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Abstract. We obtain the quantum expectations of gauge-invariant functions of the
connection on a G = SU(N) product bundle over a Riemann surface of genus g.
We show that the space jtf/9m of connections modulo those gauge transformations
which are the identity at one point is itself a principal bundle with affme linear
fiber. The base space Path25 G consists of 20-tuples of paths in G subject to a
relation on their endpoint values. Quantum expectations are iterated path integrals
over first the fiber then over Path2fif G, each with respect to the push-forward to
$4βm of the measure e~S(A}@A. Here, S(A) denotes the Yang-Mills action on si.
We exhibit a global section of ^/^m to define a choice of origin in each fiber,
relative to which the measure on the fiber is Gaussian. The induced measure on
Path29 G is the product of Wiener measures on the component paths, conditioned
to preserve the endpoint relation. Conformal transformations of the metric on M
act by reparametrizing these paths. We explicitly compute the partition function
in the general case and the expectations of functions of certain products of Wilson
loops in the case 0=1.

Introduction

In [2], we treated Yang-Mills on S2, deriving the quantum expectation of a
gauge-invariant function of the connection. To do so, we interpreted the path
intergal as an integral with respect to a measure μ on s//1fm9 the space of
connections modulo gauge transformations which are the identity at a point m.
We showed that «a//^m fibers over ΩG, based loops in the symmetry group, and
we formally decomposed μ into a measure on the fiber and a measure on the base.

Sengupta [5] treats the same problem from the perspective of stochastic parallel
transports, as developed for Yang-Mills on R2 in Gross, King and Sengupta [4].
His results and those of [2] agree where they overlap. In a future paper, we intend
to check for further agreement.
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In this paper, we extend the techniques of [2] to describe the quantum theory
of Yang-Mills on a Riemann surface of arbitrary genus. We again compute the
expectation of a gauge-invariant function / on the space of connections stf using
a measure μ on ^/^m. For a trivial G = SU(N) bundle over a Riemann surface
M with base point w, the space jtf/Gm is an affine-linear bundle over a topologically
non-trivial base space. If M has genus g ^ 1, the base space is Path23 G, the set of
20-tuples in G subject to a single relation among the end-point values of the
component paths. The measure μ induces a Gaussian measure on the fibers in
jtf/&m. Integration over the fibers pushes μ forward to a measure on Path23G,
which proves to be the product of Wiener measures on the component paths,
subject to the relation on endpoint values. These paths are parametrized by the
areas enclosed by a one-parameter family of closed paths on M. Conformal
transformations of the metric on M act to reparametrize the paths in Path2** G.
We conclude by computing the expectation of a class of Wilson loops. For example,
let 0=1, and let i^1 and W2 be Wilson loops given by holonomy about a
homotopic pair of simple closed paths in M which intersect only at m. For any
central function / on G, we compute

$H(xyχ-ly-l',2\M\)dxdy
and

where H is the heat kernel on G, |M| is the area of the torus M,Δt is twice the
area enclosed by the pair of closed paths, and the integrals are with respect to the
Haar measure on G.

This paper proceeds as follows:
Section 1 defines some notation and conventions.
Section 2 briefly compares the g ̂  1 with the g = 0 case.
Section 3 realizes Λ//^W as a bundle over Path23 G.
Section 4 describes quantum expectations as integrals over this bundle with

respect to the measure μ and exhibits the Gaussian measure on the
fibers of s//ym.

Section 5 interprets the push-forward of μ to Path23 G in terms of Wiener measures
on the component paths.

Section 6 discusses the behavior of the measure on Path23 G under conformal
transformations of the metric on M.

Section 7 computes some examples.

1. Conventions

On a product bundle, a connection A is a Lie-algebra-valued 1-form, and a gauge
transformation ψ is a G- valued function. The effect of a gauge transformation on
a connection is
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The horizontal lift according to a connection A of a curve y(t) in M is a G-valued
function UA which satisfies the parallel transport equation along y

with UA(γ(Q)) = 1, the identity element in G. Parallel transport about a closed path
in M is a Wilson loop. If the closed path begins at m, where the gauge
transformations are the identity, the corresponding Wilson loops are gauge
invariant.

