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Abstract. The Hubbard model H = —t Zc! ¢, + U Zn,n, with N electrons and
periodic boundary condition is studied on v-dimensional L, x --- x L, lattices. It
is shown that for any value of U there is no ground state with maximal spin
(S = N/2) in the following cases: (i) Z" (v = 2) at low electron densities; with one
hole if t >0 and L; is odd for some i; with two holes if t <0, or if t >0 and all
the L; are even. (i) The bcc lattice at low densities; with two holes if t <0, or if
t>0 and all the L, are even; with 2,...,6 holes if L,= Land ¢ <0, or if t >0 and
Lis even. (iii) The triangular lattice at densities near O and 1 if ¢ > 0; with two
holes if t < 0; with 2, 3,4 holes if t <0 and L, = L,. (iv) The fcc lattice at densities
near 0 and 1 if t > 0; with two holes if t < 0. Some results for the one dimensional
model are also presented.

1. Introduction

To prove the appearance of ferromagnetism in some reasonable model of itinerant
electrons has long been the obsession of theoretical and mathematical physicists.
Perhaps the simplest such model is the Hubbard model. On a finite lattice A it is
given by the Hamiltonian

Hy=— Y tylclic+clc,)+UY nyn =Ho+UH,. (1.1
X F#yeA x€A

Here c,, and its adjoint ¢! are fermion annihilation and creation operators which
satisfy the anticommutation relations
el ety el =0,,0,.,

x6 7yt yrxo

CrsCyr F CpeCre=0. (1.2)
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The operator n,, = c!_c,, has eigenvalues 0 and 1 which are the possible electron
occupation numbers on site x with spin ¢. U and t,, =1, are real parameters. H,
corresponds to the kinetic energy and the second term with U >0 is aimed to
represent a screened Coulomb repulsion between electrons of different spins. The
spin operators in terms of ¢! and c,, are expressed as

S:=1(mg—ny), S; =(S;)T=cchxl. (1.3)
The total spin and number operators
s7= 3 S§%, st=%S%,

xeA xeA
N,=Y n,, N=N;+N,, (1.4)
xeA

commute separately with H, and H;.

The problem of ferromagnetism at zero temperature consists in proving that
the ground state of H, exhibits ferromagnetic long-range order. If the number of
electrons, N, is fixed then H, should have ground states which are also eigenstates of

S, =("+3S*S +8°8")

with eigenvalue S(S+ 1), where S=O(N). Rigorous works for proving or
disproving such a claim are scarce. Lieb and Mattis [1] showed that in one
dimension the ground state is a state with minimal spin (S,,;, =0 or 1/2) if U < 0.
Lieb recently proved [2] that independently of the lattice structure, for N even
the ground state is unique (and hence has S =0) if U < 0. For U > 0 at half-filling
(N =]A|) on bipartite lattices (A=AUB, AnB=0 and t,,=0 unless xeA4 and
yeB or vice versa) Lieb [2] obtains that the ground state is a (2S + 1)-fold
degenerate state with S =(1/2)||B| —|A]||. If |B| #|A| then S = O(N) is possible,
although the resulting order is probably antiferromagnetic and thus the ground
state is ferrimagnetic. The only genuine example of ground state ferromagnetism
is due to Nagaoka [3], who proves that on v > 1 dimensional lattices with ., <0
and for N =|A|—1, the ground state is an (N + 1)-fold degenerate saturated
ferromagnetic state (i.e., it has S = N /2, the maximal possible value for N electrons).
This result is obtained for U = co but by continuity it extends to large but finite
U (see Appendix). A recent easy proof is due to Tasaki [4].

The U = oo limit in one dimension is somewhat special. It is commonly believed
that there are ground states with all possible values of S. In fact, this holds true
for free boundary condition (combine results of [1] and of Aizenman and Lieb
[5] or see the Appendix). In the periodic case there may or may not be ground
states with S = N/2 depending on the sign of t,, and the parity of N ([5] and
present paper). By now, there exists a full description of the ground states and the
thermodynamics [6] which shows among others that the average ground state
magnetisation is O (N /?).

In the present paper I prove the absence of saturated ferromagnetism in certain
cases, i.e., that any ground state of Hy has S < N/2. The highest-spin subspace
(S = N/2) plays a particular role in the Hubbard model. Since each doubly occupied
site reduces S by one unit and since H, counts the doubly occupied sites, H; iy =0
for any state i with S = N /2. The eigenstates and eigenvalues of Hy, in the subspace
S = N/2 are those of H, in the same subspace. Let [F) denote the lowest lying
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state of Hy, in the subspace S = §* = N/2. To show that |F) is not a ground state
of Hy, for any U, it suffices to find a state with no doubly occupied site the energy
of which is below that of |[F). In a recent paper, Shastry, Krishnamurthy and
Anderson (SKA [7]) propose a family of trial states, originally invented by Roth
[8], and claim that the minimal energy within this family is below the energy of
|F) if the electron concentration p = N/|A| is sufficiently low. The following
theorem is a rigorous version of SKA’s assertion.

