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Abstract. The Gelfand-Zetlin basis is adapted to SU(N)q for q a root of unit. Extra
parameters are incorporated in the matrix elements of the generators to obtain all
the invariants corresponding to the augmented center. A crucial identity is derived
and proved, which guarantees the periodicity of the action of the generators. Full
periodicity is relaxed by stages, some raising and lowering operators remaining
injective while others become nilpotent with corresponding changes in the
dimension of the representation. In the extreme case of highest weight representa-
tions, all the raising and lowering operators are nilpotent. As an alternative
approach an auxiliary algebra giving all the periodic representations is presented.
An explicit solution of this system for N = 3, while fully equivalent to the G.-Z.
basis, turns out to be much simpler.

1. Introduction

The Gelfand-Zetlin basis was proposed [1] for the classical (q = 1) U(N) and O(N)
groups. This was extended [2] to non-semisimple IU(N) and 10(N) groups, which
have an Abelian subalgebra in semidirect product with the homogeneous U(N)
and O(N) subalgebras respectively. The ^-analogues of both the cases, homogene-
ous [3] and inhomogeneous [4] were then proposed for the unitary case and for q
not a root of unity. It will be shown in Sect. 2 that the G.-Z. basis works also for q a
root of unity if the domains of the parameters involved are chosen suitably. In
particular periodicity requirements can be imposed systematically. For SU(2) and
SU(3) periodic representations [5, 6] were classified elsewhere. Their relations with
the corresponding representation in the G.-Z. basis will be given. But the G.-Z.
basis, adapted to the root of unity case works canonically for any N. One can
impose full periodicity in all the parameters. As proved in Sect. 3, one can also
relax these constraints by stages. To each stage corresponds a typical domain of
the parameters involved. Study of such constraints is rewarding. They probe and
display fully the possibilities of the formalism. An alternative study is developed
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in Sect. 4, which reduces the classification of periodic representation of tfί(S U(N))q

to that of an auxiliary algebra stf, with a reduction of the dimension by a factor
mN-i \f qm=im i n Sect. 5, the G.-Z. presentation is finally shown to reproduce

the classification of [6] in the case of 4

The quantum group <%(SU(N))q is defined by the generators

q±tlil\

and/-

and the relations

(1)

- ei± i~
e>±v

where (aij)i j=1 N_x is the cartan matrix of SU(N), i.e.

aita±i = -1

The last two relations are called the Serre relations.
As usual, we shall only consider representations of the algebra structure of the

quantum group. The coalgebra structure allows the composition of representa-
tions, whereas the R matrix, when an expression can be found for it, is an
intertwiner between the differently ordered tensor products.

We suppose in the following that m is the smallest integer such that qm = 1, and
we denote, as in [6]

if m is oddfm

nr =
even.

Let M be a finite dimensional simple module over tfί(SU(N))q. As usual, the
generators qhi are simultaneously diagonalizable on M. As a consequence of the
commutation relations, (qhι)m, (e,)m, and (/))m, belong to the center of the algebra.
They are thus scalar on M.
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2. The Gelfand Zetlin Basis and Periodic Representations

The G.-Z. basis is defined as follows: let M be vector space generated by the set of

"IN "27V ••• % - 1 , / V ^N

"IN-l ••• ^N-1,N-1

\h) =

h

h12 h22

11

TV

where the ΛjVV's, j = 1,..., N of the top line are constant on M. We define λ= Σ hiN.
ί = l

In the generic case (q not a root of unity), the indices hi} are integers and satisfy

On the contrary, let us choose here non-integer or complex values for the Λ̂  's.
We consider them modulo m and we denote them, for convenience

K = Cu + lij + U

where l^eΈjmTL and Cί7 e[0,1[ x iR. In the following, we call ζVj the "fractional
part" othy. The restriction to real A's would be a necessary condition for a unitary
representation.

Each htj will be changed by 1, 0 or —1 by the action of the generators of
ϋlί(SU(N))q, so that its fractional part ζtj will be constant on an irreducible
representation.

