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Abstract. A twistor correspondence is given for complex conformal space-times
with vanishing Bach and Eastwood-Dighton tensors; when the Weyl curvature is
algebraically general, these equations are precisely the conformal version of
Einstein's vacuum equations with cosmological constant. This gives a fully curved
version of the linearized correspondence of Baston and Mason [B-M].

0. Introduction

In this paper we provide a twistor correspondence for conformal gravity, meaning
roughly a reformulation of the conformally invariant aspects of Einstein's vacuum
equations in terms of deformations of complex analytic spaces. This correspondence
was conjectured by Baston and Mason [B-M] on the basis of some insightful
(albeit heuristic) arguments concerning the linearized theory, and the chief new
idea that will be explored here, the role of Poisson structures (cf. [W]) in the
relevant extension problem, arose directly from the efforts of the present author
to give the calculations of Baston and Mason precise meaning.

We work throughout in the context of conformal classes of complex-Riemannian
4-manifolds. Recall that a complex-Riemannian manifold is a complex manifold
equipped with a non-degenerate holomorphic symmetric 2-tensor, so that each
tangent space is endowed with a complex quadratic form; two such complex-
Riemannian metrics are called conformally equivalent if one is obtained from the
other by multiplication by a non-zero holomorphic function. Such structures arise
naturally from the analytic continuation of real-analytic pseudo-Riemannian
metrics and their conformal classes into the complex domain, and one may return
to the realm of pseudo-Riemannian geometry by restricting to the fixed-point set
of an anti-holomorphic involution ("complex conjugation") respecting the structure.
While it is possible to reformulate some of our results without this foray into the
complex domain, we will avoid so doing here for the sake of brevity.
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2 C. LeBrun

Let us now recall the basic ambitwistor correspondence ([L2, L3]) which pro-
vides the foundation for the present edifice. Associated to any complex-Riemannian
conformal class is the set of complex null geodesies, which are those maximal
complex one-dimensional submanifolds whose tangent spaces are null with respect
to the conformal structure and auto-parallel with respect to the Levi-Civita
connection of some (and hence every) metric in the conformal class. Under mild
convexity hypotheses, the set of these null geodesies forms a complex manifold,
under which circumstances the conformal manifold is said to be civilized. A civilized
complex-Riemannian 4-manifold is often referred to as a complex space-time, and
its associated complex 5-manifold of null geodesies is usually called it ambitwistor
space.

The whole point of considering the ambitwistor space is that its complex structure
completely encodes the conformal structure of the complex space-time, indeed, if
Jί is an ambitwistor space, the corresponding space-time Jί is precisely the space
of complex submanifolds on Jί which are biholomorphic to the 2-quadric
Q = JPi x P i and have normal bundle isomorphic to N = JιΘ{\, 1), where 0(1,1)
denotes the divisor line bundle of the diagonal Ψx c P t x Ψγ. For each xeJί, one
obtains such a 2-quadric Qx, called the sky of x, by considering the set of null
geodesies through x; conversely, every quadric with the right normal bundle type
is of this form. Since any null geodesic in M corresponds precisely to the set of
skies passing through some point of Jί, our reconstructed version of Jί comes
equipped with its complex conformal structure.

Given a complex 5-manifold, one might now ask if it is the ambitwistor space
for some complex space-time M. In light of the above discussion, a necessary
condition is certainly that through each point here must pass at least one quadric
Q = ΨιxΨί with normal bundle N = J1Θ(ί, 1). This, however, does not suffice,
for an ambitwistor space has one other important property - it admits a (unique!)
complex contact structure, meaning a holomorphic distribution of 4-planes D c TJr

such that the Frobenius integrability obstruction

A:DxD->TJί/D

{v9w)\-*[v9w] +D

is non-degenerate. Equivalently, a contact structure on our complex 5-manifold
Jί is a line-bundle-valued 1-form θeΓΩι(L) such that θ Λ dθ A dθeΓΩ5(L®*) is
non-vanishing; θ: TJί -> L is just the canonical projection TJί -»(TJί/D) =:L, and
D = ker θ. It is not difficult to check that such a contact form must vanish when
restricted to the tangent bundle of a quadric β = P 1 x P 1 with normal bundle
JV = J1Θ(l, 1), and thus the contact distribution D c TJί is characterized by the
fact that it contains the tangent spaces of all the skies. (If two nearby skies meet,
their tangent spaces jointly span a 4-dimensional space at the point of intersection.)
The fact that an ambitwistor space does indeed admit a complex contact structure
follows from the fact that the null geodesies of Jt are precisely given by
the Hamiltonian trajectories of the manifold of null covectors. For details
cf. [L2].

The ambitwistor space of complexified Minkowski space I <C4, £ (dzj)®2 is
\ J=i /

just the total space of the bundle N ->Q. This has a beautiful compactification as
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the hypersurface A c P 3 x P 3 given by

A = {([Z],[W])eP(T)xP(T*)1ZJlV = 0},

where T is a complex 4-dimensional vector space and where J denotes contraction;
correspondingly, complexified Minkowski space compactifies as the 4-quadric
M £ G2(T). The projective 3-sρaces Ψ(T) and IP(T*) have an autonomous
geometrical meaning, for their disjoint union parameterizes the set of totally null
(i.e. isotropic) 2-surfaces in M, and the imbedding A cz_>IP(T) x 1P(T*) reflects the
fact that a null geodesic in M is contained in precisely two such 2-surfaces, one
of each type. Ψ(T) and P(Γ*) are respectively known [P-R] as the twistor and
dual twistor spaces of M.

The fact that A arises so naturally as a hypersurface in a bigger manifold
encourages one to consider the sequence of complex analytic spaces

Aim) __ (A (Q l<n-m+\\

where <f is the ideal of holomorphic functions on P(T) x P(Γ*) which vanish on
A; these analytic spaces are the so-called infinitesimal neighborhoods or thickenings
of A c JP(T) x P(Γ*), and may be thought of as the jets of our imbedding of A
into a larger complex manifold. Their relevance to the PDE's of mathematical
physics was first recognized by Isenberg et al. [I-Y-G] and Witten [Wil], who
showed that Yang-Mills fields on complexified Minkowski space correspond to
holomorphic vector bundles (i.e. locally free sheaves) on A(3). The fact that these
equations make good sense in curved space-time then seemed to indicate that, at
least for small m, one might expect the existence of analogs J / ' ( m ) of the infinitesimal
neighborhoods for any ambitwistor space Jί, and early on a curved version of
A(1) was, in fact, found [LI]. Later, under the strong additional hypothesis that
the space-time M is assumed to be half-conformally flat (i.e. has self-dual or
anti-self-dual Weyl curvature), it was shown [L4] that analogs jV{m) of the A(m)

actually exist for all m; this was done by exploiting the fact [P] that in these
cases an analog exists either for Ψ(T) or for JP(T*\ depending on whether the
Weyl curvature is self-dual or anti-self-dual. For algebraically general conformal
curvature, however, analogy with Yang-Mills theory tended to suggest that the
Jί(m) should only exist for a finite number of values of m.

While there is a reasonably simple obstruction theory [E~L] allowing one, in
principle, to analyze the problem of extending such 'thickenings" Jί{m) from one
value of m to the next, a direct assault on the problem foundered on the rocks of
the Penrose transform - the relevant cohomology groups turn out to be sufficiently
complicated so as to make the extension problem seem rather opaque. The daring
idea of Baston and Mason [B-M] was to exploit the fact that the transition
functions of Jί may be taken to be contact transformations and- one should
therefore try to extend them as such. Working with A c I P ( T ) x P ( T * ) as their
model, they noted that infinitesimal contact transformations are generated by
sections of the line bundle 0(1,1) over A, while sections of the same line bundle
on Ψ(T) x P(T*) may be used to generate analogous vector fields by using the
symplectic structure of T x Γ*. In these terms, they were able to provide strong
evidence for the following conjecture: curved analogs of A(4) exist for any
ambitwistor space, while the obstruction to the existence of an analog of A(5) is
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the Bach tensor [B],

where Rcd and Cabcd represent, respectively, the Ricci and Weyl curvatures;
moreover, the existence of an analog of A(6) is equivalent to the vanishing of the
Eastwood-Dighton tensor [D],

Eabc=ic Λ v'rcVrf - ϊ(*cγ/bΨcafeΛ,

where *C is the Hodge-star of the Weyl curvature as defined by

( Oabcd = lεαfcβ ^efed-

it is a remarkable fact [B-M, K-N-T] that, when the Weyl curvature is

algebraically general, the vanishing of these tensors is equivalent to the metric

being conformal to an Einstein metric; moreover, these tensors vanish on any

Einstein space as a consequence of the Bianchi identities.
The present investigation properly begins with the following question: what

structure on F(T) x P(T*) reflects the face that T x T* has a natural symplectic
structure? The answer is the bivector field

where

π:(T-{0})x(T*-{0})-+P(Γ)xP(T*)

is the tautological projection. On [P(T)xIP(T*)] - A,τ is the inverse of the
symplectic form of the manifold obtained from Z J W = 1 as the Marsden-
Weinstein symplectic quotient. This tensor τ gives P(T) x IP(T*) a Poisson structure
[W], meaning that the Poisson bracket

{f9g}=<df9dg)

equips the holomorphic functions on P(Γ*) x IP(T*) with the structure of a sheaf
of Lie algebras over <C. This suggests that, rather than just looking for thickenings
of Jf, one should look for thickenings equipped with Poisson structures. We
proceed by first making this precise (Sects. 1-2), setting up an obstruction theory
(Sect. 3), and, in Sect. 4, relating these constructions to the first-order thickening
defined in [LI]. In Sects. 5-6, we show that, in the ambitwistor context, the Poisson
thickening problem is equivalent to the ordinary thickening problem, while in the
process producing the third order thickening J^{3) of an arbitrary such space. In
Sects. 7-9 we compute the obstruction to higher order thickening by "localizing"
the problem to the infinitesimal neighborhoods of a sky, thereby proving the
conjectures of Baston and Mason. In Sect. 10 we then describe some relations
between this work and conformal supergravity, suggesting an alternate approach
via complex supermanifolds, and point out a number of directions in which one
might seek extensions of the present results.
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1. Poίsson Thickenings

Let X be a complex (2n+ l)-manifold. A complex contact structure on X is a rank
2n holomorphic sub-bundle D of the tangent bundle of X such that the skew form

A:DxD-+TX/D

(v, W)H-> [t;, w] mod D

is non-degenerate. Setting L=TX/D and letting β e Γ p ^ ί ^ L ) ) denote the
canonical projection TX -• L, the latter condition is equivalent to

θ Λ(dθ)AnΦθ,

so that in particular we have an isomorphism L®(" + 1 ) = K " 1 , where K is the
canonical line bundle of X: Θ(κ):=Ω2n+1. Darboux's theorem (cf. [A]) states
that, for each local trivialization of L, the corresponding 1-form 9 may be
expressed as

7 = 1

in terms of suitable local holomorphic coordinates (q°,...,^B,p1,...,pπ)onX.
Associated with an arbitrary complex contact manifold is a complex symplectic

manifold. Indeed, the adjoint of the canonical projection TX -> L is an inclusion
L* -> Γ*X; this realizes L* as the annihilator of D cz TX. But T*X carries a
symplectic form ωeΓ(T*X,Ω2\ and this 2-form restricts to L* — 0L* to yield a
closed 2-form ω. Requiring that ω be symplectic is equivalent to the requirement
that θ be a contact structure - i.e. that Λ = dθ\D be non-degenerate. Indeed,
assuming that D is a contact structure, taking a local trivialization of L and letting
s be the corresponding fiber coordinate for L* we have