The curvature of a connection is a Lie-algebra-valued 2-form FA. The
G-invariant metric on the Lie algebra combined with a metric h on the base space
defines a G-invariant metric (,) on Lie-algebra-valued forms. The Yang-Mills
action S(A) is a factor of £ times the integral over the base space of the square in
this metric of the curvature.

The metric on sf induces a metric on «a//^OT by distinguishing a natural choice
of representative in Tsf for each element of T(jtf/&m). Denoting the tangent to
the gauge orbits by Tvjtf, the metric on A defines its orthogonal complement
THJ/. This distinguishes representatives in Ts/ for elements of T(j2//#w). The
induced metric on «s//^m is the metric on si applied to these representatives.
Explicitly, Tvs/ is the image of the covariant differential DA on Lie-algebra-valued
functions which are 0 at m. The orthogonal complement is kerD*, so the induced
metric on «s//^m is the metric on jtf restricted to kerD*.

We shall represent the surface M as a fundamental domain D c R2, which will
be a regular polygon. Without loss of generality we assume the base point m lies
at the center. If M has genus g, then the boundary 3D of D has 4g edges which
are identified to each other pairwise with opposite orientations as in Fig. 1.1. The
edges correspond to generators of the fundamental group of M (and their inverses)
and satisfy the relation

where successive factors multiply from the right. The usual polar coordinates
describe points in the interior of D and extend to dD subject to the above
identifications.

Fig. 1.1. The fundamental domain
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The natural class of connections for physics consists of those whose curvature
is bounded. In two dimensions, as Uhlenbeck [6] points out, these connections
need not be continuous. The gauge transformations between such connections
necessarily are continuous. To make sense of the path integration over the fiber

, we must restrict to piecewise C1 connections A satisfying the following:

Continuity Condition. On dD, the component of A in the direction of the tangent to
dD must respect the identification of the edges. Further, approaching the origin, A
must become purely radial For a connection whose radial part vanishes on dD, this
requires

AΘ(p)=-Aθ(p-1) and A9(m) = Q,

for p any point of dD.

Note that continuous gauge transformations preserve this condition. Henceforth
jtf will refer to connections which satisfy the above continuity condition and have
finite curvature. Similarly, ^m will refer to gauge transformations between them,
which, according to [6], are in L2

2. Further, Path2^G will refer to 20-tuples of
paths, each component of which lies in L2, so the component paths have finite
energy.

2. Comparing Higher Genus to the Two-Sphere

The following comparison of the g ^ 1 case with the g = 0 case may help to orient
readers familiar with the treatment of the latter in [2]. For a bundle over a surface
of genus g, holonomy about a certain family of loops defines a projection from
j//#m to Path29 G. With this projection, ^/^m is a principal bundle over Path23 G
having an affine linear fiber. Along each fiber, the Yang-Mills action is quadratic.
In the g = 0 case, jf/&m was similarly a principal bundle with affine linear fiber
and base space ΩG, based loops in G. Note that a based loop is a path subject
to two conditions: each endpoint must take the value 1.

The integration over the affine linear fiber, and the interpretation of the result
as a path integral over Path2flί G closely follow the g = 0 case. The need to consider
arbitrary metrics introduces some complications in the interpretation of the
measure on Path2firG. Working these out leads to a characterization of the
conformal properties of the theory which also applies to the g = 0 case.

3. The Projection from ^l^m to Path2* G

Consider a path in D which proceeds radially from the origin m to a point p on
αί and back radially to m from the corresponding point p~i on α"1. Figure 3.1
illustrates one such path. Relative to a point of the fiber over m, fixed once for all
connections and all paths through m, the holonomy of a given connection about
the above path corresponds to an element of G. As the point p varies along αί9 the
corresponding holonomies describe a path in G. Denote this path by α^ Note that
although the two vertices of α^ correspond to the same point of M, the endpoint
values of α j will in general be distinct elements of G. Radial paths to points in
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Fig. 3.1. A typical radial closed path

the edges b1,a2,b2,...,ag,bg and from their inverses similarly define paths in G
and thus a 2^-tuple of paths (α l9 βl9 . . . , αg, βg). We shall use ct to refer to a generic
edge in {ai,b1,...,ag,bg}. Its inverse will be c."1, and yt will denote the
corresponding path in G. Similarly, ~γ will denote the 20-tuple of paths. Note that
henceforth yt refers to a path in G, not in M.

