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Abstract. The Hubbard model H = —tΣclσcyσ + UΣnx^nx^ with N electrons and
periodic boundary condition is studied on v-dimensional Lx x ••• x L v lattices. It
is shown that for any value of U there is no ground state with maximal spin
(S = N/2) in the following cases: (ί) Zv (v ^ 2) at low electron densities; with one
hole if t > 0 and L( is odd for some i; with two holes if t < 0, or if t > 0 and all
the Lj are even, (ii) The bcc lattice at low densities; with two holes if t < 0, or if
t > 0 and all the L{ are even; with 2,..., 6 holes if L{ — Land t < 0, or if t > 0 and
L is even, (iii) The triangular lattice at densities near 0 and 1 if t > 0; with two
holes if t < 0; with 2, 3, 4 holes if t < 0 and L1 = L2. (iv) The/cc lattice at densities
near 0 and 1 if t > 0; with two holes if t < 0. Some results for the one dimensional
model are also presented.

1. Introduction

To prove the appearance of ferromagnetism in some reasonable model of itinerant
electrons has long been the obsession of theoretical and mathematical physicists.
Perhaps the simplest such model is the Hubbard model. On a finite lattice A it is
given by the Hamiltonian

xφyeΛ xeΛ

Here cxσ and its adjoint c^σ are fermion annihilation and creation operators which
satisfy the anticommutation relations

cyτcxσ=0. (1.2)

* On leave from the Central Research Institute for Physics, Budapest
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The operator nxσ = c\σcxσ has eigenvalues 0 and 1 which are the possible electron
occupation numbers on site x with spin σ. U and txy = tyx are real parameters. Ho

corresponds to the kinetic energy and the second term with U > 0 is aimed to
represent a screened Coulomb repulsion between electrons of different spins. The
spin operators in terms of c\σ and cxσ are expressed as

s; = i(»,ί-»»i). s ; = ( s ; ) t = c t τ c;φ (1.3)

The total spin and number operators

xeΛ

commute separately with Ho and HI.
The problem of ferromagnetism at zero temperature consists in proving that

the ground state of Hυ exhibits ferromagnetic long-range order. If the number of
electrons, N, is fixed then Hυ should have ground states which are also eigenstates of

with eigenvalue S(S-i-l), where S = O(N). Rigorous works for proving or
disproving such a claim are scarce. Lieb and Mattis [1] showed that in one
dimension the ground state is a state with minimal spin (Smin = 0 or 1/2) if U < oo.
Lieb recently proved [2] that independently of the lattice structure, for JV even
the ground state is unique (and hence has S = 0) if U < 0. For U > 0 at half-filling
(JV = |Λ|) on bipartite lattices (Λ = AuB, AnB = ψ and txy = 0 unless xeA and
yeB or vice versa) Lieb [2] obtains that the ground state is a (25 + l)-fold
degenerate state with S = ( l/2) | |B |- | i4 | | . If | B | # μ 4 | then S = 0{N) is possible,
although the resulting order is probably antiferromagnetic and thus the ground
state is/errimagnetic. The only genuine example of ground state ferromagnetism
is due to Nagaoka [3], who proves that on v > 1 dimensional lattices with txy < 0
and for JV = |Λ| — 1 , the ground state is an (iV + l)-fold degenerate saturated
ferromagnetic state (i.e., it has S — ΛΓ/2, the maximal possible value for N electrons).
This result is obtained for U = oo but by continuity it extends to large but finite
U (see Appendix). A recent easy proof is due to Tasaki [4].

The U = oo limit in one dimension is somewhat special. It is commonly believed
that there are ground states with all possible values of S. In fact, this holds true
for free boundary condition (combine results of [1] and of Aizenman and Lieb
[5] or see the Appendix). In the periodic case there may or may not be ground
states with S = N/2 depending on the sign of txy and the parity of N ([5] and
present paper). By now, there exists a full description of the ground states and the
thermodynamics [6] which shows among others that the average ground state
magnetisation is O(N1/2).

In the present paper I prove the absence of saturated ferromagnetism in certain
cases, i.e., that any ground state of Hυ has S < ΛΓ/2. The highest-spin subspace
(5 = jV/2) plays a particular role in the Hubbard model. Since each doubly occupied
site reduces S by one unit and since Hj counts the doubly occupied sites, Hι ψ = 0
for any state φ with S = N/2. The eigenstates and eigenvalues oϊHv in the subspace
S = N/2 are those of Ho in the same subspace. Let |F> denote the lowest lying
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state of Hυ in the subspace S — Sz = N/2. To show that \F} is not a ground state
of Hv for any U, it suffices to find a state with no doubly occupied site the energy
of which is below that of |F>. In a recent paper, Shastry, Krishnamurthy and
Anderson (SKA [7]) propose a family of trial states, originally invented by Roth
[8], and claim that the minimal energy within this family is below the energy of
\F} if the electron concentration p = N/\Λ\ is sufficiently low. The following
theorem is a rigorous version of SKA's assertion.