The action of the generators of <%(SU(N))q on this basis is given, as described in

[4], by

qK = qΛi-Λ\χ\9 ( * = ! , . . . , # _ 1),

where

and by

where |/zjk ± 1> is obtained from |Λ> by changing only /zj7c by hjk-+hjk ± 1.
The parameters cJfc have been introduced to achieve periodicity with the full

quota of invariants, namely TV2 — 1, the dimension of the underlying classical
algebra. Finally,

k+l

Pi ( A A) = Π fΛi, * +1 - hJk - ' +J + 1].
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A:

P3Uk,h)=l\[hik-hjk-i+j+l][hίk-hJk-i+j].
i = l

These expressions are coherent with hjke(C/mΈ. To avoid zero's of P3 when
qm = 1, (m = 3, 4,...), each difference (Aίfc — hjk) will first be non-integer for even ra,
and non also half integers for odd m. That is

Vfc, Vi, j ^ k ζik - ζjkφZ (respectively φ\ΊL if m is odd).

Theorem. All the relations defining %(SU(N))q are satisfied on M characterized by
{hjN, ζjk, cjk} and hence M is a module over $(SU(N))q.

The dimension of this module is (for the fully periodic case with qm = 1)

m(N(N-l))/2

where m is the number of allowed values for each hip which varies by steps of
N(N- 1)

1 or — 1 and is defined modulo m, and where is the number of hjk

(1 ^j ^ k<N). (The indices hjN, j= l,...,N on the top are fixed and partially
characterize the module.)

Proposition. The module characterized by {h'jN = KNu)N-σN(j) +j, ζ'jk = ζσkU)k,

c'jk = cσk(j)k}, where σk is a permutation of k elementsp, is equivalent to M.

Proof. The intertwiner is given by

Remarks. The representation of ύlί{SΌ(N))q defined above in the G.-Z. basis with
non-integer or complex values of the hiks is not invariant under the action of the
Weyl group. The simplest way to check this is to note that the eigenvalues of the
generators hk have non-related fractional part. In other words, the set of weights is
not invariant under Weyl reflections. In the case of partially periodic representa-
tions, some, but not all the raising and lowering operators will actually become
nilpotent. The action of the Weyl group on a representation will nevertheless
provide another representation.

In the case λ = 0, the first two invariants of ΰlί{SU{N))q can be written as [4]

with (ε = + 1) and where, by definition,

Λ Λ Λ H Λ

_ n JJ+1~P
+l(ε)~yij+l(ε) ^j+l-p *i ^j+1 -p ^

_ AJ+1

J-V _ nε AJ'P JJ
j+l-p *i ^j+1 -p ^j

with A^1 = AJj a n d / ? = l , . . . j - l .
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For λφO, one should replace each A\ by

Now the Casimirs related to the first two (quadratic and third order) classical

invariants take the values I λ = £ hiN — 0

They are invariant since each hijN is invariant.
For N>3, there are more C's which generalize the fourth to the (N — l) t h order

classical invariants. They will not be explicitly introduced here. However the
(N—l) independent invariant parameters hiN (z = l,...,iV with hiN-\—hNN = 0 or
huN = 0) play their role in a much more simple and direct way. The numbers
(hiN — hNN) correspond in the classical case to the lengths of the rows of the Young
tableaux.

Two questions arise now:
-Is this module simple?
-Does this description reproduce the whole set of simple modules over

%(SU(N))qΊ
Our answer is the following: we check that the Casimirs (qhι)m, Or)m, (fiT and

C(£) are scalar or M (modulo a quotient when m is even), and then prove the
simplicity of M. In the last section, we shall prove that the periodic modules over
<W(SU(3))q defined by these relations (i.e. those on which et and ft are injective)
reproduce exactly the periodic representations of ύU{SU{3))q described in [6], where
a complete classification was established.