The map which takes a connection /4 to ~γePath29G is invariant under the
action of ^m, since these gauge transformations are the identity at the origin m of
D. Thus this map defines a map ξ:^/^m -> Path23 G. Let y^O) and y£(l) denote the
values of y f obtained by choosing the point p to be, respectively, the first and the
second endpoint of ~ct in the usual counter-clockwise orientation of dD.

Theorem 3.1. £0/&m is a principal bundle with projection ξ and affine linear fiber.
The base space is Path23 G, the set of 2g-tuples of paths 7 in G satisfying the relation

ί = l

where successive factors multiply from the right.

The need for the relation stems from the fact that while the family of closed
paths whose holonomies define the projection ξ covers D, some points lie on more
than one such path. These points constitute the radial paths between the origin
and the 4g vertices. The relation holds true because the left-hand side is holonomy
about a particular concatenation of such paths which reduces to the identity path.
To prove the relation, first show directly that the general factor

is the holonomy about a radial loop out to the first vertex of a{ and back from
the second vertex of b r 1 . The relation then follows by induction.

To see that ξ is onto, consider any element 7 of Path20 G. To construct a
representative A of a class [A] which ξ maps to this 20-tuple, begin by prescribing
the parallel transports by A along radial paths from m to the boundary. For pech

let U(p) denote an element of G which will be parallel transport along the radial
path from m to p. Then,

1)-1, (3.1)

where p parametrizes y f in an obvious fashion.
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Suppose the outward parallel transport to the second end of b.~1 has been
assigned the value I7f. Then, parallel transport out the first end of bt must be
βi(Q)Ui to ensure the product of the first parallel transport with the inverse of the
second yields /?f(0). Now, the first end of bt is also the second end of ah so to get α f(l)
from parallel transports, the parallel transport out to the first end of 0Γ1 must be
α^l)"1/?^)^.. Continuing in this tortuous fashion ultimately requires parallel
transport out to the first end of a{ to be Λi(0)βi(iyloίi(l)'ίβί(0)Ui. Note that the
first end oϊat is also the second end oϊb _19 so this determines t/._ r By induction,
this implies a consistency requirement,

which is exactly the relation restricting elements of Path2*7 G. Thus, a choice of
UgeG determines 4g group elements which will be the parallel transports by A
outward to the vertices of 3D.

For peCj, choose U(p) so that U is a piecewise continuous path in G connecting
the two endpoint values. Then Eq. (3.1) determines U(p~l\ This completes the
specification of the radial parallel transports of the connection A.

To construct a connection having these parallel transports, let

where p(θ) is the point of ct determined by θ, and ζ is a smooth function which
is zero outside of a sufficiently small interval and has integral 1. The outward
parallel transport to a radius r by any connection having this radial part is

exp $ζ(f)dflnU .

In particular, the outward parallel transports to the boundary are the above
function U.

Finally, define A = ArAr to obtain a connection satisfying the continuity
condition and representing a class in «a//^OT which projects under ξ to ~γ. This
completes the proof that ξ maps onto Path29 G.

Given any point [A] in the fiber over Y, the fiber consists of all points of the
form [A + τ], where τe Λ1(M,g) has radial component equal to zero. (The symbol
g denotes the Lie algebra of G.) Clearly, every point of this form lies in the fiber.
To prove that every point of the fiber has this form, let [B~\ be another point of
the fiber. Let A and B be connections representing these classes. The claim is that
there is a gauge transformation φ and a one-form τ with vanishing radial
component such that B = ψ (A + τ).