Recall that a Bravais lattice in v dimensions is a subgroup of R v of the form

JL = {n l f l l + ••• + ^ α J i ^ e Z } , (1.5)

where the primitive vectors aί9...9aveΊ&? are linearly independent. The point
group of 1L is the maximal subgroup of OV(R) which leaves 1L invariant. 1L
will be called v-gonal if the primitive vectors can be chosen so that for i = 1,..., v,

|fl,| = Λ0 = min{|x | |xeL,x ΦO} (1.6)

and all the vectors in 1L of length α0 are related by point group symmetry. Through-
out the paper we consider finite parts A of v-gonal lattices with periodic boundary
condition,

, , . . . ,L v α v } , (1.7)

and a constant nearest-neighbor hopping

txy = tx.y = tΦθ if \χ-y\ = a0. (1.8)

In a generic v-gonal lattice there are 2v nearest neighbors, thus Hυ with (1.8) is
nothing else than Hυ with (1.8) on ΊLX. So in two and three dimensions the v-gonal
lattices with constant nearest- neighbor hopping will be the square, triangular,
sc9 fee and bee lattices.

The number of electrons is fixed,

AΓ<|Λ|. (1.9)

We use the short-hand Hu^^ for "Hv for ahy U ^ oo." H^ is defined in the
Appendix. EΛ N(M) denotes the smallest eigenvalue of Hυ for N electrons in the
subspace S = SZ = M. L m i n and L m a x stand for the minimum and maximum of
Ll9..., LV9 respectively.

Theorem 1 (SKA). Let L be any v-gonal lattice in v ^ 2 dimensions. For Έv and the
bec lattice the sign of t is arbitrary, for the other lattices (as triangular or fee) let
t > 0. There exists a p0 > 0 and positive functions c(p) and L 0(p), depending on the
lattice, such that for any pe(0,po/2), Hu^^ has no ground state with S = N/2 and

EΛ.N(N/2) - EAN(N/2- 1) > \t\c(p)

ifpύ Nj\A\ g p 0 - p and L m i n > L0(p).
For the triangular and fee lattices there exists also a pl9 p0 ^ px < 1, such that

for any pe(0,(l — Pi)/2) the same results hold if px-\-p^iV/|Λ|^l— p and
Lmin>L0(p).

Remarks. 1. The proof of this theorem will be given by studying the energy
difference between a suitably chosen Roth-state and |F> in the thermodynamic
limit, as N/\Λ\ tends to p. As it will be seen, the p-dependence of this difference
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is governed by the Van Hove singularities [9] in the free electron density of states.
This may indicate why the theorem fails in one dimension and why closed-packed
lattices need special care. One may conjecture that the smallest positive p
corresponding to a Van Hove singularity is a lower bound to p0.
2. The result for the triangular and fee lattices could probably be improved by
showing that p0 = 1. For Έ7 (v ^ 2) and the bee lattice, however, the lowest lying
Roth-state has higher energy than |F> in an interval p1 < p < 1, and the energy
difference is nonvanishing as N goes to infinity.

Let us observe that for most values of N the absence of ground states with
S = N/2 derives from the following hypothesis: For U > 0, Hv can have at most a
unique ground state with a given S and with S = SZ. Indeed, one can easily see that
for most values of N the lowest level in the subspace S = SZ = N/2 is degenerated,
so it could not be a ground state. For example, in the case of 1L = ΊLy and txy = t
one would obtain that any interval of length 2v contains at most a single N such
that S = JV/2 can occur in a ground state.

The following theorem shows that in some cases when the lowest level in the
subspace S = SZ = JV/2 is degenerated, the ground state is indeed outside this space.

Theorem2. (i) Hυ^a, on the ring [0, L— 1] with N <Lhas no highest-spin ground
state if either ί > 0 and N is even or t < 0 and L— N is even.

(ii) There exists c>0 independent of A and N such that for v-gonal lattices, if

EΛ,N(N/2 - 1) - EΛ,N(N/2) ύ -L" a

2

x . (1.10)
P

(iii) Hu^n on Έv with one hole (N = \Λ\ — 1) has no highest-spin ground state
if t > 0 and Lt is odd for some i.

(iv) Hυ<^ on any v-gonal lattice with two holes (N = \Λ\ — 2), on the triangular
lattice with n = 2, 3, 4 holes and Lx= L2 and on the bec lattice with n — 2,..., 6
holes and Lx = L 2 = L3(N = \Λ\ — n) has no highest-spin ground state if the
eigenvalue EA]A^1{{\A\-\)/2) is non-degenerated {for \A\ — \ electrons, in the
subspaces S = SZ = (\A\ - l)/

Remarks. 1. In one dimension (i) exhausts all the cases when the level EΛfN(N/2)
is degenerated. A complementary discussion on the existence of highest-spin ground
states is presented in the Appendix.
2. Equation (1.10) applies to the case of Nagaoka with a stronger bound ~ l/WL^ax

