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Abstract. The structures of Poisson Lie groups on a simple compact group are
parametrized by pairs (a,u), where aeR, ue A%*h, and by is a real Cartan
subalgebra of complexification of Lie algebra of the group in question. In the
present article the description of the symplectic leaves for all pairs (a, u) is given.
Also, the corresponding quantized algebras of functions are constructed and their
irreducible representations are described. In the course of investigation Schubert
cells and quantum tori appear. At the end of the article the quantum analog of the
Weyl group is constructed and some of its applications, among them the formula
for the universal R-matrix, are given.

Introduction

0.1. Let G be a finite-dimensional simply connected simple complex Lie group. G
is called a Poisson Lie group ([3]) if it is a Poisson manifold and the multiplication
1:G x G—G is a morphism of Poisson manifolds. There exist many Poisson Lie
group structures on the fixed group G. All of them are listed in [1].

Let KCG be a maximal compact subgroup. The results of [1] imply (see
[28,29] and Sect.1 below) that all Poisson Lie group structures on K are
parameterized essentially by pairs (a, u), where a is a real number, ue A2h and by is
a real Cartan subalgebra of the Lie algebra g=LieG.

Fix pair (a, u). The corresponding Poisson Lie group is denoted by K(a,u). In
Drinfeld’s theory [3], the group K(a, u) may be viewed as a classical object that is
subject to quantization. To formulate this in the language of algebras of functions,
consider the algebra of regular functions C[G] on a Poisson Lie group G. This is a
Poisson Hopf algebra in the sense of [3], i.e. the comultiplication §: C[G]
—>C[G]®C[G] is a Poisson algebra homomorphism. Consider the algebra of
K-finite functions C[K] consisting of restrictions f|g, where feC[G]. The
algebra €[K] has involution (complex conjugation f+f), and the comultiplica-
tion §: C[K]->C[K]®C[K] is a homomorphism of algebras with involution
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As a Hopf algebra with involution, €[K] is isomorphic to (C[G], *), where f*(g)
= f(wo(g))- Here wy: G— G is the Cartan anti-involution such that K is the set of
fixed points of w,,.

The result of quantization of K(a, u) is the family C[K(a, u)], of Hopf algebras
with involution, where ¢=1 is quantization parameter and C[K(a,u)];
=C[K(a,u)]. One constructs this family in two steps. First, one quantizes the
Poisson Hopf algebra C[G(a,u)] as indicated in [3]. The result is the family
C[G(a, u)], of Hopf algebras, where ge €\0 (and g isn’t a root of unity).

To make the second step, recall that C[G(a, u)], is a Hopf algebra consisting of
matrix elements of finite-dimensional representations of the quantized universal
enveloping algebra U(g). It follows that in C[G(a,u)],, e R, one can introduce
an involution *. By the Hopf algebra €[ K(a, u)],, we mean the pair (C[G(a, u)],, *).
We also call it the algebra of K-finite functions on quantum group K(a, u) or the
quantized algebra of K-finite functions on group K(a, u).

The cases g=1 and g <1 being analogous, we may and shall assume that g = 1.

0.2. In this paper we’ll deal with irreducible *-representations of the algebra
C[K(a,u)], in a Hilbert space, by bounded operators. In the case g=1 the
description of such representations is trivial: all irreducible representations are
one-dimensional and correspond to points of group K.

In the case g#+1 the situation changes drastically: there exist infinite-
dimensional irreducible representations of the algebra C[K(a, u)]1,. Let n be one of
these representations; then = determines two-sided *-ideal I, = Kern CC[K(a,u)],.
As g—1, the ideal I, “tends” to a Poisson *-ideal T, C(E[K(a u)]. © being
irreducible, I, is a max1ma1 Poisson *-ideal. Hence, there is a minimal Poisson
submanifolds in K(a,u) (i.e. symplectic leaf) corresponding to I,. We see that
representations of C[K(a,u)], are closely related to symplectic leaves of the
Poisson structure in K(a, u). The picture of these leaves depends on parameters
(a,u). In the case a=0, u=0 the symplectic leaves are points, C[K(0,0)],= C[K],
and all (irreducible #-) representations are one-dimensional. In the case a0, u=0,
symplectic leaves are naturally isomorphic to Schubert cells of the full flag
manifold K/T, where T is the maximal torus. As it turns out (see [28, 29] and
Sect. 3 below), the geometry of Schubert cells and that of flag variety govern the
representation theory of the corresponding quantized algebra of functions. One
can develop this relation further. For one possible direction see [14] and Sect. 5
below. This is a quantum analog of the Weyl group. Here is an illustration for the
typical case a=1. For the sake of brevity, denote C[K(1,0)], by C[K], and note
that for every element w of the Weyl group W there exists an irreducible
representation ,, of algebra €[K], which is in a sense a representation with the
highest vector e,, (see [29] and Sect. 3 below). This allows to define the functional
on the algebra (D[K] qasfollows: w(f)=(m,(f)e,,e,). It turns out that if {s;}7- , are
simple reﬂectlons then for {5;}7. ; the Coxeter relations hold. This is due to the fact
that if w=s,,. is a reduced expression, then w, >~ W®.. O, where the
right side is 1ndependent of the choice of reduced expression. The relation §; §2=1
doesn’t hold; nevertheless, one manages to construct Hopf algebra containing all
5, In contrast to the classical case g=1, this algebra is infinite-dimensional. It is
the quantum analog of the minimal Hopf algebra containing the universal
enveloping algebra U(g) and simple reflections {s;}7% ,

