On the Renormalization Group Transformation for Scalar Hierarchical Models

Hans Koch ${ }^{1, \star}$ and Peter Wittwer ${ }^{2, \star \star}$
${ }^{1}$ Department of Mathematics, University of Texas at Austin, Austin, TX 78712, USA
${ }^{2}$ Département de Physique Théorique, Université de Genève, CH-1211 Genève 4, Switzerland

Received August 23, 1990; in revised form December 21, 1990

Abstract

We give a new proof for the existence of a non-Gaussian hierarchical renormalization group fixed point, using what could be called a beta-function for this problem. We also discuss the asymptotic behavior of this fixed point, and the connection between the hierarchical models of Dyson and Gallavotti.

1. Introduction and Main Results

We consider the fixed point problem for the nonlinear operator \mathcal{N}, defined by the equation

$$
\begin{equation*}
(\mathscr{N}(f))(t)=\frac{1}{\sqrt{\left(1-\beta^{2}\right) \pi}} \int_{-\infty}^{\infty} d s e^{-\frac{1}{1-\beta^{2}} s^{2}} f(s+\beta t)^{N}, \quad t \in \mathbb{C} \tag{1.1}
\end{equation*}
$$

with $\beta=N^{-5 / 6}$ and $N=2$. Our first result is the following.
Theorem 1.1. There is a function $f_{\text {IR }}$ which can be written as a convergent product

$$
\begin{equation*}
f_{\mathrm{IR}}(t)=f_{\mathrm{IR}}(0) \prod_{k=1}^{\infty}\left(1+\frac{t^{2}}{r_{k}}\right), \quad t \in \mathbb{C}, \tag{1.2}
\end{equation*}
$$

with $f_{\mathrm{IR}}(0), r_{1}, r_{2}, \ldots$ real and positive, and which satisfies $\mathcal{N}\left(f_{\mathrm{IR}}\right)=f_{\mathrm{IR}}$. Furthermore, along the real axis, the limits

$$
\begin{equation*}
l_{+} \equiv \varlimsup t^{-6 / 5} \ln f_{\mathrm{IR}}(t), \quad l_{-} \equiv \varliminf t^{-6 / 5} \ln f_{\mathrm{IR}}(t) \tag{1.3}
\end{equation*}
$$

exist, and they satisfy $0<l_{+} \leqq 2 l_{-}<\infty$.
Interest in this fixed point problem stems from the theory of critical phenomena in statistical mechanics and quantum field theory. The transformation \mathscr{N} is directly related to a renormalization group (RG) transformation on a space of

[^0]lattice field theories in three dimensions with a certain hierarchical symmetry; more details, including a discussion of the role of N, are given in the remarks below. Although these models are not very physical, they mimic extremely well what appears to be the behavior of more realistic models, both qualitatively as well as quantitatively. Due to their relative simplicity, hierarchical models have a long history in the testing of RG ideas [1-7]; for a more extensive list of references, see [6].

The fact that \mathcal{N} has a non-Gaussian fixed point has been proved before in [6], using computer-assisted analysis. ${ }^{1}$ The proof which we present here follows a different route, close to the traditional beta-function approach in quantum field theory. It still involves a fair number of numerical estimates, but they can be checked without the help of a computer. Our analysis uses three new and interesting facts about the transformation \mathcal{N} :

1. Under the iteration of \mathscr{N}, the zeros of a polynomial approach the imaginary axis.
2. The derivative of \mathscr{N} is symmetric with respect to some inner product (given below).
3. There is a connection between \mathcal{N} and Dyson's RG transformation.

In [7] it was shown ${ }^{1}$ that the spectrum of the derivative of \mathscr{N} at the fixed point f_{IR} lies in the open unit disk, except for a simple eigenvalue $\delta>1$ (which is related to the critical index for the free energy) and the trivial eigenvalue N. With the methods used here, it is easy to prove the following additional property. For $0<b<1$, denote by $\mathscr{H}_{(b)}$ the Hilbert space (of entire analytic functions) obtained by completing the vector space of polynomials with respect to the norm associated with the inner product

$$
\begin{equation*}
\langle f, g\rangle_{(b)}=\frac{2 b}{\sqrt{1-b^{2}} \pi} \int_{-\infty}^{\infty} d t \int_{-\infty}^{\infty} d s e^{-\frac{2 b}{1+b} t^{2}-\frac{2 b}{1-s^{2}}} f(t+i s) \overline{g(t+i s)} \tag{1.4}
\end{equation*}
$$

Theorem 1.2. The derivative $D \mathscr{N}\left(f_{\text {IR }}\right)$ of \mathscr{N} at the fixed point $f_{\text {IR }}$ is a positive traceclass operator on $\mathscr{H}_{(\beta)}$. Its trace is equal to $2\left\|\left|\mid f_{\mathrm{IR}}\| \|\right.\right.$, where

$$
\begin{equation*}
\||f|\| \equiv \frac{1}{\sqrt{\left(1-\beta^{2}\right) \pi}} \int_{-\infty}^{\infty} d t e^{-\frac{1-\beta}{1+\beta} t^{2}}|f(t)| \tag{1.5}
\end{equation*}
$$