(cf. Eq. (3.24) and shows that the gap to the ferromagnetic ground state disappears
rapidly in the thermodynamic limit. The fact that Nagaoka's result does not extend
to more than one hole has long been suspected. For two recent interesting papers
on the two-hole problem see Fang et al. [10] and Douςot and Wen [11].
3. The condition in (iv) is easy to check (see the proof) and implies the degeneracy
of the level EΛtN(N/2). For example, £ Λ , | Λ | - I ( ( | Λ | — l)/2) is nondegenerated and
equals -X | j c | = α ' j ί x | if ί x < 0 .
4. Theorem 2 makes use of another family of trial states, different of the Roth
states. As it is shown in the proof, in the case of half-filling both families reduce
to the full set of S = N/2 — 1 eigenstates of the spin- 1/2 Heisenberg Hamiltonian.
In this sense, they are natural generalizations of the spin-wave excitations.
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The above theorems are valid for any Ό ̂ oo but in a limited domain of the
electron number N. For the sake of completeness, one may notice that for any
N > 1 the ground state cannot have S = N/2 if U is small enough. Indeed, from
the minimax principle [12] it follows that, e.g., for N even

(1.11)

Therefore, if

U < U (A N)= [E (N/2) — 2E (N/4)Ί (1 12)

then

N
EAN(N/2) — EΛN(0)> —\V0{Λ9N)— ί/]. (113)

The proof of the two theorems is given in Sect. 2 and 3. In an Appendix a
proposition is proved on the continuity of the eigenvalues and eigenvectors of Hv

at U = oo, and the appearance of highest-spin ground states in one dimension for
U = oo is discussed.

I thank Herve Kunz and Andreas Mielke for many illuminating discussions
on the Hubbard model.

2. Proof of Theorem 1

The reciprocal lattice associated with a Bravais lattice IL (Eq. 1.5) is

where bu..., fcveRv are defined by

(ahbj) = 2πδij. (2.2)

The Brillouin zone assigned to a finite part /l(cf. Eq. 1.7) of IL is the factor group

(2.3)
)l

One defines the Fourier transform of cxσ as

c t o = | y i Γ 1 / 2 X c x σ β l ( * x ) for ksλ. (2.4)
xeΛ

Then

Cx<r= |Λ| ΣCkσe l 'X (2.5)
keλ

and the kinetic energy takes on the form

# o = Σ ε * K t + n*l) (2-6)
keλ

Here nkn = c\ckn andc\σckσ

= - Σ t x e ^ = - Σ ίxcos(/c,x). (2.7)
\x\=a0 |x|=α0
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To any set A of N different elements of A there exists an eigenstate of Hυ in the
subspace S = SZ = N/2:

I A \ _ 17 \ A \

keA

EA=Σ*k ( 2 8 )
keA

The vacuum state |0> is defined by cxσ\0} = 0 for all x,σ.

Choose a set F c Λ, \F\ = ΛΓ such that

£ F = £Λ.N(ΛΓ/2) = m i n ^ l A cz Λ, |A| = N}. (2.9)

An AΓ-electron Roth state with wave vector q is

xeΛ

where fcF e F is a wave vector with maximal energy:

εkF = max εk = εF. (2.11)
.keF

This is a state with no doubly occupied site. One can check easily that

K4 = c ^ | C k F ί | /
ί > = 0 (2.12)

if and only if qeF, qφkF and hence Rq has S = SZ = N/2 — 1 if and only if

To obtain the energy of the state Rq we need to compute (Rq\Rq} and
<JRq|Jf0|/ίβ>. The first is simple,

<RiRqy = n±λi (2.l3)

where n denotes the number of holes,

n = \Λ\-N. (2.14)

To compute the expectation value of H o , it is useful to write Rq completely in
fe-space representation:

where F0 = F\{kP} and Fc

0 = Λ\F0. The state |F 0> is an eigenstate with minimal
eigenvalue (EFo) of Hυ for JV - 1 electrons and S = SZ = (N- l)/2. With (2.15) one
gets

Σ Σ V*-r (2-16)
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Let us assume, at first, that the level EFo is nondegenerated for N — 1 electrons
and S = Sz = (N — l)/2. Then, with the choice tx = ί, the sets F o and Fc

0 are invariant
under the point group transformations of 1L. If 0 is an element of the point group
then

y eϋk,χ)= y ei(o-ik,x)= y ei(k,ox) (2.17)

keF0 keF0 keF0

and similar equation holds with Fc

0. Let |x| = a0. By the definition of the v-gonal
lattice,

ty~tjFo/εO (ZΛQ)
keFo keFo \y\=ao I \y\=a0

and

Σ p-i(k',x) _ _ f / o n \Q\

In (2.19) we used

Eλ= Σ ε k = O. (2.20)
keλ

With the help of (2.18) and (2.19),

keFok'eFc

Q | x | = α 0 feeFo fc'eFjj

= - ε q E 2

F o / ε 2

o . (2.21)