Let’s go back to a description of irreducible representations of the algebra
C[K(a,u)], As it was noted, in the case a+0, u=0 these representations are
described in terms of geometry of Schubert cells and that of flag variety. In the case
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a=+0,u=+0 we have essentially a different picture. Here the symplectic leaves are a
“perturbation in parameter u” of the Schubert cells. There appear everywhere
dense symplectic leaves and the space of these leaves becomes non-semiseparable
with the natural topology. In the representation theory of the algebra C[K(a, u)],
the main examples for non-commutative geometry by Connes, namely the
quantum tori, appear (for references on the latter see, for example, [23]). We
believe this is of interest because quantum tori aren’t quantum groups.

In the last case a =0, u =30 Schubert cells do not play any role but quantum tori
still do.

0.3. Recall briefly the history of the subject in question. The first results were
announced by the second author and Vaksman at the Winter Voronezh
Mathematical School (January, 1985; unpublished). They had described all
irreducible representations of the algebra C[SU(3)],. Later this result was
generalized by the second author in [28] for C[SU(n)], and in [29] for C[K],. In
these articles the relations with Schubert cells and geometry of the flag variety were
also established. The case SU(n) (but without relations to geometry) was
independently considered in [10]. The case K(1,u) and relations to quantum tori
were studied by the first author in [13].

As the first published results on representations of quantum algebras of
functions, one should view preprints [26, 27] (part of the results were published in
[31]) and article [37]. All these articles dealt with C[SU(2)],. They contain much
more than just a description of representations. For example, in [26, 27, 31] the
representation theory of C[SU(2)], was used to construct the harmonic analysis
on the quantum group SU(2). One of the consequences of this theory is the relation
between quantum groups and the theory of g-special functions (this relation was
discovered independently in [21, 11]). For the later developments in this direction,
see the review [12].

Also, in [37] the elements of harmonic analysis and differential calculus on the
quantum group SU(2) were constructed. Later, in [38] the axiomatric approach
for compact quantum groups was developed. It should be noted that [38] didn’t
contain the algorithm for quantization of an arbitrary simple compact Lie group.
This algorithm (described in Subsect. 0.1) follows from results [3]. There exists
another method of quantization, based on the notion of the quantum R-matrix (see
[5]). The methods of [38] and [5] are more algebraic-geometric than that of [3],
since the former start from a coordinate ring of an algebraic variety. The approach
[3] is similar to that of the representation theory and differential geometry (one
starts from an infinitesimal object, namely, the quantum universal enveloping
algebra). A more systematic “algebraic-geometric” approach may be found in
[20]: coordinate rings of quantum linear spaces are initial objects and coordinate
rings of quantum groups appear as Hopf algebras of their (co-)jendomorphisms.

In the abovementioned [5, 20, 38] the authors do not investigate the
representations of quantum algebras of functions, but in these articles useful
information about the structure of these algebras may be found.

We do not mention here the articles on quantum algebras of functions on non-
compact groups since they have no immediate connections with the present article.

0.4. Inthe present article we give a full description of irreducible representations of
algebras of functions on compact quantum groups, the latter being supposed to
arise as the results of quantization of Poisson structures from the list in [1]. Our
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description is based essentially on [13, 29] and we reproduce part of their results
here, one of the reasons being the misprints in [29] (there were none of them in the
preprint).

0.5. In Sect. 1 of the present article the “classical theory” is described, i.e. compact
Poisson Lie groups, Schubert cells and symplectic leaves. In Sect. 2 the quantized
universal enveloping algebras and the corresponding quantized algebras of
functions are introduced. The representation theory of quantized algebras of
functions for the case a+0, u=0 (i.e. when leaves are isomorphic to Schubert cells)
is developed in Sect. 3. The generalization of results of Sect. 3 is given in Sect. 4,
where quantum tori appear. In the case a0, u 30 the representation theory is the
“semidirect product” of the results of Sect. 3 and of the representation theory of
quantum tori.

At the end of Sect. 4 the last case a=0, u+0is considered. Here the same ideas,
as in the case a=+0, u=+0, allow to reduce the representation theory to one of
quantum tori and one of some factor-algebras of (classical) algebras of functions on
group K. Note that this case can be put into the framework of deformation
quantization by Rieffel (see, for example, [23]). Also, in this case one can attempt to
state and solve all the problems of the theory of quantum tori (see [23] for a review
on the latter).

An algebra of functions on a compact quantum group admits C*-completion.
In the case of Sect. 3 (i.e. for a=+0, u=0) we obtain an algebra of type L, but in the
case of Sect. 4 (a0, u=0) we obtain algebras of other type for almost all u and q.
One can see that on the “quasi-classical level” already the general case of Sect. 4
corresponds to irrational rotations of torus and to non-semiseparable spaces of
symplectic leaves. This indicates the relations to the theory of wild Lie groups.

In Sect. 5, the definition of quantum Weyl group [14] and some applications
are given, all of them being related to the case of Sect. 3 only, i.e. to the case of the
standard Poisson structure on a compact group. We omit proofs given in [14], but
sometimes we give proofs of the results that were only stated in [14].

At the beginning of each section we give a brief abstract of the results it contains.

