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Abstract. An automaton maps infinite sequences onto infinite sequences. We
define the opacity as the distance between output sequences and input sequences.
A transparent automaton hardly disturbs the input sequence. An opaque
automaton erases some of the information contained in the input sequence. We
apply these ideas to the study of the inhomogeneous Ising chain governed by the
Hamiltonian

K(σ)=-J Y sqσqσq+1-H £ σq.
q= — M q- —M

Part One. Automata

IΛ. Definition of an Automaton

Problems in one-dimension physics often depend on the solution of a recurrence
relation of the type

where / is a given map and where δ0 is known. It may happen that the function /
itself varies from step to step. For example, suppose we are given two functions /+
and /_ and a sequence of signs (εn\ εn e { — , + } . Then the sequence (δn) defined by

depends on the sequence (εn). This situation arises in the study of the inhomog-
eneous Ising Chain where the coupling constant varies from one site to the other
(binary alloy, chain with impurities, spin glass,...).

The object of the paper is to give a general discussion of the map (sn)\-^{δn) and
this can be achieved in terms of automata theory. We then apply our results to the
Ising Chain.
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In the future, we hope to be able to adapt our techniques to the study of the
discrete Schrόdinger equation

The sequence (εn) represents then a given potential and (δn) the time independent
wave function.

We now define an automaton. The automata we wish to discuss are of a special
kind. They map the set {— 1, + 1}N of infinite (±) sequences into the set 0^ of real
sequences as follows.

We are given a finite set S of states A, B, C, D,... and among them an initial
state, say A, two maps f+:S-+S and f_:S-+S represented by arrows, and an
output function φ\S-+0t. The automation si is the quadruple (<S, /+,/_, φ). It will
be convenient to simplify notations and to write +A, + B,... (respectively — A,
-£, . . . ) instead of f+(A), f+(B),... (respectively /.μ),/__(B),...).

Given the input, i.e. an infinite sequence ε = (ε0, ε1?...) of (+) and (—) symbols, it
acts on si producing the sequence ε0A, εtε0A, ε2ε1ε0A,.... We read off

<S0 = φ(ε0A), δx = φ(ε1ε0Al δ2 = φ{ε2ε1ε0A)9....

The infinite real sequence δ = (δo,δl9...)9 denoted j/ε, is called the transduced
sequence of ε.

The reader may wonder why it is essential to introduce the output function φ.
The reason will appear in the next paragraph where we define equivalent
automata, a notion which will prove useful in defining the opacity.

Automata can be advantageously represented as oriented graphs where from
each vertex (state) two arrows (+ and —) leave. We illustrate the definition by
three examples.

Example 1. (The one state automaton)

φ (A) = a

All ( + ) sequences are mapped onto the constant sequence (a,a,a,...).

Example 2. (An identity automaton)

φ(A) = a
φ(B) = b

This automaton acts as the "identity." For example the sequence — + H h —...
is mapped onto ab b ab α.... The symbol ( —) is coded onto a and ( + ) onto b.
Had the output function been φ(A)= —1, φ(B)= +1, then j/ε = ε.

Example 3. (Thue-Morse automaton)

φ(A) = a

φ.(B) = b
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Let ε = (εo,ε1?...) be an input sequence. Define

Then the output sequence δ = (δo,δu...) is

{a if π M = + l

In other terms

δn [b if πH=-ί

In particular, if a= -f1 and b= — 1, then <5n = πΠ.

1.2. Further Definitions

Two automata si and J / ' are said to be equivalent (s/~jtff) if they differ at most
by their output function.

A null-automaton sends all input sequences onto the null sequence (0,0,0,...).
Every automaton is equivalent to some null-automaton. The corresponding
output function is the null-function φ(A) = φ(B) = φ(C) =... = 0.

In an automaton, a state falls in one of the four categories:

(i) it only has incident (+) arrows,
(ii) it only has incident ( —) arrows,

(iii) it has ( + ) and ( —) incident arrows,
(iv) it has no incident arrows.

An automaton is called balanced if the output function φ maps all states of the
first kind onto +1, all states of the second kind onto —1 and all states of the
third and fourth kind onto 0. Every automaton is mapped onto some balanced
automaton.

In our previous Example 1, the equivalent balanced automata is defined by
φ(A) = 0; in Example 2, φ(A)= — 1, φ(B)= + 1 ; in Example 3, φ(A) = φ(B) = 0.

An automaton is said to be homogeneous if there are exactly two incident
arrows to each state. This is the case in Examples 1, 2, and 3. Example 4 below
shows an automaton which is not homogeneous.