Recall that a Bravais lattice in v dimensions is a subgroup of R” of the form

L={nja,+ - +n,a,|neZ}, (1.5

where the primitive vectors a,,...,a,eR” are linearly independent. The point
group of IL is the maximal subgroup of O,(R) which leaves IL invariant. IL
will be called v-gonal if the primitive vectors can be chosen so thatfori=1,...,v,

la;] = ap = min{|x||xelL,x #0} (1.6)

and all the vectors in IL of length a, are related by point group symmetry. Through-
out the paper we consider finite parts A of v-gonal lattices with periodic boundary
condition,

A=L/{L,a.,...,L,a,}, (1.7)
and a constant nearest-neighbor hopping
ty=t,_y=t#0 if |x—y|=a,. (1.8)

In a generic v-gonal lattice there are 2v nearest neighbors, thus Hy with (1.8) is
nothing else than H, with (1.8) on Z". So in two and three dimensions the v-gonal
lattices with constant nearest- neighbor hopping will be the square, triangular,
sc, fec and bec lattices.

The number of electrons is fixed,

N <|Al. (1.9)

We use the short-hand Hy <, for “Hy for ahy U < 0.” H,, is defined in the
Appendix. E, y(M) denotes the smallest eigenvalue of Hy for N electrons in the
subspace S=8*=M. L., and L, stand for the minimum and maximum of
L,,..., L, respectively.

Theorem 1 (SKA). Let IL. be any v-gonal lattice in v = 2 dimensions. For Z" and the
bece lattice the sign of t is arbitrary; for the other lattices (as triangular or fcc) let
t > 0. There exists a py > 0 and positive functions c(p) and Ly(p), depending on the
lattice, such that for any pe(0,p,/2), Hy <, has no ground state with S = N/2 and

E;sn(N/2)—E 4 x(N/2—1)>|t|c(p)

lfﬂ < N/lAl < Po— P and Lmin > LO(p)

For the triangular and fcc lattices there exists also a py, po < p, <1, such that
for any pe(0,(1 —p,)/2) the same results hold if p,+p<N/|A|S1—p and
Lmin > LO(p)

Remarks. 1. The proof of this theorem will be given by studying the energy
difference between a suitably chosen Roth-state and |F) in the thermodynamic
limit, as N/|A| tends to p. As it will be seen, the p-dependence of this difference
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is governed by the Van Hove singularities [9] in the free electron density of states.
This may indicate why the theorem fails in one dimension and why closed-packed
lattices need special care. One may conjecture that the smallest positive p
corresponding to a Van Hove singularity is a lower bound to p,.
2. The result for the triangular and fcc lattices could probably be improved by
showing that p, = 1. For Z” (v = 2) and the bcc lattice, however, the lowest lying
Roth-state has higher energy than |F ) in an interval p, < p <1, and the energy
difference is nonvanishing as N goes to infinity.

Let us observe that for most values of N the absence of ground states with
S = N/2 derives from the following hypothesis: For U > 0, H, can have at most a
unique ground state with a given S and with S = S*. Indeed, one can easily see that
for most values of N the lowest level in the subspace S = S* = N/2 is degenerated,
so it could not be a ground state. For example, in the case of L=27Z" and ¢t,, =t
one would obtain that any interval of length 2v contains at most a single N such
that S = N/2 can occur in a ground state.

The following theorem shows that in some cases when the lowest level in the
subspace S = §% = N /2 is degenerated, the ground state is indeed outside this space.

Theorem 2. (i) Hy <, on the ring [0, L— 1] with N < Lhas no highest-spin ground
state if either t >0 and N is even or t <0 and L— N is even.

(ii) There exists ¢ > 0 independent of A and N such that for v-gonal lattices, if
N/|A| Z p, then

max*

Eyn(N2—1)— E, x(N/2)< SL72 (1.10)
p

(iil) Hy <, on Z with one hole (N =|A| — 1) has no highest-spin ground state
if t>0 and L; is odd for some i.

(iv) Hy <, on any v-gonal lattice with two holes (N = |A| — 2), on the triangular
lattice with n=2, 3, 4 holes and L, =L, and on the bcc lattice with n=2,...,6
holes and L, =L,=L;(N=|A|—n) has no highest-spin ground state if the
eigenvalue E, 4 _1((|A| —1)/2) is non-degenerated (for |A|—1 electrons, in the
subspaces S = S* = (|A]| — 1)/2).

Remarks. 1. In one dimension (i) exhausts all the cases when the level E, (N /2)
is degenerated. A complementary discussion on the existence of highest-spin ground
states is presented in the Appendix.

2. Equation (1.10) applies to the case of Nagaoka with a stronger bound ~ 1/N L2
(cf. Eq. (3.24) and shows that the gap to the ferromagnetic ground state disappears
rapidly in the thermodynamic limit. The fact that Nagaoka’s result does not extend
to more than one hole has long been suspected. For two recent interesting papers
on the two-hole problem see Fang et al. [10] and Dougot and Wen [11].

3. The condition in (iv) is easy to check (see the proof) and implies the degeneracy
of the level E4 y(N/2). For example, E 44— ((|A] — 1)/2) is nondegenerated and
equals — % __ |t,|if t, <O.

