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Abstract. We define a topological action of the quantum group Uq(sl2) on a space
of homology cycles with twisted coefficients on the configuration space of the
punctured disc. This action commutes with the monodromy action of the braid
groupoid, which is given by the ^-matrix of Uq(sl2).

0. Introduction

In the free field representation of conformal field theory based on SU(2) one is led
to consider integrals of the form [1, 2]

c ( 1 s ί
c

x Π (^-z/ v n^-^) ( 1 " n j ) v Π (Wi-w,)*1-"*1-"'*
ί<j hj i<j

xdz1 A ... Λdzr. (0.1)

In this formula n1? ...,ns are positive integers, / is a single valued meromorphic
function, symmetric under permutations of the z-variables, with poles on the
hyperplanes {z—Wj}. The parameter v is equal to l/fc + 2 for the WZW model on
SU(2) at level k and is equal to p'/p for minimal models with central charge
l-6(p-p')2/pp'.

For each integration cycle C in the rth homology group with coefficients in the
local system given by the monodromy of the differential form in (0.1), Gc is a many
valued analytic function on the space * Ί f ...f i(C) = {(w1?..., ws) e Cs \ wf + Wj (i+;)}.
To compute its transformation under analytic continuation along paths exchang-
ing the punctures wi9 one needs to know the monodromy action of the braid
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groupoid on homology. Examples of this computation (by "contour deform-
ation") have been worked out by several authors (among others [3, 1, 4-6]) in
different languages. It generalizes the computation of Gauss for the hypergeo-
metric function. It has become clear that the monodromy is described by the
.R-matrix (more precisely by the 6/-symbols) of the quantum group Uq(sl2). The
topological point of view we adopt here is closest to [6].

In this paper, we propose an "explanation" of this fact. It consists of two parts.
First one considers a space of relative cycles on which Uq(sl2) acts. The action is
described purely in topological terms and commutes with the monodromy action
of the braid group. The absolute cycles are then given by the highest weight vectors
in the space of relative cycles. We have then schematically the following dictionary
between topological and algebraic entities:

Relative cycles Elements of the tensor product
of Verma modules 6ζ) Vn.

Absolute cycles Highest weight vectors in (g) Vn.
i

Intersection pairing Covariant bilinear form

Monodromy action of the braid groupoid K-matrix representation
on relative cycles of the braid groupoid on (g) Vn.

Moreover, the quotient of the space of absolute cycles by the cycles in the null
space of the intersection pairing is closed under braiding and is given by the fusion
rule subquotient. More precise definitions and correspondences are explained in
the bulk of this paper.

Our approach is rather elementary and based on the concept of "families of
loops" rather than on the (in some sense more natural) homology groups directly.
We expect that our construction extends to (locally finite) homology, but this
would require a somewhat more sophisticated machinery.

Let us point out that part of our results can be understood as a topological
version of results known in the literature on free field representation of conformal
field theory ([7-9], and particularly [10]). The results in [9] suggest that our
construction extends to groups of higher rank. In this paper we present the purely
topological results in this subject, so that the paper can be read without knowledge
in conformal field theory. See [11-13] for applications of these concepts to
conformal field theory.

While this work was completed, we received some interesting preprints [14]
where related results were obtained.

The paper is organized as follows: in Sect. 1 we introduce the concept of braid
groupoid representations and local systems in a rather general context. In Sect. 2
we specialize to SU(2), and explain the action of Uq(sl2) on relative cycles. Section 3
contains the discussion on intersection pairing. In Sect. 4 we show that the
representation of Uq(sl2) on relative cycles is isomorphic to the tensor product of
Verma modules, one for each puncture. In Sect. 5 we compute the monodromy
action of the braid groupoid on relative cycles. The Appendix contains a summary
of results on Uq(sl2).
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1. Local Systems on Configuration Spaces

ί.ί. Colored Braid Groupoids. Let X be a connected two-dimensional manifold,
possibly with boundary, k a positive integer (the number of colors), and nu...,nk

non-negative integers (the numbers of strands with given color). Set n = Σni.
Define the configuration spaces

U {zt = zji/Snι x ... xS n k , (1.1)
<J

where the symmetric group Sni acts by permutations on the first nί variables, Sn2 on
the subsequent n2 variables, and so on. It is understood that the factors SHι with
Hi = 0 should be omitted in (1.1). An element of ^M l «kP0 c a n also be thought of as
a sequence (Z l 9 . . . , Zk) of pairwise disjoint subsets of X with cardinalities \Zt\ = nt.

Fix a base point x of # Λ l nk(X), and let Ox be the orbit of x under the symmetric
group1 Sn. Thus Ox can be identified with the right coset space

Ox = SJSnιx...xSnk. (1.2)

The colored braid groupoid Bnι nk(X,x) is the space of paths in X starting and
ending in Ox, up to homotopies preserving endpoints, viewed as a subgroupoid of
the fundamental groupoid of ^ nk(X) The groupoid G = Bnι nk(X, x) is indexed
by Ox and has components labeled by the endpoints:

G= U < V (1.3)
<x,βeθx

The multiplication law Gaβ x Gβy-+Gay is the composition of paths. Since X is
connected, braid groupoids corresponding to different choices of base points are
isomorphic. Any such isomorphism can be described as the composition with a
homotopy class of paths connecting the base points. If k = 1, G is a group, the braid
group on n strands on X. The groupoid G = Bni nic(X, x) can be described in terms
of the braid group Bn(X,x). Let h:Bn(X,x)-^>Sn the canonical projection homo-
morphism. Then for α, βeθx there is a one-to-one map

φΛ,β:{geBn{XiX): a = h(g)β}-+Gaβ, (1.4)

such that φaβ(g)φβy{gf) = φay{gg').
For X C C, call xeίfB l i i i nk(X) an admissible base point if x is the image of a point

in Cw with _, , . ^ , .
Re(zJ< ... <Re(zM).

Suppose now that X = C. For any two admissible base points there is a unique
homotopy class of paths in the space of admissible base points connecting them.
Therefore, the corresponding colored braid groupoids can be uniquely identified,
and we can omit the dependence on x in the notation, with the agreement that
G = Bni ...nk(C) is defined using any admissible base point.