Consider again the family of closed paths in M whose holonomies define ξ.
The gauge transformation ψ takes lifts of these paths by A to lifts by B. Consider
the radial path out to p€ct and back from p~Λ It lifts by A and B differ by an
automorphism of the fibers over the path. Since A and B agree on holonomy, this
automorphism is the identity over m. Forming the analogous automorphism of
the fibers over each such closed path yields an automorphism, which is the identity
over m, of the bundle over M. Since the radial paths to the vertices occur more
than once in the family of closed paths, this automorphism might not be continuous.
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However, explicitly checking the different definitions of the automorphism along
such paths shows they agree. This automorphism is thus well-defined and is the
desired gauge transformation ψ. Since ψ takes radial lifts by A to radial lifts by B,
A and ψ~l-B must differ by a one-form τ which is zero in the radial direction. If
A and B satisfy the continuity condition, then so does \l/~l-B and, therefore, τ.
Thus the claim is valid.

Defining, on Λ 1, local projections Pr and Pθ to components, the fiber is
isomorphic to kerPr. The choice of the class [,4] serves as a choice of origin in
the affine fiber, making explicit the isomorphism. The next section uses this explicit
isomorphism, with a special choice of [A], to integrate over the fiber.

4. The Integration Over the Fibers in

The measure μ on «a//0m to use in computing quantum expectations is, up to a
constant, the push-forward of the measure on sf which the metric induces. We
describe the measure μ in a general context in [2, Sect. 1], where we also discuss
its equivalence with the measure given by the Faddeev-Popov gauge-fixing
prescription. With p:<tf ^>j//$m denoting the usual projection, Theorem 3.1 of
[2] carries over to give the restriction of μ to the fiber. In polar coordinates on
D this is

Theorem 4.1.

where A is an arbitrary connection representing a point in the fiber ζ~l(γ).

As in the genus-0 case, we would like^to select an origin in the fiber by finding a
connection A for which the action S(A + τ) is purely quadratic in τekerPr. This
requires (FA9DAτy = 0 for all τeker Pr.

Theorem 4.2. The condition (FA,DAτy = 0 for all τeker Pr determines a unique
section ofs//&m over Path2*G.

To prove this, integrate the condition by parts, keeping track of the boundary
term and the continuity condition on τ, to obtain the pair of conditions

and, for pe<9D,

As in the genus-0 case, there is a 1-form τ'ekerPr satisfying Pθ*DA*DAPθτ' =
PΘ*DA*FA9 and shifting any connection A by τ' yields a connection A0 = A — τ'
satisfying the first of these conditions. However, for g ^ 1, ker PΘ*DA*DAPΘ is not
trivial, so τ' is not unique. We will explok this indeterminancy to satisfy the second
of the pair of conditions. Choose any AQ as above, and consider, as candidates
for the connection A, connections of the form A0 — τl9 with τ^eker PΘ*DA*DAPΘ.
Since *FA = *FAo — *DAτl9 the condition on FA restricts DAτt. The 1-form τl is
covariantly linear along radii and vanishes in the radial direction. Since τl must
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vanish at w, its differential DAτh which is covariantly constant along radii,
completely determines τt. Further, the continuity condition on τl restricts DAτl on
the boundary to satisfy

Aτl(p\ (4.1)
where

radius
through;?

The length of the radial path enters, because τt(p) is the integral over the lift of
this path of the constant DAτt. The condition on FA and Eq. (4.1) completely
determine DAτl to be

This, in turn, determines τ, and hence A. Gauge transformations affect each side
of this equation by pointwise conjugation, and respect the identification of p with
p~1, so the class [,4] does not depend, in this respect, on the choice of representative
A0 for D40!L Further, straight-forward checking verifies that any choice of the
connection A0 satisfying the first of the pair of conditions leads to the same class
[A] for the origin in the fiber. Taken together these classes define the global section
over Path2/ G.

With A serving as a choice of origin, Theorem 4.1 becomes

°rDA) \f (A + φ-(1/4)l |F^ l |2^-(1/4)l |D^ l |2Dτ.

Now 'change variables from τ to DAτ. This introduces a Jacobian factor of
(det'Γ1/2(P0I>;/>χPβ) If / = !, this integral gives the factor relating the
push-forward measure ξ^μ to volPath2ί?G, the measure on paths which the metric on
j/ induces. The push-forward is

£*μ = (ί i"fiber)

The next section will describe the volume element volpath29G explicitly. With

we have shown

= U 2 , (4.2)

Corollary 4.2.1.