4. Theorem 2 makes use of another family of trial states, different of the Roth
states. As it is shown in the proof, in the case of half-filling both families reduce
to the full set of S = N/2 — 1 eigenstates of the spin- 1/2 Heisenberg Hamiltonian.
In this sense, they are natural generalizations of the spin-wave excitations.
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The above theorems are valid for any U < co but in a limited domain of the
electron number N. For the sake of completeness, one may notice that for any
N > 1 the ground state cannot have S = N/2 if U is small enough. Indeed, from
the minimax principle [12] it follows that, e.g., for N even

EA,N(0)§2EA,N,2(N/4)+§U. (1.11)
Therefore, if
2
U<Uy(AN)= N[EA,N(N/Q') —2E, 52 (N/4)] (1.12)
then
E,n(N/2)— E, 5(0) > %[UO(A,N) -Ul. (1.13)

The proof of the two theorems is given in Sect.2 and 3. In an Appendix a
proposition is proved on the continuity of the eigenvalues and eigenvectors of Hy,
at U = oo, and the appearance of highest-spin ground states in one dimension for
U = oo is discussed.

1 thank Hervé Kunz and Andreas Mielke for many illuminating discussions
on the Hubbard model.

2. Proof of Theorem 1

The reciprocal lattice associated with a Bravais lattice IL (Eq. 1.5) is

L={nb,+..+nb,neZ}, (2.1)
where b,,..., b,eR" are defined by
(a;,b;) = 276;;. 2.2)
The Brillouin zone assigned to a finite part A(cf. Eq.1.7) of IL is the factor group
~ {n n, -
A=<S{—=b, + -+ =2b,|neZ; L. (2.3)
L, L,
One defines the Fourier transform of ¢, as
Co=1AI"2 Y cpé®® for keA. (2.4)
xeA
Then
Crg =IAIT2 ) e ® 25)
keA

and the kinetic energy takes on the form

Ho =Y el +nyy). 2.6)

keA
Here m,, = ¢}, ¢, and

&= — Z te®D = _ Z t.cos(k, x). 2.7

|x]=ao |x|=ao
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To any set A of N different elements of A there exists an eigenstate of Hy in the
subspace S=S*=N/2:

HU|A> = EA|A>9
|4y =] cf;10,
keA
E,= Y &. (2.8)

keA
The vacuum state |0) is defined by c,,|0> =0 for all x, 0.
Choose a set F = A, |[F| = N such that

Ep=E, y(N/2)=min{E,|A c A,|A|=N}. (2.9)
An N-electron Roth state with wave vector g is
R,=|A|"1? ZAe‘“‘""’S; CITC’CFT|F>’ (2.10)

where kpeF is a wave vector with maximal energy:

&, = Max & = €p. (2.11)
. keF

This is a state with no doubly occupied site. One can check easily that

S*Rq=c;frckFT|F>=0 (2.12)
if and only if geF, q#kr and hence R, has S=5°=N/2—1 if and only if
kg #q€eF.

To obtain the energy of the state R, we need to compute {R,|R,)> and
(R, |Hg|R,>. The first is simple,

n+1
R IR, =——, 2.13
C(RyIR, Al (2.13)

where n denotes the number of holes,
n=|A|—N. ‘ (2.14)

To compute the expectation value of H,, it is useful to write R, completely in
k-space representation:

n+1

1
VY 2 X ChuwhralFo, 2.15)

1Al keFo werg

R

¢l |Fo> —

where Fo = F\ {k;} and F$ = A\F,. The state |F, ) is an eigenstate with minimal
eigenvalue (Ey,) of H, for N — 1 electrons and S = §* = (N — 1)/2. With (2.15) one

gets
n+1)\? n+1 1
R |H,|R,> = g, + 1-— E
CRolHolRy> <|A|> ‘ |A|< n+1) fo

+AT2 Y Y epapie (2.16)

keFo k'eFS,
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Let us assume, at first, that the level Ep, is nondegenerated for N — 1 electrons
and § = S% = (N — 1)/2. Then, with the choice t, = t, the sets F, and F { are invariant
under the point group transformations of IL. If O is an element of the point group
then

Y ekn=Yy 07N =} itk 0%) (2.17)

keFo keFo keFo

and similar equation holds with F{. Let |x| = a,. By the definition of the v-gonal
lattice,

Z ol ®) — Z Z tyei(k,y) / Z t,=Ep,/¢ (2.18)

keFo keFo |yl=ao I¥I=ao
and
Y e iD= _E, Jeo. 2.19)
k'eFg
In (2.19) we used
Ez= ¥ 6,=0. (220
keA

With the help of (2.18) and (2.19),

Z Z Egtk—k = — z txei(q”" Z eitk:x) Z o ik x)

keFo k'eFg |x|=ao keFo k’eFg
— B3/t 221)
Introduce
n+1 EF
6(A,N)= ——, A, N)= — —2, 2.22
(A,N) Al u(A, N) T+l (222

the hole concentration and average hole energy, respectively. Then the energy
difference between R, and |F ) is

<RqIHO - EF|Rq>
(R,IR,>

In general, the level E, is degenerated and a correction has to be added to
Eq. (2.23). Let N’ be the smallest integer = N — 1 such that the lowest eigenvalue
of Hy for N'/2 is nondegenerated. Lengthy but straightforward calculation shows
that the corrected energy difference is