0.6. The present article isn’t a review of the representation theory of quantum
algebras of functions and the bibliography is not exhaustive. Some of the results
were discovered several times and we refer to the earliest articles we know of.

0.7. Notations. The letter G denotes a simple complex Lie group, g=LieG is its
Lie algebra. We fix a triangular decomposition g=n_@®h®n,, where n, are
nilpotent subalgebras and §) is a Cartan subalgebra. Let 4=4,u4_ be the
corresponding decomposition of the root system. We fix a basis {o;}7-, in 4., an
invariant inner product (, ) on h*, Cartan-Weyl basis {X,},. ,{H;}/- in g such
that H; corresponds to o; under isomorphism h* ~b.

Let wy: X,,—— X _,, be an antilinear Cartan involution. It defines the real Lie

subalgebra kCg, the real Cartan subalgebra hr= @ IRH; and the maximal
i=1

compact subgroup K C G. The letter W denotes the Weyl group of K and T denotes
the maximal torus in K. U(g) denotes the universal enveloping algebra.

The set of dominant (of regular dominant) weights of g is denoted by P, (P, ,).
The set of weights of a simple g-module L(A) with the highest weight A is denoted
by P(A).
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1. Compact Poisson Groups

1.1. In this section we give the description of all structures of Poisson Lie groups
on a simple compact Lie group. They are parameterized by pairs (a, u) with ae R
and ue A%bhg. For all pairs (a, u) the symplectic leaves are described. The pictures
differ significantly in cases: 1) a=0, u=0; 2) a+0, u=0; 3) a+0, u+0; 4) a=0,
u=+0. There is alSo the dependence on u =0, but “for almost all” u 40 the picture is
essentially the same (and depends on whether a=0 or not).

1.2. Let C[G] denote the algebra of regular functions on group G. It is well-known
that €[G] consists of matrix elements Z(¢(g)v) of finite-dimensional analytic
representations 9: G—»End V. Let

r=r Y (X_,®X,—X,®X_)eA’g.

2aeA+
Fix aeR, ue A*hg and define on G a Poisson structure as follows:

{/1(91(g) 1), 5(02(8)02)}
=(£1®7,) ([(01 ®¢,) (ar +u),0,(8)®0,(g)] v, ®v,). (1.1)

In (1.1), £(0{g)V;) are matrix elements and [,] is the commutator of linear
operators.

Definition [3]. Let G be a Lie group equipped with a Poisson structure. G is
called a Poisson Lie group if the multiplication map u: G x G— G is a Poisson map,
G x G being equipped with the product Poisson structure.

1.2.1. Propeosition [28, 29]. a) Formula (1.1) equips G with a Poisson Lie group
structure.

b) The restriction of bracket (1.1) on K makes K a Poisson Lie group.

¢) For every Poisson Lie group structure on K there exist acR, ue Ay such that
the corresponding Poisson bracket can be reduced to form (1.1) by means of an inner
automorphism of K and multiplication of bracket by complex number.

Proof. a) is well-known and b) follows from a). ¢) Sects. 6 and 8 of [1] imply that a
general form of a real (i.e. wy-invariant) solution of a modified Yang-Baxter
equation is just ar + u. Each such solution defines a Poisson Lie group structure on
K and it remains to note that one can multiply a Poisson bracket by complex
number and get a Poisson Lie group structure.

The Poisson Lie groups corresponding to (a, u) will be denoted by G(a, u) and
K(a,u).

1.3. In this subsection, we’ll describe symplectic leaves [35] corresponding to
Poisson structures from Proposition 1.2.1 with a0, u=0. We can assume thata
Poisson structure on K is defined by the Yang-Baxter tensor

'y Z (X—a®Xu_Xa®X—a)

2 aed+
then (cf. (1.1)). For the sake of brevity we use here notations G, K for the
corresponding Poisson Lie groups G(1,0), K(1,0).

For an element w of Weyl group W choose its representative in K as in [34].
This representative will be denoted by w, too. Finally,let K= () K, be a Bruhat
decomposition [34]. wew
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1.3.1. Proposition [28, 29, 36]. Let a0, u=0. Then a) every symplectic leaf lies in
its entirety in some Bruhat class K,,, and

b) every symplectic leaf X CK,, is of the form XZ,,-t (or t-Z,,).

Here %, is standard symplectic leaf through w, and ¢, ¢, € T, where T is the
maximal torus in K.

Proof. Symplectic leaves may be described by means of [ 24] provided “the classical
double” for K [3] is constructed. One sees easily that this double is just the group
G, provided the dual group to K in the sense of Drinfeld is identified with subgroup
AN in the Iwasawa decomposition G=KAN. This follows from decomposition
g=k®Lie AN since the summands k and Lie AN are isotropic with respect to the
imaginary part of the Killing form.

1.2.3. Let ie[1,m] be a vertex of Dynkin diagram of Lie algebra g and let
;- SU(2)— K be the canonical Poisson Lie group embedding corresponding to this

vertex. Recall that
D= {( a—_b>eSU(2) b<0}
ba

is a symplectic leaf in SU(2) [31] and set Z,=y4(92).

1.3.3. Proposition. a) Z; is a symplectic leaf in K.
b) If w=s;,...s,, is areduced expression in Weyl group, then X, ...%, is a symplectic
leaf in K which coincides with the leaf X, from Proposition 1.3.1b).

Proof follows from the definition of a Poisson Lie group since y; is a Poisson
embedding.