An element α in Ox can be described by a color map

α:{l,...,n}-{l,...,fc} (1.5)

such that \d~ί(ί)\ = ni. The correspondence between a and α is the following: Let
α = π(x), neSn. Then

= λ iff π-HOeίVwj+l,..., !^-}. (1-6)

Acting as π(z1,...,zJI) = (zπ-i(1),...,zΛ-i(JI))
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Let σi? i = 1,..., n — 1, be the standard generator of Bn(C), that exchanges the ith

strand with the i + 1s t one, and let τf = /ι(σ, ) denote the corresponding transposition.
Then the system

0i=ΦτiΛ.Jί<rdeGτiata9 i = l , . . . , n - l , α e O , , (1.7)

is a system of generators of G.
Let αeR. The inclusion <g7

(w.)({Re(z)<α})c^(Πi)(C) induces an isomorphism
B(Bi)({Re(z)<fl})->jB(n<)(C). The'same holds for'the subset {Re{z)>a}. Let
ni — n'i + nϊ> i = 1, , fc The inclusion

φ: * w ({Re(z) < a}) x * W ) ( { R e ( ) }) ( l l 4 )(Q,

induces an injective homomorphism of groupoids

(Q. (1.9)

More precisely, we have a map φ:O' xO"-+O defined by restriction to the orbits
O\ 0" of admissible base points, and maps (in an obvious notation)

φ:G'aTxG:Ύ,->Gaβ, (1.10)

with α = 0(α',α") and β = φ(β'9β")9 compatible with the composition law. Intui-
tively, this homomorphism is simply the juxtaposition of colored braids.

1.2. R-Matrίx Representations. A representation of a groupoid G = (J Gα/S with
txβel

index set /, on a family of complex vector spaces (Va)aeI is an index preserving
homomorphism from G to the groupoid (J Hom*(F«, Va) of invertible linear

maps of the vector spaces Va. In other words, a representation ρ of G is a family of
maps

G H ^ F J (1.11)

such that ρ(Xβ(g)ρβγ(g') = QOίγ{ggf). To simplify the notation, we will often omit the
label αβ, thinking of ρaβ as the restriction of a map ρ defined on G.

Definition. Let Uλ9 λ = i, ...,fe, be vector spaces and for each pair λ, μ let Rλμ be
an invertible element of End(C/λ(χ)[/μ). An ̂ -matrix representation of the
groupoid B{ni)(C) is a representation on the family of vector spaces, labeled by Ox,

W m , (1.12)

such that on generators

ρ(σΐ) = PR^+(\+1), Pu®v = v®u, (1.13)

where P 7 ^ denotes PRλfι acting on the /th and / h factor in the tensor product.

Proposition 1.1. 1. Let kbe a fixed positive integer. A family of vector spaces Uλ,
/l = l,...,fc, and a family Rλμ of invertible elements of End(Uλ(g)Uμ) defines a
representation ρ(Πi) of Bnι,...,Πk(C) for all nu ...,nk if and only if the Yang-Baxter
equation

n23nl3nl2 r>12r>13r>23 (A \ Λ\
KμvKλvKλμ=KλμKλvKμv K^ΛV

holds on U\®Uμ®Uv.
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2. Let φ be the homomorphism (1.9),

Bnϊ..; Wk(C) x Bn,{... nί(C)-+Bnι... Mk(C), nt = n[ + < , (1.15)

out seί ρ' = ρ w , ρ" = ρ ( l θ , ρ = ρ<B|). TΆen, for all α\ jS'eO', a\β"eθ\

Q«β(Φ(g\gΊ) = QaΎ(gΊ®QMgΊ, (1.16)

α = #x' , α")

Example 1. Let l/λ = C, A = 1,..., fc, and identify Fα = C(χ)... ®C with C. Let qλfι be
any non-zero complex numbers. Then ρ(σf) = #a ( ι )a(ι + 1 ) defines an .R-matrix
representation of Bnι ...Πk(C).

Example 2. Let 4 be a quantum universal enveloping algebra [15] with universal
^-matrix Re A® A, and ρλ be finite dimensional representations of A on spaces
Uλ. Then Rλμ = ρλ(g)ρμ(R) defines an R-matrix representation of Bnι nk(C).

13. Local Systems. Let (M, x) be a topological space with base point, and M its
universal covering space, with right action of π^M, x). M is the space of homotopy
classes of paths in M originating at x. For any representation ρ: π1(M, x)-+GL(V)
on a vector space V one defines a local system L as the vector bundle (M x F)/~
over M with the identification (m,ρ(η)υ)~(mη,v), ηeπ^M^x), and projection
(m, t;) ι-> m, the covering projection on the first argument. Thus a local system is the
same as a flat vector bundle with holonomy ρ, and specified trivialization of the
fiber over the base point.

This construction has the following slight generalization. Let 0 be a finite
subset of M and G the subgroupoid of the fundamental groupoid of M consisting
of homotopy classes of paths whose endpoints are in 0. For oceO, let Mα be the
universal covering space of the space with base point (M, α). The groupoid G acts
on the disjoint union £] Mα on the right by composition of paths, given by maps

α

Λ̂ α x G<xβ-+Mβ. Let ρ be a representation of G= \J Gaβ on a family of vector
<xβeθ

spaces (Va)aeO. These data define a local system as the vector bundle

L=Utia*VJ~ (1.17)
α

with identification (tha,ρapHrιaβ)v)~(ihaηaβ,Vβ)9 ηaβeGaβ. Such a local system is the
same as a flat vector bundle over M together with a family of vector spaces (1 )̂ and
isomorphisms of the fibers over αeO with Va9 such that parallel transport
operators are given by ρ. Local horizontal sections are continuous sections which
locally can be written asmn(m,v), with constant v, and rh covering m.

Let Mί,M2 be topological spaces and O1cMί, O2CM2 be finite subsets. A
homomorphism of local systems Lγ over Mx to L 2 over M 2 is a map L1->L2

mapping fibers to fibers linearly and sending local horizontal sections to local
horizontal sections.

Lemma 1.2. Let f be a map from Mί to M2 such that f{Oί)Cθ2 and let
/αeHom(Fα->F/ ( α )), be linear maps indexed by Ox such that the diagram

(1.18)
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is commutative for all α, j3eθ l 5 ηeGaβ. Then f lifts uniquely to a homomorphism
Lx ->L2 of the local systems associated to ρ l 5 ρ2, also denoted by f which reduces to
fa on the fiber Va over

Let ρ be a representation of Bnι ...nk(C) and let L be the corresponding local
system. Here is an explicit description of L in terms of transition functions. Fix an
admissible base point x, and define the cells C"nf)CC(Πi)(C) as follows: let oc = σx,
σ e Sn and define

q π i ) = {(z1 ?...,zn)G^ ( M i )(C)|Re(zσ-1 ( 1 ))< ... <Re(zσ-1 ( n ))}. (1.19)

The cells C*ni) are pairwise disjoint, their union is dense in ^(Wi)(C), and each cell
contains precisely one point in Ox, for any choice of admissible base point x.