ω = d(s9) = dsΛdq°+ Σ d(sPj) Λ d(iJ-
7 = 1

Notice, incidentally, that ω drops rank at the zero section 0L* c L*.
Now for any holomorphic line bundle L there is a canonical biholomorphism

Φ : L - 0 L - L * - 0 L *

characterized by <Φ(Λ),/l> = 1; in each fiber, Φ is an inversion of the punctured
plane, but the morphism Φ is natural in the sense that it is an isomorphism of
principal (<C— {0})-bundles, corresponding to the familiar operation of passing
from a frame to its dual frame. In the present case, we therefore get a symplectic
form on L — 0L given by Φ*ω. But unlike the 2-form on L* — 0L*, this form is
singular at the zero section. Indeed, introducing a fiber coordinate t = s~x on L
and using adapted coordinates (q°,...,^,p1,...,pjonlas before,

Q\

-

= - -jdt A (dq° + Σpjdqj) + -Σdpj A dqj.
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However, the bivector field τ = (Φ*ω)~1eΓ(L, Λ2TL) extends holomorphically
across the zero section:

3 δ \ d d 3 1

dt ndpjj dq° dqJ dpjj(*) τ = = ί

This gives L the structure of a Poίsson manifold (cf. [W]), in that, defining the
Poisson bracket

by

the Jacobi identity

is satisfied, making the holomorphic functions Θ on L into a sheaf of Lie algebras.
The tensor field τ defining this Poisson structure will be called the exelissίc
form or the cosymplectic form. (Exelissic < Gr. "unwinding"; cf. symplectic < Gr.
"intertwining".)

Let 3Γ a(9 denote the ideal of X = 0L c: L. By direct inspection of (*), we notice
that our Poisson bracket satisfies

If we define

it therefore follows that {,} gives Θm the structure of a sheaf of nilpotent Lie
algebras. Moreover, since the constants C are in the center of Θm, 0m/C becomes
a sheaf s/m+ί of nilpotent Lie algebras, m = 0,1,2,... . We define

thereby obtaining a sheaf of nilpotent Lie groups. Concretely, (Sm may be identified
with # m _ i / C equipped with a multiplicative structure given by the Baker-
Campbell-Hausdorff formula

The significance of this sheaf of groups is as follows: there is a natural injective
map Θm-x/1E-*Όer(Θm) given by /ι->{/,•}, and this realizes s/m as a nilpotent
subalgebra of Der(0m). Therefore ^ w is a certain nilpotent subgroup of Aut(0m).

Now elements of/ί1(Aut(6)

m)) are precisely isomorphism classes of thickenings
[E-L] of X, meaning ringed spaces locally isomorphic to (X, Θm); such creatures
are to be thought of as abstract versions of m-jets of codimension 1 embeddings of
X. In particular, since ^ m cz Aut(0m), elements of Hι{^m) may be interpreted as
thickenings.

Definition. Let (X, D) be a complex contact manifold. A thickening of X of order m
is said to be of Poisson type if its isomorphism class is in the image of

An element of Hι(X,^m) will be called an mth order Poisson thickening of X.
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While this definition is sufficient for technical purposes, it perhaps does not
hold much appeal for the intuition. In order to therefore provide the reader with
some mental images to accompany the subsequent discussion, a geometrical picture
of a Poisson thickening will now be indicated without proof.

The elements of ^ m act in a manner preserving the exelissic form τ, so an
element of // 1(^m) gives rise to a thickening which carries such a form. Elements
of ^ m also preserve the subspace

D®LaTX®L;

hence the extended tangent bundle TX of a Poisson thickening contains a
codimension 1 sub-bundle D with D = Dn TX, Finally, a Poisson thickening carries
a divisor line-bundle with Lie algebra structure; if <£ -+L denotes the divisor
line-bundle of 0L c L, and if <£%,>:= S£®Θm, then the Poisson bracket extends to
a Lie-algebra multiplication

{ > j : ~Z(m) X -*{m) ~* ~£{m)>

and (§m acts on Sf(m) by Poisson brackets, thus giving birth to a divisor line bundle
with Poisson bracket over the thickening associated to any element of H^iX^^.
Rather intriguingly, this new Lie algebra is an extension the infinitesimal contact
transformations of (X,D) by (0(M_ 1 }/C, {,}).

One can check that these structures characterize a Poisson thickening. This
formulation seems so unwideίy, however, that we will never actually use it, for
which reason the details have been left to the imagination of the interested reader.

2. The Extension Problem

Let (X,D) be an arbitrary complex contact manifold, and let E-+X be any
holomorphic line bundle. The isomorphism class of E is an element of H^(X, Θ^\
where Θ^ is the multiplicative sheaf of non-zero holomorphic functions, and hence
give rise to an element of Hι(X,Θ/(C) via the epimorphism

Since ^ = Θ/(C with its standard group structure, this means that the line bundle
E gives rise to a first-order Poisson thickening of X. One may then ask whether
this thickening extends to higher orders; for E non-trivial, this extension problem
will generally be obstructed.

We now specialize to the case of X = Jf, where Jί is the ambitwistor space
(i.e. the space of null geodesies) of a complex-Riemannian 4-manifold {Jί, g). Such
an ambitwistor space carries a unique complex contact structure [L2], and the
complex structure of Jί completely encodes the conformal structure of (^,g). Let
us assume that (J(, g) has a spin structure, so that there are rank 2 vector bundles
$±-+J( with

in a manner such that the simple tensor products of spinors correspond to null
vectors, and such that Λ 2S+ ^ Λ 2 S _ in a canonical fashion. Assuming that the
null geodesies of Jί are all simply connected, we may then define line bundles
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L±-+JΓ by

(L*±)y = {σeΓ(y,φ(S*± \y))\Dσ = 0 and c(Ty) = 0},

where D is covariant differentiation along γ; explicitly, L+ is dual to the solution
spaces of

λAπA'VAA,λB = 0

and L_ is dual to the solution spaces of

λAπA'VAA.πB. = 0.

These line bundles are conformally invariant and satisfy L+®L_=L.

Now L+-+Jf defines a first-order Poisson thickening of Jί by the general
mechanism defined above. This will be called the canonical first order thickening
of Jί.

This paper has as its aim the proof of the following result, which will be proved
in subsequent sections.

Main Theorem. The canonical first order thickening of Jί always extends uniquely
to a fourth order Poisson thickening. It can be extended to a fifth order Poisson
thickening iff the Bach tensor

of (Jt, q) vanishes. It can be extended to sixth order iff, in addition, the Eastwood-
Dighton tensor

T? IT/ X7DD' \h U/ \7DD' \τj

^abc— *ABCD* *A'B'CD'~ *A'B'C'D'y ΎAA'B'C'D'y ΎABCD

vanishes.

Remark. If the Weyl tensor is algebraically general, these two conditions imply
[B-M] that the metric g is conformal to Einstein. On the other hand [L4],
thickenings of all orders exist if the Weyl curvature is self-dual or anti-self-dual.

3. Obstruction Theory

Given an order m Poisson thickening of a complex contact manifold (X, D\ when
can one extend it to a Poisson thickening of order m+1? If this can be done, how
many different extensions are possible?

Proposition 3.1. The obstruction to extending a Poisson thickening of order m ^ 1
to order m-hl is an element of H2(X9Θ(LΓ )). If such an extension exists, the set
of isomorphism classes of such extensions is acted on transitively by

H\X,Θ{L~m)).

Proof. We have short exact sequences

of sheaves of groups, where Θ(L x) is contained in the center of ^ m + 1 . Hence the
non-abelian version [E-L, M] of the long exact sequence says that we have an
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exact sequence

)). Q.E.D.

Remark. The H° piece of the "long exact sequence" is more complicated than in
the abelian case, even for our present central extension. For a given thickening
teHι{ym\ one creates a new sheaf of groups t^mt~ι whose global sections form
the isotropy group of the action of//1(ί?(L"m)) on the kernel of H\<Sm + x) -• ff ^ J .
This isotropy group H0(t%mt~ι) is thus exactly given by exp(τ J d(H°(ί?(w_1)/C))),
where τ is the exelissic form of the Poisson thickening t and where 0 ( W - D is the
structure sheaf of the associated thickening of order m - 1 . Thus //^(L" 7 " ) ) will
act freely on choices of extension provided that H°(Θ/<E) = H°((9(L~1 ))=•••
= H°(Θ(L~m + 1)) = 0. In the case of interest, these vanishing statements will hold,
and the action is actually free.

We now specialize to the case of X = Jί, an ambitwistor space. By applying
the Penrose transform, we obtain the following table of cohomology groups
//%yK*,$(L~m)) under the assumption that Jί is Stein and that the null geodesies
of Jί are all contractible, as will, for example, be the case if Jί is geodesically
convex. (Here the numbers in the square brackets are conformal weights, while
Oo denotes the trace-free symmetric tensor product. Sheaves on Jί are used as
short-hand for their global sections, thereby saving space in the table.)

Table 1. Hp(^V,Θ(LΓm))

m\p

0
1
2
3
4
5

0

C
0
0
0
0
0

1

Ωι/dΩ°
# [ — 2]
0
0
0
0

2

0
0
&\_ — 2]
Kerd:Ω3->ΩA

KerdiviO^1

Kerdiv Oo^1
[-2]
[-2]

-fl'C-4]

Let us recall how these answers are arrived at. There is a double fibration

where π:&-±Jί is the bundle of projective null vectors and where q'Λ^Jί sends
a null direction to the null geodesic to which it is tangent. (Thus π has typical fiber
Ψ1xΊP1, and each fiber of q is a contractible complex curve.) By a theorem of
Buchdahl [Bu],

whereas the relative holomorphic deRham sequence on & is the short exact sequence

)-+Θ(-m9 -m)—>0(
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where Θ(— 1, — l)-» J is the tautological line bundle with conformal weight [ — 2],
and where dq is differentiation up the fibers of q. The entries in Table 1 are then
read off from the associated long exact sequence, using the LeRay spectral sequence
and the fact that M is Stein to identify the cohomology of sheaves on Ά with
sections of the corresponding direct image sheaves on M.

Now the above argument tells us how to understand the cohomology of Jί
explicitly. In particular, an element of H2(Jί,Θ(L~m)) vanishes iff, for each xeJί,
its image under the restriction map

vanishes. By contrast, the restriction maps

are always zero, and it is the first derivative maps

where N* -• Qx is the conormal bundle, that characterizes a cohomology class; i.e.
and element of Hι(Jf, Θ(L~X)) is zero iff its restriction to the first infinitesimal
neighborhood of each sky Qx c Jί vanishes.

Now one of the key results of this paper will be that the canonical first-order
Poisson thickening always extends uniquely to fourth order (Theorem 9.1). This
entails showing that the freedom

H1(JV9Θ(LΓ1)) =

in extending to second order is exactly cancelled by the obstruction, in

to extending to third order. We will do this by "localizing" the question to
an infinitesimal neighborhood of an arbitrary sky Qx<=^Jί, using the above
observation that the relevant cohomology is indeed "locally determined." The same
technique will be used to analyze the higher order obstructions.