Ag(A,N)=23(A,N)+r(A,N),

N —N+1
l"(A,N)|§8|8o[T-

22(A,N) = = p— e + 0g, (1 — p2/62). (2.23)

(2.24)

Now
N'—N+1=<|{keA|e, = }| < const x NO~ VP (2.25)
so that r(A,N)—0 as |A] - .
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We want to analyze 4,(A, N) in the thermodynamic limit. Let L,,..., L,— o0

and N/|A|—-pe[0,1]. Then 6 >1— p, e, —&(p) and u— fi(p), where £ and j are
determined via the equations

v
= d’k 2.26
P (2n)v8k§< @ (2.26)
and
f= j ekd“k/ j dk. 2.27)

The integration is carried out in R*/IL. and
v =|det(ej,a;)| (2.28)

is the volume of the primitive cell of IL (the e; are orthogonal unit vectors). The
existence of the limits is a well-known fact in solid state physics. The speed of
convergence depends on the way L,,...,L, tend to infinity.

Since u < |g,|, 4, can be minimized by choosing g such that it makes ¢, minimal.
The value

€min = Min {¢;|keR"} (2.29)

can be attained at least in the thermodynamic limit. The resulting limit for 4,(A, N)
is

Ap)=fi—E+(1 = p)emin (1 — 2% /e3). (2.30)
In one dimension ¢, = —2|t|, ¢, = —2t and
2ltlsinw (1 —
&)= —2ltlcosp, p(p)= 1L =P) (231)
(1 —p)

One can check that A(p) >0 for 0 < p < 1; 1’(0) =4|t| and A'(1)=0.
In general, A(p) is continuous and

A0)=A(1)=0 (2.32)
because

80)=tmia, A0)=0 and &(1)= A1) = oy = maxe,. (2.33)

Furthermore, A(p) is continuously differentiable for 0 < p < 1. To see this, notice
that

¥ (p)="LA(p) — £(p)1/(1 - p). (234
The continuity of £'(p) can be seen by looking at
d d
L B S (2.35)

8 (n) o= |grade,|

This is positive nonvanishing in (€u;,, €max) and hence &'(p) = 0 finite in pe(0, 1).
The zeros of grade ¢, give rise to Van Hove singularities in p(£) at €,;,, €max and
at the saddle points of ¢, [9]. Since the limit of dp/dé in these singularities exists
(may be + o0), the limit of &'(p) also exists (may be + oo at p=0 or 1).
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We want to show that 4(p) < 0 near p =0 by proving that 1'(p) has a negative
limit as p tends to 0. From Egs. (2.30), (2.33) and (2.34) one obtains

lim A'(p) = —2¢,;, — lim &'(p) (2.36)

p—0 p—0

1 Ap) — A

lim A'(p) = ~ lim [M+ l’(p)]

p—1 2p-1 p—1

= [1 8'2““] Liim # () 2.37)
'min 83 2o pP). .
The extremal values of p correspond to the extremal values of
fly=—gJft=3 cos(kx). (2.38)
Ix|=a0

The maximum of f (k) is attained in a unique point of R”/IL, k = 0. The minimum
may be reached in a unique point, in a finite number of different points or on a
continuous set, depending on the lattice type. The different cases are discussed
separately.

(i) Z* for v =3 and the bcee lattice

The maximum of f(k) is obtained also in a unique point, k=3(b, +... +b,).
Consider the limit p—>p*=0 or 1 and let k*=0 or (b, +...+b,)/2 be the
corresponding extremum of f(k). For p near to p*, on the surface ¢, = é(p) about
k* we have |grad ¢, | ~ |k — k*|; if r is the average value of |k — k*| on the surface
then dp/dé = O(r*~?). This is valid also in one dimension, thus

0 if v=1
lim &'(p) = . 2.39
Jun. £1) {+oo ifov23 @39
From (2.36) and (2.37), in one dimension

A0)= —2¢,,,=4t], A(1)=0 (2.40)

in agreement with what we obtained from Eq. (2.31). In the case of v=3 and of
the bce lattice, A'(p) tends to —oo if p goes to 0 or 1. This and 1(0)=A(1)=0
imply the existence of py, p1, 0 < pg = p; <1, such that A(p)<0if 0 < p <p, and
AMp)>0if p, <p<1.

(i) Square lattice

For v=2, &(p)=0(1) as p—p* and, hence, more careful considerations are
necessary. For the square lattice f(k) has a unique maximum and minimum. Let
k* be the extremum corresponding to p*, e any unit vector and se + k* with s >0
the single vector solving

(p) = &g i (2.41)
This makes s a differentiable function of p. Now

2
& (p*) = <M> (513_) . (2.42)
s> J—o \dp /=
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One then finds
de +k,) t 5
LA = — e, x)* cos(k*, x). 243
< i ). "2 lxl‘éao( )* cos (k*, x) (2.43)

Notice that this is independent of e. Using that ¢, has a quadratic extremum in
k*, Eq. (2.26) yields
v

—p¥|= ns? + O(s*). 2.44
lp—p*| @) (s*) (244)
By inverting this relation,
2
di = 4n (2.45)
dply=p v
which, together with (2.42) and (2.43) gives
& (p*)= 2] Y. (e, x)*cos(k*,x)|. (2.46)
U xl=a0

Using v = aZ finally we get &'(0) = £'(1) = 4=|t| and

A0)= —4(n—2)lt],

A({)= —2r]t|. 2.47)
With Eq. (2.32) this shows that A(p) is negative near p = 0 and positive near p = 1.
(ii) Triangular lattice
We distinguish between two cases.