Let C"nί) be the closure of the cell C"Πi). For y e C*nΛnCfn.)9 let η be any path going
from α to y in C*ni) and continuing from y to β in cfn.y Define the locally constant
transition function gaβ(y) = ρ(η). Then L is the flat vector bundle over # ( I I .)(C),

L= U ( C ^ ) X ^ α ) / - (1.20)
aeO

with identification

(y,vJ~{y,Όfi)9 yeqnί)nCfnύ, v.eV^ vβeVβ, (1.21)

if and only if va = gaβ(y)vβ.
Let f/ be any path whose endpoints lie in (J C"Wi). Then the parallel transport

operator along // is an operator in Hom(ϊ^, Vβ), in the trivialization. Therefore, we
have an extension of the definition of ρ to all homotopy classes of paths with
endpoints in (J C"Πi).

Let now ρ(/li) be the representations associated with a family of i^-matrices, as in
Proposition 1.1, and L(lli) the corresponding local systems on %>ini)(C). Let αeR,
C + = {Re(z)>α}, C" = {Re(z)<α}. Denote by L*ni) (L>ni)) the restriction of L(Πi) to
^(Πi)(C~) (^(Πi)(C+), respectively). Let L j ^ ^ L ^ ) be the flat bundle over
^ ( n 0(C~) x ^(M»)(C+) defined by taking the tensor products of the fibers.

Proposition 1.3. The maps 0:^ ( n O(C"")x^ ( < )(C+)->^ ( M i )(C) lifts to a homo-
morphism

φ:L<d®L>Ό^L(ni) (1.22)

sending local horizontal sections to local horizontal sections. The lift is fixed by
setting the homomorphίsms of Lemma 1.2 equal to the canonical homomorphisms

Proof. Let C^ = C ^ n ^ C Γ ) a n d CJ l7)

> = qK)n%iK)(C+).ThenL^,®!^is
the vector bundle

U ( £ V x Cl,>) x (Kβ® ^ ) / ~ . (1.23)
αeO', /3eO"

The map φ maps C ^ < x CfnΊ

 > to C^j* ̂ }, and the transition functions are given by
tensor products of transition functions. The claim follows then from Proposi-
tion 1.1 and Lemma 1.2. •

If nλ = l and nμ = 0, μ=M, then ^o,...,i,...,o(Q = C and the fiber of Lo> M1 . >0

over any point is canonically identified with Uλ. We have the following special case
of the preceding proposition.
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Proposition 1.4. Let aeR, λ e {1,..., k} and z+,z_be complex numbers with Re(z_)
<α<Re(z + ) . Then the maps

</>i:^ 1 , . . . , n f c (C + )-^ n i i . . . , B Λ + 1 Bfc(C),

Φi-^ JC-)-**., Π Λ + 1 n k ( C ) , (1.24)

(Z1 ; ...,Zk)^(Zu ...,Zλu{z±}, ...,Zk)

lift to homomorphisms

Φ- •
n i HJL+1 Πk,

These homomorphisms preserve horizontal sections and are isomorphisms on each
fiber.

2. The Topological Action of Uq(sl2)

2.1. The SU(2) Case. Let us specialize the general discussion to the case of interest
to us. Let D be the unit disc {\z\ ̂  1}, and w l9..., ws be s distinct points in its interior.
Define Xr{wu ..., ws) to be the fiber over (wl9..., ws) of the fibration <βrΛ ^D)
"~>*Ί,.... iΦ) ^n other words, ^(v^,..., ws) is the space of subsets of D\{wl9..., ws}
with r elements. Let nl9..., ns be positive integers, and g e C\0. The family of one-
dimensional .R-matrices

defines a representation of #r,i,...,i(C), and a local system over ^r,i,...,i(C) (and
also on ^ r > x ^D), by restriction). Let Lr(w l5..., ws) be the restriction of this local
system to Xr(w1?..., ws). We will often omit the w dependence in the notation, and
write Xn Lr when no confusion arises.

In the following construction it is useful to choose also two points on the
boundary of D. For defϊniteness, choose P+ = l, P_ = — 1. Denote
X^ = {ZeXr\Z3P±}. By Proposition 1.4, the inclusions

xr\x-->x-+1,
Z^Zu{P±]

lift to homomorphisms φ+ : L r | X Λ X ± - » L r + 1 | x ± + l .

2.2. Families of Loops. In the following we fix 5 distinct points w l5..., ws in the
interior of the unit disc, and denote by X the set D\{wl5..., ws}.

Definition. A non-intersecting family of loops in X, based at the point P_, is a
finite sequence y09 ...,yr-1: [0,1]-*X of curves in X such that

(i) y/0) = 7/l) = P_; y/t)ΦP- for ίe]0,l[ .
(ii) If ί, 5e]0,1[ and yJ{t) = yk{s\ then ί = 5 andy' = A;.

(iii) For all j , the homotopy class of y,- is non-trivial.

A non-intersecting family of loops can also be represented as a map Γ from the
r-cube ]0,1 [r to Xr. It is the restriction of a continuous map Γ defined on the open
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r-cube with open r—1 -faces

e r = ] 0 , i r u U (]0, l[x ... x{0,l}x ... x]0, l[) (2.3)

defining an inclusion Γ: Qr^>Xr of a closed subset of Xr.

Definition. A homotopy of non-intersecting families of loops is defined to be a
homotopy /κ]0, l [ r x [0,1]-»Xr such that for all se[0,1], h( ,s) is a non-
intersecting family of loops. Two families Γ, Γ are said to be homotopic if there is
a homotopy h such that h( , 0) = Γ and h( , 1) = Γ.