Before we can embark on this analysis, however, we will need to understand
a bit more about the canonical first-order Poisson thickening Jί{1\ and, in
particular, study the normal bundle of a sky Qx relative to Jί{1\ After doing this
in the next section, we will be in a position to return to the detailed analysis of
the obstruction.

4. A Closer Look at First Order Thickenings

Recall [E-L] that a first order thickening of any complex manifold X is completely
characterized by its extended tangent bundle tX-+X and by the inclusion
TX CL» tx. In this section we will give a direct construction of the extended tangent
bundle of a Poisson thickening arising from a holomorphic line bundle E^X over
a complex contact manifold via
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We begin by constructing an extension

of the contact line bundle L = TX/D by the contact distribution D. To do so,
consider the jet sequence

0->(T*X®E)->J1E-+E-+0

of our given line bundle. Let us mod out by L* c T*X:

0 -»D* <g> E -> (7 ̂ / ( L * ® JB) -> £ -• 0.

Twisting by L (g) £* we have

But Λ = dθ\DeΓ (ΛΓ,(Λ2D*)(χ)L) gives an isomorphism D^D*®L, so this
sequence becomes

This is the promised preliminary extension.
To produce the extended tangent bundle TX, one remembers that we also have

the tautological extension

by which to "push out" the previous extension, meaning that we wish to have the
diagram

0 —

0 —

0
4
D -̂ ->(L®

TX —»

L

4
0

0
4

£*®J

4
tx
4
L

4
0

with rows and columns exact. This can be done uniquely up to isomorphism by
letting tx defined to be quotient of TX®[(L®E*® JιE)/Θ~\ by the image of D
under j\®(— j2)-

Now the bundle TX constructed in this way coincides with the extended tangent
bundle of the Poisson thickening associated to \E]eHι(X9ΘJ by applying log,,,.
To see this, recall that the extension class of

is given by [dlog faβ]eH\X, Ωι\ where {faβ} is a Cech cocycle for [ E J e H 1 ^ ,
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Restricting d\ogfaβ to D and identifying D* with D®L* via the inverse of dθ\D

precisely corresponds to contracting d log fΛβ with the exelissic form τ.
We now apply this observation to ambitwistor spaces.

Proposition 4.1. The canonical first-order Poisson thickening of an ambitwistor space
is the same as the first order thickening described in [Ll~\.

Proof. The extended tangent bundle TyJί of the latter thickening at ye Jί is defined
to be the solutions of the generalized Jacobi equation

along the null geodesic y cz Jί, subject to the added constraint that

Here XAA> = λAπΛ' is tangent to y, 9 = Vx, 9λ = 9π = 0, while

and ΨA:= ΨABCDλBλcλD,

ΦA- ΦABABλ
Aλ»πB;

are curvature components. Moreover, we take ω and ξ to be homogeneous with
respect to λ and π by requiring that under the transformation

we have

The natural inclusion TJί c+ ΎJf is then given by sending a Jacobi field J to the
pair

Now consider the subspace D of the solution space consisting of pairs such
that ξA'πA> = 0; from the constraint it follows that this holds identically if it holds
at any point of y. Then D <= TJf has codimension 1 and

+ 9.

Moreover, D cz D and we have an exact sequence

0->D->/5->L->0,
m

where w is given by
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It suffices to show that this extension is canonically isomorphic to

To see this, let us first consider the tangent space of the total space of L+ ->ΛΛ
At a base point represented by (y, λA\ where as before <3λ = 0 along y, consider
the subspace £> c TL+ which is the inverse image of D a TJf. This hyperplane
may be identified [LI] with the solution space of the system

@μA = aΨA + βΦA

subject to the constraint that

®β=-λΛμλ.

Here Φ = ΦAπ
A' = ΦAλ

A, Ψ= ΨAλ
A, and Ψ= ΨAπ

Λ'. (If y(s) is a family of affinely

( dy dy \
— , — = 0 , and if λ(s) is a family of
ys dsj

adapted spinors which are parallel along this family, then the tangent of this curve
in L% is represented by (α, β, μA), as defined by

βπA' = JAA'λA,,
V

and μA = fc(λAl

dy
where J = —.) But since sections of L + correspond to functions on the total space

OS

of L% of homogeneity 1, JXL+ may be obtained from T*(L* + ):

J 1 L + = ( T * ( L * + - 0 L J )/C-{0} ,

where the action of C — {0} combines the pull-back under scalar multiplication
maps with scalar multiplication in the cotangent space. Hence

where the trivial line bundle Θ czL_®J1L+ is spanned by the contact form.
Now notice that there is a homogeneous pairing between £ and D. For if

with ξA'πA. = 0, and {9ωΛ)λA = 0, and if

with 9μA = aΨA + βΦA, and 9β = - λAλA, then, setting ξA> = bπA' and Q)ωA = aλA,
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it follows that the expression

'(["]• [<
- ωAμA + βa-

is constant along the null geodesic γ. Indeed,

AμA + βa) = {βa)(2b) - iβV)iβu) + (βωA)μA

+ (ββ)a + oc@2b - b

- fe( - Φα - ^jj) -h ωΛ(a Ψ

= -<xbΦ+bΦoc + bΨβ

= 0.

This S gives a pairing of D and (D/C - {0})® L* , since it has homogeneity (1,1)
in (λ,π). Since this pairing is non-degenerate, it sets up an isomorphism D^
(L_ ®J1L + )/Θ. Moreover, if one restricts this isomorphism to the elements with
ωAλA = 0, the image corresponds to elements of D* which are independent of μ,
and so induces an isomorphism D^D*®L which may easily be verified to coincide
with dθ. Thus the extensions

and

are isomorphic, and the claim follows. Q.E.D.

Notice that it follows that our construction is more "ambidextrous" than it
looks - the extended tangent bundles of the Poisson thickenings induced by L+
and by L_ are canonically isomorphic, although the induced distributions D differ,
corresponding as they do the subspaces ξA'πA. = 0 or ωAλA = 0, respectively. This
is symptomatic of a situation which persists at higher orders, and which is treated
in Sect. 6.

One immediate consequence is the following:

Corollary 4.2. The normal bundle N= ΊJίjΊQx of a sky Qx relative to Jί{ι) is
isomorphic to

where 0(1,0) and 0(0,1) denote the respective divisors of the two factors of
ρ ^ i P i x Π V

Proof Indeed, we get something a bit more natural looking, namely a canonical
isomorphism
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where L± and TJί are to be interpreted as the restrictions of these to bundles to
Qx. For the tangent space of Qx at y corresponds to the set of Jacobi fields which
vanish at xey. Thus evaluating a solution of the generalized Jacobi equation at x
corresponds to projecting the corresponding element of TJί to the normal bundle
of Qx. Since ωA and ξA' have, respectively, homogeneities (0,1) and (1,0) in λ and
π, the result follows. Q.E.D.

This corollary, as we shall see in the next section, is a key ingredient in the
proof of the main theorem.

We now examine the following question: What would have happened had we
replaced the line bundle L+^Jf with a holomorphic line bundle L+ of the same
Chern class? Writing L+ = L+ (x) £, where cγ{E) = 0, we can produce via the Ward
correspondence a line bundle EonJί with holomorphic connection V, and produce
two ersatz spinor bundles

S + =S+(χ)£, S _ = S _ ® £ " 1

on Ji, so that T^# = S+®S_ and such that the obvious connections on S ±

induce the Levi-Civita connection on TJί for any given choice of conformal scale.
All of the above arguments then go through provided that all spinors are replaced
by sections of S ± and all covariant derivatives of spinors are "charged with respect
to the electromagnetic field (E, V)" - i.e. interpreted in terms of the natural
connections on S+. The ambidexterity again appears as the fact that L+®E and
L_ ® E~1 give rise to the same thickening, albeit with different Poisson structures.

Let us now give a concrete description of the structure sheaf Θ{1) of a first-order
Poisson thickening determined by a line bundle E -»X. For any thickening of a
complex manifold X, the extended tangent bundle TX and the inclusion;: TX-+TX
determine the corresponding thickening by

where ( / 1 , ^ 1 ) ( / 2 , ^ 2 ) : = ( / 1 / 2 , / 1 ^ 2 + / 2 ^ 1 ) .
If we have a sub-bundle DcfX with t X = D + TX, then, setting D = Dn TX,

we have

with (fί9 φι)(f2, Ψi) = (fifi> fiΨi + fiΨi)- F o r a Poisson thickening of a contact
manifold (X, D) determined by a line bundle E -» X, we have D = (L <g) £* <g) J 1^)/^,
where inclusion j:D-^D is induced by contraction with dθ, and where the relevant
trivial line sub-bundle of L®E*®J1E is spanned by θ. Now (9{E*®J1E) is just
given by the 1-forms on the total space of E* — 0£* = E — 0E which are invariant
under the action of C — {0}, so that Θ(D*) is the space of vector fields on
£*:= E — 0£ with values in L which are invariant under C — {0} and project to
D c TX\

π-ιΦ(D*) = {υeΘE,(π*L® TEJ\ [ξ, t;] = υ Jπ*θ = 0},

where ξ is the Euler vector field which generates the (<C - {0}) - action and where
π:E^-+X is the canonical projection. Thus, thought of in terms of £*,
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and, again,

(fu Vx)if29 V2) = (Λ/ 2 , f,V2 + f2Όx).

Now, on a Poisson-thickened contact manifold, we have noted the existence
of a "divisor" line-bundle related to the Poisson transformations. In our present
context, we can describe this very concretely, as follows. On E^9 consider the sheaf
of vector fields w which are (C — {0})-invariant and project to contact vector fields,
and let # denote its direct image on X:

π~ι<i:= {weΘ(TEt)\&wπ*θacπ*θ, [<*, w] = 0}.

This is then given an 0(1)-module structure by setting

(/, v)w = fw — <π*#, w>tf,

which makes sense since, given that ξf = [£, υ] = v J π*θ = 0 and df\D = v J π*0,
the assumptions that [£, w] = 0 and J^wπ*θ = 0 (mod π*#) imply that

K, (/, ̂ )w] = K, fw - (w J π*β)i;] = 0

and

- <π*θ, w}v) J

d(/wJ

0)

= 0 (modπ*θ).