(1) p* corresponds to the maximum of f'(k), i.e., k* = 0. Then Eqgs. (2.41-46) remain
valid. With

v=a2/3/2, Y (e,x)*=3a2 (2.48)
|x|=ao
one obtains
. &) if t>0
&(p*) =an. 3t| = ) 2.49
(b*)= 4n/311 {é’(l) if t<0 249)

(2) p* corresponds to the minimum of f(k). This is attained in two nonequivalent
points, e.g., in

ky=(b,+b,)/3, ky=(—b;+2b,)/3 (2.50)

at the value f(k;) = —3. The two points are related by symmetry, therefore their
contributions in Eq. (2.35) are equal. We choose two unit vectors e; and e, such
that if k, = Ok, for a point group element Q then e, = Oe,. Thus,

é=£sm+k1 =85e2+k2 (251)

for the same s > 0. Equations (2.42) and (2.43) remain valid if e and k* are replaced
by e; and k;. Equation (2.44) is changed to

lp—p*l=2 ns* + 0(s3), (2.52)

(2m)*
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so that
d 2
s’ _ 2 2.53)
dply=pp v
With cos (k;, x) = —1/2 if [x| = a4, we find
&) if t<0
&(p*) =./3nlt| = 2.54
(b= /3l {é’(l) if >0 @59
where (2.48) was used.
Noticing that
Emax(t <0) = —&p;a(t > 0) = 6[¢]
smax(t > 0)= _amin(t < 0) = 3lt[ (255)
one may summarize as follows:
~4 — if
2(0)= { Vim— 3 i >0 (2.56)
(6—\/§n)|t| if t<0
and
10 .
2(1)= {2(9 NELL it >0 2.57)

Equations (2.56) and (2.57) together with (2.32) show that for t > 0, A(p) is negative
(and for ¢ <0 it is positive) near p=0 and p=1.

(iv) The fcc lattice
Ift > 0 and p — 0 then &(p) — ¢,,,;, = —t f(0) = — 12¢, the minimal energy is attained
in the unique point k = 0. The discussion of (i) is valid: £'(0) = + o0 and A'(0)= — o0,
so that A(p) is negative near p =0. Similarly, if t <O then 1'(1)= — oo, hence
A(p)>0near p=1.

If t >0, as p— 1 the energy &(p) tends to &;,,, = —tmin f(k) = 4t. Now f(k) is
minimal on a continuous set which is the union of the line segments

k5(B)=3(b;+bJ)+ B +b), —3=<p=gz. (2.58)

Here, i, j, ke{1, 2, 3} are different. The reciprocal of the fcc lattice is the bec lattice.
The first Brillouin zone (the Voronoy polyhedron of IL, a particular representation
of RY/IL) is a truncated octahedron with 8 hexagonal and 6 square faces. The
segments (2.58) are the diagonals of the square faces. The limit of dp/de as ¢ goes
to 4t can be computed in the following way. Fix anf, > —4,f, + 4 « 1, and consider
the surface f (k) = fo. The plane passing through k¥(B) perpendicular to b, + b; cuts
this surface in a nearly ellipse. If k(, ¢) denotes the point of this curve at an angle
¢ to the vector b; + b, then

lgrad (B, @)l = 2a*r()[(1 + cos @) cos? ¢ + (1 — cos @) sin® ]2

+o(fy +4), (2.59)
where

r(@) = k(B, @) =k} (B)I, o=2mp (2.60)
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and a is the lattice constant of the conventional cubic cell of the fcc lattice. With
(2.59) we obtain that

v ds
t|(dp/de),_ 4= lim —— S
(o fde).mar f°—'"4(277)3f(k)j=fo lgrad f (k)|
6 ™2 dodg

==

" 7% o o [(1+cosa)? —4cosasin®p]'/?

> %K(O) >023. (2.61)
T

In the above equation K is the complete elliptic integral of the first kind.
Now from Eqgs. (2.37) and (2.61) for t > O one finds

2 (1) =22t~ L[(dp/de),—o]~* > 9t (2.62)
which means that A(p) <0 near p = 1. On the other hand, if <0 then
X(0) =8t —1/(dp/de), =4, > 3ltl, (2.63)

so that A(p) is positive near p = 0. In summary, for ¢t > 0, 1(p) is negative (and for
t <0 it is positive) near p =0 and p= 1.

To finish the proof of the theorem, we have to compare the thermodynamic
limit (2.30) with the finite-volume expression (2.24). It suffices to notice that if

p=N/|A|=po—p (2.64)
for some p >0 then
[4,(A, N)— A(N/IAD] < |A(N/IA])] (2.65)

will hold true whenever L, is sufficiently large. Similar argument proves the
special result for the triangular and fec lattices.