Consider the space ^4r = ̂ 4r(w1)..., wr) of finite linear combinations

(2.4)

where [Γ] = [y0, ...,
iyr_1] are homotopy classes of families of loops and λΓ are

horizontal sections of the pull-back bundle Γ*Lr over the contractible space Qr,
modulo the equivalence relations:

I. λ[Γ]~±/*Λ,[Γo/], for any orientation preserving ( + ) or reversing ( —)
isometry / of the cube.

II. If, for some i, y{ is homotopic to the composition y'i*y" with homotopy
7i:[0,l]x[0,l]-^X and γ?9 ...,%•, s\ •• 5)'r-i ( 0 ^ s < l ) ; yo,...,y'b...,yr.1\
y0, ...9γ", ...,yr-i are all non-intersecting families of loops, then

AC^ ^r-J-ATyo, ••-,/<>.•.^r-i]+nyoί -ίy?ί ί yr- i ] > (2.5)

where λ\ λ" are defined by restriction of λ.
It is understood that horizontal sections over homotopic families of loops are

canonically identified by parallel transport, so that expressions (2.4) make sense.
Let ε be so small that the closed discs of radius ε centered at Wj are disjoint and

contained in the interior of the unit disc. Let X% Xε

r~ be the spaces obtained from
Xr,X~ by removing points {zl5 ...,zr} such that \zt — Wj\<ε. Elements of Ar

represent relative locally finite cycles in Hι/(X%Xε

r~ Lr) with coefficients in the
local system Lr. Thus we have a linear map

φr:AAwu...9wJ->Hι/(XUXΓ; Lr). (2.6)

On the other hand, we can also view a family Γ as a map Γ from ]0,1 [r to Xz

r~ by
the formula

...?y r_1(ί r_1)}, (2.7)

and a section λ of Γ*Lr is mapped under 0_ to a section of Γ*Lr+1, and we also
have a linear map

W+1:Λ r(w u ..., ws)^Hι/+ ±{X^i; Lr). (2.8)
00

2.3. Operators. We define a set of operators acting on @Ar and then compute

their commutation relations.
Let y be the path
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Let i: ]0,1 [ r->]0,1 [ r + 1 be the inclusion (ί 0,.. ., tr_ j)ι->(tθ 9..., ί,_ l91/2). Define a
linear operator F:Ar-^Ar+1 that "adds a loop":

F: Λ[y0,..., yr _ J H» A' [y0,..., yr _ 1? y ] , (2.9)

where λ' is the section over Qr+1 such that φ+λ = λf o j on ]0, l [ r . This definition
makes sense since we can assume that the representative y0,...,y r_i does not
intersect y except at the endpoints.

Introduce the face maps [ 0 , l ] r - > [ 0 , i y + 1 ,

eUr + i t o , . . , t r - i - tO9...9t^l9 ,t,,...9tr-1 , ( 2 i Q )

and the linear operator that "kills a loop"

r - l

(A denotes omission). The third operator is the diagonal operator K2, defined on Ar

as

K -q κ lAr. (2.12)

The relation between £ and the boundary operator is explained by the

Proposition 2.1. The diagram

Ar —

i
is commutative

2.4. Relations.

Theorem 2.2. The operators E, F, K2 obey the relations

K2E = q2EK2,

K2F = q~2FK2, (2.14)

EF-FE = K2-K~2.

In other words, these operators define a representation of Uq(sl2) on

4
Proof. The first two relations follow from the definition. The third relation is best
checked in an explicit trivialization. We can assume that {γo(i)9 ...,yr-1(2)} is in
some cell C?. Denote by 1 the horizontal section of Γ*Lr which takes the value 1
over the point (|, ...,|) in the trivialization over C*. Let ηf- be the paths

ί"->{yo(iλ .,yί(i(i±ί)λ ,yr-i(i)} (2.15)

These paths go from the cell C* to the cell containing the point
{P_,yo(^)? ...,yr_1(^)}. We have the explicit expressions

>->TV-i]= Σ (-i)W»/ί+)-βr(ίΓ))i[yo—Λ,. ,yr-i]. (2.16)
i 0
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Denoting by η± the paths th+{yo(±),...,yr_ι(±),y(±(l±t))} we have ρr+1(η+)
= q^-">\-q2y and Qr+ί(ηΊ=Qr+i(ηΎ1 We compute,

The proof is complete. Π

From Proposition 2.1 and Theorem 2.2 follows:

Corollary 2.3. Singular vectors in Ar(wu ...,ws) fi.e., vectors in KcrE) represent
absolute cycles in Hι/(Xε

r\ Lr).

3. Intersection Pairing

3.1. Reflection and Duality. Let Lr be the local system dual to L r, i.e., the flat line
bundle with holonomies ρ'(η) = ρ(η)~x (which is the representation obtained from ρ
by replacing q by its inverse) and θ the reflection sending x + iy to — x + ry. The
reflection θ maps orbits of admissible base points to orbits of admissible base
points and preserves holonomies:

ρ\η) ρ(η) (3.1)

and lifts therefore to an involutive homomorphism of local systems

θ: Lr(wx,..., ws)^Lr(θwu ..., θws). (3.2)

The lift is specified by setting the maps θa of Lemma 1.2 equal to the identity.
Denote by A'r(wu...,ws) the space of linear combinations Σ ^ Γ [ Γ ] with [Γ]

homotopy classes of non-intersecting families of loops based at P + , and λΓ

horizontal sections of Γ*LXwl9...9w^9 modulo the equivalence relations I and II.
The reflection θ induces an isomorphism

Θ: AXwl9..., ws)-*A'r{θwu ..., θws),

which defines an action of Uq{sl2) on

3.2. Intersection Pairing. In this subsection we assume that all families of curves
are smooth maps on ]0, l [ r .

Let Γ be a family of curves based at P _ = — 1 and Γ be a family of curves based
at P + . Suppose that Γ and Γ intersect transversally in a finite number of points
lying in the interior of X. Thus the set of (£,ί') such that Γ(t) = Γ\t') is finite,
contained in ]0,1 [r x ]0,1 [r, and the tangent map DΓ x DΓ is non-singular at any
such (t,tf). The intersection index # ( ί , 0 at (t9f) is then defined to be 1 if the
tangent map preserves the orientation and —1 otherwise. The orientation of
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TΓ{t)Xr = Cr is conventionally defined via the identification

(x^iy^ ...,xr + iyr) = ( x u ...,xr9yu . . . , y r ) (3.4)

of Cr with R2r.

Definition. The intersection pairing is the complex bilinear form

which is zero on Λr x A'r>, r + r' and such that

Σ *(t, o <m, w)> (3.5)
(ί,t'):Γ(t) Γ '( ')

on Ar x A,; < , > denotes duality of fibers.

It is possible to give a more explicit formula for ( , ) . Let y(t) be the tangent
vector at t to a smooth curve y.