The transformation \mathscr{N} considered here differs from (the $N=2$ analogue of) Gallavotti's RG transformation \mathscr{T} [5] in that we use a scaling factor $\beta=N^{-5 / 6}$ instead of $\alpha=N^{-1 / 6}$. For general N, the transformation \mathscr{T} is defined by the equation

$$
\begin{equation*}
(\mathscr{T}(g))(t)=\sqrt{2 v / \pi} \int_{-\infty}^{\infty} d s e^{-2 v s^{2}} g(s+\alpha t)^{N}, \quad t \in \mathbb{R} \tag{1.6}
\end{equation*}
$$

where $v=1 /\left(4 \alpha^{2}-1\right)$, but in what follows we set again $N=2$. In addition, both \mathcal{N} and \mathscr{T} seem to be quite different from (a version promoted by Baker [2] of) Dyson's original RG transformation \mathscr{R} for hierarchical models [1], which is given by

$$
\begin{equation*}
(\mathscr{R}(h))(t)=2 \alpha \int_{-\infty}^{\infty} d x e^{-2 \lambda x^{2}} h(\alpha t+x) h(\alpha t-x), \quad t \in \mathbb{R} \tag{1.7}
\end{equation*}
$$

[^1]with $\lambda=\left(2 \alpha^{2}-1\right) v$. However, all three of these transformations are related by a "change of coordinates" in function space. To be more precise, let
\[

$$
\begin{equation*}
\mathrm{g}_{\mathrm{HT}}(t)=\sqrt{2} \alpha e^{-\lambda t^{2}}, \quad t \in \mathbb{R} . \tag{1.8}
\end{equation*}
$$

\]

Then a straightforward calculation shows the following.
Formal Identities 1.3.
(F1) $M \circ \mathscr{N}=\mathscr{T} \circ M$, where $M=$ "multiplication by g_{HT} ".
(F2) $J \circ \mathscr{R}=\mathscr{T} \circ J$, where $J=$ "convolution with $g_{\mathrm{H}} "$ ".
Note that $f_{\mathrm{HT}} \equiv 1$ is a trivial fixed point for \mathscr{N} (the high temperature fixed point). The corresponding fixed points for \mathscr{T} and \mathscr{R} are g_{HT} and $h_{\mathrm{HT}}(x)=\delta(x)$, respectively. Similarly, $g_{U v} \equiv 1$ is a trivial fixed point for \mathscr{T} (the ultraviolet fixed point), and the corresponding fixed points for \mathscr{R} and \mathscr{N} are $h_{\mathrm{UV}} \equiv \sqrt{\lambda /\left(2 \pi \alpha^{2}\right)}$ and $f_{\mathrm{UV}}=1 / g_{\mathrm{HT}}$, respectively.

It is clear that from the fixed point $f_{\text {IR }}$ of \mathscr{N} (the infrared fixed point), described in Theorem 1.1, we obtain a non-Gaussian fixed point $g_{\mathrm{IR}}=g_{\mathrm{HT}} f_{\mathrm{IR}}$ for \mathscr{T}. It is less clear, however, whether the corresponding fixed point for \mathscr{R} exists as a function. But if we extend the definition of \mathscr{R} to measures on \mathbb{R}, then the following can be proved.

Denote by $C_{0}(\mathbb{R})$ the Banach space (with the sup-norm) of all continuous functions on \mathbb{R} that vanish at infinity. On the dual $C_{0}^{\prime}(\mathbb{R})$, which consists of all finite Baire measures H on \mathbb{R}, we define the transformation \mathscr{R} by the equation

$$
\begin{equation*}
(\mathscr{R}(H))(\varphi)=\int d H(x) \int d H(y) e^{-\frac{\lambda}{2}(x-y)^{2}} \varphi\left(\frac{x+y}{2 \alpha}\right), \quad \varphi \in C_{0}(\mathbb{R}) . \tag{1.9}
\end{equation*}
$$

Theorem 1.4. The equation $H_{\mathrm{IR}} * g_{\mathrm{HT}}=g_{\mathrm{IR}}$ defines a positive measure H_{IR} in $C_{0}^{\prime}(\mathbb{R})$, and this measure is a (nontrivial) fixed point of the transformation \mathscr{R}.

We note that if the function $s \mapsto f_{\mathrm{IR}}($ is $)$ is in $L^{1}(\mathbb{R})$, then $d H_{\mathrm{IR}}(x)=h_{\mathrm{IR}}(x) d x$, where h_{IR} is the continuous function given by the equation

$$
\begin{equation*}
h_{\mathbf{I}}(t)=e^{\lambda t^{2}} \frac{\lambda}{\pi} \int_{-\infty}^{\infty} d s e^{-2 i \lambda s t} f_{\mathbf{I R}}(i s), \quad t \in \mathbb{R}, \tag{1.10}
\end{equation*}
$$

and of course, $h_{\text {IR }}$ is a non-Gaussian fixed point for \mathscr{R}. Unfortunately, we have no proof that $f_{\mathbf{I R}}(i.) \in L^{1}(\mathbb{R})$, but numerical investigations indicate that this is the case. In fact, a computation of r_{1}, \ldots, r_{4000} (see the second remark below) suggests the following.

Conjecture. The two limits l_{+}and l_{-}in (1.3) are equal.
If we assume that indeed $l_{+}=l_{-}$, then it follows [11] that $\left|f_{\mathrm{IR}}(i s)\right|$ is bounded by $\exp \left(-\kappa|s|^{6 / 5}\right)$ as $s \rightarrow \infty$, for some $\kappa>0$, which implies that the function h_{IR}, defined by (1.10), is entire analytic.

Remarks.