3. Proof of Theorem 2

For a nonzero ge A, let
= ( ZAS§ e““"")S . (3.1

Given a set F < A, |[F| = N, we define a family of trial states by
Y, =(N—-S"S")ZZ|F>. (3.2
For |F) the definition (2.9) applies. The effect of 27 on |F) is to introduce a
component with S=N/2—1 without creating doubly occupied sites. Then
N — S~ S™ singles out this component. The result is
Vo= — ) ck—qlckT|F>"'(N_ VD) c;cr—qlcleF>

keF,k—qeF keF,k—q¢F

- Y DI O ATV D 3.3)
keF,k—q¢F k'eF\ {k}
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We make here a detour to discuss the particular case of half-filling. If N =|A|
then the only possible choice for F is F = A, and ¥, reduces to the first sum. One
can check from Eq. (2.15) that at the same time R, is proportional to y,, where
q =kp—q.

Proposition 1. Let P be the projection to the subspace of states without doubly
occupied sites (cf. Eq. A.1). Let f(x) be any real valued continuous function.
Fix N =|A|. Then {{,|qe A, q # 0} is a complete set of eigenstates of Pf(H,)P in
the subspace S=S*=N/2—1, and

Pf(HO)qu = sz‘f(ek—q - Bk)lllq' (3'4)
Proof.
Yo=Y, cf_gcql A (3.5)
ke A

for geA, q#0 form an orthogonal basis in the subspace of states with
§=8?=N/2—1 and without doubly occupied sites: {¥,|¥, > =0 obviously if
q # ¢, and the dimension of this subspace is |[A| — 1. Now

Hocl i cqlAY =(e_g—2)c)_, ciqlAD, (3.6)
therefore
Yol Pf(Ho) Pl = gl f(Ho) W,
= Y (Ale)icp g g = a)ef_g gl AD

kk'eA

= 6qq’ kzﬁf(gk_q - Ek) (37)

which proves the assertion. [J

At half-filling, P f(H,)P can be expressed in terms of spin operators. For
example, one can easily check that

PHf,P=—4t2I Z| [S287+4(S1S,; +578;)—11, (3.8)
x—y|=ao

the ferromagnetic Heisenberg Hamiltonian.
Let us return to Eq. (3.3). One finds after some computation that

(Wulpy> = N> —N|F\(F +q)|, (39
where F + g = {k + glkeF }, and

<'/’q|H0—EF"//q>=N2 Z(Sk—q“ﬁk)—N z (sk—q_sk)~ (3.10)

keF keF,k—q¢F

The energy difference between the states ¥, and |F ) is

Aq=Z‘1{EF_q—EF—N“ y (ak_q~8k)}, (3.11)

keF,k — q¢F
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where
Z=N-—N"YF\(F+9). (3.12)

Let 1 <N <|A| and fix F as in Eq. (2.9). If |[F) is the unique state minimizing H,
in the subspace S = §*= N/2, then 4, > 0. This can be seen by rewriting 4, as

/1,,=Z—1{ Y (eg—&)+(1—=N"1) ¥ (sk_q—sk)}. (3.13)
keF,k —qeF keF,k —q¢F

If F satisfies (2.9) then —F = {—k|keF} does so as well. Uniqueness therefore
means —F = F. This and ¢ =¢_, imply

Y (&-g—&)=0, (3.14)

keF ,k —qeF

while each term of the second sum in (3.13) is =0 and, in fact, strictly positive,
due to the uniqueness of F.

Therefore, we can expect that 4, <0 only if the level E 4 y(N/2) is degenerated,
i.e., the choice of F is not unique. Consider now the cases enumerated in the theorem.

(i) In one dimension, if ¢ >0 then ¢,;, =¢&,. For N=2m+ 1, the unique set F
satisfying Ep = E, y(N/2) is

F= {0, - 2”m}. (3.15)
L
For N = 2m there are two such sets,

F, = {0, iz—n,..., +27—r(m——1),2—nm}
L L L

2n 2n 2% 2n
F,= {0, + TR + I(m— 1), —Im}—F1 - (3.16)
Choose, for example, F = F, and q =2n/L. Then
Ep_,=Eg (3.17)
while
2n
g-g—&>0 for k= —I(m—l). (3.18)

From Eq.(3.11), 4, <0.
If t <0 then ¢,,, = ¢, and the argument applies if N is replaced by L— N.

(i) Obviously,

Exn(N/2—1)—E4 n(N/2)S A S (N —1)"(Ep_,— Ep) (3.19)
for any nonvanishing q. Let g = b;/L;,
Er 4= Er=Eg-g\r— Er\¢-o» (3-20)

where

I(F —@)\F|=|F\(F —g)| = K <min{N,|A| — N, mo|A|/L;}. (3.21)
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Here m, = max; ,m;(¢), where m;(¢) is the maximal number of sign changes of ¢, — ¢
when k varies along: different lines parallel to b;. On the other hand, if k is in the
symmetric difference of F and F — g then

lex — el < z|t2m/L;,
where z is the coordination number on IL. Therefore
Ep_,— Ep < K(ep + 2nzlt|/L;) — K(ep — 2mz|t|/L;)
< (4nz|t|/L;)min {N,|A| — N,mqo|A|/L;}. (3.22)
We can choose i such that L;=L_,,. Then from Egs. (3.19) and (3.22),
E sn(N2= 1)~ E 5 n(N/2)
= ‘ZM 7o mi“il’ N N’Lm:'i\i/imi' -

In the case considered by Nagaoka (N =|A|— 1, F unique) the energy difference
(3.20) is proportional to |t|L; 2, so we have the better estimate

E,n(N/2—1)—E, y(N/2) <const x |t|/(NLZ,)) (3.24)
which shows that the gap to the ground state disappears extremely fast.