An automaton is never empty: it always possesses at least an initial state and
two arrows. A subautomaton of an automaton si is obtained by deleting a family
of its states together with the incident and departing arrows corresponding to these
states. An automaton may well have no subautomaton but itself. Such is the case in
Examples 1, 2, and 3.

Example 4.
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Suppressing A does not leave us with an automaton. But suppressing A and C
leaves the two state automaton:

Suppressing A, C, and D leaves us with the one state automaton

So the initial automaton possesses at least two proper subautomata. One
should note that the initial state of the subautomata can be chosen arbitrarily.

7.3. Opacity of an Automaton

We propose to measure the distortion that an automaton produces on inputs. If
the output sequences contain all the features of the input sequences we would like
to think of transparency. If not the automaton is opaque (or partially opaque).

The norm of a real bounded sequence σ = (σo,σ1?...) is

(\ /N-l \\l/2

||σ|| = lim sup - Σ K | 2

ΛΓ-*OO y v \w = o

The distance between two real bounded sequences σ and σ' is thus

\ /N-l \\l/2

Σ \°n-<\2)) •
iV-oo \iV \n = 0 / /

The exponents 2 and 1/2 that appear in the above definitions are not really
essential. They could be replaced by p and l/p(p Ξ> 1). The choice p = 2 has however
a small advantage in that it is often easier to compute the norm in a more analytical
fashion.

The distance between σ and σ' may well vanish even though σ and σ' are not
identical. For example, σ and σ' may differ from each other on finitely many
elements only. Yet we shall consider such sequences as equal....

The opacity of an automaton si is defined as

ω{stf) = sup inf || stf'z — ε ||,

where the sup is taken over all ultimately periodic ( + ) sequences ε.
Let us illustrate this formula. First of all, we observe that
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The infϊmum is obviously attained for the null-automaton si' equivalent to si.
Therefore

A transparent automaton corresponds to ω = 0 and for an opaque automaton
ω = l. We shall see later on that for any given rational re[0,1] there exists an
automaton si for which

Conversely ω(si) is necessarily the square root of a rational number.
It is obvious from the definition that

si~st' =>

The following obvious inequalities can be useful to calculate ω(si\.

)έi inf \\s#'ε — ε\\ for all ultimately periodic sequences ε,

ω(si)g> sup \\s/'ε-ε\\ for all sί'~sl.
ε

Example 1. (The one state automaton).

ω2(stf) = sup inf lim sup —
ε ae0t N-+00 N

Choose εn = (-l)n. Then

ω2(j^)^ inf \\_

The infimum is obtained for α = 0:

Σ (α-i)2+ Σ
n<N n<N

εn = + 1 εn = - 1

hence

The automaton is as opaque as it can be. In this case, the output gives no
information on the input. In Example 3 we shall see an opaque automaton for
which the situation is less "dramatic."

Example 2. (Identity automaton).

= sup inf lim sup —
ε a,b JV-»oo

Σ ( b -
N

Σ
n<N

εn=+l

Σ
n<N

εn=-l

The infimum is attained for a = — 1 and b = +1. Hence ω(si) = 0. The identity
automaton is transparent, as expected.

Example 3. (Thue-Morse automaton). Let ε be ( —1)". We know that the output
seqence is
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W e n o w c o m p u t e j|<5 — ε | | :

\\δ-s\\2= lim sup -*- Y (c + c'πn-εn)\
N->oo JM M = 0

where c = \{a + b\ c' — \{a — b). The limit actually exists and

||<5-ε||2 = lim - * - Y [c2 + c'2 + l+2ccX-2cεM
JV-̂ oo Pi n = 0

Then the three following averages vanish:

\ N-ί

2V iV 0

1
N-oo Pi n=0

\ N-ί
l i m T7 Σ εππN = 0 .

iV^oo iV n = 0

Therefore

and

Hence

The automaton is opaque even though, contrary to Example 1, it is possible to
compute ε knowing δ = sdz. Yet the two sequences ε and sέε may behave very
differently. It can be shown for example that ε can be almost-periodic whereas sίε
is pseudo-random in the sense of Bass [2].

In this Example 3 we have used the L2 structure to calculate ω(sί\ In the
following paragraph we shall describe another method of calculating ω(s/) which
is more general and completely algorithmical.

1.4. Computing the Opacity

Let P be an oriented path on the automaton and let λ(P) be its length (number of
arrows). Every automaton has at least one closed path (cyclic path). A state is said
to belong strongly to a path if the path visits the state at least twice, once through
a ( + ) arrow and once through a (-) arrow. Let v(P) be the number of states that
strongly belong to P.