- The normalization of the integral in (1.1) and the covariance of the Gaussian in this integral can be changed without changing the essential features of the fixed point equation $\mathscr{N}(f)=f$. If we choose any constants $K, c>0$ and define

$$
\begin{equation*}
(\tilde{\mathcal{N}}(f))(t)=\frac{K}{\sqrt{c}} \int_{-\infty}^{\infty} d s e^{-\frac{1}{2 c} s^{2}} f(s+\beta t)^{2}, \quad t \in \mathbb{C} \tag{1.11}
\end{equation*}
$$

then there exists a scaling T of the form $T f=a f(b$.$) , such that \tilde{\mathscr{N}}=T^{-1} \circ \mathscr{N} \circ T$. The same holds for the transformations \mathscr{T} and \mathscr{R}.

- The transformations \mathscr{N} and \mathscr{T}, as defined by Eqs. (1.1) and (1.6), depend on three parameters N, α, and β. These parameters are related to the more commonly used quantities d (dimension) and L (linear block size) by the equation

$$
\begin{equation*}
N=L^{d}, \quad \alpha=L^{-(d-2) / 2}, \quad \beta=L^{-(d+2) / 2}, \tag{1.12}
\end{equation*}
$$

and their numerical values were obtained by choosing $d=3$ (the most interesting case) and $L=2^{1 / 3}$. To explain the relations (1.12), we note first that a conjugacy analogous to (F1) holds in general, for any real numbers $d>0$ and $L>1$. Thus, given e.g. the first two relations in (1.12), the third one follows if we require that the fixed point problem for \mathscr{N} be equivalent to that of \mathscr{T}. Assume now that d is a positive integer. If L is an integer larger than one, then, as shown in [6], there exists a block spin transformation (with hypercubic blocks of linear size L) on a space of d-dimensional hierarchical lattice field theories, which is conjugate to \mathscr{T}, and which has a Gaussian ultraviolet fixed point whose covariance decays like the inverse Laplacian in d dimensions. If only $N=L^{d}$ is an integer larger than one, but not L, then a similar block spin transformation can be found (a product of d block spin transformations, where the k-th factor uses string-shaped blocks of length N that are parallel to the k-th axis of the lattice \mathbb{Z}^{d}, such that the blocks for the product are hypercubes of linear size N), which is conjugate to \mathscr{T}^{d}. In other words, the relations (1.12) are such that the hierarchical models with $N=2,3, \ldots$ mimic a translation invariant model with short range interactions. We note that in the translation invariant case, the model (and hence the physics) does not depend on the choice of L. In the hierarchical case, L is actually a model parameter; but numerical results (for $d=3$) suggest that physically relevant quantities, such as the critical index v, depend only very weakly on L. Our main reason for choosing $L=2^{1 / 3}$ is the conjugacy (F2) which allows us to construct a non-Gaussian fixed point for Dyson's RG transformation.

- Numerically, the zeros r_{k} of the function $z \mapsto f_{\mathrm{IR}}(\sqrt{-z})$, henceforth simply called "zeros," can be computed as follows. If f is given by a product of the form (1.2), then the function $\widetilde{f}=\widetilde{\mathcal{N}}(f)$, defined by (1.11), is formally given by a similar product with zeros $\tilde{r}_{1}, \tilde{r}_{2}, \ldots$. The idea is to consider c in (1.11) a time parameter which can be increased continuously from $c=0$, where $\hat{f}=$ const $f(\beta .)^{2}$, to $c=\hat{c} \equiv\left(1-\beta^{2}\right) / 2$, where $\hat{f}=$ const $\mathcal{N}(f)$. Differentiation of (1.11) with respect to c yields an evolution equation for the function \mathcal{f}, and it is easy to find the corresponding evolution equation (a system of nonlinearly coupled first order differential equations) for the zeros $\tilde{r}_{k}=\tilde{r}_{k}(c)$. By integrating these equations, after doubling and multiplying by β^{-2} each zero at time $c=0$, we obtain a RG transformation $\mathscr{M}: r \mapsto \tilde{r}(\hat{c})$ which maps the zeros $r=\left(r_{1}, r_{2}, \ldots\right)$ for f onto the zeros for $\mathscr{N}(f)$. Since, as mentioned earlier, the exact value of \hat{c} is irrelevant, we may as well choose $\hat{c}=\hat{c}(r)$ in such a way that $\tilde{r}_{1}(\hat{c}(r))=r_{1}$. In this case, $\mathscr{M}^{n}(r)$ converges numerically to a fixed point as $n \rightarrow \infty$, for any reasonable initial set of zeros r.
- A formal relation similar to (F 2) exists between the non-hierarchical analogues of \mathscr{T} and \mathscr{R}, that is, the RG transformation of Balaban [8], and the WilsonKadanoff transformation used e.g. in [9].
- Many of the results given later in this paper are stronger than what is needed to prove Theorem 1.1 and Theorem 1.2. For more information we refer to Sects. 2-4. In addition, the results of Sects. 2 and 4 can easily be generalized to arbitrary integers $N \geqq 2$, where N is the power of f that appears in the definition (1.1) of \mathscr{N}.

The remaining part of this paper is organized as follows. Section 2 contains some general results concerning the Hilbert space $\mathscr{H}_{(\beta)}$, some Banach space $\mathscr{B}_{{ }_{e}}$, and the action of \mathscr{N} on these spaces; and Theorem 1.2 is proved. In Sect. 3 we show that \mathscr{N} has a non-Gaussian fixed point in \mathscr{B}_{e}, close to an explicitly given polynomial p of degree six. Here, some bounds are used which can be translated into trivial numerical inequalities; this is done in Sect. 5. The proof of Theorem 1.1 is completed in Sect. 4, where we discuss the zeros and the asymptotic behavior of the fixed point $f_{\text {IR }}$. At the end of Sect. 4 Theorem 1.4 is proved.