1.3.4. Remark. Note that the multiplication by an element of maximal torus T
from the left or from the right is a Poisson map. Hence, on the flag manifold K/T
the Poisson structure such that projection n: K—K/T is a Poisson map is well
defined.

1.3.5. Corollary. a) Every symplectic leaf in K is isomorphic to a product of two-
dimensional leaves or coincides with the point of T.
b) Let K/T= U X,, be a Schubert cell decomposition [24]. Then X ,=n(Z,) is a

symplectic leaf and every symplectic leaf in K/T is of this form.

1.3.6. Remark. The decomposition of K/T in Schubert cells is the consequence of
Bruhat decomposition. The “symplectic” point of view on Bruhat decomposition
is given by Corollary 1.3.5b): the Poisson manifold K/T is the union of symplectic
leaves.

1.4. Here we consider the case a=+0, u30. We may assume that the Poisson
structure is determined by tensor r,+ iu; the corresponding Poisson Lie group
K(1,u) will be denoted by K* in this subsection.

The Killing form Q in g is defined by conditions

Q(XwX—a)=1’ Q(HiaHi)=(aiaai)a Q(XwHi):O'

Let #:h% —»hg be the operator corresponding to tensor u € A*hy under isomor-
phism hg = b defined by the Killing form. Set

b= +2i)br, g5=bp®n,, g, =k=LieK.
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1.4.1. Proposition. The triple (g,g,,g%) is a Manin triple in the sense of [1].
Proof is analogous to that of Proposition 1.3.1: g, and g% are both isotropic
with respect to imaginary part of the Killing form.

1.4.2. Let B* be a subgroup in G corresponding to Lie algebra g%. We have
G=KB". Note that B°=AN.

1.4.3. Proposition [13]. a) Every symplectic leaf Z* of the Poisson Lie group K" lies
in some Bruhat class K,,.

b) If 2*CK,, is aleaf througha point t -w, wherete T, then =T, -t- X, where X,
is the standard symplectic leaf from Proposition 1.3.1.b), T,,=exp(i(ii—w~ '4w)bg)
is a subgroup in T and 6 :hg— by is the operator corresponding to tensor ue Ay,

Proof. A general form of element of the group B* is x,exp((I+2i#)¢) where
x,eN,, Zebg. It follows from [24] that the symplectic leaf through y is of the
form X*(y)=B"yB*nK, i.e.

2'(y)={zeK|3p,qeB":py=2zq}.
This and equality N . w=2 N, give 2¥y)=T,, -t- X, and to conclude the proof
we note that Poisson manifolds K, K* are disjoint unions of their symplectic leaves.

1.5. Now we consider the last case a=0, u+0. The corresponding Poisson Lie
group is denoted by K(0,u). The “classical double” for group K(0,0) is T*K
=K x k* with multiplication (g, 4,) (g2, 42) =(8182, 4, + Ad};14,) and the “clas-
sical double” for the corresponding bialgebra Lie [3] k is 2(k)=k@k*, where the
bracket on k is initial, the bracket on k* is trivial and the bracket on 2(k) is defined
by

[x+¢&y+nl=[x,y]+ad¥n—ad}é

for all x, yek, & nek*.
These results give the following propositions:

1.5.1. Proposition. a) The “classical double” for the Poisson Lie group K(0,u) is
T*K =K x k* with the multiplication law introduced above.

b) The group dual to K(0, u) in the same sense of Drinfeld is a subgroup in T*K with

Lie algebra (I +14) (ib})* @v*, where k=ibg ®v is an orthogonal decomposition with
respect to Killing form and (ihg)*, v* are dual subspaces in k*.

Proof. 1t suffices to note that (2(k), k, (I + 4) (ihg)* @ v*) is a Manin triple, provided
the invariant bilinear form in 2(k) is given by the usual formula

x+&y+my =<6 +<y,&>, x,yek, &nek*.
1.5.2. Proposition. Symplectic leaf through a point g in K(0,u) is of the form
Zg={exp(dA)g exp(—dpr; Ad}_ (4, &) 1e(ihr)*, Eev*},
where pr, :(ibr)* ®v* —(ibg)* is a projection.
Proof is analogous to that of Proposition 1.4.3.

1.6. Remark. In the next sections we’ll obtain the quantum counterparts of results
of Subsect. 1.3 in the spirit of the Kirillov-Kostant method of orbits: we’ll attach to
each symplectic leaf an (irreducible) representation of the quantum algebra of
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functions. This correspondence can fail for some u=+0 (i.e. in the cases considered
in 1.5, 1.4). In addition, for almost all #=0 the space of symplectic leaves is non-
semiseparable and these two facts are closely related. Really, it is well-known [24]
that symplectic leaf through the point geK coincides with the orbit through g of
the right (or left) dressing action by the dual Poisson Lie group in the sense of
Drinfeld. If K is equipped with the trivial bracket then the dual group is coalgebra
k* equipped with a Lie-Berezin-Kirillov bracket and the dressing action is the
usual coadjoint action. Non-semiseparableness of the space of orbits indicates that
K is a wild Lie group [7]. For such a group the correspondence “leaf «
representation” can fail. We encounter with the same effect here.

2. Quantized Universal Enveloping Algebras and Quantized Algebras of Functions

2.1. Atthe beginning of the section we recall some basic definitions related to Hopf
*-algebras. After these we give the examples, namely, quantized universal
enveloping algebras and quantized algebras of functions.