Moreover, the exact sequence

where the Θ factor consists of the multiples of ξ and where the projection to Θ(L)
is wh-^π^w), corresponds exactly to the restriction sequence relating an Θ(1)-
module to two ^-modules; this shows that ^ is locally free and of rank one over
Θiiy Thus we may write

In fact, # is actually the promised divisor line bundle rejated to infinitesimal
τ-preserving transformations. Indeed, every local section of ¥ defines a derivation
of 0 ( 1 ) by

where the Lie bracket [w, t>] is to be calculated relative to a local trivialization of
π*L for which ^wπ*9 = 0. This defines a map 0(1)->(9(1) because

ι> J π*0 = 0, if wπ*0 oc π*0 => [w, t;] J π*0 = 0,
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and

d(wf) = sejίf = £ejp J dπ*θ) (mod π*θ)

where the last equality is most easily seen by taking a trivialization of π*L so that
J?wdπ*3 = 0, and hence so that i f^dπ*^ = dwπ*3 = 0. This is actually a derivation
of # ( 1 ) because

2 , t>2)] = W (/i/

= ( » / 2 + / > / l 5 (w/1)ι;2 + (w/2K 4- Λ[w, ι?2] + /2(w,

= (/i^i)(w/ 2,0, r2]) + (/2, t?2)(w/i, w, y j)

The resulting homomorphism

<P(1)(L)

may be described locally by trivializing £ and L. Relative to local trivializations

of E and L, 0 ( 1 ) becomes 0[ί]/(ί2), where (/,t;) corresponds to / + ~(ds,v}t =

[/ + /£], where 5 is the fiber coordinate on £ and where v is thought of as a vector
field on E^ by employing the local trivialization of L. At the same time, ̂  = (9{l)(L)

is identified with O[t]/(t2) by sending w to

Now, choosing coordinates so that L s J

a straightforward but tedious calculation shows that w(fyv) corresponds to

+ ί/, - ( ^ 4- tg) >(mod ί2), where the Poisson bracket is taken with respect to the

exelissic form

Now the formal tangent space of contact deformations of a contact manifold
(X,D) is Eι{X,Θ(L)\ since Θ(L) = ^ represents the infinitesimal contact trans-
formation of X. If instead of considering infinitesimal moduli of contact manifolds,
we consider the infinitesimal moduli of pairs ((X,D), E-+X) consisting of a
contact manifold and a line bundle over it, the formal tangent space is H1(X,(i) =
Hi(X,Θ{1)(L)), since <$ is exactly the Lie algebra of the pseudo-group of auto-
morphisms

E-tE

I 1

• X for which Φ is contact map and Φ is a bundle morphism. But the formal
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tangent space to the moduli space of Poisson-thickened contact manifold to first
order is H1^, 0(1)(L)/<C). Our process of assigning a first-order Poisson thickening
to every line bundle £ - > ! on a contact manifold then induces a linear map
H^XtGwilD-tfriX^nyiLyfC) which, by the above picture, is just the natural
map induced by

0 -> (C -» 0(1)(L) -» 0(1)(L)/C-> 0.

We thus obtain the following innocuous-looking conclusion, which will turn out
to have important consequences in Sect. 8:

Proposition 4.2. Infinitesimal deformations of pairs ((X,D),E^>X) and infinitesimal
deformations ofX{1) through Poisson-thickened contact manifolds are related by the
exact sequence

• -> H\X, C) - H\X, <$) - HX(X9 0(1)(L)/C) - H2(X, <C) -» •

of vector spaces.

To conclude this section, let us see the transition between Poisson thickenings
and ordinary thickenings more explicitly at first order. First order thickenings with
normal bundle L^Jί are parameterized by H1{Jί,TJί®L~1). But the map
xilL:H1(jr,&l<C)-+H1(jr,TJr®L-1) factorizes through H^^DφL'1), as is
made clear by our previous analysis. The short exact sequences

0^D®L-1-

gives rise to the long exact sequence

0-+<ί:-+H1(jr9D®L-

and it is not difficult to see that the extension class of

is in the kernel of H\D®L~ι)^H\TJί®L-ι\ and so spans the kernel. This
accounts for the fact that L + and L+®L~1 give rise to the same thickening.
Moreover, the map H1(J^,Θ/(C)-^H1(®,D®L~1) is injective, for via the Penrose
transform this map becomes

Ω '/dΩ0 -> H\Jί, Θ/<E) ^<£®<ί:

n i l l
Ω2 - * \ ι

where we assume that Jί is, say, geodesically convex, hence Stein and contractible.
Thus twisting by powers of L gives rise to the only way of producing the same
thickening from different line bundles.

5. Extension to Third Order

Given a Poisson thickening of X of the first order, there is a direct manner in which
one may consider the problem of extending it to third order. Indeed, let us consider
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the kernel of the restriction map < ^ 3 -> < ^ 1 ; by construction, it is the exponential
of <Γm = ^ 7 ^ " 3 equipped with the Poisson bracket. However, {F,^} c ^~3, so
we have an exact sequence

of sheaves of groups, where «̂ "(2) is abelian and we can apply the adapted long
exact sequence construction of [E — L] or [M]. Namely, given t E / / 1 ^ ) , the
obstruction to t being in the image of Hί(&3)-+H1(&1) is an element of
H2{t3~(1)t~

ι), and if this obstruction vanishes then Hι(t3Γ(2)t~
ι) acts transitively

on the inverse image of t in //1(<^3). If Ar(1) is the first order thickening of X induced
by t, then t ^ ^ ί " 1 is a line bundle on X{1) whose restriction to X is Θ(L*); we
simply need to understand the cohomology of such a creature.

Lemma 5.1. Let Jί^l) denote the canonical first order thickening of an ambitwistor
space, and let JSf(*υ denote any extension of (9(L*) to J\T{i\ Then Hl{Jr,&fX)) =

Proof. We have an exact sequence

0 ^ 0(L~ 2 ) - * if*-*0(L~ *)-•(),

and since H\JΓ, Θ(L~2)) = H2(JT, 0(L~*)) = 0, we are to verify that the Bockstein
map

δ:H\Λ , Θ{L-')) -»H2(^, tf(L~2))

is an isomorphism. As observed in Sect. 3, an element of H1(J^,Θ(L~1)) is deter-
mined by its restriction to first neighborhoods of skies Qx a Jί, and an element of
H\Jf, Θ{LΓ2)) is determined by its restrictions to skies. It therefore follows that we
need merely check that the Bockstein operator δ\H\Άx, Θ(1)(L~ 1))->H2{QX, (9{L~2))
of the short exact sequence 0-*$(L~2)-»(P ( 1 )(L~1)-^ ( 1 )(L~1)->'0 is always an
isomorphism, where Θ{1) is the structure sheaf of the first neighborhood of Qx a J^{1)

and where Θ{1) is the structure sheaf of the first neighborhood of Qx c Jί(l).
Now let N denote the normal bundle of Qx cz Jf, and let N denote the normal

bundle of Qx c Jί{1\ we have the commutative diagram

0
1

2>(J

111
%ι
ϊ
0 —>

0
1

i
( $ ί l ) ( L ~ 1 ) - >

1

1
0

0

I
-»• &(N*®L-l)-+0

I

i
ι)-+Θ(L J) -*0

I
0

with exact rows and columns. Since H*{QX, Θ(L~ι)) = H * ^ ! x P l 9 Θ(- 1, -1)) = 0,
the Bockstein operator in question is precisely that of the top row:
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But since N ^ 20(1,0)020(0,1), as we saw in Sect. 3.

H*(QX,Θ(N*®L-1)) = H*(Φ1 x P l 9 2 0 ( - 2 , - 2 ) ® 2 0 ( - l , -2)),

= 0

and the Bockstein operator is therefore an isomorphism. Q.E.D.

This leads immediately to the following result:

Theorem 5.2. The canonical first order Poisson thickening of an ambίtwistor space
has a unique extension to a third order Poisson thickening.

6. Ambidexterity of Obstructions

Let X be any complex contact manifold, let teH1(X9^m)9 m ^ 1, be a Poisson
thickening of X, let r = (exp τ)^ (i)GH1(X, Aut(0m)) be the corresponding equivalence
class of "ordinary thickenings," and let Xim) be the thickening corresponding to r.
We may choose to forget that X{m) is a thickening of Poisson type, and simply
ask whether or not X(m) can be extended as a thickening X(m + 1\ Alternatively, we
may choose to be picky and ask whether t extends as a Poisson thickening.
Surprisingly enough, these problems turn out to actually be equivalent.

Proposition 6.1. LetueH2(X, Θ(L~m)) be the obstruction to extending t to H\X,9m+ί)9

and let yeH2{X,Θ{TX®L~m~1)) be the obstruction to extending r = (exρτ)*(t) to

Proof. We have a commutative diagram

expτj -> expτj

with rows exact. If these sheaves of groups were abelian, we would have an induced
commutative diagram relating the corresponding long exact sequences of coho-
mology groups. In the present non-abelian context, there is an analogous
conclusion; namely, for any teH1(X,(^m), the obstructions u and v are related

where

τ* : H2(X, Θ(LΓ m)) -> H2(X, Θ(TX ® LΓ m " x ) )

is induced by v.Θ{L~m)-*Θ{[TX®L]®L~m~ι) via "twisting by t" - i.e. using
{/aβ} as transition functions, where {/aβ} is a Cech representative for t.

Now τ:#(L~m)->Θ{[TX®L](x)L~m~ x) has a canonical splitting σ given by
the contact form. Indeed, in terms of local coordinates q°,...,qn,p1,...,pmt we have

τ(ftm):=τ.Jd(ftm)
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so that contraction with 3 = dq° + Pjdqj yields

τ ( / ί w ) J 5 = -mf.

Hence σ= j ( — 0 j yields a splitting for τ : C ) ( L - m ) ^ ^ ( T I Θ L ] ( χ ) Γ m - 1 ) . The

same will then also apply to the version twisted by t; i.e.

is split by

defined as contraction with
m

But now

has left inverse given by σ#. Thus u = σ^v) and u = 0<=>v = 0.
This has two important consequences for our purposes. First off, it will allow

us to "localize" our obstructions at skies. Secondly, it implies that the ambidexterity
we noted for the first order thickening persists at higher orders, and that our results
on the existence of higher order thickenings could be formulated without the
present Poisson machinery, which may be viewed as a mere technical convenience.

Proposition 6.2. Suppose an ambitwίstor space Jί has a thickening Jί{

extending the canonical first-order thickening Jί{X). Then Jί^ is of Pois

Pf L b i b ii h i ffi h ii

g {m), m ^ 3,

is of Poisson type.

Proof. Let us begin by noticing that it suffices to prove the proposition for m = 3.
For the freedom of extension in passing from jΛm~χ) to Jί{m) is given [E — L] by

0, m = 3

where the expression on the right is calculated by Penrose transform in much the
same manner explained in Sect. 3. Thus a thickening of Poisson type of order
m ^ 3 having an extension of Poisson type to order m + 1 has only an extension
of Poisson type. But Proposition 6.1 asserts that if there is an extension then there
is one of Poisson type. This reduces the problem to showing that any third-order
thickening extending the canonical first-order thickening must be of Poisson type.

We now consider the problem of extending the canonical first-order thickening
directly to third order. There is a short exact sequence

3 r )) ~ Aut (0 ( 3 )) -» Aut (0 (

from whence we see that the freedom in extending Jί{ι) to Jί^ is given by
f f H ^ t D e r ^ j i ^ o ) , ^ ) ^ " 1 ) , where t e H 1 ^ , Aut0 ( 1 )) is the isomorphism class
of J\Γil\ But t D e r ( 6 r

( 3 ) , ^ (

2

3 ) ) r * is a locally free sheaf of $(1)-modules whose
restriction to Jί(0) is (9{TJί®L~2)\ we therefore define

0 ( 1 ) (f Jί ® IT 2 ):= t Der(0 ( 3 ), rf3))Γ\
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so that we have an exact sequence

o -• o(fjr ®L~1)^ Θ{i)(ΐjr ®L~2)-+ Θ{fjr ® L~
 2) -> o

of 0(1)-modules. Since H\Ar,(9(fjr®L~3)) = 0, we have

where δ is the Bockstein map of the above short exact sequence. But here
Hι{Jί,Θ{fjV®L~2)) exactly represents the freedom of extending JT{1) to Jί{2\
and this argument actually shows that the map from second-order freedom to
third-order obstruction is an affine map.