2. Basic Properties of \mathcal{N}

In this section, we derive some general bounds on the transformation \mathscr{N}, and a formula for its "matrix elements" $A_{k, n}^{(m)}$.

In addition to the Hilbert spaces $\mathscr{H}_{(b)}$, defined in the introduction, we will also consider the Hilbert space $\mathscr{H}_{(1)} \equiv L^{2}\left(\mathbb{R}, \exp \left(-t^{2}\right) d t\right)$, with the inner product

$$
\begin{equation*}
\langle f, g\rangle_{(1)}=\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} d t e^{-t^{2}} f(t) \overline{g(t)} . \tag{2.1}
\end{equation*}
$$

If H_{n} denotes the $n^{\text {th }}$ Hermite polynomial, then the polynomials p_{n}, defined by the equation $p_{n}(t)=H_{n}(\sqrt{2} t)$, are an orthogonal basis for $\mathscr{H}_{(1)}$. The following two identities are well known and easy to prove:

$$
\begin{gather*}
\sum_{n=0}^{\infty} \frac{z^{n}}{n!} p_{n}(t)=G_{z}(t) \equiv e^{\sqrt{2} z t-z^{2} / 2} \tag{2.2}\\
\sum_{n=0}^{\infty} \frac{b^{n}}{n!} p_{n}(s) p_{n}(t)=E_{b}(s, t) \equiv \frac{1}{\sqrt{1-b^{2}}} e^{-\frac{b^{2}}{1-b^{2}}\left(s^{2}+t^{2}\right)+\frac{2 b}{1-b^{2}} s t} . \tag{2.3}
\end{gather*}
$$

Here, z, s, t are arbitrary complex numbers, and $0<b<1$.
Lemma 2.1. Let $0<b \leqq 1$.
(i) $\left\langle p_{n}, p_{k}\right\rangle_{(b)}=b^{-n} n!\delta_{k, n}$, for $k, n=0,1,2, \ldots$.
(ii) If $b<1$ then the elements of $\mathscr{H}_{(b)}$ can be identified with entire analytic functions. Furthermore, for all $f \in \mathscr{H}_{(b)}$ and $t \in \mathbb{C}$,

$$
\begin{equation*}
|f(t)| \leqq\|f\|_{(b)} \frac{1}{\sqrt[4]{1-b^{2}}} e^{\frac{b}{1-b^{2}}|t|^{2}-\frac{b^{2}}{1-b^{2}} \operatorname{Re}\left(t^{2}\right)} \tag{2.4}
\end{equation*}
$$

Proof. If $0<b \leqq 1$ then for all $x, y \in \mathbb{C}$ we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \sum_{k=0}^{\infty} \frac{y^{k}}{k!}\left\langle p_{n}, p_{k}\right\rangle_{(b)}=\left\langle G_{x}, G_{y}\right\rangle_{(b)}=e^{x y / b}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \sum_{k=0}^{\infty} \frac{y^{k}}{k!} b^{-n} n!\delta_{k, n} \tag{2.5}
\end{equation*}
$$

The second equality is the result of a straightforward Gaussian integration. The identity (i) now follows by comparing coefficients. Assume now that $0<b<1$. From (i) and Eq. (2.3) we see that the function $E_{b}(t,$.$) is in \mathscr{H}_{(b)}$ for all $t \in \mathbb{C}$:

$$
\begin{align*}
\left\|E_{b}(t, .)\right\|_{(b)}^{2} & =\lim _{N \rightarrow \infty} \sum_{k, n=0}^{N} \frac{b^{k+n}}{k!n!} p_{n}(t) \overline{p_{k}(t)}\left\langle p_{n}, p_{k}\right\rangle_{(b)}=\sum_{k=0}^{\infty} \frac{b^{k}}{k!} p_{k}(t) p_{k}(\bar{t}) \\
& =E_{b}(t, \bar{t})=\frac{1}{\sqrt{1-b^{2}}} e^{\frac{2 b}{1-b^{2}}|t|^{2}-\frac{2 b^{2}}{1-b^{2}} \operatorname{Re}\left(t^{2}\right)} . \tag{2.6}
\end{align*}
$$

Furthermore, if $f=p_{n}$ for some $n \geqq 0$, then

$$
\begin{equation*}
\left\langle f, E_{b}(t, .)\right\rangle_{(b)}=\sum_{k=0}^{\infty} \frac{b^{k}}{k!} p_{k}(\bar{t})\left\langle p_{n}, p_{k}\right\rangle_{(b)}=f(\bar{t}) \tag{2.7}
\end{equation*}
$$

for all $t \in \mathbb{C}$. This identity extends to arbitrary polynomials f by linearity. Consequently, if $\left\{f_{n}\right\}$ is a Cauchy sequence of polynomials in $\mathscr{H}_{(b)}$, then $\left\{f_{n}\right\}$ converges uniformly on compact subsets of \mathbb{C}. Thus, the limit is an entire analytic function, and (2.7) extends to any $f \in \mathscr{H}_{(b)}$. The inequality (ii) is now obtained by substituting the identity (2.6) into the bound

$$
\begin{equation*}
|f(t)|=\left|\left\langle f, E_{b}(\bar{t}, .)\right\rangle_{(b)}\right| \leqq\|f\|_{(b)}\left\|E_{b}\left(\bar{t}_{,} .\right)\right\|_{(b)} \tag{2.8}
\end{equation*}
$$