It is first immediate that (qhk)m is scalar on M:

Let us now give the expression of the action of (Ak

k+1)
r on |/z>. The coefficient

of (Λ£ + 1 ) r | / ! ) on the element |A'> of the basis, which we denote

satisfies the recursion relation

(rec)

This looks like the recursion relation satisfied by the multinomial coefficients

Pi'" Pk

but here the coefficients are not 1. It will actually provide a ^-deformed
multinomial coefficient,

PI'" Pk
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i.e. with factorials replaced by ^-factorials

which vanish for p multiple of ra*.
In the development of (ti\(Ak

k+ι)
r\hy, each path from |A> to |A'> provides

different contribution, but the product of numerators Π ( ~ ^ i ^if12 o n l γ depends
on |A> and |A'> and hence factorize.

Proposition. We have, for |A'> = |A l k — pu h2k—p2,...,hkk~pk} and r=px +p2 +

+ - +PkΊ * cPj. " / ΛGfcA,fc-p + i)P2(jKhjk-p + 1 ) γ / 2

P i - Λ J M P = Λ P',(jKhjk-p+l) ) '

where

JV*(Λ') = Π lh*~Pi-h* + PJ-i + i ] 1 M -
i*J

P'3(Jk,h)=Y\[hik-hjk-i+j+l]2.

This expression actually satisfies the recursion relation (rec), which is enough to
prove the proposition, provided the following identity holds:

Lemma. For arbitrary p's and tfs, and if [at — at]φ 0 for iφl,

r Ί b i +
Yai~aι\

Proof. With jcf = qla\ the proof of this identity reduces to the following one:
Let

&k)= Π (xj-xt)

and let

Q(? = &k\xi,x2, :,-Xι, ..,Xr\

only xt changing sign. Then the initial identity can be shown to follow from

Now symmetry properties under interchange of xh Xj (any pair) and induction
from lowest values of k are sufficient to prove this relation.

So we know explicitly the action of (Ak

k + ι)
r on |A>, whatever the value of q.

Now if q is a mth root of unity, most of the multinomial coefficients will vanish for
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-If m is odd, all the coefficients but those for which one of the /?,
LPi Pi ••• Λ J

is equal to m vanish. Since we identify \h) and \hik - m>, (consistently with the fact
that the generators acting on these two states give exactly the same matrix
elements) this proves that {Λl+1)

m is diagonal on the G.-Z. basis. Furthermore,

p\{jk,hjk-P)

(with \hjk — m} = \h}) and since all the products run from 1 to m, each diagonal
value only depends on the fractional parts of the hiks, which are constant on the
module. (Ak

k + 1)
m is hence scalar on M.

Finally, since (Ak

k

 + 1)m obviously satisfies the same properties, we conclude that
(qhi)m, (ef)

m, (/i)m, and C(ε) are scalar on the module M defined by the G.-Z. basis if
m is odd. In this case,

-If m is even, is zero unless either one/?t is equal to m, or two/?,-
LPi PI -" PkJ

and pj are equal to ra*. We have then to quotient the module M defined by the
G.-Z. basis, (since we want (Ak

k+ί)
m to be scalar), by the relation

\hik — m*> hjk — m*y = |Λ>. (quot)

This is again consistent with the fact that the actions of the generators are the
same. The matrix elements coincide on these two states. Identical behaviour of two
states |/z> and \hίk—pι,...,hkk—pk} with/71 H \-pk = m under the action of all
generators turns out to be a necessary and sufficient condition for a non-zero value

of . The dimension is then divided by 2k~ι for each k from 2 to
LPi PI ••• PkJ

JV— 1. It is then reduced to

m /w*y(tf-i)0V-2)/2) nJLN-i)
2<HN-1)(N-2)I2) ~ \ m f ' m

(Ak

k+1)
m is now scalar on the quotient.

If m is even, the elements (qhi)m, foΓ, (/i)m, and C(ε) of the center of %(SU(N))q

are scalar on M quotiented by (quot).

Proposition. M (quotiented by (quot) if m is even) defines a simple module over
W(SU(N))q.