Let us now analyze this map in light of what we already know about Poisson
extensions. Corresponding to an original choice of L ± in constructing our first
order thickening, we have two canonical and linearly independent surjections
θ±: TJf-*L which extend the contact from θ: TJf-*L. These induce maps

which exactly read off the two factors of

They also induce maps

θ ± : H\Jί, (9(TJf ® L' 3)) -> H2(Jf, G(LΓ 2))

which correspond to reading off the obstruction to Poisson extension, a la
Proposition 6.1, relative to the two different Poisson structures. The linear map

is therefore precisely the direct sum of the two Bockstein operators measuring the
obstruction to extending a second order Poisson thickening to third order relative
to the two available Poisson structures. Since we saw in Sect. 5 that each of the
latter operators is an isomorphism, it follows that ker δ — 0, and there is at most
one third-order thickening «yΓ(3). Since we proved in Sect. 5 that there is, in fact,
a third-order Poisson thickening, it follows that the unique JV{2>) exists and is of
Poisson type. Q.E.D.

Corollary 6.3. ("Ambidexterity Theorem"). For any ambitwistor space Jί, the "right
handed" Poisson thickenings of order m, obtained by extending the canonical first
order thickening constructed from L + , and the "left handed" Poisson thickenings of
order in m, obtained by instead beginning with L_, define exactly the same ringed
spaces J^{m\ m^.3. (Of course these spaces are thereby equipped with different
auxiliary structures.)

Corollary 6.4. ("Equivalence Theorem"). The canonical first-order thickening
of an ambitwistor space has an extension to an mth order thickening Jf{m), m ^ 2, iff
it has an mth order Poisson extension.
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7. Legendrian and Poisson Fattenings

Up until the present we have imagined the Poisson thickenings of complex contact
manifolds as arising in two stages: first one constructs or is given a complex contact
manifold (X,D), and then one considers its Poisson thickenings as defined by
Hι(X,ym). However, one may instead construct Poisson thickenings in one step
by assembling X(m) from copies of the mth infinitesimal neighborhood of C 2 π + 1 via
the action of a certain pseudo-group of transformations.

Let <C2n + 1 be given standard coordinates u, g 1,.. .,q n,p l 9 . . .,p n and the contact
form

Let ^ denote the pseudo-group of contact transformations of (C 2 n + 1 :

<£ = {φ:U ^V biho\omorphic\U,V cz<C2n+\3f:U ^<C- {0},φ*3

Then % acts naturally on C 2 w + 2 : for all φ: U-+ V in ^ let

be defined by φ(z, t)\f = (φ(z), f(z)t), where φ*9 = / 5 . Thus C 2 n + 2, which we equip
with coordinates u,qι,...,qn, pί9...,pn,t9 is just being thought of as the contact
line bundle L of our contact structure on C 2 π + \ and # acts on L = C 2 π + 2 in the
natural fashion. Since this action preserves the "zero section" <C2 n + 1 c <C2 n + 2, we
also get an action of # on all of the infinitesimal neighborhoods (<C2n+1)(m), of
/p2n+ 1 c /n2n + 2

Now the sheaf %m on C 2 " + 1 acts on (C 2 n + 1 ) ( m ) , and the action of <€ sends <§m

to itself. We may therefore define a new pseudo-group

as the semi-direct product on # and ^m ; here ^ acts on ^ m by conjugation. Thus
<βm is the pseudo-group of transformations of (C2 / ί + 1 ) ( m ) generated by the contact
transformations and our Poisson automorphisms. It follows that Poisson-thickened
contact manifolds are precisely those objects constructed by gluing together pieces

o f (C2π + iym) w i t h t h e transformations <gm.

The Lie algebra of c€m is a sheaf on <C2n + 1 of vector fields on (C2n+ 1){m). Since
the infinitesimal contact transformations of <C2" + 1 are exactly given by expressions
of the form τ J d(f(z)/t), it is easy to see that this new Lie algebra is precisely given
by vector fields of the τ J d(g/t)9 where g e (9im +1}. Thus, if Jίf (m) denotes the restriction
to (C 2" + 1 ) ( m ) of the divisor line bundle of <C2n+1 α C 2 " + 2, the Lie algebra of (€m is
precisely £m:= (if(m)/C, {,}). We thus have an exact sequence

o-><-><£„-><$;->(),
where (£ is the Lie algebra of contact vector fields on <C2Λ + 1.

We now wish to consider the entire construction problem relative to a
Legendrian submanifold Σ cz X; i.e. relative to Σn c X2n + 1 such that TΣ c D. To
do this we will first need to understand the normal bundle of such a creature.

Lemma 7.1. Let (X,D) be α complex contact manifold, let Σ a X be a Legendrian
submanifold, and let LΣ denote the restriction of Σ of the contact line bundle
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L = TX/D. Then the normal bundle N = (TX\Σ)/TΣ is given by

N = JλLΣ.

Proof. For any complex contact manifold we recall that L* — 0L* is a symplectic
manifold, while the inverse image of a Legendrian submanifold I c I is a
Lagrangian submanifold π " X(Σ) c L* - 0L*. Since π " \Σ) is Lagrangian, its normal
bundle is isomorphic to its cotangent bundle. The result then follows from the fact
that JιL == T*L*/<£* by restricting this isomorphism to π~x(Σ) to obtain

Now for any manifold Σ and any line bundle LΣ-±Σ, the total space of JιLΣ

carries a natural contact structure.1 Indeed, if Sβ:JίLΣ-*Σ is the canonical
projection, then both ?β*LΣ and S$*JιLΣ have canonical sections, the former being
obtained from the latter via the projection JγLΣ-+LΣ. Let us call these sections
σγsΓ(JxLΣ^*LΣ) and σ2eΓ(J1LΣ,

<$*J1LΣ). The natural inclusion ι:ψ*JxLΣc=^
J1($*LΣ then may be used to compare our two sections and we may set
Θ = J 1(σ 1) — zσ2. By construction, θ is in the kernel of JxSβ*LΣ->S$*LΣ, and thus
is a section of β 1 ^ * ! ^ ) on the total space of JXLΣ.

To check that θ is a contact form, we take a local trivialization of LΓ, identifying
LΣ with the trivial line bundle 0, and thereby identifying JγLΣ with Φ® T*Σ; this
also trivializes ty*LΣ, and Jί($*LΣ becomes 0®T*\jxL£). Choosing coordinates
q1,qn o n Σ, w e h a v e c o o r d i n a t e s u,q1,...qn, Pi,..-9pn o n J 1 L Σ , s o t h a t

and θ = J1{σ x) - zσ2 = 0 φ (dw •+• Σpjdqs). This shows that θ is indeed a contact form.
Now given a Legendrian submanifold I c l , w e may ask how X compares to

our standard contact manifold J1LΣ. Certainly we may find local isomorphisms
which induce the identity on the normal bundle level. If ζβΣ is the sheaf on Σ of
germs at Σ of contact automorphisms of J1LΣ acting trivially on the zero section
Σ and on its normal bundle, the germ of Σ a X is therefore given up to contact
isomorphism by an element of H1(Σ^Σ).

Let / c ( P denote the ideal of the zero section in the sheaf of germs of
holomorphic functions on J1LΣ, restricted to the zero section. For each φe^Σ, we
have φ * ( / ) = / , and hence φ * ( / / ) = / ' for all i. Let Sfe denote the subgroup of
^Σ consisting of transformations φ satisfying

(1) φ* induces the identity on Θ/tf
/ + 1

9 and
(2) φ* induces the identity on / / / / + 2 .

Clearly this is a normal subgroup, and we will define

1Note added in proof: This of course reflects the fact that J'LΣ is the open subset of Ψ(T*LΣ)
consisting of hyperplanes transverse to the fibers.
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Elements of H1(Σ9^) will be called Legendrian fattenings of Σ of order /; a
Legendrian imbedding Σ a+ X determines an entire hierarchy of such objects,
which are roughly its /-jets. Since J y c Aut(ίP/(/^+1), a Legendrian fattening
determines a fattening in the sense discussed in [E — L2]. But a Legendrian fattening
also comes equipped with an "extended ideal sheaf" corresponding to flfί+2

which ostensibly contains information about the ordinary fattening of order /-hi.
The reason for considering these transformations and the corresponding

"fattenings" becomes clear when one considers the associated Lie algebras. Relative
to the contact form Q = du + Σpjdqj, consider the infinitesimal contact transforma-
tion induced by a section of ty*LΣ represented by a holomorphic function / ; it is
given by

l - X/, A + Σ(fj - p,/J A.

If Σ is given by pj = u = 0, and if f — (pj9 u) is the ideal of Σ, we read off the
fact that ξf vanishes along Σiΐί fef2(^LΣ) and such that a ξf must then induce
the zero map on / / / 2 . Thus f2 is the Lie algebra of <Sf0 = <βΣ. More generally,
ξf induces the zero maps on Θ/f'+1 and on / / / ' + 2 iff fef*+2(ψLΣ). Thus
jίe+2(S$*LΣ) is the Lie algebra of ̂ , and the fact that £fe is a normal subgroup
corresponds to the fact that

{/2{ψLΣ\ fm + 2{ψLΣ)} cz /« + 2(ψLΣ\

so that fm + 2(ψ*LΣ) is an ideal in /2{ψLΣ).
The obstruction theory for Legendrian fattenings now follows the pattern of

our previous yoga; we have a short exact sequence

/'+ 2(ψLΣ)//'+ 3(ψLΣ) ~ Λ , + I - Λί9

where

where N = J1LΣ is our normal bundle. Since «9^/y^+ ί is in the center of ̂ + 1 , we
obtain

Lemma 7.2. T/ie obstruction to extending a Legendrian fattening of Σ from order
{ to order t + 1 is an element ofH2{Σ, Θ{LΣ® 0 / + 2 N * ) ) . If this obstruction vanishes,
the freedom of extension is given by an action ofH1(Σ,Θ(LΣ® O/+2JV*)).

We now consider the analog of the above construction that arises when the
contact transformations V are replaced with the Poisson transformations # „ . We
again begin with considerations pertaining to the normal bundle of Σ, this time
relative to a Poisson-thickened contact manifold. Given such an imbedding
Σ CL+ Xim\ one may read off the normal bundle of Σ from LΣ and the restriction
αeH1{Σ,Θ/(C) of the class in Hγ{X^m) determining the Poisson thickening; this
follows from the fact that sections of &m/<C which vanish along Σ generate vector
fields which vanish to second order along Σ. Let us now build our normal bundle
N explicitly from LΣ and α.

Let LΣ-*Σ and α e H ^ β y C ) be given. Then dueH\Σ,Ωι) specifies an
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extension

0-+Ω1(LΣ)-*V-+LΣ-+0.

We then obtain N^Σ by pushing this extension out to
(V@JiLΣ)/Ω1(LΣ), so that we have exact sequences

and

= J1LΣ; i.e. N =

O-^L,

I claim that the total space of N then carries a Poisson structure, and N a N gives
rise to Poisson thickenings of all orders of the contact manifold N = J1LΣ

constructed above.
Letting Sβ:N-^Σ again denote the canonica^projection, and letting L= ^ * L Γ

denote the contact line bundle of N, we let φ:L-»£ denote the composition
of φ with the canonical projection L-+N. Then φ*αeH1(L,ίP/(C) satisfies
0 = {φ*α,φ*α}e//2(L,0) because, relative to the exelissic form

K δ δ\ δ ^ δ δ 1
t— + Σp: Λ - + I :Λ .

