*k> *k')/vn λ -

L \e /vn;λ J

The quantity in braces is the difference between the thermal averages of Jk k,(Sk, Sv)
under the law PrVn.λ as it is,, and the law PrVn.λ perturbed by a magnetic field of
strength h/σVn(Mf

Vn) on Vn\Dn. Since this location is well separated from k and fe',
which are in Bn, the difference is small. To estimate it, we differentiate in h: Define

fcu.*'(M) by

Tl,Then

σ (h n- , >
8n, fc, fcΛΛ, Λ) - - /0hm'Vn

^

jeVn\Dn

t, St.Je4"4'-)^ ̂ e*"̂ -),,,,'. J - (3.22)



Entropy Production Bounds 367

Now consider the first set of conditions. By the second Griffiths inequality,

—-gn k fc'^0. By the GHS inequality
oh ' '

-VMi J

n',λ

'«* + <**.',

(Ske
hmv»\n.λ

The last line follows because

'n/Vn\λ\Sk'e mVn/Vn;λ\ = \Sk> Sfc'/

which in turn follows from the GHS inequality (monotonicity in the applied field)
and the Lebowitz inequality at zero field (monotonicity in the coupling constant).
Recall that at zero field, the latter inequality is a consequence of the former.

Next note that _ ^ x Kn

by the now familiar differentiation and integration argument. Altogether then
(with K changing)

< 8

 < Kh
= dhgnM> ' = \Vn\Dn\ jefc\Dn

 fc' j k / ' j

Clearly then £ ^rgn,*,*'<5|*-*'|f i tends to zero with n as long as Ln increases to

infinity. This proves the lemma for D = 1 under the first set of conditions.
Under the second set of conditons, note that by (3.13), we have that

β\vn\ r-r(2,i)

Two applications of the mean value theorem yield (3.19) as long as we take LM to be
the integral part of \Vn\

PlD for p sufficiently close to 1.
Now consider the case D > 1 under the first set of conditions; under the second

set, nothing more need be said. We reduce to the case D = 1 simply by conditioning
on the components of the spins orthogonal to h. Uniform estimates on these
conditional moment generating functions clearly yield the desired estimates by
averaging.

Next note that since <^m^\n\Bn is obtained from (ehm^\n by "turning off'
couplings, an entirely similar argument also proves (3.20). Clearly the results for Un

are established by interchanging Vn and Un.

Lemma 3.5. Under the same hypotheses as Lemma 3.4,

lim
n _ : - <M1Jn_ίyϋn_ί\/σVn(Mf

Vι) = 0 . (3.23)

Proof. This is essentially a corollary of the proof of Lemma 3.4. Actually, under the
first set of conditions, all the means vanish, and there is nothing to prove. As for the
second set of conditions, note that the usual differenitation argument leads to
essentially the quantity on the right side of (3.22), except that now the factor of
\/σVn(M'Vγ) comes from (3.23) itself, and not from a small field size.
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Lemma 3.6. Suppose that either the first set of hypotheses for Lemma 3.4 are
satisfied, or that (3.13) holds with r(2,1), r(2,2)>2D-l, or that

lim σκ,/| FJ= lim fftj| ί/J = <
H-+OO «->oo

Then

lim \σ^n(Mγn) - σ^n_ ,(Mγn_ t) - σ^n_ v(
Mυn- ^\/σvn(

Mvn) = °

Proof. Note that

= ΣΣ Σ
i,jeV'nk,k'eBn,\k-k'\ = l

Λ.*'(Sfo Sfc,)>FJ - <S,Vn} . (3.24)

In case the first condition holds, the Lebowitz inequality enables us to bound each
term in this sum by a multiple of

<S,; Sky <5y; S,,> -I- <S,, Sfc> <S/; Sfc,> .

Now finite susceptibility and our lower bounds for σy(M'Vn) yield the first assertion.
The remaining assertions are readily verified.

Essentially by combining our lemmas, we have the theorem below. Note that
for D = 1, we do not require lim σvj\ Vn\ to exist. It is easy to arrange the couplings

n-»oo

so that this limit will not exist.

Theorem 3.1. Consider a spin system satisfying the hypotheses of temma 3.4. In case
D = 1, suppose that the hypotheses of Lemma 3.6 is satisfied. In case D > 1, suppose

lim [σFn(MF J]2/| Vn\ = lim [σ^MJ]2/! UH\ = A (3.25)
n~ > oo n— > oo

exists and is nondegenerate. Let &n = {mVn |yeN} under the infinite volume law.
Then

lim&n = y (3.26)
n-*oo

in distribution.

Proof. Note first that the hypotheses of Lemma 3.4 imply the hypotheses of
Lemmas 3.1, 3.2, 3.3 and 3.5. By Lemmas 3.1 through 3.6, or 3.1 through 3.5 and
(3.25), all of the hypotheses of Theorem 2.5 are satisfied provided we take the
integers Ln defining the regions Dn to be the integral part of \Vn\

p/D for some
appropriate power p with 0<p<l.

To see that the condition (2.31) is satisfied, consider explicitly the case D = l,
and note that with λnΛ given by (3.7), and μnj denoting the law of mVn>j>

« n ; 0

^
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The terms following the inequality sign tend to zero by, respectively, Lemma 3.3,
Lemma 3.4, Lemma 3.5 together with Lemma 3.6, and Lemma 3.3 again.

That condition (2.32) holds follows in the same way - in fact neighboring blocks
are the hardest case.

We now briefly discuss the application of our method to FKG systems. For
background on these, see [Ne80] and [Ne83]. We will continue to use the
notations established above, but we will no longer assume that the law is given in
terms of a Hamiltonian as above. We shall only assume that the spins are FKG
variables.

Newman has proved [Ne80] that for finite variance FKG variables Y1 ?..., YN,

exp i Σ Σ W|rjcov(y f c,yj.
' (3.27)

He has used this to prove a central limit theorem for translation invariant FKG
systems under a finite susceptibility condition. To establish a Gaussian limit in our
approach, we only need (3.27) for N = 2 to verify the condition (2.23) of
Theorem 2.4. The conditions (2.6) and (2.7) of Theorem 2.1 are readily checked in
FKG systems with finite susceptibility - note that the function φL in (2.6) is
monotone. The condition (2.8) follows from using the two point domination
arguments [Sim, Le73] on which Newman's inequality (3.27) is based, to control
the fourth moment in (2.8) in terms of the two-point function. This argument is
easy, but it requires somewhat more than finite susceptibility; the two point
function must decay with the distance at an inverse power exceeding twice the
dimension of the underlying lattice. While Theorem 2.1 can be refined so that less
than condition (2.8) is required, this is probably already enough to allow us to treat
interesting random field problems.
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