More generally, if / depends polynomially on DAτ, the Gaussian integrals yield
the same determinant factors times a function f(A). Thus, for the integral over
the fiber,

Corollary 4.2.2.

(det')ll2(PeD*DAP0)
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Since the section represented by A is unique, / and S must be functions only
of the base pointy. The next section contains an explicit computation of S, showing
that it is the energy action on Path2gG.

5. The Integration Over Path2*G

This section re-describes the results of integration over the fiber as / times an
explicit measure on Path29 G. Evaluating S, the ratio of determinants, and volpath2pG

will yield

Theorem 5.1.

ί
Γ'O

up to a determinant factor depending only on the metric h. Here f is defined as in
Corollary 4.2.2. The parameter tt, replacing p, is twice the area on M between the
closed paths whose holonomies gave y(0) and y(p), oriented so the path through p is
reversed. Further, up to a similar determinant factor,

with the endpoint relation of Theorem 3.1 restricting ~γ.

For quantum expectations, which are a normalization constant times the integral
with respect to μ, this gives

Corollary 5.1.1.

d7t

Remark 5.1. The parameters tt could each change by a constant without affecting
the above result. We have chosen this constant so that the smallest value of tt is
zero. This corresponds to measuring areas relative to the closed path determined
by radii through the first endpoint of ci and the second endpoint of cf1. See

Fig. 5.1. The
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Fig. 5.1. Measuring area relative to another path homotopic to this one would
change ίf by a constant area.

5.1 Evaluating S. The main point is to show S reduces to the energy action^ on
paths. This is a consequence of Stoke's Law, which connects F^ and hence S, to
the energy action on Path2^G as follows:

Corollary to Stoke's Law. The action which the Yang-Mills action on jtf induces
on the base space Path2^G of ' stl<& is the energy action

1 2g Tί

2i = ι o

where Tt is twice the area closed by radii through the endpoints of c{ and cΓ1.

Consider the radial closed paths, σp and <r(p+dp}, whose holonomies are yt(p) and
yt(p + dp), respectively. With the appropriate orientations, their product is a closed
path G(p+dp)

σpl whose holonomy is yi(p-^-dp)yi(p)~^. Stoke's Law relates this to
the integral of the curvature over the region between the lifts of the closed paths.
At first order in dp, the relation is

σp

where the curvature is evaluated at the lift by A of the closed path in M. For the
connection A, whose curvature is co variant constant, the right-hand side becomes

= f *Fλy/hdr + J *Fχv/ϊωr
radius radius

through p throughp" 1

Note that the sign on the second term is correct. The minus sign from the orientation
of the radius cancels one from the direction of the infinitesimal displacement dp.
Thus, *Fjϊ(p) = - [φ) + φ" ^] " ̂ γΓ 1 for pedD. Substituting into the definition
of 5, Eq. (4.2), and performing the radial integral gives the expression

Now change the integration variable from p to

recalling that

.=dy

dp

This yields the corollary.
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5.2. Determinants. The proof of Eq. (4.2) of [2] carries over, with obvious
modifications, to prove the analogous result for the ratio of determinants in
Corollaries 4.2.1 and 4.2.2. That is,

(det')1/2(PβZ>*/^Pθ)

The continuity condition is crucial to comparing the ranges, and hence the spectra
of the operators in question.

5.3. The Volume Element on Path23 G. The measure μ is the product of the measure
μfiber and the measure volpath29G, where the metric in sf on Tf(j//^m), the
orthogonal complement on the fiber directions at A, defines the metric inducing
volPath29G. The map ξ acts as a change of variables from jtf/&m to Path2*7 G. On
the tangent spaces, the change of variables is

άξ\H: TH(^/ym) -> Γ(Path2* G) - Path2* g.