Proof Let us consider an induction on N. For N=2, M reproduces the
representations of [5], which are irreducible. As a vector space, from the very
definition of the G.-Z. basis,

_ -l({(/iV-l ~^~ζjN-l ~\~J>ijk9Cjk)h
ijN - 1

where each term of the direct sum is the subspace of M with a fixed second line
hjN-1 = ljN-ί + ζjN-ι+j. Each term is now a module over ύll(SU(N-\))qc:
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^ί(SU{N))qi and corresponds precisely to the definition of the G.-Z. presenta-
tion of periodic module over tfί(SU(N— l))q. So we suppose it is simple in the
induction. We assume that the set of eigenvalues of the first to the Nth order
Casimirs of ^ί(SU(N— \))q exactly characterizes { / ^ - I } f° r given values of
{ί/ tf-i}» s o ^ a t for each {ljN-γ}, there exists in <%{{SU{N- l))q a projector on
MN-I({IJN-I + CjN-i +J>ζjk>cjk})' Combining such projectors with the action of
eN_γ a n d / ^ ^ , and provided that all the ζjk on the same line are different, it is
possible to find, for every x,yeM, with x Φ 0, an element Θ of ύlί{SU(N))q such that
Θx = y. Hence M is simple.

In the two cases m odd or even, the dimension of fully periodic representation
of <%(SU(N))q is equal to

3. Partially Periodic Representations

In the generic case of periodic representation, we had

htj-hrjφZ if IΦV (2ύjύU\

On the other hand regular highest weight representation can also be obtained
for q a root of unity. When q is not a root of unity the necessary and sufficient
conditions on the Af/s of a simple highest weight module in the G.-Z. basis are

When qm = 1, the htj are defined in Z/mΈ. They can be written

and these constraints of ordering become, for so-called regular highest weights
irreducible representations

a) In the first line, the liN are cyclically ordered and distinct, and their maximal
difference cannot exceed ra*.

b) liΊeIij if, and only if i= ϊ. where Iu = {li+i j+ί + l , / f + l i J + 1 + 2,...,/u+1}
i.e. the numbers of the rows7 + 1 separate the numbers of the row/

As a consequence of b), if some consecutive hiN's of the first row are equal, or
equivalently if the corresponding /ιyV's differ only by one, all the A^ 's in the
subtriangle under them are fixed to the same value. No et or/) can change them.
Furthermore, all the denominators involving them cancel with numerators
involving A's of the same subtriangle, and only hiojo, the one at the bottom of the
subtriangle, remains as a parameter in some numerators. All these fixed /f s can be
removed from the definition of the G.-Z. basis, only hiojo being kept as a parameter
instead of those of the first line. The restriction N ^ m* which is a priori a
consequence of a), becomes N — Nί + 1 ̂  ra* if the subtriangle is of size N1 and is
on the boundary, or N — N1 — N2 + 2 ^ ra* if there are two such subtriangles on
both corners.

When transposed into the theory of representations of Kac-Moody algebras,
the constraint hίN — hNN + N ^ m*, consequence of a), corresponds to the integra-
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bility condition. Note that this last inequality is well defined in Έ when the h's of
the highest weight representation are considered in Έ instead of Έ/mΈ with
triangular inequalities as in the classical case.

Between the fully periodic case and the last one corresponding to highest
weight representations, (with all e/s and//s nilpotent), one has different stages of
partial periodicity, when integer differences are restricted to subtriangles

In this subtriangle each h has the same fractional part (say ζ) and the hu in this
subtriangle satisfy the conditions a) and b) of regular highest weight modules of

The triangular structure itself is imposed by regularity condition. The con-
straint is in fact the following: if the set of indices hjk with the same fractional part
has n > 1 elements on l inek<N, it must have exactly n+\ elements on line k+\
and n — 1 elements on line k — 1. By virtue of the remark of Sect. 2 on possible
permutations of the λ^'s on the same line, the set of hjk with fractional value ζ can
be gathered into a subtriangle as described above. In such a triangle zeroes in the
numerator prevent divergences due to zeroes in the denominator.