Introduce

V ) = - ^ - , (2.22)

the hole concentration and average hole energy, respectively. Then the energy
difference between Rq and |F> is

<Λβ|Λβ>
(2.23)

In general, the level EFo is degenerated and a correction has to be added to
Eq. (2.23). Let N' be the smallest integer ^ N — 1 such that the lowest eigenvalue
of Hv for ΛΓ/2 is nondegenerated. Lengthy but straightforward calculation shows
that the corrected energy difference is

(2.24)Γ ) | ^ 8 | ε o | ^
\Λ\

Now

N'-N+l S\{keΛ\εk = εF}\^ const x jV(v"1)/v (2.25)

so that r{Λ,N)->0 as |Λ|->oo.
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We want to analyze λq(Λ9N) in the thermodynamic limit. Let Lx,..., Lv-» oo
and ΛΓ/|yl|-»pe[O,1]. Then <5->l - p , εF->έ(p) and μ->μ(p), where ε and μ are
determined via the equations

p = — f rfvfc (2.26)
{zπj £ k<έ

and

μ = J εkd
vk f rfvfc. (2.27)

εk>έ I εk>ε

The integration is carried out in Rv/ίL and

α,)! (2.28)

is the volume of the primitive cell of 1L (the e} are orthogonal unit vectors). The
existence of the limits is a well-known fact in solid state physics. The speed of
convergence depends on the way L1,...,LV tend to infinity.

Since μ < \ ε01, λq can be minimized by choosing q such that it makes εq minimal.
The value

εm i n = min{εk |fceRv} (2.29)

can be attained at least in the thermodynamic limit. The resulting limit for λq(Λ, N)
is

p)εmin(l-fi2/s2

0)- (230)

In one dimension εm i n = — 2|ί|, ε0 = — 2ί and

ε»=-2| t|cosπp, fi(p)=2lt]™π{lp\ (2.31)
π ( l - p )

One can check that λ(p) > 0 for 0 < p < 1; Γ(0) = 4|ί| and λ'{l) = 0.
In general, λ(ρ) is continuous and

A(0) = A(l) = 0 (2.32)

because

= 0 and έ(l) = μ(l) = εm a x = maxεfc. (2.33)

Furthermore, λ(p) is continuously differentiable for 0 < p < 1. To see this, notice
that

) . (2.34)

The continuity of έ'(p) can be seen by looking at

d p Λ dS

έlgradεfdέ (2π)V=έlgradεk

This is positive nonvanishing in (εm i n, εm a x) and hence ε ' (p)^0 finite in pe(0,1).
The zeros of grade εk give rise to Van Hove singularities in p(έ) at εm i n, εm a x and
at the saddle points of εk [9]. Since the limit of dp/dέ in these singularities exists
(may be + oo), the limit of έ'(p) also exists (may be + oo at p = 0 or 1).
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We want to show that λ(p) < 0 near p = 0 by proving that λ'(p) has a negative
limit as p tends to 0. From Eqs. (2.30), (2.33) and (2.34) one obtains

l i m Λ ' ( p ) = - 2 ε m i n - l i m ε ' ( p ) (2.36)
0 0

= -ε m i n ^l - εψ J - I lirn ε'(p). (2.37)

The extremal values of p correspond to the extremal values of

f(k)=-εk/t= £ cos(fe,x). (2.38)

The maximum of f(k) is attained in a unique point of Rv/lL, k = 0. The minimum
may be reached in a unique point, in a finite number of different points or on a
continuous set, depending on the lattice type. The different cases are discussed
separately.

(i) Έv for v ^ 3 and the bcc lattice
The maximum of/(/c) is obtained also in a unique point, k = ̂ (b1 +. . . + by).
Consider the limit ρ-+p* = 0 or 1 and let k* = 0 or (bί + ... + bv)/2 be the
corresponding extremum of f(k). For p near to />*, on the surface εk = έ(ρ) about
/c* we have |gradεk\ ~\k — k*|; if r is the average value of \k — k*\ on the surface
then dp I at = O(rv~2). This is valid also in one dimension, thus

lim έ'(p) = j° * Vϊ[. (2.39)
P^P* l + oo if v ^ 3

From (2.36) and (2.37), in one dimension

A'(0)=-2β m i n = 4|ί|, λ'(l) = 0 (2.40)

in agreement with what we obtained from Eq. (2.31). In the case of v ^ 3 and of
the bcc lattice, λ'(ρ) tends to -oo if p goes to 0 or 1. This and Λ(0) = A(l) = 0
imply the existence of pθ9 ρt, 0 < p0 :g pλ < 1, such that λ(p) < 0 if 0 < p < p0 and
λ(p)>0iϊ pι<p<l.