Thus, volpath29G is ^y times the Jacobian det~1/2(dξ|Jdξ|H) of this mapping.
We will show the Jacobian is constant on Path2sG. First, we compute dξ\H on

ηeTd representing an element of TH(j//^m). Since η must be orthogonal to the
fiber directions,

η = Prη, and <PΓDA/,ιy> = 0,

for all continuous functions / vanishing at the origin. Upon integration by parts,
the condition on η becomes,

D dD

For this to hold for all allowed /, η must satisfy

DAPθ*η = 0 and P9*η(p-l)= -Pθ*η(p),

since continuity requires that f(p ~~ 1 ) = f(p) for p e dD. Thus * η is co variant constant
along radii, and, on dD,

ηr(p-l)=~ηM

Explicitly,

ηr(r,p) = C'(r,p)£7-1(r,pW(p)t/(r,p), (5.1)

where (7(r, p) is parallel transport along the radius through p, ή may be any map
from dD to g for which the above condition holds, and

C'ίfcV*)"1- (5.2)

Note that the values of ή on the edges ct determine its values on the edges c.~ l.
In fact,

(5.3)= - 7 ~ ί
^ (P )

The map άξ\H from the tangent η to a tangent to Path2^G at ~γ follows from
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the effect of η on parallel transport:

d

"η ~Λ,.(

_d_

~Λ,.(

To first order in ί,

(ξ°p)(A

as follows directly from the parallel transport equation (1.1). For η satisfying (5.1),
this means

ξ(A + tη)

where

C(p-

C(p)= J C'(r9p)dr.
radius

through p

Thus, the change of variables is,

Λξ\H(η)=-lC(p) + C(p-l)lή(p-1). (5.4)

We use this to show

Theorem 5.2. The determinant ofAξ\%dξ\H is the determinant of multiplication by

(C + C)2

C

on functions from (cj to g, w/iere C(p) = C(p-1).

To prove the theorem, consider the set of functions {ήC}, where the ή are an
orthonormal basis of Path2^g and

-1/2

As it stands, these functions are only defined for arguments pect. Extend them
to functions on all of dD by requiring ήC to satisfy Eq. (5.3). With the above
definition of C these extended functions form a basis {η1} for ΓH(j//^m), since

= IC(θ)(ήlC9ή
JC)dθ
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In this orthonormal basis, the yth element of the matrix for Aξ\^dξ\H is, by
Eq. (5.4),

Theorem 5.2 follows immediately.
This multiplication operator does not depend on Y, so the determinant is

constant on Path2gG, as claimed. Hence, up to this constant, integration with
respect to volPath2sG is integration with respect to Sϊy.

Replacing each term in Corollaries 4.2.1 and 4.2.2 with its corresponding
expression in terms of 7 completes the proof of Theorem 5.1. Corollary 5.1.1
follows from the observation that the integral with respect to μ is the integral over
each fiber with respect to μfiber followed by integration over Path2*7 G with respect
tθ VθlPath2,G

Corollary 5.1.1 completely specifies the expectation of the function / in terms
of an expectation / in the Gaussian measure on the fiber over each point of
Path2*7 G and a conditional Wiener measure on functions of Path2*7 G. In Sect. 7,
we explictly compute an example to indicate how to interpret the path integration
over Path2*7 G in terms of heat kernels on G. As a preliminary, we describe the
Wiener measure which respects the relation on the endpoints in Path2ί7 G.

If the endpoint values of each component path γ{ were fixed, the right-hand
side of Corollary 5.1.1 would be the product of conditional Wiener measures
on each component. To obtain a measure on Path2ί7G, consider the map
σ Path^G-^G4*7 which takes each component path to its endpoint values. The
product of conditional Wiener measures on each path defines a measure on σ~ l(x)
for each point xeG4*7. Let λ:G4g-+G be given by the left-hand side of the relation
in Theorem 3.1, so that Path2ί7G is σ"1^"^!)). The product of Haar measures
defines a natural measure on λ'1^). Combining the conditional Wiener measure
on σ"1^) for each xe/Γ^l) with the Haar measure on λ ~ i ( ΐ ) yields a measure
on Path2*7 G. We interpret the path integral on the right-hand side of Corollary 5.1.1
to be integration using this measure.

5.4. The Genus-Q Case. In [2], we fixed the metric to be the standard metric on
S2. Relaxing this restriction, and repeating that analysis leads to

ί
2 o

where yεΩG and the parameter t is twice the area bounded by the path whose
holonomy gave y(t). The modification to the expression for the integral over the
fibers is similar.