Proposition 3.1. Suppose that Γ = y0, ...,yr_ι andΓ' = y'o, ...,y'r-1 intersect transver-
sally. Let T o .C]0, l[x]0, l [ be the set of (t,f) such that yi(t) = y'J{t') and
σ ί j = sίgnlm(iyί(ί)'y^(ί/)) be the intersection index of yt and y) at (ί, t'). Let for π e S r ,

Tπ = {(t,t')eWΛl'xnilΊ(tjXj)εTjπpj = O,...,r-l}. (3.6)

Then
(λlΓlλin) = (-iγ Σ signπ Σ Π σjπj(λ(t%λ'(φ. (3.7)

πeSr (ί,ί')eΓπ j = 0

Proof. The condition Γ(t) = Γ(t') is equivalent to yft ) = yf

πj{tf

πj) for all j and some
permutation π. Thus

{(t,t')\r(t)=r(t')}= U rπ, (3.8)
πeSr

and Tπn Tπ. = for π + πr, by property (ii) of non-intersecting families of curves. For
(ί, t')e Γπ, #(ί, ίr) is the sign of the determinant of the matrix

which is easily put in block form by permuting rows and column, and the result
follows. •

Theorem3.2. Fix w1?...,wSJ let ( , ) be the intersection pairing corresponding to
w1?..., vvs and let (, )θ be the intersection pairing corresponding to θwu ..., θws. Then
(i) For all a e A£wl9..., ws), b e Ar{θwu ..., θws),

(3.10)

(ii) Let T denote transposition with respect to ( , ) . Then

ET = F, FT = E, K2T = K2, (3.11)

i.e., (,) is a covariant bilinear form.

Proof.
(i) Set a = λx [ΓJ and b = A2[Γ2]. Looking at the definition of intersection pairing,
we see that since θ preserves the pairing between fibers, it is sufficient to prove that
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Fig. 1. The points of intersection of y with y'}

the intersection index # (tl912) is the same on both sides of the equation. Let (tl912)
be an intersection point of JΓΊ with ΘΓ2. Identify the tangent space at a point of the
unit r-cube in a canonical way with Rr, and the tangent space at a point in Xr with
R 2 r as above. Then the intersection index occurring on the left-hand side is the sign
of the determinant of the matrix DΓγ x Θ^DΓ2:W xR r->R2 r. The matrix 0* is
the diagonal matrix with entries 1,...,1,—1,...,—1. We have

{Θ^DΓγ x DΓ2)

(3.12)

The sign of the last determinant is the intersection index occurring on the right-
hand side.
(ii) K2T = K2 follows immediately from the definition. Next, we show that Fτ = E.
The third relation follows then from (i). Let Γ = y0, ...,yr_1 be a family of loops
based at P_ and Γr = /0,...,y^_1 one based at P+. Let us, as in the proof of
Theorem 2.2, denote by 1 the section of Γ*Lr(wu ..., wr) which takes the value 1
over the point (i,.. .,3) in the trivialization over yo(J),..., yr_ i(j), which is assumed
to be in a cell. Suppose that yf intersects y) in a point which is in some cell Cα, and let
t,tr the value of the parameters at the intersection. Denote by τ y the path
s ι-> y,{J(1 — s) + is) and by τ'fj the path s t-> y -(̂ (1 — s) + t's). Then we have the explicit
expression

(1[Γ],1[Γ]) = (-1)' Σ signπ £ Ή W ^ « M ^ W - (3 13)
πeSr (ί,ί')eTπ j = 0

Let y be the path 11-> β2 π ί ί. We have to compute

5i[7Ό )...,?;]). (3.14)

It can be assumed, by possibly applying a homotopy, that y intersects each y} at
exactly two points, namely when the parameter t) of y) is close to zero, with positive
intersection index, and when t) is close to one, with negative index (see Fig. 1). In
both cases the parameter t of y is close to \. Therefore, the corresponding paths
τrj, τ'rj, associated to these intersections, can be replaced by the trivial path and by
the paths ηf defined by

i (3-15)

We are in position to complete the calculation:

-1],l[/o. >y;-i]) = ( - l ) r + 1 Σ Σ (-lΓ'sign(π),

,-i i = O π e S > - (3.16)

Σ {QMΊ-QM + )) Π <>j,njQ{H*k%,J
l')6T, j = 0

'o.•••./,-1]) D
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4. Tensor Products and Coproduct

In this section we give explicitly the structure of 0^4Γ(w l5 ...,ws) as an Uq(sl2)
module.

4.1. The Module ©Ar(wu...,ws). The spaces Ar(wu...,ws) constitute a com-
plex vector bundle over (£1^(D). This bundle carries the flat Gauss-Manin
connection induced by the connection of L Γ f l f < . t t l . T h e holonomy of this
connection will be computed in the next section. Here we only notice that the
spaces Ar(wx,..., ws) are all isomorphic (although not canonically isomorphic), and
we can fix w 1 ? . . . , w s as we like. F o r defϊniteness, choose wl9..., w s so that R e ^ )
< . . . < Re(w s). T o describe Ar(wu ..., ws) as a space, we choose a basis as follows.
Fix a non-intersecting family of loops γu...,γs,so that yt loops a r o u n d wf as shown
in Fig. 2 a. Introduce the shortened notat ion

CΛ1 yί ] (4.1)

to denote a homotopy class of non-intersecting families of loops, constructed as
follows: Let y\j) (l^i^s,ί^j^ rf) be slight homotopic deformations of γt such that
yp'} lies inside y\j+ υ and such that γγ\ ..., yf0,..., γ{

s

ι\ ..., γ{/s) is a non-intersecting
family of loops. The homotopy class of the latter is [y\\ ..., yr

s

s~]. Define a horizontal
section denoted by 1 over this family to be the section which takes the value 1 with
respect to the trivialization over a point with coordinates obeying

Re(w1)<Re(z1)< ... <Re(z r i)<Re(w2)

<Re(z r i + 1 ) < ... <Re(zΓ 2)<Re(w3)< .... (4.2)

If rl9..., rs run over all non-negative integers with total sum r, 1 [y\\ ..., yr

s

s] are a
basis of ^4r(w1?..., wr).

Theorem 4.1. The Uq(sl2) module 0 Ar(wx,..., ws) is isomorphic to the tensor product
of Verma modules

vni®...®vns

with action of Uq(sl2) given by the coproduct A{s\ If Re(w1)<...<Re(w s), an
isomorphism is explicitly given by

(43)

(α) (b)
Fig. 2. The loops used to define a basis of Aχwu...,ws) and A'r(wίt..., ws)
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Proof. For 5 = 1,1 [/J = F\ \_yr{~1], by definition of F. For higher s we have to show
that the action of the generators on the basis is indeed given by the coproduct. For
the generators K2,K~2 this follows from the definition. To compute the action of
F we must deform the added loop y to the composition of loops homotopic to
ys,...,y1 using I of 2.2:

iΓi[/iS...,7r/]= Σ ^i[7iS...5rΓ+ 1

)... Jy
r/]. (4.4)