(ii) Square lattice

For v = 2, έ'(p) = O(l) as p^>p* and, hence, more careful considerations are
necessary. For the square lattice f(k) has a unique maximum and minimum. Let
fc* be the extremum corresponding to p*, e any unit vector and se + k* with s > 0
the single vector solving

(2.41)

This makes s a differentiate function of p. Now

. (2.42)
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(2.43)
\x\=ao

Notice that this is independent of e. Using that εk has a quadratic extremum in
k*, Eq. (2.26) yields

(2π)2

By inverting this relation,

Tp
4π

t>=p*

which, together with (2.42) and (2.43) gives

β'(p*) =
2π|ί|

(e,x)2cos(k*,x)

Using v = a2

0 finally we get έ'(0) = έ'(l) = 4π|ί| and

'(0) 4(π-2) | t | ,

'(l)= -2π | ί | .

(2.44)

(2.45)

(2.46)

(2.47)

With Eq. (2.32) this shows that λ(p) is negative near p = 0 and positive near p — 1.

(iii) Triangular lattice
We distinguish between two cases.

(1) p* corresponds to the maximum of/(fc), i.e., fc* = 0. Then Eqs. (2.41-46) remain
valid. With

one obtains

(2.48)

(2.49)
i) if ί < 0

(2) p* corresponds to the minimum of/(/c). This is attained in two nonequivalent

points, e.g., in

at the value f{ki) = —3. The two points are related by symmetry, therefore their
contributions in Eq. (2.35) are equal. We choose two unit vectors ex and e2 such
that if k2 = Okί for a point group element 0 then e2 = 0ex. Thus,

δ = εsei +fci = εsβ2+k2 (2.51)

for the same s > 0. Equations (2.42) and (2.43) remain valid if e and k* are replaced
by e{ and k{. Equation (2.44) is changed to

(2π)2
(2.52)



Absence of Highest-Spin Ground States in the Hubbard Model 53

so that

ds 2π
(2.53)

dp „=„, v
With cos(khx) = -1/2 if |x| = a0, we find

Γέ'(O) if ί < 0

tm if <>o ( 1 5 4 )

where (2.48) was used.
Noticing that

ε m a χ(ί<0)=-ε m i n ( ί>0) = 6|ί|

ε m a x (ί>O)=-ε m i n (ί<O) = 3|ί| (2.55)

one may summarize as follows:

U<S-y/ϊπ)\t\

and

? •>». (2.57,
if ί < 0

Equations (2.56) and (2.57) together with (2.32) show that for t > 0, λ(ρ) is negative
(and for ί < 0 it is positive) near p = 0 and p = 1.

(iv) The fee lattice
If t > 0 and p -> 0 then έ(p) -> εm i n = — ί/(0) = —12 ί, the minimal energy is attained
in the unique point k = 0. The discussion of (i) is valid: έ'(0) = + oo and λ'(0) = — oo,
so that λ(ρ) is negative near p = 0. Similarly, if ί < 0 then λ'(\)= — oo, hence
λ(p)>0 near p = 1.

If t > 0, as p-> 1 the energy ε(p) tends to ε*max = — ίmin/(fc) = 4ί. Now/(/c) is
minimal on a continuous set which is the union of the line segments

kΐj(β) = L

2(bj + bk) + β(bk + bi), -\ύβikϊ- (2.58)

Here, i,j, fee{l, 2, 3} are different. The reciprocal of the/cc lattice is the bec lattice.
The first Brillouin zone (the Voronoy polyhedron of IL, a particular representation
of Rv/L) is a truncated octahedron with 8 hexagonal and 6 square faces. The
segments (2.58) are the diagonals of the square faces. The limit of dp/dε as ε goes
to 4ί can be computed in the following way. Fix an/0 > — 4,/0 + 4 « 1, and consider
the surface/(/c) =/ 0 . The plane passing through kfj(β) perpendicular to bk + bt cuts
this surface in a nearly ellipse. lϊk(β,φ) denotes the point of this curve at an angle
φ to the vector b} + bk then

|grad/(β, φ))\ = \a2 r(φ) [(1 + cos α)2 cos2 φ + (1 - cos α)2 sin2 φ ] 1 / 2

+ o(/o+4), (2.59)
where

= \k(β9φ)-k*(β)\, a = 2πβ (2.60)
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and a is the lattice constant of the conventional cubic cell of the fee lattice. With
(2.59) we obtain that

\t\(dp/dε)ε=4t= lim - ? - f dS

_ 6 π/

f

2 π/

f

2 docdφ

π 3
f f

π 3 o o [ ( 1 + c o s α ) 2 - 4 c o s α s i n 2 φ ] i / 2

> 4^(0) > 0.3. (2.61)
π 3

In the above equation K is the complete elliptic integral of the first kind.
Now from Eqs. (2.37) and (2.61) for t > 0 one finds

λ'(ί) = ft -Kidp/dεUΛ-1 > 9ί (2.62)

which means that λ(p) < 0 near p = 1. On the other hand, if t < 0 then

λ'{0) = 8|ί| - l/(dp/dε)ε=4t >ψ\t\9 (2.63)

so that λ(p) is positive near p = 0. In summary, for t > 0, λ(p) is negative (and for
t < 0 it is positive) near p = 0 and p = 1.