(iii) If ¢ > 0, the single hole is placed in the minimum of f(k) of Eq. (2.38), which
is now degenerated. The vectors minimizing f(k) are

—Zb+ Y. &:b/L;, &=x1
Liodd
Let k, and k, = k; — b;/L; be two minima. Choose F = A\{k,} and q = b;/L;, then
F—qg=A\ {k, } and thus Er_, = Eg. On the other hand, the single ke F for which
k—q¢F is k=k, + b;/L;, and

Ek—q = &, > & = &y, 4L, (3.25)
so that in (3.11), 4, <0.

(iv) The absence of degeneracy of the level E, | 4-,((]A|—1)/2) means that
€max = & holds for a single k = k*. This occurs if t < 0 for any v-gonal lattice, when
k* = 0. It occurs also if t > 0 and all the L, are even for Z" and for the bec lattice (but
not for the triangular or the fcc lattice), when k* = (b, + --- + b,)/2.

These are the cases in which Nagaoka’s theorem is valid if there is a single
hole. If N =|A|—2 then

Esn(N/2)= —&p— g, (3.26)

where k, is any of the nearest neighbors of k* in A. If k, is a nearest neighbor
then k, = k* — (k, — k*) is also a nearest neighbor and ¢, =¢,,. The points k*,
k, and k, are on a line, hence the proof given in one dimension can be repeated.

A for the triangular lattice is a triangular net with lattice constant b/L
(b=|by|=|b,| and L= L; = L,). One may fix b, and b, such that (b,,b,) = b*/2.
For t <0 and N = |A]| — 4, choose for example

Fe={k* ky,ky,ky}={0,by/L,b,/L,(b; —b,)/L} (3.27)
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and q=b,/L. Then F —q= —F and Ey_,— Ep =0, while the sum in Eq. (3.11)
has three positive terms for k = k; + b, /L. Hence, 4, <0. For N = |A| — 3 we may
use F¢={0,k,k,} and g=b,/L.

A for the bec lattice is an fec lattice with lattice constant b/L (b = |b;|, L= L;,
i=1,2,3). Onecan fix b,, b, and b, so that they are at angles of 60° to one another.
In the case of 6 holes (N = |A| — 6) choose, for example F such that

Fe={k*k* +ky,....k* + ks}
= k* +{0,b, /L, by/L, by/L,(by — by)/L, (b5 — b,)/L} (3:28)
and q = b;/L. Then
Fe—q={k* k¥ —ky,..., k¥ —ks}. (3.29)

Since g4y, = &x—;, We find again Ep_, = E;. On the other hand, the sum in
Eq. (3.11) has five positive terms for k = k* + k; + b3 /L, so we conclude that 1, <0.
If the number of holes is less, we can use the same g and any subset of F€¢ of
Eq. (3.28) containing k*. This concludes the proof of Theorem 2.

A. Appendix. The U= oo Limit
A.l. Continuity of the Spectrum and the Eigenstates

Denote % 4 the (4'4 dimensional) Fock space of the fermionic states on A. Let P
be the projection onto ker H,, the subspace with no doubly occupied site:

P=[](1—nyn,). (A.1)

xeA
Define H_, by restricting P Hy P to ker H,. If Yy eker H, then
YIH Y5 =Y Holy > = Y HylY ). (A2)

Consider a common invariant subspace #,< % 4 of H, and H, (e.g., Fo,=% *
or N is fixed or N and S° are fixed, etc.). #, will be an invariant subspace of Hy,
for all U £ oo. Let

E;(U)SE,(U)S.... S Eg,(U)
be the repeated eigenvalues in ascending order and

Y (U),.... ¥k (U)

a set of corresponding orthonormal eigenvectors of Hy in &#,. Denote K the
dimension of the subspace &% ,nker H;, and

E{(0) =... £ Eg(0) and y,(0),..., k(o)
the eigenvalues and orthonormal eigenvectors of H in %, respectively.
Proposition 2. For n< K, E,(U) is continuous at U = o0, i.e.,
lim E,(U) = E,(c). (A.3)
U- o
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Furthermore, any limit point of y,(U) as U— oo is an eigenvector of H, with
eigenvalue E,(o0), and an orthonormal set of eigenvectors of H,, can be obtained as
such a limit.