Next, we consider the derivative of \mathscr{N} at points $f \in \mathscr{H}_{(\beta)}$ for which the norm $|||f|||$, defined in (1.5), is finite.
Proposition 2.2. Assume that f is a function in $\mathscr{H}_{(\beta)}$ with $|||f| \|<\infty$. Then the operator $A(f)$, defined by the equation

$$
\begin{equation*}
(A(f) g)(t)=\frac{1}{\sqrt{\left(1-\beta^{2}\right) \pi}} \int_{-\infty}^{\infty} d s e^{-\frac{1}{1-\beta^{2}}(s-\beta t)^{2}} f(s) g(s), \quad g \in \mathscr{H}_{(\beta)}, t \in \mathbb{C} \tag{2.9}
\end{equation*}
$$

is a bounded linear operator on $\mathscr{H}_{(\beta)}$, whose norm is less than or equal to $|||f|||$. Furthermore, for any $\mathrm{g}, h \in \mathscr{H}_{(\beta)}$, the following holds:

$$
\begin{equation*}
\langle A(f) g, h\rangle_{(\beta)}=\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} d t e^{-t^{2}} f(t) g(t) \overline{h(t)} . \tag{2.10}
\end{equation*}
$$

Proof. Let $f_{\mathrm{HT}} \equiv 1$. Then for all $z, t \in \mathbb{C}$ we have

$$
\begin{align*}
\sum_{n=0}^{\infty} \frac{z^{n}}{n!}\left(A\left(f_{\mathrm{HT}}\right) p_{n}\right)(t) & =\left(A\left(f_{\mathrm{HT}}\right) G_{z}\right)(t) \\
= & \frac{1}{\sqrt{\left(1-\beta^{2}\right) \pi}} \int_{-\infty}^{\infty} d s e^{-\frac{1}{1-\beta^{2}}(s-\beta t)^{2}+\sqrt{2} z s-z^{2} / 2} \\
& =G_{\beta z}(t)=\sum_{n=0}^{\infty} \frac{z^{n}}{n!} \beta^{n} p_{n}(t) \tag{2.11}
\end{align*}
$$

which implies that $A\left(f_{\mathrm{HT}}\right) p_{n}=\beta^{n} p_{n}$ for all n. Hence

$$
\begin{equation*}
\left\langle A\left(f_{\mathrm{HT}}\right) p_{n}, p_{k}\right\rangle_{(\beta)}=\beta^{n}\left\langle p_{n}, p_{k}\right\rangle_{(\beta)}=\left\langle p_{n}, p_{k}\right\rangle_{(1)} \tag{2.12}
\end{equation*}
$$

for all n and k. Let now f, g, h be arbitrary polynomials. Then (2.10) is obtained from (2.12) by linear extension:

$$
\begin{equation*}
\langle A(f) g, h\rangle_{(\beta)}=\left\langle A\left(f_{\mathrm{HT}}\right)(f g), h\right\rangle_{(\beta)}=\langle f g, h\rangle_{(1)} \tag{2.13}
\end{equation*}
$$

By using the bound (2.4), we find that

$$
\begin{align*}
\left|\langle A(f) g, h\rangle_{(\beta)}\right| & \leqq \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} d t e^{-t^{2}}|f(t)| \frac{1}{\sqrt{1-\beta^{2}}}\|g\|_{(\beta)}\|h\|_{(\beta)} e^{\frac{2 \beta}{1+\beta} t^{2}} \\
& =\left|\|f \mid\|\|g\|_{(\beta)}\|h\|_{(\beta)} .\right. \tag{2.14}
\end{align*}
$$

This proves the assertion, since polynomials are dense in $\mathscr{H}_{(\beta)}$.

The following corollary, together with Theorem 1.1, implies Theorem 1.2.
Corollary 2.3. Assume that f is a function in $\mathscr{H}_{(\beta)}$ with $||f| \|<\infty$ and $f(t)>0$ for all $t \in \mathbb{R}$. Then $D \mathscr{N}(f)$ is a positive trace-class operator on $\mathscr{H}_{(\beta)}$, and $\operatorname{tr}(D \mathscr{N}(f))$ $=2| ||f| \|$.

Proof. Note first that $D \mathscr{N}(f)=2 A(f)$. It is clear from Proposition 2.2 that, given our assumptions on $f, A(f)$ is self-adjoint and positive. The trace of $A(f)$ can be computed by using Eq. (2.3):

$$
\begin{align*}
\operatorname{tr}(A(f)) & =\sum_{n=0}^{\infty} \frac{\beta^{n}}{n!}\left\langle A(f) p_{n}, p_{n}\right\rangle_{(\beta)}=\sum_{n=0}^{\infty} \frac{\beta^{n}}{n!} \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} d t e^{-t^{2}} f(t) p_{n}(t)^{2} \\
& =\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} d t e^{-t^{2}} f(t) E_{\beta}(t, t)=|||f||| . \tag{2.15}
\end{align*}
$$

From now on we restrict our attention to a subspace of $\mathscr{H}_{(\beta)}$ which is invariant under the action of \mathscr{N}.