To finish the proof of the theorem, we have to compare the thermodynamic
limit (2.30) with the finite-volume expression (2.24). It suffices to notice that if

PO-P (2-64)

for some p > 0 then

\λq(Λ,N)-λ(N/\Λ\)\<\λ(N/\Λ\)\ (2.65)

will hold true whenever Lm i n is sufficiently large. Similar argument proves the
special result for the triangular and fee lattices.

3. Proof of Theorem 2

For a nonzero qeλ, let

2?q = (lSx

xe><*As-. (3.1)
\xeΛ J

Given a set F a Λ, \F\ = N, we define a family of trial states by

q (3.2)

For |F> the definition (2.9) applies. The effect of Σz

q on |JF> is to introduce a
component with S = N/2 — 1 without creating doubly occupied sites. Then
N-S~S+ singles out this component. The result is

qi] Σ qlk]
k<=F,k-qeF keF,k-qφF

- Σ Σ <ΐ-,rctV*r<Vt|F>. (3.3)
keF,k-qφF k'eF\{k}
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We make here a detour to discuss the particular case of half-filling. If N = \Λ |
then the only possible choice for F is F = Λ9 and φq reduces to the first sum. One
can check from Eq. (2.15) that at the same time Rq is proportional to φq. where
q' = kF — q.

Proposition 1. Let P be the projection to the subspace of states without doubly
occupied sites (cf. Eq. A.I). Let f(x) be any real valued continuous function.
Fix N — \A\. Then {φq\qeλ, qφϋ] is a complete set of eigenstates ofPf(H0)P in
the subspace S = Sz = N/2 - 1, and

Proof

Ψq=Σclqickl\Λ> (3.5)
keΛ

for qeλ, q^O form an orthogonal basis in the subspace of states with
S = Sz = N/2 — 1 and without doubly occupied sites: (ψq\ψq>y = O obviously if
q φ q\ and the dimension of this subspace is \Λ\ — 1. Now

q ι \ q q i \ (3.6)

therefore

(ψq,\Pf(H0)P\ψq> = <ψq>\f(H0)\ψq}

= Σ
k,k'eΛ

keλ

which proves the assertion. •

At half-filling, Pf(H0)P can be expressed in terms of spin operators. For
example, one can easily check that

PH2

op=-4t2 Σ K s ; + i(s;s; + s;s;)- |], (3.8)
\x-y\=a0

the ferromagnetic Heisenberg Hamiltonian.
Let us return to Eq. (3.3). One finds after some computation that

^ ^ )l5 (3.9)

where F + q = {k + q\keF}, and

<φq\H0-EF\ψqy = N2Σ(εk-q-εk)-N Σ (<*-«-<*)• (3.10)
keF keF,k-qφF

The energy difference between the states φq and \F > is

Σ
keF,k-qφF
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where

Z = iV-iV- 1 |F\(F + ^)| . (3.12)

Let 1 < N < \Λ\ and fix F as in Eq. (2.9). If |F> is the unique state minimizing Ho

in the subspace S = SZ = JV/2, then λq > 0. This can be seen by rewriting λq as

Σ (βfc-.-εJ + α - i V - 1 ) X (8k_q-εk)\. (3.13)
keF,k-q€F keF,k-qφF )

If F satisfies (2.9) then -F = { — k\keF} does so as well. Uniqueness therefore
means —F = F. This and εfc = ε_fc imply

Σ ( « * - , - « * ) = <>, (3.14)
fceF,fc-geF

while each term of the second sum in (3.13) is ^ 0 and, in fact, strictly positive,
due to the uniqueness of F.

Therefore, we can expect that λq < 0 only if the level £ΛJV(iV/2) is degenerated,
i.e., the choice of F is not unique. Consider now the cases enumerated in the theorem.

(i) In one dimension, if t > 0 then εmin = εo For N = 2m+ 1, the unique set F
satisfying EF = EΛtN(N/2) is

| } (3.15)

For N = 2m there are two such sets,

T T

^(m-iχ-^mj = F 1 -^. (3.16)

Choose, for example, F = Fί and q = 2π/L. Then

EF-q = EF (3.17)

while

ε f c_^-ε f c>0 for k= (m-1). (3.18)

From Eq.(3.11), / ^ < 0 .
If t < 0 then εmax = ε0 and the argument applies if N is replaced by L— N.

(ii) Obviously,

Λ N\ I — / — Λ N\ /^) — ^a = 1 — / l ^ F — a — ^F/ I /

for any nonvanishing q. Let q = fti/Li9

£r E = E E (3 20)

where

(3.21)
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Here m0 = max^m^ε), where mf(ε) is the maximal number of sign changes of εk — ε
when k varies along different lines parallel to bt. On the other hand, if k is in the
symmetric difference of F and F — q then

where z is the coordination number on 1L. Therefore

EF^q -EF^ K(εF + 2πz|ί|/Li) - K(εF - 2πz|ί|/Li)

^(4πz|t|/L l)min{iV,|yl|-JV,ino|Λ|/L l}. (3.22)

We can choose i such that L( = Lm a x. Then from Eqs. (3.19) and (3.22),

EAN(N/2-l)-EAN(N/2)

^ f μι-N m0 I
JV L I V / | Λ | J- L r o a x N - l 1 JV LmaxIV/|Λ|

In the case considered by Nagaoka (N = |Λ| — 1, F unique) the energy difference
(3.20) is proportional to | ί |LΓ 2 , so we have the better estimate

EΛ,N(N/2 - 1) - EAN(N/2) ^ const x \t\/(NL2

mJ (3.24)

which shows that the gap to the ground state disappears extremely fast.