The coefficient α, is, up to a sign, the transition function we pick up by going from
the point where the section 1 over y\\ ..., γr

s

a, y is trivialized to the point where the

section 1 over y\\ ...,yj< + 1, ...,γr

s

s is trivialized. The sign is (— l) J > ί \ and comes
Σ (l-Πj-2rj)

from reordering the loops using rule I of 2.2. Thus αt = qj>i and we get the
result

F= £1® ... ®1®F®K~2® ... ®K~2. (4.5)
i

Similarly, by computing the contribution proportional to 1 [y\\ ..., y? " 1,..., y£s] of
ÎCViS •• ?TΪS]? w e see that we get the same terms as in the computation of E[yr

i

i']
- Σ (l-nj-lrj)

except for the factor q j<i that we pick up by going from the vicinity of wt

to P_, and we obtain the result:
E= ^K2® ... ®K 2 ®£®1® ... ® 1. (4.6)

This concludes the proof. •

Remark. We see that the tensor product also has a topological inter-
pretation: let S+,S- be the upper and lower halves of the unit circle. We
can think of D\{wu...,ws} (with vv̂ φW;, iφj and H^eintD) as the result of
glueing s punctured discs D\{0} in such a way that S+ of the ίth disc is identified
with S_ of the i + l s t disc. This construction gives an identification of
Ar(wl9...,ws) with ^ ( O ) ® . . . ® ^ ^ ) so that lC/i1,...,^'] is identified with

The module A'r(wί9 ...,ws), being isomorphic to Ar(θwu...,θws), also has the
structure of a tensor product of Verma modules. In order to achieve compatibility
between tensor product structure and bilinear form, one has to choose the
isomorphism in a special way. Let y\ be the non-intersecting family depicted in
Fig. 2b, and, as above, define [(/i)Γl,..., {yf

sY
sl a n d a horizontal section 1 taking the

value 1 with respect to the trivialization over a point with

Re(z1)< ... <Re(zri)<Re(w1)<Re(zri + 1 )< ... <Re(zr2)<Re(w2)< ... .(4.7)

Let furthermore λ be the automorphism of Uq(sl2) defined on generators by

λ(H) = H, λ(E) = K~2E, λ(F) = FK2. (4.8)

The following dual version of Theorem 4.1 is proven exactly as Theorem 4.1.

Theorem 4.2. The Uq(sl2) module A'r(wu ..., ws) is isomorphic to the tensor product of
Verma modules

Vni®...®Vns (4.9)

with action of UJsl2) given by the twisted coproduct λ~ι © A(s) o λ.
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// Re(Wi)<... <Re(ws), an isomorphism is explicitly given by

l [ ( / i ) r S •••Λy'sYsl^Frivnι® ••• ®Frsvn . (4.10)

4.2. Tensor Products and Intersection Pairing. The isomorphisms described in the
preceding Theorems define intersection pairing as a bilinear form ( , ) on

vVi®...®vns.
Theorem 4.3. The intersection pairing coincides with the product of the Shapovalov
bilinear forms on Vn.. In particular, it is symmetric and degenerate. It reduces to a
non-degenerate symmetric bilinear form on the fusion rule subquotient.

Proof. For s = l, the highest weight vector vn of Vn has (vn,vn) = l and one has
ET = F, FT = E, K2T = K2, which are the characterizing properties of the Shapo-
valov bilinear form on the Verma module Vn. The choice of identification of An A'r
with the product of Verma modules is chosen in such a way that the weight
(— l) r # (t, t') (λ(t), λ'{t')} of each intersection point factorizes into s factors equal to
the weights of the corresponding intersections in ([?'*], [yίrί]). D

4.3. The Local System. The result of Theorem 4.1 can be cast into the formalism of
1.3. To be more precise, introduce the dependence of the labels nl9..., ns explicitly
in the notation:

Ar = Ar(wu...,ws\nι,...,ns). (4.11)

Fix a base point (w?, ...,w°) such that Re(w 1)<...<Re(w s). The spaces
Ar(w1,...,ws\n1,...,ns) define a flat vector bundle over #i,...,i(I)) with (Gauss-
Manin) connection induced by the connection on L r Λ Λ . The fiber over
(w?, ...,w°) is identified with Vni®...®Vns by the explicit isomorphism of
Theorem 4.1. Similarly, for any permutation oceSs we can identify the fiber over
α(w?,..., w°) with Vnoc(1)®...® Vnoι{s) using the trivial identification

Ar(w°a-1(1),..., wα°- 1 ( s ) I nl9..., ns) = Ar(w°l9..., ws° | nα ( 1 ),..., nφ)). (4.12)

5. Monodromy Action of the Braid Groupoid and Universal /^-Matrix

In the following we will consider the configuration space #Λl,...,,,s+1(β) with
D = {zeC\\z\^l},nί = r and n2 = ... = n s + 1 = l.

Let p'.y>rΛ i Φ ) - ^ i , . . . , i Φ ) be the projection given by omitting the first r
entries of (z l 5...,z r, w l 5..., ws). p defines a fiber bundle over ^i,..., iΦ) with fibers
p~1(w1,...,ws) = Xf.(w1,...,ws). In particular, Xχ(wί9 ...,ws) = D\{wu ...,ws} is the
punctured unit disc. We will restrict our attention to {wl9..., w s}cint/λ

Fix a base point xe(^1 ?>..fl(D), x = (w1?...,ws) with Re(w 1)<...<Re(w s).
In the following we will construct a non-abelian representation ρ of the colored

braid groupoid Bί_1{D,x) = G. Note that Ox = Ssx and G = (J Gα t β . G is

generated by [σf], /e{l, ...,5-1} and oteSs. Here σ?:[0, ίl-+(£1 *...tl(D) is a
smooth parametrized curve with σ"(O) = ocx and σa

i(\) = τμx, which implements a
counterclockwise exchange of wa-Hi) and w β-i ( ί + 1 ) .

Let the representation space Va associated with oteSs be ^4r(wα-i(1),..., wα-i(s)).
In a self-explanatory notation (see 4.3),

,..., wα- 1 ( s ))= e C l β y ^ . . .(y s )
Λ ] α . (5.1)
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Fig. 3. The loops appearing in the proof of Proposition 5.1. The points marked with a cross are the
points used to define the section 1

The sum is over (jx,..., js) e {0,..., p — 1 }s such that j x -f ... + j s = r. Thus we have an

identification Λr{wa-Hί), ...,wa-Hs))^CN(r>s) with JV(r,s)= ( Γ + 5 ) . The simplest

nontrivial case is s = 2 with JV(r,s) = r + l. Let [σ?] be represented by the
deformation homomorphism ρ([σ?]): Va-+Vτ.Ά associated with σ*. Introduce the
g-number notation [n]q = qn — q~n, and, for fc = 0, ...,n,

Γn] = [ f i ] t [ n - l ] , •••[»

L4 [*],[*-!],..•PL
(5.2)

Proposition 5.1.