Definition 2.4. Denote by $\mathscr{H}_{(\beta)}^{e}$ the real subspace of $\mathscr{H}_{(\beta)}$ consisting of all even functions in $\mathscr{H}_{(\beta)}$ which take real values when restricted to the real axis. To every such function f we associate an l^{2} sequence $\left(f_{0}, f_{1}, \ldots\right)$ by defining

$$
\begin{equation*}
f_{n}=\frac{\beta^{n}}{\sqrt{(2 n)!}}\left\langle f, p_{2 n}\right\rangle_{(\beta)}, \quad n=0,1,2, \ldots \tag{2.16}
\end{equation*}
$$

Lemma 2.5. Assume that f, g are functions in $\mathscr{H}_{(\beta)}^{e}$, and that $|\|f \mid\|<\infty$. Then $A(f) g$ lies in $\mathscr{H}_{(\beta)}^{e}$, and

$$
\begin{equation*}
(A(f) g)_{k}=\sum_{m, n=0}^{\infty} A_{k, n}^{(m)} f_{m} g_{n}, \quad k=0,1,2, \ldots, \tag{2.17}
\end{equation*}
$$

where $A_{k, n}^{(m)}=0$ if either $k>m+n$, or $m>n+k$, or $n>k+m$; otherwise

$$
\begin{align*}
A_{k, n}^{(m)} & =\beta^{k+m+n} \sqrt{\binom{2 k}{k+m-n}\binom{2 m}{m+n-k}\binom{2 n}{n+k-m}} \\
& \leqq \beta^{k+m+n} \frac{\sqrt{(2 k)!}}{k!}\binom{m+n}{k} . \tag{2.18}
\end{align*}
$$

Proof. For $k, m, n=0,1,2, \ldots$, define

$$
\begin{equation*}
A_{k, n}^{(m)}=\frac{\beta^{k}}{\sqrt{(2 k)!}} \frac{\beta^{m}}{\sqrt{(2 m)!}} \frac{\beta^{n}}{\sqrt{(2 n)!}}\left\langle p_{2 k}, A\left(p_{2 m}\right) p_{2 n}\right\rangle_{(\beta)} \tag{2.19}
\end{equation*}
$$

Then, with the exception of the last inequality in (2.18), the assertion follows from Proposition 2.2, since

$$
\begin{equation*}
\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} d t e^{-t^{2}} p_{2 k}(t) p_{2 m}(t) p_{2 n}(t)=\frac{(2 k)!(2 m)!(2 n)!}{(k+m-n)!(m+n-k)!(n+k-m)!} \tag{2.20}
\end{equation*}
$$

Here, $|m-n| \leqq k \leqq m+n$; otherwise the integral is zero. To prove the last inequality in (2.18), it suffices to show that $A_{k, n}^{(m)}$, if nonzero, is bounded by

$$
\begin{equation*}
X_{k, n}^{(m)} \equiv \beta^{k+m+n} \sqrt{\binom{2 k}{k+m-n}}\binom{m+n}{k} . \tag{2.21}
\end{equation*}
$$

But

$$
\begin{align*}
{\left[A_{k, n}^{(m)}\right]^{2} } & =\left[X_{k, n}^{(m)}\right]^{2} \frac{(2 m)!(2 n)!}{(m+n)!(m+n)!} \frac{k!k!}{(k+m-n)!(k+n-m)!} \\
& =\left[X_{k, n}^{(m)}\right]^{2} \prod_{j=1}^{|m-n|} \frac{(m+n)+j}{(m+n)-|m-n|+j} \frac{k-|m-n|+j}{k+j} \\
& =\left[X_{k, n}^{(m)}\right]^{2} \prod_{j=1}^{|m-n|} \frac{(m+n+j)(k+j)-|m-n|(m+n+j)}{(m+n+j)(k+j)-|m-n|(k+j)}, \tag{2.22}
\end{align*}
$$

and each factor in the last product is clearly $\leqq 1$, whenever $|m-n| \leqq k \leqq m+n$.
Remark. Since the coefficients $A_{k, n}^{(m)}$ are symmetric under permutations of the indices, the fixed point equation for \mathscr{N} is formally the equation for the stationary points of the functional,

$$
\begin{equation*}
f \mapsto \sum_{k, m, n=0}^{\infty} A_{k, n}^{(m)} f_{k} f_{m} f_{n}, \tag{2.23}
\end{equation*}
$$

on a sphere $\sum_{k}\left|f_{k}\right|^{2}=$ const.
Since it is difficult in general to find good estimates for the norm of a bounded operator on l^{2}, we will continue our analysis of \mathscr{N} on weighted l^{1} spaces.

Definition 2.6. For any given $\varrho \geqq 1$, denote by \mathscr{B}_{ϱ} the vector space of all functions in $\mathscr{H}_{(\beta)}^{e}$, for which the sum

$$
\begin{equation*}
\|f\|_{\varrho} \equiv \sum_{n=0}^{\infty}\left|f_{n}\right| \varrho^{n} \tag{2.24}
\end{equation*}
$$

is finite. Equipped with the norm $\|.\|_{\varrho}, \mathscr{B}_{\varrho}$ is a Banach space.
Lemma 2.7. Assume that $r \geqq 1$ and $\varrho \equiv \beta+2 \beta^{2} r \geqq 1$. If f is a function in \mathscr{B}_{ϱ} then $A(f)$ is a bounded linear operator from \mathscr{B}_{e} to \mathscr{B}_{r}, and

$$
\begin{equation*}
\|A(f) g\|_{r} \leqq\|f\|_{\varrho}\|g\|_{\varrho}, \quad \forall g \in \mathscr{B}_{\varrho} \tag{2.25}
\end{equation*}
$$