Theorem 1. The opacity of a homogeneous automaton s/ is given by the formula

= sup
closed P
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Proof. Let P be a closed path of length λ = λ(P) and let Al9 Al9 ...9AV be the v = v(P)
states that strongly belong to P; v may well be zero. Let ε = (εo,ε1 ?...) be an
ultimately periodic sequence (period λ) which from some point on follows the path
P twice through Al9 A29...,Ay and back to Av Let φ be the output function and put
φ(Ai) = ai. Then

-> 1 Γ
| |j/ε-ε||2^- Σ (ai~l) + Σ '

Λ 8f = + 1 8i = ~ 1
i ^ v i g v

The inequality sign comes from the fact that the path P may contain states which
do not strongly belong to P. Because si is homogeneous, the right-hand side reads

1
T Σ [(αί~~i

The infϊmum over all equivalent automata is obtained for at = 0. Therefore

2v

and

' ) ^ sup
P λ(P)'

We now show that ω2(si) cannot be larger than the sup. Let si' be the balanced
automaton equivalent to si. Let the states be Al9A29.... For a given ultimately
periodic ε = (εo,ε l5...) the sequence of visited states is Aio9Aiί9Ai29.... Then

\\si'ε — ε | | 2 = lim sup — Σ \φ(Ain) — εn\
2 -

N->oo N n<N

If Ain belongs strongly to the infinite path P generated by ε then φ(Ain) = 0. If
not, φ(Ain) = εn so that

1 °
||«β/'ε~β||2=limsup- j Γ Σ ^

JV-^OO N n<N

where the symbol o indicates that the summation is extended to those n for which
Ain belongs strongly to the path. Then

llΛ/'ε-εll2^

for some closed path P ε which depends on ε.
Therefore o (P)

2/^)gsup||j/'ε-ε||^sup V ( e)

= sup 5 S QED

closed P A\r)

The proof of the theorem implies the following corollaries.

Corollary 1. // si' is the balanced automaton equivalent to a homogeneous
automaton sί9 then

φ/)= sup ||j/'ε-ε||.
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Corollary 2. The range of ω2(stf) for homogeneous srf is the set of rationals on
[0,1].

Using the theorem, it is easy to see that the automata of Examples 1, 2, and 3
have indeed opacities respectively equal to 1,0 and 1 as we had already seen. The
automaton of Example 4 has opacity 1.

Part Two. The Inhomogeneous Ising Chain

//./. The Inhomogeneous Ising Chain

An Ising chain is formed by M + JV particles in a row. Particles have spin ± 1. We
denote the spin at site q by σq (q= -M, - M +1,. . . ,N). Let εe {-1, + \}M+N be
given. The Hamiltonian or energy of a given configuration of spins

is

Σ εqσqσq+1-H Σ <V
q= -M q= -M

where J>0 and He& are fixed parameters; J is known as the coupling constant
and measures the binding energy between two neighboring particles q,q + l, and
H is the external field which we shall always suppose nonnegative without loss of
generality. The problem is to find the equilibrium configurations, i.e. those σ which
minimize J f (σ). This turns out to be quite intricate and we have decided to tackle
only one particular part of the problem. We let M go to + oo and determine
the spin σN of the endpoint in equilibrium. σN depends on σN _ t, σ^ _ 2 , . . . . In other
terms, we are discussing an Ising chain in which the interactions are one-sided. It
then can be shown [1, 3] that σn is the sign of δn where δn is defined inductively
through the formula

δn + ί = -j-+εn sgn((3J min {2, \δn\}, n < N.

It can also be shown that for large n, δn does not depend on the value of δ0, except
maybe for some very special sequence ε (see [4]).

So from now on, we study the recurrence formula

where we have put α = 2H/J. To every ( ± ) sequence ε — (εM) corresponds a sequence
δ = (δn). What is this correspondence? This is the question we apply ourselves to.

11.2. The Ising Automata

It is easily verified that for fixed α, the sequence δ = (δn) can only take finitely many
values which all lie in the interval [α — 2, α 4- 2]. The map ε \-+δ is an automaton stΛ
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which we shall now describe. (In a previous article [4], we used the word
"transducer" rather than "automaton.")

Before embarking on the general case, let us look at some examples.

Example 5. α = 0. Then

\δo = 2

By looking at the first values of δn, one can easily convince oneself that

and this is just the Thue-Morse automaton of Example 3 with φ(A) = 2 and φ(B)
= -2.