2.2. Let F be a commutative unital ring and let A—1 be an involutive
automorphism of F. We consider quantum groups A over F. This means [3] that 4
is a Hopf algebra over F with invertible antipode S: A— 4.

2.2.1. Definition [5, 26, 28, 29, 38]. A4 is called a Hopf *-algebra if it is equipped
with an involution a—a* such that for all a, be 4, AeF:
a) (la)*=1a*,
b) (ab)* =b*a*,
c) A(a*)=A(a)*.
Here (a®b)* =a*®b*.
Note that a)—) imply (S(S(a)*))* =a (cf. [38]).
For Hopf *-algebra A the dual Hopf algebra A" =Homg(4, F) is a Hopf
x-algebra as well, the involution being defined by

¥ (@)=£(S(a)*) 21
for all ae A.
2.3. Let C, be a category of A-modules which are free over F and have finite rank

over F. One defines associative tensor multiplicationin C,:for M, M, ObC , the
F-module M, (X M, is equipped with A-module structure by formula
F

a-(m;®@m;)=4(a)- (m;@m,), (2.2)

where (x®y)(m, ®m,)=xm;@ym,. Furthermore, for every A-module M one
defines its left dual MY =Homg(M, F) by formula

(a-£)(b)=1(S(a)b) (2.3)

for every /e M”, a, be A.

Let B be the set of matrix elements of objects from C , i.e. B consists of pairs
(¢, m), whereme M, MeOb C,,/ e M”. Then B can be equipped with Hopf algebra
structure with invertible antipode. Note that the multiplication is given by formula

(1, my) (L2, my)=(£,®F5,m; @my), (2.4)

the 4-module structure in M, ® M, being defined by (2.2).
Clearly, B is a Hopf subalgebra in 4.
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2.3.1. Definition. Let A be Hopf *-algebra over € and MeObC,. M is called a
unitarizable module provided it can be equipped with sesquilinear inner product
<, > such that

{amy,my» ={my,a*m, ). 2.5

Let C, be a full subcategory in C 4, consisting of unitarizable A-modules. From
(2.1), it follows that B is a Hopf *-subalgebra and that the Hopf subalgebra BC B,
consisting of matrix elements of objects from C, is also a Hopf *-subalgebra.

2.4. Fix ¢>1. Quantized universal enveloping algebra U,(g) [3, 8] is a complex
Hopf algebra with generators {X, k¥ }7 , and defining relations
kfkF=kFkE, k'ki=kiki, k'ki=1,
K XF=q*@oPXERT, kT XF=qT @ XAk
(ki")> — (ki)

XF, X 1=0, 00— )
L iJ i g—q !

(2.6)

¥ (—1)"(@ g7 KRR (X ERX (X EpR =0,
K=0 qi

for i+ j. In formula (2.6), ¢;= g *%, n;;=1—aq,
of Lie algebra g, and

<n>_(t"-1)(t"”1—1)...(t"_K+1—1)
K), (=D 1-1)...¢t—1)

The comultiplication in U,(g) is given by

» Where ((a;;)) is the Cartan matrix

AXH)=XF @Kk +kf X, A=k @k, 2.7

and the counit ¢ and the antipode S are given by formulae
aXF)=0, ek¥)=1, (2.8)
S(XF)=—gi ' X7, Skif)=k{ . (2.9)
The Hopf algebra U,(g) is equipped with a Hopf *-algebra structure by formulae
(XEyF=X7, (k)y*=ki. (2.10)

2.5. Let F=C[h] be the ring of formal series in h. U,(g) denote an C[h]-algebra
generated (in the h-adic sense, i.e. as an algebra complete in the h-adic topology) by
generators {X7, H;}™ , and defining relations

[H,H]1=0, [H,Xf]=x(,x)X},

sh (g H i)
[X;’X;]=5ij_'—ha
sh 5
the last relation in (2.6) being included. The Hopf *-algebra structure is defined by
formulae (2.7)2.10) with k* =exp| + ﬁH i) provided an involution in C[k] is

given by Ah=1h, where e C.

2.11)
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2.5.1. Remark. For Hopf =-algebra U,(g), one can repeat all constructions of
Subsects. 2.2 and 2.3, considering all modules as free topological modules over
C[h], complete in h-topology, and assuming all morphisms to be continuous.

2.5.2. Introduce in U,(g) the new comultiplication by
4,(8)=exp(—ihu/2)4(¢) exp(ihu/2), (2.12)

where £ € U,(g) and 4 is given by (2.7). Since u* =u, (2.11) yields 4,(£¥) = 4,(£). This
means that we’ve obtained a Hopf *-algebra U, ,(g).

2.6. In this subsection, we set A= U (g). Consider the full subcategory 2, in C,
consisting of objects M such that the spectrum of the morphism k*:M—M
consists of positive numbers. It is well-known that 2 ,C C, and that every module
MeOb2, is a “quantum deformation” of a finite-dimensional g-module M [15].

Using category 2 4, construct the Hopf algebra & C B of matrix elements in a way
of 2.3.

2.6.1. Definition. The Hopf algebra & is called the algebra of regular functions on
the quantum group G, corresponding to fixed ¢, and is denoted by C[G],.

According to 2.3.1, C[G], is a Hopf *-subalgebra in the Hopf *-algebra U,(g)".
The involution in C[G], is denoted by the same sign .