A subtriangle by itself corresponds to a certain highest weight representa-
tion, say Π^ι\ of ^/(SUiNi))^ One can introduce several such subtriangles

•Vζ

Fig. 1. The set of hik with 1 ̂  i ̂  k ̂  N is triangular. The painted subtriangles Nt correspond
to the subsets of /iίk's with the same fractional part ζ, . Note that the figures represent neither
the sets of weights of representations of Sί/(3) nor the values of hιk but the set of ik, indices of
the hik defining the Gelfand Zetlin basis
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with constant ζ's (up to permutations σk in the rows). These triangles have to be
non-intersecting and with distinct ζ's. (See Fig. 1.)

Proposition. The dimension of the partially periodic module with subtriangles N{ and
conditions a) and b) in each sub triangle is

Π ( d i m Π i ' )(m*(N-l)(N-2)β N-l)

i \Vn ) /

and this module is simple.

Proof. This is a consequence of the results on the dimension and the irreducibility
of the corresponding highest weight representations Π{"ι).

With a given structure of subtriangles, the permutations in the rows that
preserve the subtriangles do not preserve the conditions of ordering of the
integer parts of the /j ί ; 's. More precisely, they are in one to one correspondence
with the possible orderings. The first line of indices of a subtriangle JVf has fixed
values. Its ordering in Έ/mΈ leads to Nt possible permutations of the first line.
The second line has then (iV£ — 1)! possible orderings. This leads then to
Y\Ni(Ni—l)\(Ni — 2)\...(2)\ choices of sets of inequalities between the integer

i

parts of the ht/s.
The truncation of periodicity and hence of the dimension is associated with

nilpotency of certain operators but not, in general, of the generators ei9 f
themselves. One should rather look at the lowering (L) and raising (R) operators
studied in the classical case long before [7] and recently generalized to the quantum
one [8]. They can be conveniently defined recursively. To study them adequately
here would require the development of another elaborate formalism. So we merely
indicate that they can provide insight concerning the systematics of the partially
periodic cases.

Example: Flat Representations. Let us consider the following partially periodic
module: suppose that all the λ^'s with j k 2 are equal. There is actually one single
subtriangle Nί=N—l frozen to a single value hNN, as depicted on Fig. 2. The
module we obtain was briefly mentioned in [6]. It has dimension (m*){N~{) since
dimϋ^ 1 * = 1, so one can just consider the first column. All the weights have
multiplicity one. (This case corresponds to the symmetric tensors of the classical
SU(N).) Let us denote hk = hίk for k=\,...N. The expressions of the generators
are very simple on this module, since there are no denominators,

with by convention h0 = hNN.
This is the simplest example of periodic representation of ύll(SU{N))q. It

corresponds to trivial representations of the auxilary algebra defined in the
following section, i.e. with all the operators β scalar.

When now some consecutive hk have the same fractional part, some of the
generators e{ and fi become nilpotent. They are all nilpotent when all the hk have
the same fractional part. This case generalizes the "flat" representations of
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N 1 = N - 1 , ζ ,

Fig. 2. For the simplest periodic representations of ΰfc{SU(N))qi all the hik are frozen to the
same value but one column, as for symmetric tensors

^(SU(3))q introduced in [6]. These representations are highest weight representa-
tions, and they are either symmetric tensors or the irreducible parts of the
symmetric tensors which become too large (in fact rather irreducible factors of the
symmetric tensors, since these are indecomposable).