Example 6. <x = 2. The inequalities α —2^(5n^α + 2 show that 0^δn so that the
induction formula boils down to

The graphical representation of $i2 *s thus as follows.

φ(A) = 4
φ(B) = 0
φ(C) = 2

Example 7. α ̂  4. Then <5 ̂  2. The induction formula reads

and we readily recognize the identity automaton

φ(B) = α-2

[There is a slight discrepancy with Example 2: arrows ( + ) and ( —) are
exchanged.]

Following Allouche, we now look at the general case which subdivides into two
cases according to whether 4/α is or is not an integer. The cases α = 0 and α ̂  4 have
already been treated.

Case where 4/α is not an integer.



350 M. Mendes France

Case where 4/α is an integer.

φ(A) =

-.
α

In this case, the Ising automaton stfa is homogeneous.

Theorem 2. Let Sα be the set of states of the automaton stfΛ and let \Sa\ be the number
of states. Then

^ T Σ Φ(Af) = α.
Pal MeSa

Proof The proof is obvious for a = 0. If a=#0 and if 4/α is not an integer then

and the statement is easily verified.
If 4/α is an integer, then

and again the proof is easily completed. Q.E.D.

Remark. When α decreases to 0, the number of states tends to infinity. For α = 0 the
number of states is 2. The automaton «s/0 appears as singular.

The set { — 1, + 1 } N is canonically endowed with the Bernoulli measure

dε= Π
eN

Π
fceN

where D+ and D_ are the Dirac measures concentrated respectively on + 1 and
- 1 .
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Theorem 3. Let s£a be the Isίng automaton. To every input ε corresponds an output

δ = jtfaε. For almost all εe{ — 1, + 1 } N ,

^ TV— 1

l i m T7 Σ Sn = a.
JV-+αo iV « = 0

More generally, for all finite set Q of integers and for almost all ε,

l i m 4 Y Π (δn+q-«) = 0.
N^oo iV « = 0 qeQ

Proof Define

F(x) = sgn(x) min {2, |x|}, x e R .

Then

TN(ε)=^Y Π («» + i + β - α ) = ^ Y Π Bn+9F(δH+q).Y Π β ^ Y Π
« = 0 qeQ Jy n = 0 qeQ

Therefore

2dε = O - + w Σ ί Π εm+qεn+qF(δm+q)F(δn+q)dε.
\-ί > / iV m<n qeQ

Let r be the largest integer in Q. The term εn+rdεn+r occurs under the integral sign
and the index n + r dominates all other indices of the εt. Hence

_ 1~1 _

factors out so that

The series

00 1

converges and a theorem of Beppo Levi ([5], p. 36) then implies that
converges to 0 for almost all ε. Q.E.D.

Remark. Theorems 2 and 3 show that the spatial average

1

and the dynamical average

\ N-1

A T i—t n
N-+ao -/V n = 0

both coincide. This is of course just an instance of an ergodic principle.
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113. Opacity of as Isίng Automaton

A simple adaptation of Theorem 1 shows the following result.

Theorem 4. Let s/a be the Ising automaton. Then

(i) cφ/ 0 ) = l ,
(ii) ifoc>O,

where μ = max{l,[4/α]}.

Remark ί. As α decreases to 0, ω(stfa) tends to l=ω(stf0). Even though the
automaton changes drastically in the neighborhood of α = 0, the map α i—>ω(j/α) is
continuous at α = 0.

Remark 2. Suppose we are given a one-sided Ising chain in which we do not know
the distribution ε of the impurities. Apply a strong external field H ^ 2 J, and read
off the equilibrium configuration σ: this gives ε.

A variation of the above idea could be as follows. Suppose we wish to measure
the binding energy J. We start out with a very large external field H and observe
the equilibrium spin configuration σ. As H decreases, at some point Hc, σ will
change. Then HC = 2J.

Apology. The one-sided Ising chain may not correspond to a real system. Yet, the
ideas developped in these pages originate from physics and the mathematics
involved, even though quite simple, appear to us as being interesting in themselves.
I mention two related forthcoming articles, the first one by F. Blanchard, J.-M.
Dumont, and A. Thomas: Generic sequences, Transducers and Multiplication of
Normal Numbers (preprint). The second one is written by A. Broglio and P.
Liardet: Predictability (preprint).

Jean-Paul Allouche and Nathalie Loraud have been a great help in preparing
this article. May they accept my warmest thanks.
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