1)

2)

= Jt£ Wyi)h •••(yiYi+1-k(yi+1Y
i+k ...(ysΫ%a

k = 0

xq

x

= Σ
) - 1 - 2 j f

(5.3)

(5.4)

Proo/. Without loss of generality we can restrict the proof to the case 5 = 2, i= 1,
and α=id. The loops used in this proof are represented in Fig. 3. The matrix
representation of [σ] is computed by consecutive deformations and subdivisions
of the individual loops in

1 _ ni(ni - 1 - 2ji){n2 ~ 1 ~ 272)^
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Subdivide the last /^-loop in a y2- and a j?2-loop t o obtain

2 " 1 / ί 2 ] , (5-6)

Iterate this subdivision until there is no /^-loop left over. The result is
k

WWl^ Σ (-ίfq-2**-1* Σ ί2'-1"

W2"*]^ (5-7)

The sum over ordered fc-tuples is performed with Gauss' formula

(5.8)

Then subdivide the β2-loops in γt- and y2-loops. This decomposition yields

(5.9)

Insert (5.8) and (5.9) into (5.7), and reorder the double sum to obtain

l[(γ2)
h(β1Y

2~]τ= £ (_l)fe^fc(j2-2«2+l)-(./2-fc)(n1-l-2(ji+fc)) J:

Then perform the second sum with the q-binomial formula

1 = 0 LlJq 1 = 0

(5.11)

Insert (5.10) and (5.11) into (5.5) to find (5.3). The matrix representation of [σ] " x is
computed following the same lines. •

The important consequence of Proposition 5.1 is that the deformation
homomorphism ρflV*]): Va-+Vτ.a, written as an operator, has a universal form
which resembles the universal jR-matrix of the quantum group algebra Uq(sl2). Let
peNu{oo} be the smallest positive integer such that q2p = ί.

Theorem 5.2. Denote by Xt the operator l®...®l(x)X(g)l®...®l acting on the ίth

factor of FMl®...(χ)FΠs. Suppose that 1 ̂ n l 5 . . . , n s ^ p — 1.

(i) d(ίof})= Σ\*k(k'1)il~^qiH'H'+iE'ίFUίτi, (5.12)
4 = 0 [K]q\

(ϋ) έ?(l>?r 0= ? ( - l ) ^ ' i t ( t ' 1 ) ( g ^ 7 ^ + 1 g ^ H ' g i t l x , - (5-13)
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Proof. Recall the definition of the operators Eh Fi9 Hh and τ f. They act as

(5.14)

HMy^ ... (y s y
s ] α =(n Λ ( i ) -1 -2j,)l[(y 1)' ' . . . (yj>']β

and

τ,l[(yiV1 .. ( 7 > ] α = 1 [(7i)yi (ysY%« (5.15)

Compare (5.3) and (5.4) with (5.14) and (5.15) to conclude (5.12) and (5.13). •

The content of Theorem 5.1 exceeds pure nomenclature since the operators Ei9

Fh and Ht have a topological interpretation. Recall that they satisfy the
commutation relations

[#,£, . ] = 2 2 ^ ,

lHhFj]=-2Fjδhi9 (5.16)

We have identified Ar(wa(l),..., wα(s)) with the tensor product FW α ( 1 )®.. ®K α ( s ) of
Uq(sl2) Verma modules, the identification being

1 [(7i)J1

Moreover, we have identified Et e Hom(4Γ(wβ ( 1 ),..., wα(s)), ̂ r _ ̂ W^D, ..., wα(s))) with
the element

£ 4 ι->l® ... ® £ ® ... ®1

of Uq(sl2)®s' Here E stands in the zth entry. Similarly we have proceeded with Ft and
Et. τt is identified with the ith transposition. We have proved that this identification
is a quantum group algebra homomorphism and a module isomorphism.

The observation of this section is that

with R e Uq(sl2)®2 the universal .R-matrix in an obvious normalization and R ~ι its
inverse acting on the zth and (i + l) s t entry.

It follows that ρ defines an R-matrix representation of B1 ,...,i(X), the Yang-
Baxter equations following from the properties of the universal R-matrix.

Having constructed an N(r, s)-dimensional R-matrix representation of
Bί X(D), we also have a rank N(r, s) local system L\ ^D) over ^i,..., ι(D). Let
C{,Zi(D) b e t h e intersection of the cell C? f... f l of 1.3 with <glt...tl(D\"

aeSs

with equivalence relation over Cf^^)r\Oϊ^jD) given by multiplication with
the matrices (5.3) and (5.4), respectively. In this local system the fiber is
p~ι(wa-Hί), ...,wα-i(s)) = v4,(vvα-i(1), ...,wα-i(s)). The parallel transport matrix as-
sociated with σ* in the basis (5.2) is the universal R-matrix in the representation

«α(0®nα(i+l)
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This representation of the braid groupoid is not irreducible in general. In
particular, it has as invariant subspaces the null space of the bilinear form (,),
which defines a subbundle of our flat bundle, invariant under parallel transport.
These subspaces are described explicitly in the Appendix.

6. Locally Finite Homology

In this paper, we have worked on the spaces Ar rather than on homology groups
directly. We now formulate some conjecture on the relation to homology, and the
structure of the corresponding locally finite homology groups. These conjectures
follow from the assumption that our quantum group action extends to an action
on homology, and by applying the computations of [11, 12], which are not
completely rigorous, to the situation studied here. As usual, we assume that s
distinct points w1,...,ws in the interior of the unit circle, s positive integers
nί9..., ns, and a complex number q φ — 1,0,1 are given. If q is a root of unity, we
furthermore assume that 1 ̂  nt ^ p — 1, where p is the smallest positive integer such
that q2p = ί. For ε small enough, the locally compact spaces Xε

r^Xε

r~ are defined
as in 2.2, and we have a local system Lr over Xr

ε.

Conjecture 6.1. // q is not a root of unity, the map

φr: AJtwl9..., ws)->Hι/(Xε

r, XΓ Lr), (6.1)

is an isomorphism of vector spaces.

If q is a root of unity, let Uq(sl2) be Lusztig's version of Uq(sl2) [18], with
generators H, E, F, Ep/[p]!, F p/[p]!. Let Vn

L be the Verma module over Ufol2) with
vacuum vector vn, so that Hvn = (n — l)vn9 and Evn = Ep/[p]! vn = 0. There is a
canonical Hopf algebra homomorphism Uq(sl2)-+U%(sl2), so that FW

L is also an
Uq(sl2) module. For any iί-diagonalizable Uq(sl2) module M, denote by (M)n the
eigenspace of H to the eigenvalue n.