4. Alternative Method and Auxiliary Algebra sf

We present here an alternative method for the study of the representations of
ϋίί{SU{N))r This method reduces the problem of the classification of periodic
irreducible representations of ^ί(SU(N))q to the classification of rnN~1 times
smaller irreducible representations of an auxiliary algebra $/. As in [6], we first
suppose that all the generators e{ and/ f are injective on a module M. Let the qhi be
simultaneouly diagonalized. Since the set

only contains mutually commuting operators, there exist correlated bases on the
common eigenspaces MP of qhi such that each e2i,f2i+1 can be seen as a scalar
operator α2i.Id or α 2 ί + 1 . Id times an operator that translates the basis of MP into
the basis of another MP,. In other words, if we identify all the MPs to the same Jί,
then e2i = α2ί.Id a n d / 2 ί + 1 = α 2 i + ^Id on Jί. This can be written as

where P = (Pι,...9pN-ι) characterizes the set of eigenvalues of the qhi's.
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Then there are N — 1 complex parameters μt such that

for i = 1,... N - 1, where by convention po=pN = 0. The set P characterizes exactly
the set of eigenvalues of the # Λ ' s provided m and N are coprime. (This is the
condition of invertibility of the Cartan matrix oϊSU(N) in ΊLm) As proved in [6] in
the case N= 3, this constraint has no major significance and can be removed.

As a consequence of the commutation relations, the expressions of the other
generators e2i+1 a n d / 2 l are given by

e2i+1'\P)®\x} = IΠTΪIΛH-I-O

) _

L

) _

where the operator β2

p

ι^p2.+2 depends only on p2i, p2i+i and β1

p[i_ι P2i+idepends only
o n / ? 2i- i a n ( ip2 i+i Furthermore, some Serre relations imply that this dependence
is

ε= +, -
ε '= +, -

The classification of periodic irreducible representations oί%(SU(N))q is now
equivalent to the classification of the irreducible representations of the auxiliary
algebra s/ generated by the operators βεt.. A simple module over s& of dimension
k will be in correspondence with a simple module over %(SU(N)) of dimension
fc m"- 1 .

The relations satisfied by the βu's follow from (1). The commutation of
generators ei or/j and e^ or/} for \i—j\ ^ 2 imply

[ / C O = ° for |/—y| ^ 3,

The Serre relations and [ e 2 i + 1 , / 2 i + 2 ] = 0 for each pair of neighbouring points
2/+ 1, 2i + 2 of the Dynkin diagram imply the following relations between the
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Γ n 2 t + l n 2 ί + l - i .rn2i+l nli+l-i -\

[β + - , p _ + ]q + [β-- ,p + + \ = q-q ,£,

LP + _ ,/> + + \ q - l P - - , P - + J ί - W

rn2i + 2 n2i + 2-ι . Γ / 3 2 i + 2 #21 + 2 ! - l

ro2ί+2 o2i+2-t Tβ2i+2 n 2 i + 2-, n > ( Λ )

LP + + , p _ + \q = [β + - , p _ _ J€ = ϋ
where [A,B]q = qAB-q~xBA. The equation ( - + ) is not independent and is a
consequence of ( + +), (H—) and (E). These relations between β2i + 1 and β 2 ί + 2

are valid for each value of i such that 1 < 2i -f 1 < 2Ϊ 4- 2 < JV — 1. We obtain the
corresponding relations between β]**ι and j?ε

2

3

ι

fi4 for 1 < 2/ < 2/ 4-1 < N — 1 by the
correspondence

β2i+l β2i+l

r εiε2 ^ε 2 εi

On the boundary, since po=pN = 0, we have in fact only

and relations between jŜ  and β\ ε are obtained by adding some of the equations of
each group ( + + ) , or ( )...in order to reconstruct β1 instead of βι

± g j. This is
similarly true at the other edge of the Dynkin diagram for the relations involving
βN

z~
{. The particular case of ̂ /(SU(3))q is detailed in the following section and the

classification of the representation of stf if shown to be equivalent to the set of
representations provided by the G.-Z. basis.

5. Equivalence with the Gelfand-Zetlin Basis for Periodic Representations

In the particular case of ^/(SU(3))q9 the only pair of neighbouring points on the
Dynkin diagram is (1, 2) and the algebra si is reduced to the simple form given in
[6], and also in [12], that is

(E)

q-q x

Now that μ1 and μ2 can be eliminated from these relations by a rescaling of βιf.
The rescaled β\2 of this paper correspond to u, u\ v and υ' of [6]. The
representations of si have been classified in [6]. Their dimension k can be
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1 fg k S *n*. But no simple explicit expression for the action of the generators on
a given representation of tfί(SU(3))q was derived from this study.