In [5], Sengupta derives, for the g = 0 cases, expectations of functions of Wilson
loops, starting from a stochastic parallel transport equation. He shows these can
be computed using conditional Wiener measure on paths in G parametrized by
areas of a 1-parameter family of closed paths on S2. The family of closed paths is
a particular homotopy from the constant path at the north pole to the closed
path whose homotopy is the Wilson loop in question. Except for the factor 2
multiplying |S2|, the above equation agrees with his result as it applies to the case
of the closed paths bounded by longitudes. We leave for the future the task of
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extracting the more general result from Theorem 4.1 of [2], although the above
equation tells most of the story. In the higher-genus case, Theorem 5.1 shows a
modification of this statement applies to functions of the Wilson loops {y,(£,)}.
The homotopy is from a representative of a generator of πr(M) to the path in M
whose holonomy is y^ίj).

6. Conformal Properties

Conformal transformations of the metric on M affect the measure ξ^μ onPath29 G
through the parameter ίf. They also affect the overall normalization constant. We
first describe the former effect.

Theorem 6.1. Under a conformal transformation, the paths in Path29 G are repara-
metrized. The measure ξ^μ, which is the product of Wiener measures on each path
in Path29 G, is taken to the product of Wiener measures, in the new parametrization,
on each path.

The parameter tt of Theorem 5.1 is twice the area bounded by an oriented, closed
path on M. Under a conformal transformation this area will change. If the
transformation takes hμv to eφhμv9 then it takes the parameter tt to the new parameter
if, related by

and if = 0 when tt = 0. The integrals are over the radial closed path in M whose
holonomy gave γ fci) = γt(tf ). The effect of a global change of scale is to speed up
(or slow down) the rate at which each of the 2g component paths are traced out. In
general, a conformal transformation will change this rate at each point of each path
independently. That the transformation takes ξ^μ to the product of Wiener
measures on the paths with the new parametrization follows immediately from
Theorem 5.1.

The normalization constant contains two metric-dependent factors. The
determinant of dξ|^dξ|H is invariant under conformal transformations, since the
function C" of Eq. (5.2) is invariant. The other factor is a normalization constant
in the path-integral expression for the Wiener measure. In the following section
we will explicitly compute this constant, which turns out to be

where H is the heat kernel on G, |M| denotes the area of M, and the integrals are
over G.

7. Some Examples

For a simple example illustrating the integration of the path integral over Path2*7 G
as Wiener measure, take M to be the torus of genus 1. For a given connection A,
consider the Wilson loops which are α(p), and β(q), where pea, qeb, and
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(α,/?)ePath2ί?G is the image of A under ξ°p. We shall use Corollary 5.1.1 to
compute the expectation of the trace of the product of central functions f1 and
/2 of these Wilson loops, obtaining

</ι(Φ))/2(^))> = ̂ ί/ιW/2(y~1W^"V"1;2|M|)rfx^. (7.1)
^o

For the expectation of any central function / of such Wilson loops, we find

</WpΓ '/?(<?))> = </(/?(<?))> = </(cr'(p))>. (7.2)

If P! ̂  p2eα an<l 4ι = ̂ 2e^» we obtain

^o
(7.3)

and

-(4ίi + Δt2))dxdxdy, (7.4)
G

where the integrals are with respect to the Haar measure on G, 4^ = t^p^ — MPι)>
Δt2 = t2(q2)-t2(qί) and

Remark 8.1. Equation (7.3) makes sense in the trivial cases / = 1 and pl = p2. The
convolution property of the heat kernel

gives <1> = 1 in the first case. In the second, the fact that //(x ί) approaches a
delta function of the identity as ί approaches zero gives </(!)> = /(I).

Remark 8.2. Classically, a(pj = α(p2)> since the paths in M defining the holonomies
are homotopic and the classical connection has zero curvature. As a consequence,
/(α(p)) would be indepenent of p. Equation (7.1) indicates that this aspect persists
at the quantum level. However, the difference between the right-hand side of
Eq. (7.3) and /(I) is a quantum effect.

Remark 8.3. Equation (7.4) is the expectation of a function of holonomy about a
contractible closed path. It differs from the corresponding result on S2 only by
the factor xyx"1;;"1 and the integration over these variables. The generalization
to higher genus seems clear, though we do not present it here.