Conjecture 6.2. // q is not a root of unity, there are isomorphisms

Hι/(X'r; L r)->Ker£|(V n i® . ®VJ

If q is a root of unity, there are isomorphisms

^

Finally, let Yr=^(CXIMΊ, ..., ws}) and Lr be the local system over Yr defined by
q, nu...,ns.
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Appendix

We summarize some known facts about Uq(sl2), following essentially [15-17]. Fix
a non-zero complex number q. Let Uq(sl2) be the algebra with unit over C with
generators E, F, H and relations

[ίΓ,£] = 2£,

IH,F]=-2F,

We often denote K2 = qH. Of course, q11 is not well-defined in the algebra but its
action on modules where H takes integer values is. A more precise definition is the
following: let U(sl2) be the complex algebra with unit with generators E, F, H, K2,
K~2 and relations

[£,F] = K 2 - K ' 2 , K2H = HK2.

U(sl2) is a Z-graded algebra, with the assignment deg(£)= — deg(F) = l, deg(iί)
= deg(X±2) = 0. Let Gq be the category of Z-graded left t/(s/2)-modules
M= ®Mn such that

nεZ

(i) For all ξeM there exists an N such that ENξ = 0,
(ii) HMn = nMn and K2Mn = qnMn.

The degree of homogeneous elements of a module in Gq is called weight.
Following common usage, we refer to objects in Gq as (Z-graded) C/g(s/2)-modules.

Let n be an integer, and q e C\0. The Verma module Vn is the quotient of U(sl2) by
the left ideal generated by E9K

2-qn~ι and H-(n-1), with left action of U(sl2).
The module Vn is in Gq and is generated by a highest weight vector υn (= image of 1)
of weight n — 1. A basis of Vn is given by the vectors Fjvn, j=0,1,..., and one has the
explicit formulae

\ = (n-i-2j)F\.

The notation we use for ^-numbers are

P
D ] ! = D ] [ 7 - 1 ] [2][1], [ 0 ] ! = l .

If ^ is a root of unity we define a number p as the smallest positive integer such that

for some integer p'>0. If g is not a root of unity we set p= oo.
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Proposition Al.
(i) // q is not a root of unity, Vn is irreducible for n^O. It contains a proper

submodule SVn generated by the singular vector2 Fnvn, ίfn^ί. The quotient VJSVn is
an irreducible n-dίmensional representation.

(ii) If q = eπιpΊp is a root of unity, then Vn contains a proper submodule SVn generated
by the singular vector Fnvn, where 1 ̂ ή^P and n = n(modp). The quotient VJSVn is
irreducible, of dimension ή.

The Shapovalov form on Vn is the symmetric bilinear form ( , ) : Vn x K,->C,
uniquely characterized by
(i) (vn,vn) = l,

(ii) (Eξ, η) = (ξ9 Fη), (Hξ, η) = {ξ9 Hη), ξ,ηeVn.
The null space of ( , ) is SVn.
The action of U(sl2) on tensor products of modules in Gq is defined by the

coassociative coproduct Δ : U(sl2)-+U{sl2)<8)U(sl2) defined on generators as

The action on tensor products with s factors is given by Δ(s): U(sl2)
-+U(sl2)®...®U(sl2) with Aia+1) = (A{s)®ί)Δ, A{2) = A. The universal fl-matrix of
Uq(sl2) is the formal series

oo (Π /j ~ 1 \k

R= Y αWk-i)W ϊ }-

hq [fc]i
This series is well defined on any tensor product module in Gq since only finitely
many terms are non-vanishing when # acts on a vector. Also, singular
denominators cancel.

Let ( , ) denote the product of Shapovalov forms: (,):Vni<8...®Vn

F ® ® F C

Proposition A2. L e f K M + 1 = = l ® . . . ® l ® l ί ® l ® . . . < g ) l be the R-mαtrix acting on
the ith and ( ϊ + l ) s ί factor in Vnι®...®Vns and Piti + i the transposition
ξ i ® . . . ® ξ s ->ξi®.. .®ξj+i®έj®.. .®5s Then

for all ξ,ηeVnι®...®Vns.

Let Wn{Vni®...®Vn) be the space of singular vectors of weight n — 1 in
Vnι®...®Vns. The family of vector spaces Wn(Vφι)®...®VΛ(ns)l oceSs carries an
R-matrix representation of the colored braid groupoid B^ t . As a consequence
of Proposition A2 we have

Proposition A3. Let Fn{Vni ®...®Vn) be the quotient of Wn(Vni ®.. . ® Vn) by the null
space Jί of ( , ) restricted to Wn(Vni®...®Vn). The representation of B1 Λ on

A singular vector is a vector annihilated by E
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{Wn(Va(nί)<g)... (x) Va(n ))}α 6 5 reduces to a well-defined representation on
{ H V V J }

The subquotient Fn(Vnι®...®Vn) is called the fusion rule sub quotient of
Vni®...®VHs with weight n — ί. It can be characterized more explicitly.

Proposition A4. Let p — ί^nun2, n^ί. Then

Nn

nin2 = dimFn(Vnι®Vn2)

\ί if \nί — n2\ + i^n^mm(nl+n2 — l,2p — n1 — n2 — 1)

(0 otherwise.

Thus, if Nnίn2 = 1, there is a singular vector in Vni®Vn2 of weight n—ί which is
not in the null space of ( , ) . Correspondingly, we have a homomorphism

S u p p o s e in t h e following t h a t p — 1 ̂  nί9..., ns, n ̂  1. I n t r o d u c e t h e pαί/z

P " 1 ? . . . , ns as t h e space of c o m p l e x l inear c o m b i n a t i o n s of sequences ( m l 5 . . . , m s _ 2 )

of integers in [ l , p - l ] such t h a t Λ £ l f W 2 = Λ^ m V = Λ ^ . = l ( 2 2 )

Proposition A5. The homomorphism

K , s 2 ) ( 0 ® ® ; : i B s ) ( ® : 2 m 2 ) ^ m Λ

composed with the canonical projection Wn-+Fn, gives an isomorphism

Γm n s ^ r n\vnι^y '" ^yyns)'

The proofs of the last two propositions can be extracted from [17], noticing
that since the vectors of the form ξι®...®ξs with some ξjeSVn. are in the null
space of ( , ) , we can replace everywhere Vn by the irreducible quotient VJSVn.
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