To do this, we consider a module Ji on the auxiliary algebra s/9 and a basis on
M such that the operators β\ and β\_ have non-zero matrix elements on the
diagonal and on the line just under the diagonal, whereas β\ and β2. are on the
diagonal and on the first line over the diagonal. In [6], u or β\ was diagonalized.
This was well suited for demonstrating the completeness of the solutions. The
different choice mentioned above is equivalent and moreover leads to the simple
and elegant forms given below. We define

in order to combine the integer part and non-integer part of the eigenvalues of qhι

and qh\ For definiteness of the third roots, we suppose here that m is not a multiple
of 3. It was however proved in [6] that no particularity happens in this case. A
periodic module over %(SU(3))q has then the general form:

ex\ay,a29 /> = — [a± -b^- i][a2 - aί - b1 - i - 1]\ax + 1,a29 /
α i

+ — [a2-b2-i][c-b2-i-l]\aί + \,a2,i+l
α i

f21al9a2, i) = — [a2-b2- i][a1 - a2 - b2 - i + 1]\aua2 - 1, i}
α2

[ b i } [ b i \ ] \ \ J

aγ and a2 are in the generic case non-integer indices, defined modulo m. The index i
is integer and can take k values (k = l,...,m*).

The values of the Casimirs C(ε) on this representation are

We now give an explicit correspondence between this basis and the Gelfand
Zetlin basis defined in Sect. 2.

Let

\a19a29iy= Σ Th::hatr ^ κ 2

 23 h22

 3 3 Y m
All,*12.*22 / j 1 1 /

Clearly, qκ determines the correspondence between a1 and Λ n, and between a2, h12

and h22 by

Identification of the action of the generators on left-hand side and right-hand
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side of (T) provides the following constraints:

f . 7 A 2 Λ 2 — 1 1 / P /I 1 / Ykl/2 TA2Λ2 (ft)
/ l 1

 β | - l , α 2 ι " α V ^ l K 1 , 1 ^ ) ) * a i t a 2 i , W

α 2 C 2 2

P (2 2 * ) )

The constraint (δ) provided by/ 2 is a bit more complicated and less useful, so we
do not derive it here.

Combining β and γ leads to

1/2

~zz \ * ό /

a n d

, , — 1 / P.P ,,\2[hi2 — h22-h l][h22-\- h12 — b1 — i] h _λ hl ' 2 ' ^ ) -77 1 7T71 τrTa"
 22.

(γ")

It is clear that the knowledge of one of the coefficients Γis enough to constrain
all the others. We have now to check the compatibility of these relations, and
identify the parameters of the module.

The identification follows from the comparison between the values of the
elements of the center of %(SU(3)\.

We already had hll=al and h12 + h22 = a2.

Remark. Requiring that the values of the Casimirs (^ )m and (/ )m are the same in
both modules provides the same constraints as requiring periodicity of Γwhen m is
added to one of the indices a1 or a2.

Now

provides a new constraint on h12 and h22, which are then fixed. This constraint is
indeed

p) ϋ [a2-b2-i][c-b2-i-l]

Using the following identity

Π sinί x + — π ) = — - — Ϊ — sin nx (for n odd)
Λo V * / 2

(_l)«/2
= n_\ (1 — cos nx) (for n even)
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we deduce

^— = 1 for m odd
p) [m(a2-b2)][m(c-b2)]

or

= 1 for m even.

Since h12 + h22 = a2, this equation can be solved as a quadratic equation in
* ( h h ) h

fractional parts of Λ12, /ι22, Λn are thus all fixed in terms of the parameters of the
other basis.