2.6.2. Definition. The pair (C[G],, *) is called the algebra of K-finite functions on
the quantum group K, corresponding to fixed ¢ and is denoted by C[K],.

2.7. In this subsection, we set A= U, ,(g). The category C, copsists of topological
A-modules of finite rank over C[h] which are free over C[h] and complete in
h-adic topology. The corresponding Hopf #-algebra will be denoted by C[G*],. It
is generated by matrix elements of indecomposable modules from C ,. It is known
[4] that there exists bijection between indecomposable objects from C , and finite-
dimensional simpje g-modules. This is the case for the category from 2.6 as well.

Let L(4) be a finite-dimensional simple U, (g)-module with the highest
weight 4. Fix*an inner product in L(A) satisfying (2 6) and choose an orthonor-
mal weight basis {v’} in L(4) and dual weight basis {#?,} in L*(4). Then we can
write every matrix element in the form

D (e OVP)=C2 ., o9,

where Q=(j,i)eNxN, e Uyg) and g,: U (g)->EndL(A) is the representation
corresponding to this element.
We'll use this notation for indecomposable representations of U, ,(g) as well.
If weight space L(A), (or L*(A4)_,) is one-dimensional then we may and shall
assume that Q is an element of IN x 1 (or 1 x IN). We shall also use the following

notation
P08 =C2, ;.. (O,

If the weight space is one-dimensional, then the corresponding index is omitted.
For example: C2, ; ,, C4,,4 4, where we W is an element of Weyl group.
From (2.12), we deduce the following formula:

Z . CA42
C—M,ux,!h C'lz,ﬂz,ﬂz

ih
:exp(%((/lla}%)u—(ﬂlnu2)u)> C/llll,m,ﬂl : C/izlz,nz,ﬂz . (213)
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Here on the right (on the left) stands the multiplication - in C[G"], (the
multiplication - in C[G],, where g=exp(h/2)) and (x,y),=(x,y), where
:h*>bh* is the operator corresponding to tensor ue A%hr under isomorphism
defined by Killing form.

One sees easily that (2.13) is in accordance with the comultiplication 6 in the
Hopf algebra C[G"],.

2.7.1. Definition. a) The Hopf algebra over € generated by matrix elements
C%,.,..2€ C[G],, g=exp(h/2), the multiplication law being defined by (2.13), is
called the twisted algebra of regular functions on the quantum group G*
(corresponding to parameters g and u) and denoted by C[G"],.

b) Let * be defined by (2.1). The pair (C[G"],, *) is called the twisted algebra of
K-finite functions on the quantum group K (corresponding to parameters g and u)
and denoted by C[K"],.

2.7.2. Remark. The Hopf algebras C[G],, C[G*],, C[K],, C[K"], introduced in
2.6.1,2.6.2,2.7.1 are the quantizations of Poisson Hopf algebras [3] C[G], C[G"],
CIK], C[K"].

The Hopf algebra €C[G(0,u)], is defined as the algebra generated by matrix
elements C4 " ge(E[G] the multiplication law being given by (2.13) with the
multiplication in €C[G] in the right side. In complete analogy with
Definition 2.7.1b) we obtain that of the Hopf algebra C[K(0,u)],. The algebras
C[G(0,u)],, C[K(0,u)], are quantizations of the Poisson Hopf algebras C[G(0, u)],
CLK(0,u)].

2.7.3. Remark. Considerations of this section show that one may view C[K"],
(CLK(0,u)],) as “perturbation in parameter u € A*hr” of C[K],, (C[K]). We'll see

below that th1s principle works in the representation theory of these algebras as
well.

2.8. Proposition [29]. In C[K],, the following equality holds:
(C’l o 9)* =q~ A—mw (é)C;: 'ﬁ"‘fg ,

where wy € W is the longest element in the Weyl group, and € f corresponds to the

element =% Y. oaeb* under canonical isomorphism h* =1
acd+

Proof. Let Q=(i,j). This means C%; , o(&)=¢P,(04(&)vy), where g¢,:U\g)
—End L(A) is the finite-dimensional representation with the highest weight A,
EeU[g), 19, e LX), v e L(A),. L(4) being unitarizable, we can fix the inner
product (,) in it such that (2.5) holds. Then we have

(CL5,1*(©)=(ASOVY, vi)1 ) - (2.14)

Note that U, (g)-module L(—wyA) is isomorphic to L*(A4), the isomorphism being
defined by the quantum analog of linear Cartan involution, i.e. by the linear
automorphism w: U,(g)— U,(g) such that

oXH)=—gF X7, oki)=k.

Set a=g* e U(g). It is well-known [4] that S*(&)=aéa™* for all £e U,(g), where
§ is the antipode in U,(g). Define the inner product in L(4) by formula

(vy, Uz)L(— woA) =(v1,04(8~ Ya~ 1)UZ)L(A) :
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This is a unitarizing inner product for ¢, w. Further, let {v?,} and {v)} be
orthonormal weight bases in L(—wyA4) and L(A), the enumeration in the former
being determined by isomorphism L(—wqA)= L*(A). Then from (2.14) the desired
result follows.

2.8.1. Corollary. Proposition 2.8 holds in C[K"], and in C[K(0,u)],.

Proof. The formula for involution is independent of u.