Proof. Since H, is positive semidefinite, the minimax principle implies that for
each n the eigenvalue E, (U) is a monotonically increasing (and continuous) function
of U. Let

E,= lim E,(U), (A4

U— o
where E, may be infinite. In fact, we have
E £ SEx<w=Eg, ==E (A.5)

This, again, follows from the minimax principle: If n < K then any subspace of %,
of codimension n — 1 contains some state i # 0 which is in ker H,. Therefore

E,,(U)§22|txy| if n<K. (A.6)
The same argument shows that

E(U)2U-2Y]t

0

if n>K. (A.7)

xyI

By a well-known consequence of the minimax principle (Theorem 6.46 in Kato

[12]),
E,<E(w), n=1,...,K. (A.8)

We need the opposite inequality.
Let {U;} be an increasing sequence tending to infinity such that the eigenstates
¥,(U;) converge simultaneously for n=1,...,K to some states y,,,

lim Y, (U)— ¢l =0, n=1,...,K. (A.9)

The states {,}X form an orthonormal set and they are in %, ker H,. Indeed, if
Y.¢ker H; then

Yl HilYp,) > >0,
thus by (A.9),
Y UDIH (Y, (U)D >c/2

for sufficiently large i, which implies E,(U;) = O(U,) in contradiction with (A.6). At
first we show that

E1(00)=E1 and H,y,= E_1l/’15

YIH, Y

E,(0)= min
YyeFonkerHy <¢ | [//>

= Hy D =< [Hy ¥, (A10)

and

El(Ui) = <¢1|Hui[l//1> = <l//1]HoW1>
=Y (U)IHolY1(U)> + & S E (U + ¢, (A.11)
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where we used Eq. (A.2). In (A.11), ¢;— 0 as i — oo, thus

Ei(0) <<y [Hyl¥1 ) =E;. (A.12)
From Eq. (A.8) we conclude that in Eq. (A.12) the equality holds. Since E,(c0) is
the minimal eigenvalue, iy, must be an eigenstate. Now suppose we proved
E(0)=E, and H ¥, =Eu,
for k=1,....n— 1. Then by the minimax principle
E,(o0) =min {{Y|H Y lyeFonker H Y| = 1LY =0k=1,...,n—1}
S WalHo [y = <Yl HolY,»
=W (U Ho ¥ (U)) + & S E(Uy) + &, (A.13)
where ¢;,— 0, and thus
E,(0) < <Y, |Hyo 1> S E, (A.14)

Due to Eq. (A.8) we have, in fact, equalities. Since y,, is orthogonal to the first
n— 1 eigenstates of H, it must be an eigenstate. []

As a corollary we obtain that Nagaoka’s result extends to large but finite values
of U. Indeed, he finds for H, a highest-spin ground state which (in v>1
dimensions) is not degenerated with eigenstates of lower spin. By continuity this
remains valid down to some U (A) which must diverge with the increasing volume
at least as fast as NL2_, as one can see from Eq. (3.24).

The above proposition can also be proved by a simple perturbation argument.
I thank A. Mielke for this remark.

A.2. One Dimensional Hubbard Model at U = oo with free Boundary Condition

Proposition 3. Consider H ,, on the set A= {1,2,..., L} with free boundary condition
and sign-keeping nearest-neighbor hopping t_ .. For any N <L,H, has ground
states with all possible values of S.

Proof. Lieb and Mattis [1] proved that in one dimension for hard core potential
and with free boundary condition

E,N(N)ZE, y(N2—=1)2ZZE, \(Spn) (A.15)

It suffices therefore to show that there is a ground state with S = N/2. This is,
however, elementary:

Suppose, e.g., t, ., = 0. One can construct an orthonormal basis in ker H; by
choosing any ordered set X = A of N points, X =(x, < --- < xy) and any set of N
spins X =(0q,...,0y) and defining

1X,Zy=cl, -cl . 10).
Let y¢ X and 1 < j< N. Then
J}X,Z>= ...cIj_laj_lc;acIj+ldj+t...|0>

=(_ l)no.of occupied sites between x; and le’,Z’), (A17)

(A.16)

1
Cyacxjo'
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where | X', X") is another element of the basis. Since there is no occupied site
between nearest neighbors, the nonvanishing matrix elements {X’,2'|H | X, %)
are all negative. Let

Y= Ay ;1X2)
be any ground state of H,. Then

|‘//l=Z|Ax,;| |X52>

is also a ground state, because

AW H W1 =Y 1Ay Ay 5 KX, Z' | H | X, 2
<Y Ay s Ay 2 (X, Z|H |X, 2

=Y |H Y, (A.18)

and ¥ and || have the same norm. We may suppose that || is an eigenstate of
§? with eigenvalue M. Then

(STYV2=M]y] #0,

and hence || is an § = N/2 state. If ¢, ., | <0, we may either redefine the creation
and annihilation operators by changing their sign for, say, any x odd and then
work with (A.16), or use the basis

X, ZY_=(—1yt+ v x 35 (A.19)
In both cases H,, will be represented by a matrix of <0 elements. [

Remark. If the boundary condition is periodic (i.e., we admit ¢, ; #0) and N is
odd then between two nearest neighbor sites, the one of which is occupied and
the other is empty, the number of occupied sites is even (0 or N —1). Hence,
(i) for t,, 2 0 the matrix of H,, in the basis (A.16) has non-positive elements and,
(i) for t,, < 0 and L even, one finds a matrix with non-positive elements in the basis
(A.19). We conclude that there are ground states with maximal spin. This is a new
proof of an old result by Herring [13], reproduced also Aizenman and Lieb [5].
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