Now

fixes CΛ I and

rj-ιhι2,h22 __ rr,hί2,h2:

aι—m,a2,i aι,a2,ι

rr>hι2— τn,h22 + ttt T"i2 — ̂ >^22 rT~'hι2,h
aι,a2,i aι,a2 — m,i aι,a2

fixes c12 and c12.
The identification values of the Casimirs C(ε) provides (for example, since there

are six possibilities):

h23 = -

Finally, a tedious computation shows that the constraint (δ) provided by the
identification of the action of f2 is satisfied when the above identifications of the
parameters hold.

We have then established the correspondence between the fully periodic
representations given by the G.-Z. basis and the m3-dimensional representations of
[6]. The fc.ra2-dimensional representations of [6] are obtained when c and bi — b2

are integers (and k = 2c-\- bί — b2 — 1). They correspond to partially periodic
representations described by the introduction of a subtriangle Nx = 2 of hik with
the same fractional part. If this subtriangle is made of h23, h33 and h22, then h22

can take

values, so the dimension is also k.m2.
We have then a correspondence between the classification of periodic represen-

tations of [6] for N = 3 and the periodic representations given by the G.-Z.
basis. The correspondence with the classification of [5] for N = 2 is immediate. So
the G.-Z. basis is adapted to describe all the periodic irreducible representa-
tions of W(SU(N))q for ΛΓ = 2,3, and we expect that this is also true for an
arbitrary N.
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Conclusion

We have presented two different approaches to the construction of all periodic and
partially periodic representations of SUq(N). The ^-deformed matrix elements of
the G.-Z. basis has been shown to incorporate, remarkably enough, the necessary
mechanism for periodicity constraints. The relaxation of periodicity by stages
(injective operators becoming nilpotent one by one) can also be carried out
elegantly on this basis. Our aim has been to construct the most general solution
including all the possibilities. Certain subclasses can posses particularly desirable
properties. A detailed analysis of such subclasses and of their composition,
following the discussion of Refs. [10, 14] would be of interest. Combining the
techniques of this paper with those of Ref. [4], the inhomogeneous case can be
studied for q a root of unity. The classical Abelian subalgebra ("translations") will
now acquire, along with partial non-commutativity, periodic and hence lattice-like
structure. This will be studied elsewhere.

The periodic representations of °ll{SU(2))q were used in [15] and [16] to
generalize the chiral Potts model. The extension to <%(SU(3))q is described in [12].

The alternative matrix algebra presented for the periodic case has its own
interests; it seems to have a fairly direct connection with the construction of certain
classes of statistical models [12]. The solution for SU(3) is presumably, the simplest
possible form exhibiting all the eight invariants. The denominators typical of the
G.-Z. basis are absent. Construction of such explicit solutions for N > 3 presents
an interesting challenge.

There are several recent studies of representations when q is a root of unity [9 to
14]. The distinguishing feature of our formalism is the explicit construction of
matrix elements showing how they can lead to different stages of periodicity. Such
explicit results will be essential for evaluation of all invariants and the Clebsch-
Gordan coefficients.

Before sending the revised version of this paper, we received the preprints [17]
and [18]. In [17], the periodic representations of °Uq{s\(n + 1,C)) are given, for
generic values of the parameters. Date et al. express <%q(sl(n + 1, (C)) in terms of a
higher dimensional Weyl algebra. But partially periodic representations do not
appear naturally with this technique. In [18], the minimal periodic representations
of %q(gl(nf<£)) are related to the generalization of the chiral Potts model,
extending then to n > 3 the results of [12].

Acknowledgements. We thank C. de Calan for contribution in the proof of our crucial identity
of Sect. 2, and J. Lascoux for helpful discussions. We also thank D. Bernard, V. Pasquier and
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Note added in proofs. Although the G.-Z. basis provides the correct number of parameters for
maximal dimension, it appears that some parameters are lost in smaller dimensions. We thank
V. Kac for having pointed out this fact. This is probably related to a reminiscence of the unitarity
of the classical G.-Z. basis.
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