3. Irreducible Representations of Quantized Algebra
of Functions and Schubert Cells

3.1. In this section we study irreducible *-representations of algebra C[G], in a
Hilbert space, by bounded operators. We'll call them the irreducible represen-
tations of C[K],. This is consistent with Definition 2.6.2.

First we’ll establish the quantum analog of Proposition 1.3.1: each irreducible
representation corresponds to the unique symplectic leaf X, ¢ (or ¢t-2,). The
points of maximal torus T correspond to one-dimensional representations and all
others are infinite-dimensional representations. If the representation t,, corre-
sponds to the leaf X, and 7, corresponds to the point ¢ € T, then the representation
7,,®71, corresponds to the leaf X, - t. Next, we’ll establish the quantum analog of
Proposition 1.3.3: if w=s;, ...s;, is a reduced expression and m;, corresponds to
theleaf X; ,thenn, =1 ® @‘L’ . The proof of this statement i§ based on a joint
article by the second author and Vaksman [31], where the case K=SU(2) (i.e.
representations 7, ) had been studied. At the end of the section Gelfand-Naimark-
Segal states w corresponding to representations =,, are introduced. It is proved that
GNS-states 3, satisfy Coxeter relations. This allows to define the quantum analog
of the Weyl group in Sect. 5.

From now on, a representation of #-algebra means *-representation. We
assume all Hilbert spaces to be separable.

3.2. Let AeP, andlet A, be a subalgebra in C[G], generated by matrix elements
of the form C_,1 .0 Set

A+= @ AA7 A++= @ AA7 A—=A=-k0-7 A——=A=-k0-+7
AeP 4+ AePy 4
where X* denotes the image of X under involution in C[G],. The next result can be
derived from [22], for example.

3.2.1. Proposition. a) A bilinear map A_QA.,—C[G], is an epimorphism of
C-vector spaces.
b) Substitute A, , for A, and A__ for A_; then the statement a) still holds.

One of the main results of this section is the next theorem.

3.3. Theorem. For every irreducible representation n: C[K],—~End H in a Hilbert
space H there exists n(A ,)-invariant straight line £/ € H.

3.3.1. Remark. Theorem 3.3 shows that the representation theory of algebra
C[K], resembles that of algebra U(g) with A in the part of U(b.).
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We shall divide the proof in two subsections. In the course of the proof we’ll
establish some results which are interesting per se.

34. Fix AeP,, e P(4) and consider in C[K], the following ideals:

a) #o(4,4), namely, the minimal two-sided *-ideal containing all matrix elements
C%,.; 4 such that

VU (b.)(L(A),);

b) #,(4, A), namely, the minimal two-sided *-ideal containing all matrix elements
C4, ;. 4 such that

uEa (wewriteugl iff ,u—/1=Zk,-oc,-,k,-;0>.

¢) Z,(4,4), namely, the minimal two-sided *-ideal containing all matrix elements
C%,.. 4 such that p<Ai.

Clearly, #,(A, A)C _#1(4, A)C (4, A). Let we W, If we set A=wA in a)—c), then
we obtain the ideals which will be denoted by #Zy(w, 4), Z,(w, 4), Z,(w, A).

3.4.1. Proposition. In C[K],/ #,(4, A), the following relations hold:

v eZ — a4, +A,wA v
Clupya Conia=4a CLhiaClupy.gs

A .CA — o~ (A, )+ A )4 .4
CLupa Cohia=4q Claia Coupa

Proof. From definition of multiplication in €[ K], and a general form of universal
R-matrix of Lie algebra (Sect. 13 of [3]) it follows that

v .CA — g~ ANt Anca . C?
C—u,P,y,q C—l,i,A—q C—l,i,A C-M.P,v,q

+ Z /a(q)clll-f-a,imA'Cliu~a,Pa,,y,q9 (31)

acd+
where Z,(q) € C. To complete the proof it suffices to use the definition of #,(4, A).

3.4.2. Definition. Irreducible representation n:C[K],—~End H is said to corre-
spond to Schubert cell X,, (see 1.3.5) provided for each A€ P, the following
conditions hold: a) n(#,(w, 4))=0; b) n(C%,, 4 ,)=*0.

3.4.3. Theorem. [29]. Each irreducible representation  of algebra C[K], corre-
sponds to unique Schubert cell X .

In the rest of Subsect. 3.4 we prove Theorem 3.4.3.

Proposition 3.2.1 implies the existence of 4 P, such that n(A4,)=+0. Hence,
there exists the matrix element C4, ; , such that n(C%, ; ,)=0. Consider the set
9D(A) consisting of ue P(4) such that there exists the matrix element C2 , ; , with
the property n(C4, ; ,)=0. Our considerations imply Z(4)=+ 0. Let Z;(A) be the
set of minimal elements of Z,(4) with respect to the usual partial order on
weights (see 3.2b)). We have 2,(A4)+0 and if Ae 2,(A) then n(#,(4, 4))=0.

From Propositions 2.8 and 3.4.1 it follows that

7T(Cl1 A, A)*”(C/1 aniaA)=4 A+ /1)7'5((:/1 A A)7T(C/1 i)
Since g>1, this and the boundedness of n(C4, ; ,) yield —(A,A)+(4,1)=0.

Therefore, A=wA for somewe Wand C%, ; ,=C%, , .. Moreover,n(C4,,, ,isa
normal operator.
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3.4.4. Proposition. Kern(C4,,, ,)=0.
Proof. This follows from 3.4.1 and irreducibility of =.