Proof. By using the bound (2.18) and the fact that $\binom{2 k}{k} \leqq 4^{k}$, for all $k \geqq 0$, we obtain

$$
\begin{align*}
\|A(f) g\|_{r} & =\sum_{k=0}^{\infty}\left|(A(f) g)_{k}\right| r^{k} \\
& \leqq \sum_{m, n=0}^{\infty} \sum_{k=0}^{m+n} \beta^{k+m+n} \sqrt{\binom{2 k}{k}}\binom{m+n}{k}\left|f_{m}\right|\left|g_{n}\right| r^{k} \\
& \leqq \sum_{m, n=0}^{\infty}\left|f_{m}\right|\left|g_{n}\right|_{k=0}^{m+n}\binom{m+n}{k} \beta^{m+n-k}\left(2 \beta^{2} r\right)^{k} \\
& =\sum_{m, n=0}^{\infty}\left|f_{m}\right|\left|g_{n}\right|\left(\beta+2 \beta^{2} r\right)^{m+n}=\|f\|_{\varrho}\|g\|_{\varrho} . \tag{2.26}
\end{align*}
$$

3. Existence of a Non-Gaussian Fixed Point

In this section we prove the existence of a fixed point for the map $\mathscr{N}: f \mapsto A(f) f$ in the space \mathscr{B}_{e}, for some

$$
\begin{equation*}
\varrho>\frac{\beta}{1-2 \beta^{2}} . \tag{3.1}
\end{equation*}
$$

We assume the validity of five estimates ($\mathrm{N} 1-5$), which will be checked (i.e. broken down into trivial numerical inequalities) in Sect. 5. Our basic strategy is the following.

Denote by P the projection in \mathscr{B}_{ϱ}, defined by the equation

$$
(P f)_{n}= \begin{cases}f_{n}, & \text { if } n \leqq d, \tag{3.2}\\ 0, & \text { if } n>d,\end{cases}
$$

with $d=6$. We seek a fixed point of \mathscr{N} in a region $G \oplus H$, consisting of functions $f \in \mathscr{B}_{e}$ with a relatively well specified polynomial part $P f \in G$, and a small higher order part $(I-P) f \in H$. For any given $g \in G$, we define a map T_{g} by the equation

$$
\begin{equation*}
T_{g}(h)=(I-P) \mathcal{N}(g+h), \quad h \in H . \tag{3.3}
\end{equation*}
$$

It will be shown that this map is a contraction on H. Hence T_{g} has a unique fixed point $h=h^{*}(g)$ in H. Using this fixed point, which can be obtained by simply iterating T_{g}, we define a new map B,

$$
\begin{equation*}
B(\mathrm{~g})=P \mathscr{N}\left(g+h^{*}(g)\right), \quad g \in G . \tag{3.4}
\end{equation*}
$$

If we can prove that this map B (the beta function) has a fixed point $g^{*} \in G$, then the function $f^{*}=g^{*}+h^{*}\left(g^{*}\right)$ is a fixed point of \mathscr{N} in $G \oplus H$:

$$
\begin{align*}
\mathscr{N}\left(f^{*}\right) & =(I-P) \mathscr{N}\left(g^{*}+h^{*}\left(g^{*}\right)\right)+P \mathscr{N}\left(g^{*}+h^{*}\left(g^{*}\right)\right) \\
& =T_{g^{*}}\left(h^{*}\left(g^{*}\right)\right)+B\left(g^{*}\right)=h^{*}\left(g^{*}\right)+g^{*}=f^{*} . \tag{3.5}
\end{align*}
$$

Remark. For a purely numerical computation of f^{*}, the procedure outlined above already works for $d=4$. Numerically, the three largest eigenvalues of $D \mathcal{N}\left(f^{*}\right)$ are approximately $2,1.427$, and 0.859 . Thus, even a projection P of rank two (which makes B a map on \mathbb{R}^{2}) should do the job, if chosen appropriately. Our reason for taking $d=6$ is that this choice seems to minimize the amount of work needed to estimate both B and T_{g}.

To carry out the abovementioned steps, we decompose a function $f \in \mathscr{B}_{\varrho}$ into a polynomial part $g=P f$, and a remainder h. By decomposing the same way each of the terms in the sum $\mathcal{N}(f)=A(g) g+2 A(g)+A(h) h$, we end up with six terms, and each of them will now be estimated separately.
Lemma 3.1. Let $\kappa=0.46$. Then for any two functions h, \tilde{h} in $(I-P) \mathscr{B}_{\varrho}$ we have
(i) $\left|(A(h) \widetilde{h})_{k}\right| \leqq \varrho^{-14} A_{k, 7}^{(7)}\|h\|_{\varrho}\|\tilde{h}\|_{\varrho}, k=0,1, \ldots, 6$.
(ii) $\|(I-P) A(h) \widetilde{h}\|_{\varrho} \leqq \kappa\|h\|_{e}\|\tilde{h}\|_{e}$.