δt μjδPjJ δu δqJ δPj]

two functions of q have vanishing Poisson bracket. Thus exp(φ*α) is a well-defined
element of H1^,^^), where <§^ is the sheaf of germs along N czL of Poisson
transformations generated by Θ/(C using τ. In fact, I claim that the image of
exp(φ*α) in H1(N,Aut((9L)) is simply the germ of the imbedding NCL+N

constructed above. Indeed, let us notice that, to a function f{q\ τ associates the
vector field

(Note that this is the Poisson vector field associated to /, in contrast with ξf,
which is associated to f/t.) Thus Vf = tdf, where the section tdf of Ωι{LΣ) is
reinterpreted as a vertical vector field on J1LΣ ZD(T*Σ)®LΣ which is linear
up the fibers and vanishes along NaL. Identifying L=Sβ*LΣ with LΣ with
LΣ@JιLΣ, this vector field corresponds to the endomorphism of L@JιLΣ with
block-matrix form

0

0
_0

df

0

and in particular has square zero; thus exp {tdf) is just given by

1

0
_0

df

I

and exp(φ*α) consequently corresponds precisely to the push-out of doc to
as claimed.
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The upshot of all this is the following: to every pair (LΓ,α) we may associated
Poisson-thickened Legendrian embeddings of Σ of all orders, and any Poisson-
thickened Legendrian embedding is obtained from one of these standard models
by changing its transition functions by elements of ^ m which preserves Σ and act
trivially on the normal bundle of Σ.

Thus, let Σ c N denote the zero section, let Θ{m) denote the structure sheaf of
the mth neighborhood of NczN, let JfmczΘim) denote the ideal of functions
vanishing along Σ, and let ΉmΣ denote the sheaf of germs at Σ of Poisson
transformations (i.e. elements of &m) which fix Σ and act trivially on Jfm/Jf \.
Then, for some (LΣ9OL)9 the germ of any Poisson-thickened Legendrian imbedding
of Σ is exactly given by some element of Hι(Σ,^mΣ).

We now filter ^mΣ in analogy to our previous work. Let Sfm/ denote the normal
subgroup of CmΣ consisting of transformations φ such that

(1) φ* induces the identity on ^1

and (2) φ* induces the identity on
Set

We will then call elements of H1(Σ,^m/) Poisson fattenings of Σ of type (m,/). We
have a family of central extensions

where

otherwise

since the Lie algebra of ^m( is precisely JΓί,+2(Φ*) via the same sort of Poisson
bracket calculation as before. This yields

Lemma 7.3. For £^l,the obstruction to extending a Poisson fattening of type (m, ί)
to one of type (m, i +1) is an element of H2(Σ, Θ(LΣ (x) G/+27V*)) ifm>ί + 2, and
is otherwise an element of H2(Σ,Θ(LΣ®[θ'+2N*/LΣ

(m+1)(g)O'f--m+ιN*])). The
freedom of such extension is parameterized by H1{Σ, Θ(LΣ ® O / + 2 $ * ) ) ifm > £ 4- 2,
and is otherwise an element of H\Σ,(9(LΣ® tO<f+2N*/LΣ

{m+ί)®Oif-m+[N*])).

There is one more obstruction which will be of great importance in the rest of
this paper; namely, given a Poisson fattening of type (m, /), when can one extend
it to type (m +1, /)? We wiJJ actually be interested solely in one case of this, although
the general case is analogous; we ask, when can a Poisson fattening of type (m, m)
be extended to one of type (m + 1, m)? This may be read off from the central extension

thus the obstruction to finding such an extension is an element of H2(Σ, Θ(LΣ

m)).
But this obstruction has the following property, which will be the key-stone of the
proof of the main theorem.

Proposition 7.4. ("Localization Theorem"). Let Σ a X be a Legendrian submanifold
of a complex contact manifold, and let a Poisson thickening X(m) be a given Poisson
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thickening; let Σ{m'm) be the associated Poisson fattening of type (m,m). Then the
obstruction to extending Σim'm) to a Poisson fattening of type (m+l,m) is obtained
from the obstruction to extending X(m) to a Poissσn thickening of order m + 1 by
applying the restriction map

H2{X, 0(ίΓ w)) -> H2(Σ, Θ(LΣ

m)).

Proof. The obstruction to extending X(m) may be computed by arbitrarily extending
the transition functions of X{m) to elements of ^ m + ί and then computing the
incompatibility on triple overlaps. Similarly, the obstruction to extending a
1-cocycle for &m m to ^ m + i,m and computing the incompatibility on triple overlaps.
If, on a neighborhood of Σ, we take the transition functions for X to be in (€mΣ,
extending them to^{m+1)Σ induces an extension of their images in ̂ m m to Λm+Um.
The result follows. Q.E.D.

8. Fattening the Sky

Let Q = Ψ1xΨ1 be the 2-quadric, which will be our standard model of a sky
Qx c Jf\ we will study the behavior near Qx of an arbitrary ambitwistor space Jί
by considering Legendrian fattenings of g, and understand the obstructions to
Poisson-thickening Jί by studying the obstructions to extending a Legendrian
fattening to a Poisson fattening. Since the restriction of the contact line bundle to
a sky is the 0(1,1) line bundle (=the divisor of the diagonal zl(P 1)c:P 1 x P J ,
we consider only Legendrian fattenings of Σ = Q with fundamental line bundle
LΓ = 0(1,1); and since the canonical first-order Poisson thickening is generated
by log^fX+Je//1^, 0/<C), we take the fundamental cohomology class
αeH^X^/C) to be the logarithm of the line bundle 0(1,0) (= the divisor of the
first factor Pi x {point} <= Ψι x PJ; i.e. aeH\Q9 0/C) = H2(Q, <C) is the Poincare
dual of the first factor. One may then check that

iv s 0(1, o) e 0(i, o)e 0(0, i )e 0(o,i),

either by direct computation from the definition of Sect. 7 or by using Corollary 4.2.
Indeed, we have natural identification

N = [S+ ® 0(0,1)] © [S_ ® 0(1,0)]

= 0^(0,1)00^(1,0),

where Q = PίS^) x P(S*) and where the abstract indices A and A' correspond to
the two 2-dimensional vector spaces S+ and S_, respectively. N is related to N by
an exact sequence

where

N can also be described by the exact sequence
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arising from the fact that it is generated by its global sections, or from the exact
sequence

>ΛΓ->0(1, l)->0

corresponding to the fact that ΛΓ = J1^(1,1). (Numbers in square brackets are
conformal weights.)

Let us now consider Legendrian fattenings of Q. The exact sequence

where a = AA\ gives rise to exact sequences

and hence

O

It follows that

ff2(β,0(l,l)®Θ'+2ΛΓ*)==O

for all /, and that

Ψ(a...bc)

where T = HX(Q, Θ{N)) is the abstract tangent space of our space-time. Thus, there
is no obstruction to extending a Legendrian fattening from order to order, while
the freedom in so doing corresponds formally to choosing the partial derivatives
of a conformal metric modulo the action of vector fields fixing our ideal point.
Let us check that the above interpretation of the freedom is literally correct.

This is best seen by considering the following fact of independent interest: the
natural Penrose-transform identification of Γ{M,Θ(Q%T*M)\Ί\)IΓ(Jί,Θ{JM))
and H1(J^1Θ(2)) agrees with the Kodaira-Spencer map from
Γ(Jf9Θ(QlT*J0ί2])/Γ(Jί,Θ(TJf)) (considered as infinitesimal deformations of
the conformal metric, modulo infinitesimal biholomorphisms) to Hx{Jf, Θ(L))
(considered as the infinitesimal contact deformations) up to a constant factor. The
claim will then follow by restriction of the action to the Legendrian fattenings of
sky and induction on /, since the freedom of extending a Legendrian fattening to
higher order only involves linear actions by derivations.

For this purpose, the most convenient picture of small deformations of
conformal structure is the following: let (Jί, [g]) be a complex conformal
space-time, and, for each automorphism φeΓ(Jί, Θ(J*Jί® TJί)) of tangent
bundle of Jt, consider the new conformal structure (</>~1)*[g] We in fact obtain
all conformal structures near [g] by taking φ = l + tA, where A is symmetric and
trace-free: AeΓ{Ji,Θ{O2T*Jί)\_2]). (Indeed, the transformation 1 +tA gives rise
to the conformal structure [g — 2tA + o(ί2)].) The advantage of this point of view
is that the total space of the null-quadric bundle 2L-+JI remains the same, but
the degenerate contact structure induced on it by Ψ(Ί*Jί) varies, as does,
consequently, the induced foliation of Ά by the directions of degeneracy of this
structure, thus deforming the quotient contact manifold Jί. To be precise, the
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contact form

θ = padxa

of Ψ(T*Jί) is deformed to

θt=θ + tAa

bpbdxa

by the action of φ= 1 + tA. Therefore, local isomorphisms between the degenerate
contact manifolds (J2, Qt) and (J, θ ) are generated, to first order in ί, by local
vector fields υa on the (non-projective) null cone J c T*^# satisfying

where ω = dpaΛ dxa and F(Λ) = Aa

bpbdxa. Thus </ ΪP = φ β J ω), and !P= ι;Λ J ω + dftα

for some local system of functions hΛ. These functions may be explicitly found by
choosing a system of local system of transversals to the fibers of the Marsden-
Weinstein symplectic quotient map q'Λ-*Jf, where Jf is the total space of the
inverse contact line-bundle L* -+Jf. Indeed, letting 5α: l/α-> J be a system of local
sections of q for some covering Ua of Jf, we may set

M P ) = f
sa(4(p))

But

(vΛ — vp)Jω = d(hβ - hj,

and so

-vβ) = ω(ξ, va-vβ) = ξJ d(ha - hβ) = ξ(ha - hβ)

where ξ is the Euler vector field pa~—. Taking our sections 5α to be (C — {0})-
invariant, this simplifies to become ^a

because Ψ(A) has homogeneity 1. Now θ(va — vβ) is exactly the section
which generates the contact vector field q^{vΛ — vβ\ so that θ{va — vβ) is a
cocycle representing the image of A under the Kodaira-Spencer map. Since
sβ

J [y(Λ)lfiberSof«f] depends linearly on A, this shows that the Kodaira-Spencer map

fro'm the linearized deformations of the conformal metric to H1^, Θ{L)) is linear.
Indeed, we also see quite directly that it is an isomorphism, since Hι(Jf9Θ(L)) =
H1(β,q~1Θ(L)\ and we have the exact sequence

0(1,1) >/^(U)-»0;

our Kodaira-Spencer map from Γ(J{,Θ{θlT*Jί)\_ΐ\) = H0{^Ωι

q{h 1)) to
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), given by

is nothing but the Bockstein operator

obtained on Cech cohomology by introducing local splittings for the map
dq\Θ(U l)-»ί2*(l, 1) which differentiates up the fibers of q. Using the same formula
for the Kodaira-Spencer map, we also see that changing the (/+ l)-st derivatives
of the metric at some xeJί results in a linearly related change in the corresponding
(/+ l)-st order Legendrian fattening, as parametrized by H\Q,Θ(l,l)®θ'+2N*).
Indeed, this Kodaira-Spencer map for Legendrian fattenings must, by the above
argument, be induced by the Penrose transform, and is therefore exactly our original
Bockstein operator

H°(Q,Θ{a ..J292)[2])->H1{Q9G{l9l)®θ'+2N*)9

this being, after all, just the (ί + l)-st term in the Taylor expansion of the Bockstein
operator

around a fiber of & -* M. We have therefore proved

Proposition 8.1. The set of Legendrian fattenings of order ί of Q with LΣ = Θ(l91)
corresponds exactly to the set of /-jets of conformal metrics at a point modulo
biholomorphisms. Moreover, this identification is compatible with the action of
((Θ / fT*)(g)Oo^*[2])/(Θ / f ' 1T*)® T on these two sets.