(iii) If t > 0, the single hole is placed in the minimum of f(k) of Eq. (2.38), which
is now degenerated. The vectors minimizing f(k) are

Let fej and k2 = k1 — bJLi be two minima. Choose F = A \ {k1} and q = bi/Lh then
F — q = Λ\{k2} and thus EF_q = EF. On the other hand, the single keF for which
k — qφF is k = kx -h bJL^ and

so that in (3.11), λq<0.

(iv) The absence of degeneracy of the level £ Λ , | Λ | - I ( ( I ^ I ~ l)/2) means that
εmax = εk holds for a single A; = k*. This occurs if ί < 0 for any v-gonal lattice, when
fc* = 0. It occurs also if t > 0 and all the Lf are even for W and for the bcc lattice (but
not for the triangular or the fee lattice), when /c* = (bί + — h bv)/2.

These are the cases in which Nagaoka's theorem is valid if there is a single
hole. If N = \Λ | - 2 then

-εk,-εkl, (3.26)

where kt is any of the nearest neighbors of fc* in A. If /q is a nearest neighbor
then k2

 = k* — (k1 — fc*) is also a nearest neighbor and εk2 = εkι. The points /c*,
kx and fe2 are on a line, hence the proof given in one dimension can be repeated.

A for the triangular lattice is a triangular net with lattice constant b/L
(fc = |b 1 | = |ft2| a n d L = L i = L 2 ) . One may fix bx and b2 such that (bub2) = b2β.
For t <0 and iV = |/1| — 4, choose for example

Fc = {fc*, fc!,^,^} = { O A / L ^ / L , ^ - ft2)/L} (3.27)
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and q = bJL. Then F - q = - F and EF_q - £ F = 0, while the sum in Eq. (3.11)
has three positive terms for k = ki + bι/L. Hence, λq < 0. For JV = \Λ\ — 3 we may
use.Fc = {0,kί9k2} and q = bί/L.

A for the bcc lattice is an fee lattice with lattice constant b/L (b = |h,|, L=Lh

i = 1,2,3). One can fix bx, b 2 and b 3 so that they are at angles of 60° to one another.
In the case of 6 holes (JV = |Λ| - 6) choose, for example F such that

= k* + {0, fci/L, &2/L, fe3/L,(63 - bx)IU (63 ~ ^2)/^} (3.28)

and q = b3/L. Then

F c - g = {fe ,k*-fc1,...,fc -k 5 }. (3.29)

Since εfe*+k. = εfc*_fci, we find again EF_q = EF. On the other hand, the sum in
Eq. (3.11) has five positive terms for k = /c* + kt + b3/L, so we conclude that λq < 0.
If the number of holes is less, we can use the same q and any subset of Fc of
Eq. (3.28) containing fc*. This concludes the proof of Theorem 2.

A. Appendix. The U = 00 Limit

A.I. Continuity of the Spectrum and the Eigenstates

Denote 3FA the (4 | Λ | dimensional) Fock space of the fermionic states on A. Let P
be the projection onto ker Ht, the subspace with no doubly occupied site:

P=Y\(l-nxίnxi). (A.1)
xeΛ

Define H^ by restricting PH0P to ker/fj. If ψekeτHj then

< ^ | H 0 0 | ^ > = < ^ | H 0 | ^ > = < ^ | H I , ^ > . (A.2)

Consider a common invariant subspace J^ o c J ^ Λ of /f 0 and //j (e.g., #Ό = # " Λ

or JV is fixed or JV and Sz are fixed, etc.). ^ 0 will be an invariant subspace of Hυ

for all ( 7 ^ o o . Let

be the repeated eigenvalues in ascending order and

a set of corresponding orthonormal eigenvectors of Hv in ^ 0 . Denote K the
dimension of the subspace J u n k e r Hj, and

and ψ1 (GO ),...,

the eigenvalues and orthonormal eigenvectors of H^ in ̂ 0 , respectively.

Proposition 2. For n ̂  K,En(U) is continuous at U = 00, i.e.,

Bm £„(!/) = £B(oo). (A.3)
C7
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Furthermore, any limit point of φn(U) as £/-»oo is an eigenvector of H^ with
eigenvalue En(co\ and an orthonormal set of eigenvectors ofH^ can be obtained as
such a limit.