To prove Eq. (7.3), begin with Corollary 5.1.1,

To compute the right-hand side, we interpret the path integration as Wiener
measure. If the paths were constrained to take the endpoint values α(0) = x, α(l) = y,
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/?(0) = z, and β(l) = w, then, as in [2], we could refer to Glimm and Jaffe [3] for the
relation between the Wiener measure and the heat kernel. The expectation would be

-f H(χ- 1x; t(p,))f(x~ ^y)H(x- l K t(p2)-t(p,)H(y- V, 7\ - t(p2))H(Z- V, T2)dxdy9
^o

and the normalization constant would be

Z0 = H(χ-1y;T1)ίf(z-1w;T2).

However, the only constraint is the endpoint relation of Theorem 3.1, which requires

xw~1y~lz = 1.

To relax to this weaker condition, we integrate the preceding expression over all
possible values of x,y and z, after setting w = y~lzx. The expectation is then

= --ί H(χ- lχ-9 t ( P l ) ) f ( χ - i y ) H ( χ - i y ι t(p2) - t(Pi))H(y- ly; T, - t(p2))
^o

•H(z~ V ^x; T2)dxdydxdydz, (8.5)

where

Z0 = f H(χ- V; TJHίz- V lzx; T2)dxdydz. (8.6)

To evaluate the constant Z0, use the convolution property of the heat kernel
to integrate over x. Similarly, in Eq. (8.5), the convolution property gives the
integral over x directly. To proceed further, change variables from y to x~ly,
and use the invariance of the heat kernel under the adjoint action of G on its first
argument to integrate over jc. The proofs of the other equations in the corollary
are similar.

We have computed this simple example quite explicitly. Computing similar
expectations, for instance </(Παi(Pj)~1(χi(Pj+ι))) on a surface of any genus, is
more tedious but not fundamentally different. To give an indication of the role of
the genus, we mention that for a surface of genus g, the partition function is

The proof is entirely along the lines of the above calculation for g = 1. Referring
to Fegan [2] for the expansion of the heat kernel in terms of characters,

where c(μ) is the eigenvalue in the representation labelled by μ of the negative of
the Laplacian on G, gives

^μ

To compute the integral, use the convolution property of characters
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and the related formula (see [1, Chap. II, Sect. 4])

. (8.7)

The integral over 2g copies of G becomes a factor Xμ(l)[.XμW]~2ff The partition
function is thus

Witten [8] uses a lattice model to compute the same partition function
combinatorially. His result is in close agreement with ours; the only difference
is an overall factor of | in the exponent. We could make the agreement exact by
rescaling the volumes of Riemann surfaces of every genus simultaneously by a
constant factor.

It might seem the above class of examples is severely limited, in that Wilson
loops must be holonomy about radial paths. Recall, however, that we specified
the fundamental domain D only loosely. For any finite collection S of non-
contractible, non-self-intersecting closed paths on M intersecting each other only
at w, there is a choice of D for which the paths in S are radial. With this choice
for D, the measure ξ^μ defines the quantum expectations of functions of the Wilson
loops determined by holonomy about elements of S. Thus, for example, Eq. (7.2)
implies that the expectation of a function of holonomy about any non-contractible
closed path is independent of the choice of path.

Conclusion

We have shown, for a Riemann surface of genus #, that £//&m is an affine linear
bundle over Path2*7 G. With a particular global section of this bundle defining a
choice of origin on each fiber, the Yang-Mills measure on «s//^m decomposes into
that of a free theory on the fiber and, on the base, the product of Wiener measures
on the component paths, conditioned on an endpoint relation. The areas enclosed
by members of a 1 -parameter family of closed paths on M parametrize the paths
in Path2*7 G. Conformal changes of the metric on M affect the measure on Path2*7 G
only through these parametrizations. The methods and the results are a natural
generalization of the theory for a bundle over S2. By these methods, we have
learned that a quantum theory of Yang-Mills in curved Euclidean space-time
exists in two dimensions, for any genus, and we have shown how to compute
some Wilson loop expectations in the theory. Interpreting the Yang-Mills path
integral to mean an integral over ^/^m with respect to the push-forward of a
gauge-invariant measure on jtf was crucial in this approach.
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