Let us now make some general observations on the structure of such
Kodaira-Spencer maps. Suppose for a moment that Z is the leaf space of a
holomorphic foliation of Y by simply connected curves; let q:Y^Z denote the
canonical projection. If we deform the foliation, we induce a deformation of Z.
Such a deformation of the foliation amounts to a deformation of the corresponding
1-dimensional sub-bundle of the tangent bundle, and at the infinitesimal level is
specified by a section χ of (q*TZ)®Ωq. Cover Z by open sets {Ua} on which we
may find sections sα:l/α-> Y of q. When we deform our foliation, a deformation
of Z is induced by identifying xasUa with xβeUβ if sa(xa) and 5^^) are on the
same leaf of the new foliation. On the infinitesimal level, this means that the
transition functions of Z are to be altered by flowing along the vector field

sβ

*aβ ~ J Zlfibersof q-
S(Z

This shows that the Kodaira-Spencer map from infinitesimal changes in the
foliation to Hι{Z,Θ{TZ)) is given by the Bockstein operator Hι{Z,Θ(JZ))
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of the induced by the short exact sequence

0 -*q ~x Θ{TZ) -> Θ(q* TZ) \ Ω\ (q* TZ) -> 0.

The same procedure also works in the case of leaves of higher dimension. Due to
the Frobenius integrability condition, however, Ωl(q*TZ) is then replaced by

K = keτdq:Ω
1(q*TZ)-+Ω2(q*TZ\

so that the short exact sequence becomes

and our Bockstein operator is

δ:H°(Y9K)-+Hί(Y9q-1Θ(TZ)).

A particular case of the above occurs when Y has a (<C — {0} )-action commuting
with q, so that we have a diagram

y —>z

1 1

where we will assume that Z-»Z/<C* is a principal (C— {0})-bundle. If we deform
the foliation of our principal line bundle Y -• 7/C* through (C^-invariant foliations,
we induce a deformation of the line bundle Z -> Z/(L^, through line-bundles over
variable base spaces. If Θ is the sheaf on Z/(C^. of C^-invariant vector fields on Z,
the corresponding Kodaira-Spencer map is just the Bockstein operator

H°(Y/<£^ Ω\ ® q*Θ) -+ H \

of the short exact sequence

Let us now consider what happens to the "spinor" line bundle L + -*Jf as we
deform a conformal metric; we begin by considering the Kodaira-Spencer map

where

Θ = {L+®J1L%)* = (L

is the sheaf on Jf of ([^-invariant vector fields on L+ - 0L + = L% — 0L*. As always,
our analysis proceeds via the double fibration

We will identify Ά with P(S + )®P(S_)->^#, and the projection q*(L% -0L*)-+£
then becomes
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The foliation of (S + — 0§+) ® Ψ(S _) which gives rise to L* — 0L* is then the image of
the foliation of (S+ - 0 § + ) © ( S _ - 0 s _ ) tangent to the vector field η whose value
at (λA,πA>) is the horizontal lift of λAπA'eTJί via the metric connection of any
metric g in the fixed conformal class. Now when we fix our conformal structure,
we have a fixed isomorphism

if we vary this isomorphism, the effect is precisely to vary the conformal structure.
Using our previous formalism, the endomorphism 1 + tA of TJί changes σ to
σt = σ + tA°σ and changes the metric to

The metric connection consequently varies as

where

but we must pull this back via the "gauge transformation" 1 + tA in order to see
how this acts on S + © S _ , considered as a fixed bundle. The corresponding
gauge-transformed connections are then given by

where

This gives as a family of S0(4, <C) connections on ΊJί, and the induced family of
connections on S + are given by

where Cj

kL = \CJ

k[j>, while for S_ we have

V, = V + tC + O(ί2),

where (C')k

J'L,=%CJ

k

J'JL.. The corresponding foliation of (S+ - 0 s

+ ) θ ( § - - 0 s _ )
are therefore tangent to

j f)J—J —K (\J A L K XjKL A \

2 v κκ JJ JJKK)dπL

where κκ, is used to denote the isomorphism σ:S+ ® S _ -+ΎM lifted to the

horizontal space i/ ^ Γ^# of V, and where — and — are used to indicate vertical
dπ dλ

vector fields on S + ® S _ . This shows that the foliation-variation 1-form

χ(A)eΓ(Q9Ω
1

q(q*θ))

is given in terms of A by an invariant first-order linear differential operator. In
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particular, the infinitesimal version of our procedure of assigning a line-bundle

L+^Jf lo every ambi-twistor space gives rise to a linear map

making the diagram

, Θ(L))

commute.

Now the contact structure gives a splitting of the exact sequence

so that we have an exact sequence

where, as in Sect. 4, ^ is the sheaf of (C — {0})-invariant vector fields on L + -• Jί

which cover infinitesimal contact transformations. But the contact structure on

Jί is unique, so H\Jί, Θ{D)) = 0; this is because H\Jί9 Θ(D)) is the kernel of

H0(Jί,Θ(TjV*))-+H0(Jί,(9(L))9 while this map must be an isomorphism because

every automorphism of Jί must be a contact transformation. Hence we have an

exact sequence

so that we may deduce that the natural map H\Jf\(9{L))-*H\J/",#) is actually

linear, since we have the commutative diagram

where s is now known to be linear. Thus the procedure of assigning a "spinor"

line-bundle L+ to every ambitwistor space corresponds on the linearized level to

a linear splitting s of the natural projection Hγ{Jf ,<€)-* Hι{Jf ,<€). But this is then
related to the Kodaira-Spencer map for first-order Poisson thickenings by
Proposition 4.2, from which we immediately deduce that our assignment of a
canonical manner in which the Λth fattening of a sky varies as we vary the

conformal metric through metrics which agree to order ί — 1 at our base point.

Since the splitting s corresponds via the Penrose transform to an invariant linear

first-order differential operator, it follows that we have a corresponding linear

splitting of the restriction map on fattening freedoms:
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Proposition 8.2. The canonical thickening procedure corresponds to an 50(4)-
equivariant linear splitting of the restriction map

H\Q,LΣ® (O'+1N*/O'~lN*))->H\Q,LΣ® Θ ' + 1

for freedom in Poisson fattening.

9. Calculating the Obstructions

We begin by showing that there is no obstruction to extending the canonical
first-order Poisson thickening of any ambi-twistor space Jf to fourth order. By
Proposition 7.4 this amounts to a problem of extending the type (3,3) Poisson
fattening of every sky (induced by J^(3)) to a fattening of type (4,3).

Let a type (3,2) Poisson fattening of Q = Qx be given. Associated with this
fattening is a second order Legendrian fattening of Q, and we know by the
calculations of the previous section that this Legendrian fattening may be extended
to third order. The freedom in so doing is given by Hι(Q, Θ(ί,1)® O4JV*). On the
other hand, we might simply attempt to extend our fattening of type (3,2) (= type
(4,2)) to a fattening of type (4,3). There is no obstruction to doing so, because

p q

= 0;

the freedom in so doing is given by H\Q,G(\, 1)® O4JV*), and is related to the
previously mentioned Legendrian freedom by the long exact sequence

Since
H2(Q, Θ

p q

= 0,

it follows that every third order Legendrian fattening of Q extends as a Poisson
fattening of type (4,3) agreeing with the given fattening of type (3,2).

Assuming that our Poisson fattening of type (3,2) was induced by the canonical
thickening JV{3) by taking Q to be identified with a sky Qx, we must now show
that among the various Poisson fattening of type (4,3) that extend the given one
there is one that not only extends the third order Legendrian fattening of Qx c Jί,
but also extends the Poisson fattening of type (1,3) induced by the canonical
Poisson thickening J^{1). The freedom in extending the induced fattening of type
(1,2) to type (1,3) is given by

and is related to the Legendrian freedom by the exact sequence

Our assignment of a first-order thickening to every ambitwistor space gives an
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S(9(4)-equivariant splitting of the above sequence. Now consider the exact sequence

which relates the freedoms for fattenings of type (4,3) and (1,3). Composing
the Bockstein operator of the latter sequence with the splitting of the former
sequence, we obtain an S0(4)-equivariant linear map

H\Q,0(1,1)® Θ4N*)-> # 2 ( β , 0 ( - 1 , -1)® Θ2N*),

corresponding to an affine map from the space of 3-jets of conformal metrics
extending a given 2-jet to the space of 3-forms; but since

H\Q9 0(1,1)® Q*N*) = <£UBCDE)E' © <£(ABC)E'[ ~ 1] © ^{A'B'C'D'E')E Φ

and

have no irreducible components in common, such a map must vanish identically.
Thus there is a type (4,3) Poisson thickening which agrees with the canonical choices
of type (3,2) and type (2,3).

Now the canonically induced Poisson thickening of type (3,3) is the only one
of this type that extends the induced fattenings of type (3,2) and (2,3), since we
have the exact sequence

•••^// 1 (0(-l,-l)®O 2 iV*M-3,-3))^H 1 (^(l, l)®O 4 N*/0(-3,-3))

->ff1(0(l, 1)® Q4N*/Θ(- 1,-1)® O 2^*),

and
H^QtΘi-l, -l)®Θ 2 iV*/0(-3, -3)) = 0.

Thus the canonically induced Poisson fattening of type (3,3) extends to type (4,3).
Invoking Proposition 7.4 and the fact that elements of H\Jί, Θ{LΓ 3)) are character-
ized by integration over skies, we therefore have

Theorem 9.1. The canonical first order Poisson thickening of any ambitwistor space
extends uniquely to fourth order.

Remark. The same machinery may also be used to verify that the obstruction to
extending a first order Poisson thickening derived from L + ® £ , ci(E) = 0, is
precisely the electromagnetic current ΨFab of the connection associated to E by
the Ward correspondence. However, we will not need this fact, and so leave it as
an exercise for the interested reader.

Let us turn now to the obstruction to existence of J^{5\ We proceed by
supposing we are given the type (4,3) Poisson fatening of a sky Qx induced by
the previously constructed canonical Poisson thickening Jί(4) of our ambitwistor
space. Again, there is no obstruction to extending it as a Poisson fattening of type
(5,4), since
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the freedom in so doing is given by H1{Q,(D{1,1)®O5N*). On the other hand,
there is, as always, no obstruction to extending the associated Legendrian fattening
to order 4, and the freedom of extension is given by H1(Q,Θ(1,1)®05N*).
The relation between these two kinds of freedom is read off from the exact
sequence

where we have used the previously noted fact that H2(Q,(9(1,1)® O5N*) =
However,

so we have a non-trivial obstruction of finding any Poisson fattening of type (5,4)
agreeing with our given Legendrian fattening of order 4 and Poisson fattening of
type (4,3); this obstruction is affine in fourth derivatives of the metric, and gives
a surjection onto ( Θ o T * ) [ - 2 ] which is [(<C- {0}) x 5O(4)]-equivariant.