Proof Since HI is positive semidefinite, the minimax principle implies that for
each n the eigenvalue En(U) is a monotonically increasing (and continuous) function
of U. Let

£ M = l i m EH(U), (A.4)
I/-* oo

where En may be infinite. In fact, we have

E1^ ^Eκ<co = Eκ + 1 = = EKo. (A.5)

This, again, follows from the minimax principle: If n ^ K then any subspace of J^o

of codimension n — 1 contains some state φ φ 0 which is in ker Hj. Therefore

En(U)^2Σ\txy\ if nSK. (A.6)

The same argument shows that

En(U)^U-2Σ\txy\ if n>K. (A.7)

By a well-known consequence of the minimax principle (Theorem 6.46 in Kato
[12]),

EΛ£EH(ao\ n=l,...,K. (A.8)

We need the opposite inequality.
Let {[/;} be an increasing sequence tending to infinity such that the eigenstates

φn(Ui) converge simultaneously for n= l,...,K to some states φn,

\im \\φn(Ui)-φJ=O, n=\,...,K. (A.9)
i-» oo

The states {φn}\ form an orthonormal set and they are in J^onker/ίj . Indeed, if
j then

thus by (A.9),

(ψn(Ui)\HI\ψn(Ui)>>c/2

for sufficiently large i, which implies En(Ui) = O(Ui) in contradiction with (A.6). At
first we show that

= £ 1 and Ho0φ1=E1φι:

= min

and

d} + e, ̂  E^U,) + e(, (A.ll)



60 A. Siitό

where we used Eq. (A.2). In (A. 11), ε ^ O as i->oo, thus

E1(co)^iψ1\Hao\ψ1y = E1. (A.12)

From Eq. (A.8) we conclude that in Eq. (A.12) the equality holds. Since £1(00) is
the minimal eigenvalue, φί must be an eigenstate. Now suppose we proved

Ek(co) = Ek and Hςβψk = Ekψk

for k — 1, n—\. Then by the minimax principle

= 0,/c = 1,..., n - 1}

^ ( U i ) > + e, ύ EH{Ut) + εi9 (A. 13)

where εf -• 0, and thus

Due to Eq. (A.8) we have, in fact, equalities. Since φn is orthogonal to the first
n — 1 eigenstates of H^ it must be an eigenstate. •

As a corollary we obtain that Nagaoka's result extends to large but finite values
of U. Indeed, he finds for H^ a highest-spin ground state which (in v > 1
dimensions) is not degenerated with eigenstates of lower spin. By continuity this
remains valid down to some UC(Λ) which must diverge with the increasing volume
at least as fast as ΛΓL^ax, as one can see from Eq. (3.24).

The above proposition can also be proved by a simple perturbation argument.
I thank A. Mielke for this remark.

Λ.2. One Dimensional Hubbard Model at U = 00 with free Boundary Condition

Proposition 3. Consider H^ on the set A = {1,2,..., L) with free boundary condition
and sign-keeping nearest-neighbor hopping txx+1. For any N KL.H^ has ground
states with all possible values of S.

Proof Lieb and Mattis [1] proved that in one dimension for hard core potential
and with free boundary condition

EΛJN/2) ^ EΛJN/2 - 1) 1 - ^ EΛJSmin). (A. 15)

It suffices therefore to show that there is a ground state with S = N/2. This is,
however, elementary:

Suppose, e.g., txx+1^0. One can construct an orthonormal basis in ker H1 by
choosing any ordered set X c A of N points, X = (xx < < xN) and any set of N
spins Σ = (σ l 5 . . . , σN) and defining

Let yφX and l^j^N. Then

/ i \ n o . o f o c c u p i e d s i t e s b e t w e e n Xj a n d y\V' Y*'\ (\ ]Ί\
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where \X'9Σ'} is another element of the basis. Since there is no occupied site
between nearest neighbors, the nonvanishing matrix elements {X^Σ'IH^X^Σ}
are all negative. Let

be any ground state of H^. Then

I</Ί =
is also a ground state, because

(\φ\ \H

= <φ\HJφ}, (A.18)

and φ and | φ | have the same norm. We may suppose that | φ | is an eigenstate of
Sz with eigenvalue M. Then

and hence | φ | is an S = N/2 state. If tx x +1 ^ 0, we may either redefine the creation
and annihilation operators by changing their sign for, say, any x odd and then
work with (A. 16), or use the basis

In both cases H^ will be represented by a matrix of ^ 0 elements. •

Remark. If the boundary condition is periodic (i.e., we admit ί 1 L / 0 ) and N is
odd then between two nearest neighbor sites, the one of which is occupied and
the other is empty, the number of occupied sites is even (0 or N — 1). Hence,
(i) for txy ^ 0 the matrix of H^ in the basis (A. 16) has non-positive elements and,
(ii) for txy ^ 0 and L even, one finds a matrix with non-positive elements in the basis
(A. 19). We conclude that there are ground states with maximal spin. This is a new
proof of an old result by Herring [13], reproduced also Aizenman and Lieb [5].
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