3.4.5. Proposition. The spectrum of the operator ©(C%4,, ,) is of the form
o(n(C2,, 1. 0))=EuU{0}, where E is a bounded set having no limit points in C\0.

Proof. Let Zy e o(n(C% , 4, 0))\0. From 3.4.1 we can easily derive that there exists an
open proper subset QCC such that

a) ZyeQ.

b) Q is invariant under the group generated by homotheties with coefficients
g @)~ wAm where {w;}, is the set of fundamental weights of Lie algebra g and
ue P(w).

Let E, be the spectral projection of operator n(C4,, , ,). From 3.2.1 and 3.4.1 it
follows that Eqn(f)=n(f)E, for all feC[K],. We conclude that E,=C-Id,
where CeC. Now it is easy to understand that Z, is a point of the discrete
spectrum and that 0 o(n(C4,,, ). From this and properties a), b) the description
of the spectrum follows.

Since n(C%,, 4) is a normal operator, from 3.4.5 it follows that H can be
decomposed as follows:

H= ®H/w,4), where H/(w,A)={xeH|n(C2,, )x=yx}.
yeE
In E, we introduce the following partial order: y, =7y, ifand only if |y,| = |y,|. From
3.4.5 it follows that there exists the maximal element y,=7y,(w, A) with respect to
this order.

3.4.6. Proposition. Let ve H,(w, A). Then for every matrix element C2, ; 4 with
pu+wA we have n(C4, ; ,)v=0.

Proof. From 3.4.1 it follows that if z(C%,; ,Ju+0 the it is an eigenvector of
©(C4, 4 0) With the eigenvalue y,g?~™4# >y, But this contradicts the
maximality of y,.

So far the weight 4€ P, was assumed fixed. Hence we W depended on A4.
Now we omit this assumption.

3.4.7. Proposition . Let A;, A, € P, , satisfy the condition (A ,)=+0,i=1,2, and let
w;€ W be determined as in 3.4.3. Then w;=w,.

Proof. (A, A4,)=(w,;4,,w,4,) implies w; =w,.

From 3.2.1b) it follows that there exists a weight satisfying the conditions of
Proposition 3.4.7. Let we W be the corresponding element in the Weyl group. It is
easy to see that the following result holds.

3.48. Proposition. n(C%,,, ,)+0 for all fundamental weights w;, 1 <i<m.
By Proposition 3.4.8, n(C%,; ;)+0 VieP,.

3.4.9. Proposition. For every Ae P, the set 9D,(A) (see 3.4.3) consists of one
element.

Proof. Let wyA e D,(A), wyA+wA. From our considerations it follows that by
3.44 Kern(C%,,, 4 ,)=0 and by 3.4.6 Kern(C%,, , ,+0. Hence, w, 4 =wA.
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3.4.10. In this subsection, we conclude the proof of Theorem 3.4.3. It remains to
show that n(#,(w, 4))=0. Set E,(4)=U,(b,)v,, and consider a matrix element
CA, .4 Xfu<wd, then C2, ; 1€ #,(w, A)and n(C%, ; =0 (see 3.4.3). Further, if
ptwA and p<wA, then n(C%, ; ,)=0 as well. For proof, we can choose a linear
ordered chain of weights of 2 (A) which contains . The minimal element of this
chain belongs to 2,(4) and differs from w4, but this contradicts 3.4.9. The last
case, when p>w but v ¢ E,(4), can be considered in complete analogy with the
second one [one should use (3.1) and Proposition 3.4.6]. We obtain n(C%, ; ,)=0
once more and the proof of Theorem 3.4.3 is completed.

3.5. Let yo(w, 4) be the eigenvalue determined in 3.4.5.
3.5.1. Proposition. |y,(w, 4)|=1.

Proof. Let T, be a matrix consisting of the matrix elements of representation
04: U,(g)—End L(4) in orthonormal weight basis. It is easy to show that (T4)*T,
=T,(T;)* =1, where (Tj)* is obtained by action of involution on each element of
the transposed matrix Tj. It follows that

Z (C{u,i,A)*C/lu,i,Azl s
U, i
and it remains to use Proposition 3.4.6.

3.5.2. Remark. From Proposition 3.5.1, it follows that if 7:C[K],—~EndV is a
representation in a preHilbert space V it extends to a representation in H=V,
where V is the completion of V.

3.5.3. Proposition. dim H,,, 4(w,4)=1.

Proof. Let % be a commutative #-subalgebra in End H generated by normal
operators n(C%,, ), AeP,. For fixed AeP, we have %(H,,, 4W,A)
CH,,, 4(W, A4) and to complete the proof we use 3.4.1, 3.5.1 and the irreducibility
of .

3.5.4. Corollary. H, ,, (W, A) is independent of A.
Proof. This follows from 3.5.1, 3.5.3 and commutativity of %.

3.5.5. Let H,(w) denote H,, (w,4). Since H,(w)=Cv*, where v* e H, we
have n(f)v* =y(f)v* for all fe A, where x(f)eC. Clearly, x determines the
homomorphism of 4, into €. From Propositions 3.4.6 and 3.5.3, we complete the
proof of Theorem 3.3.

3.5.6. Definition. The homomorphism y: A4, —C is called the highest weight of
irreducible representation 7.

3.5.7. Remark. One can show that a space H of irreducible represen