Before we identify this obstruction in geometric terms, let us notice that it
precisely gives the obstruction to extending the canonical Poisson fattening of
type (4,4) to type (5,4). Indeed, our canonical choice of first-order thickenings
corresponds to a linear splitting of

H\Q,0(1,1)® Q5N*IΘ(-1, - 1)® Q3N*)^H1(Q9Θ(l91)® Q5N*\

while the freedom in extending our type (4,3) Poisson thickening to type (4,4) in
a manner consistent with our type (2,4) Poisson thickening (specified by the
splitting) is given by

H\Q,0(-1, - 1)® O3iV*/0(-4, -4)) = 0.

Thus the freedom in extending from [(4,3), (0,4)] directly to (5,4) is related to that
of extending from [(4,3), (4,4)] to (5,4) via a commutative diagram

Hι(Q,Θ(h\)(g)O5N*)-+> /ί2(β,O4JV*)

1 ΐ

Therefore the relationship between these two kinds of freedom is given by an
SO(4)-equivariant surjection

{-A, -4))-»H 2 (Θ 4 iV*)

between two irreducible SO(4)-module:

By Schur's lemma, this map is an isomorphism.
We now know that the obstruction depends upon four derivatives of the metric,

and that its dependence on the fourth derivative is given by the Bockstein operator
of the exact sequence
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• -» H^Q+N*) - H ι(Q4N*{h 1)) -» tf H O ^ C l , 1)) -> # 2 (O 4 N*)

The kernel of this map is therefore

^ r [-

which has no irreducible component isomorphic to C U β ) ( ^ β ) [ —2]. Consequently,
the symbol of the obstruction is uniquely determined up to scale by the fact that
it is SO(4)-equivariant. Since the dependence of the Bach tensor

upon the fourth derivative of gab provides such a homomorphism, we conclude
that the obstruction is

Bab + (lower order terms)

times a non-zero universal constant determined by conventions for the Penrose
transform.

These lower order terms, however, must vanish. Indeed, given a 3-jet of a metric,
we can extend it arbitrarily to a 4-jet with vanishing Bach tensor, and then consider
the obstruction element to which this gives rise; by the above argument, this is
independent of choice, and so defines a map

H H & ^ i / ^ 3 ) - > t f 2 ( & 0 ( - 4 , -4)).

Composing with the map from metrics to Legendrian fattenings, this gives us a
holomorphic map h from the set of 3-jets of metrics to Oo^*[~~2]. Thus h assigns
to every metric of the form

dab = "ab + r(ab)(cd)x X + S{ab)(cde)X X X

a tensor trace-free symmetric tensor Cab of conformal weight —2. But if we multiply
g by OL~2 while changing coordinates by xα-»αxα, where αe(C-»{0}, we have

while Cab^Cab = a*Cab. Thus, VαeC - {0},

Since h is represented by a power series, this then implies that h is homogeneous
of degree 2 in r and is independent of 5. The components of h are therefore
homogeneous polynomials of order 2 in the curvature tensor of g, and g\-*C defines
a homomorphism

Θ (^(ABCD) Φ ^(A'B'C'D)) ~* &(AB)(A'B')[ ~ 2 ]

of (GL(2, C) x GL(2, (C))/C*)-modules. Since there is no common irreducible
component shared by these two representations, such a homomorphism must
vanish. Thus we have

Theorem 9.2. The obstruction to extending the canonical first-order Poisson thicken-
ing to fifth order is precisely the Bach tensor.

The sixth order obstruction arises in a rather different manner. Indeed, in
contrast to the previous case, there is a non-trivial obstruction group for the
extension of Poisson fattenings of Q from type (5,4) to type (6,5), since
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Moreover, this obstruction is related to that of extending a type (5,5) Poisson
fattening to type (6,5) by the natural homomorphism

H2{Ψ1 xΨ1,Θ(-5,-5))^H2{Ψ1 xΨuΘ(ll)®O6N*)

induced by the inclusion map0( — 5,5) d_»0(l, 1)®Q6N*; since this is the Serre-
dual adjoint of

which is fibre-wise non-zero and is an SL(2, C) x SL(2, <C) equivariant map

it is an isomorphism by Schur's lemma.
Composing this obstruction with the map from 4-jets of metrics to Poisson

fattenings of Q, we obtain a holomorphic map h from 4-jets of metrics

Gab = Vab + r{ab)(cά)X X + S(ab){cde)X X X ~t~ t{ab)(cdef)X X X X

to trace-free symmetric tensors D{abc)eQ2T*[ — 2]. Since the composition of
xα—>αx2 with the conformal charge g\-^κx~2g yields

Qab^θab = °ab + α r(ab){cd)χCχ + α S{ab){cde)χCχ X* + α hab)(cdef)^X χ 6 χ

and

we have

for all αeC — {0}. Since Iz is represented by a power series in (r, 5, ί) it follows that
h is independent of t and is bilinear in r and 5.

Now since h is invariant under coordinate changes which act trivially to second
order, and is also conformally invariant, we may assume, using the conformal
normal coordinates of Robin Graham [G], that our coordinates are exponential
coordinates and that Rab = ViaRbc) = 0 at the origin. Then r and s represent,
respectively, the Weyl curvature Ca

hcd and its first covariant derivative VeC£cd. As
our obstruction h now represents a homomorphism

U^(ABCD) ® ^(AB'C

of SL(2,C) x SL(2,C)-modules, we conclude that

(ABC)(A'B'C) — c l *ABCDy *A'B'C'D' ' C 2 *A'B'C'D'V *ABCD

for some universal constants ci and c2. But under a conformal change g\-+Ω2g we
have

\7 D I ) ' ψ Λ- r Ψ X7DD' Ψ
DV 'A'B'C'D' "T" C 2 r / l ' β ' C ' ί ) ' V * ABCD

{cιΨABCDV ΨAB'C'D' + c2^4'β'CD'V ΨABCD)

+ Ω-2(cι+c2)2rDD'ΨABCDΨΛ.B.c.D.,

where Y = Ω~ιdΩ, so that this is conformally invariant iff ĉ  = — c 2 . This shows
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that D is a universal constant times the Eastwood-dighton tensor

£ — W T7DD' \τj \τj X7DD' \τj

abc—*ABCDV * A'BCD' ~~ * A'B'C'D'* ΎABCD

This universal constant cannot be zero, since the second-order perturbative
calculation of Raston and Mason [B-M] shows that the obstruction is non-trivial.
Thus we've shown

Theorem 9.3. The obstruction to extending the canonical first order Poisson thicken-
ing of an ambitwistor space from fifth order to sixth order is the Eastwood-Dighton
tensor.

This concludes the proof of the Main Theorem.

10. Problems and Perspectives

We conclude this paper by indicating some of the open problems suggested by
this investigation.

(a) Conformal Super gravity. Given a Poisson-thickened ambitwistor space J^{m\
we can build an associated complex supermanifold Jίm of dimension (5|2m) as
follows. Let 0 ( m )(l, 1) be the "divisor line bundle" of Jί c Jί^ constructed by the
Poisson structure, and notice that $ ( m )(l, 1) has a canonical section σ vanishing
along Jί. Let 0(m)(0,1) and 0(m)(l,O) be extensions of L+ to Jί{m\ and let © be a
complex vector space of dimension m. Then

has a canonical section σ = id®σ, where

ideHom(93,93) - 93* ® 93 c /12[93 0 93*].

Thus σ generates an even ideal / in

i.e. for every local trivialization of Θ{m)(\, 1), σ gives a section of this bundle, and
changing trivialization just multiplies this section by an element of Θ(m). Thus

is a well-defined Z2-graded complex ringed space. Moreover, one can check that
jV[m] is a complex supermanifold - i.e. its structure sheaf is locally isomorphic to
0(/r<C2m). The nilpotents of 0 ( m ) have "become" the nilpotents of /Γ(93® 93*)!

We can now create a complex supermanifold Ji[m] of dimension (4|4m), defined
as the complete analytic family of 2-quadrics in Jί{m\ this means that there is a
double fibration

where J [ m ] is a supermanifold of dimension (6|4m) extending the quadratic bundle
2L and such that any map JPX xΊP1x qi-±Jim, <% may supermanifold, is induced
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by some map % -* Jί{m]. (Recall that a map of supermanifolds means a map of the
underlying "even" manifolds plus a pull-back homomorphism for superfunctions.)
The supermanifold Jί{m] then has a certain amount of geometric structure - namely
the tangent sheaf TJί[m] fits into an exact sequence

of vector bundles (locally free sheaves) on ^ # ί w ] . This may be called a "super-
conformal structure," and automatically satisfies certain integrability conditions
by virtue of the construction. (Useful background on this story may be found in
[M].)

From this point of view, Jf{m] becomes a family of certain (1,2m)-dimensional
submanifolds of Jί{m] which were dubbed super light rays by Witten [Wil,Wi2].
In linearized theory, the integrability conditions have been studied by Chau and
Lim [C-L], and seem to correspond precisely to the conformal Einstein system
studied here.

It seems plausible that the correct supersymmetric analog of the Poisson
structure of Jr{m) should be a super contact structure on J^[m\ meaning of course
of a twisted 1-form which is maximally non-integrable. In the flat case, Jr[m]

becomes the subvariety of P 3 , m x P 3 j * given by

Σ
μ=l

7 1

and the super contact form is given by

linearized deformations of this structure would then be given by Hι(Θ[mλ{\^ 1)), just
as linearized Poisson deformations are given by H1(Θim)(l, 1)). It thus seems certain
that the study of the present problem from a supersymmetric viewpoint will lead
to new insights and perhaps simplified proofs.

(b) Torsion Theories. We have seen in this paper that the introduction of Poisson
structures provides a marvelous tool for fighting through the thicket of obstructions
to thickening Jf. Nonetheless, the equivalence theorem told us that we could, in
principle, have done without this crutch - at least if we had been wise enough to
choose the right first-order thickening for some other reason! One may well ask,
then, if there are similar results to be had concerning torsion geometries; here Jf
will cease to be a contact manifold, but nonetheless many results would seem to
carry over. This point of view has been emphasized by Isenberg and Yasskin [I-Y].

Of course the first problem encountered in such a problem would be to
determine whether there is a preferred analog of Jf{1) in the presence of torsion.
Perhaps one might instead choose to first study the alterations in the obstructions
that might occur if we considered a contact ambitwistor space Jf with a first-order
thickening Jf{l) of the non-Poisson type.

In a similar vein, one might investigate the supersymmetric case without taking
J^[m] to be super contact. This should allow super geometries with degrees of
freedom analogous to classical torsion.

(c) Electromagnetic Coupling. We have chosen in the present work to basically
consider only the canonical first order thickening because it made the current
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calculations more tractable. Are the currents different if ϊ£ + is replaced by another

line bundle of the same Chern class? For instance, does the electromagnetic

stress-energy tensor couple to the Bach current?

(d) Local Twistors. It seems very likely that it is no accident that the obstructions

Bab and Eabc we have encountered are precisely the obstructions that one would

expect to encounter in extending the Ward transform of the local twistor connection

to J ^ ( 4 ) a la [I-Y-G]; cf. [B-M]. Understanding this connection would no doubt

link the present work with the Einstein bundle of [L4], which is at present, alas,

chiefly notable for its invisibility! Lionel Mason [Ma] has recently announced a

program to make this linkage precise.
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