Proof. Without loss of generality we may assume that h and \tilde{h} are of norm one. To prove (i), we use that for $k \leqq 6$ and $i \geqq 14$,

$$
\begin{equation*}
\varrho^{-(i+1)} \beta^{k+(i+1)}\binom{i+1}{k}=\varrho^{-i} \beta^{k+i}\binom{i}{k} \frac{i+1}{i+1-k} \frac{\beta}{\varrho} \leqq \varrho^{-i} \beta^{k+i}\binom{i}{k} \tag{3.6}
\end{equation*}
$$

The last inequality in (3.6) follows since

$$
\begin{equation*}
\varrho>\frac{2 \beta}{2-4 \beta^{2}}=\frac{2 \beta}{2-2^{1 / 3}}>2 \beta \tag{3.7}
\end{equation*}
$$

By combining the bounds (2.18) and (3.6), we find that

$$
\begin{align*}
&\left|(A(h) \widetilde{h})_{k}\right| \leqq \sup _{m, n \geqq 7} \varrho^{-(m+n)} A_{k, n}^{(m)} \leqq \sup _{i \geqq 14} \varrho^{-i} \beta^{k+i} \sqrt{\binom{2 k}{k}}\binom{i}{k} \\
& \leqq \varrho^{-14} \beta^{k+14} \sqrt{\binom{2 k}{k}}\binom{14}{k}=\varrho^{-14} A_{k, 7}^{(7)} \tag{3.8}
\end{align*}
$$

and (i) follows. To prove (ii), we use again the bound (2.18):

$$
\begin{align*}
\|(I-P) A(h) \tilde{h}\|_{\varrho} & \leqq \sup _{m, n \geqq 7} \sum_{k=7}^{m+n} \varrho^{k-m-n} A_{k, n}^{(m)} \\
& \leqq \sup _{i \geqq 14}(\beta / \varrho)^{i} \sum_{k=7}^{i}(\beta \varrho)^{k} \sqrt{\binom{2 k}{k}}\binom{i}{k} \\
& \leqq \sqrt{4^{-7}\left(\frac{14}{7}\right)} \sup _{i \geqq 14}(\beta / \varrho)^{i} \sum_{k=0}^{i}(\beta \varrho)^{k} 2^{k}\binom{i}{k} \\
& =\sqrt{4^{-7}\binom{14}{7}} \sup _{i \geqq 14}\left(\beta / \varrho \varrho^{i}(1+2 \beta \varrho)^{i}<\sqrt{4^{-7}\binom{14}{7}} .\right. \tag{3.9}
\end{align*}
$$

The last square root in (3.9) equals $\sqrt{429 / 2048}$, which is smaller than 0.46 , as can easily be checked by verifying, e.g. that $2048 \times 0.46 \times 0.46>429$.

In order to estimate mixed terms of the form $A(g) h$, we will need bounds on the following sums $S_{m, n}$:

$$
\begin{equation*}
S_{m, n} \equiv \sum_{k \geqq 7} \varrho^{k-7} A_{k, n}^{(m)} \tag{3.10}
\end{equation*}
$$

Lemma 3.2. Define $\sigma_{m} \equiv \max \left\{S_{m, 7}, \varrho^{-1} S_{m, 8}\right\}$. If g is a function in $P \mathscr{B}_{\varrho}$, and $h a$ function in $(I-P) \mathscr{B}_{\varrho}$, then
(i) $\left|(A(g) h)_{k}\right| \leqq\|h\|_{\varrho} \varrho^{-7} \sum_{m=0}^{6} A_{k, 7}^{(m)}\left|g_{m}\right|, k=0,1, \ldots, 6$.
(ii) $\|(I-P) A(g) h\|_{\varrho} \leqq\|h\|_{\varrho} \sum_{m=0}^{6} \sigma_{m}\left|g_{m}\right|$.

Proof. Clearly,

$$
\begin{equation*}
\left|(A(g) h)_{k}\right| \leqq\|h\|_{\varrho} \sum_{m=0}^{6}\left|g_{m}\right| \max _{7 \leqq n \leqq k+m} \varrho^{-n} A_{k, n}^{(m)} . \tag{3.11}
\end{equation*}
$$

The following bound shows that the maximum in (3.11) is taken for $n=7$. If $j \equiv|k-m|<n$ and $l \equiv \max \{k, m\}<n$, then

$$
\begin{align*}
\frac{\varrho^{-(n+1)} A_{k, n+1}^{(m)}}{\varrho^{-n} A_{k, n}^{(m)}} & =\frac{\beta}{\varrho} \frac{\sqrt{(2 n+2)(2 n+1)}(k+m-n)}{(n+1+m-k)(n+1-m+k)} \leqq \frac{2 \beta}{\varrho} \frac{(n+1)(2 l-n-j)}{(n+1+j)(n+1-j)} \\
& =\frac{2 \beta}{\varrho} \frac{(n+1)(2 l-n)-(n+1) j}{(n+1)^{2}-j^{2}} \leqq \frac{2 \beta}{\varrho}<2-2^{1 / 3}<1 \tag{3.12}
\end{align*}
$$

This proves (i). In order to verify (ii), we note first that since

$$
\begin{align*}
A_{k+1, n+1}^{(m)} & =\beta^{2} \frac{\sqrt{(2 k+2)(2 n+2)} \sqrt{(2 k+1)(2 n+1)}}{(k+n+2-m)(k+n+1-m)} A_{k, n}^{(m)} \\
& \leqq \beta^{2} \frac{(k+n+2)(k+n+1)}{(k+n+2-m)(k+n+1-m)} A_{k, n}^{(m)} \tag{3.13}
\end{align*}
$$

we have

$$
\begin{align*}
S_{m, n+1} & =\sum_{k \geqq 7} \varrho^{k-7} A_{k, n+1}^{(m)}=A_{7, n+1}^{(m)}+\varrho \sum_{k \geqq 7} \varrho^{k-7} A_{k+1, n+1}^{(m)} \\
& \leqq A_{7, n+1}^{(m)}+\varrho \beta^{2} \frac{(7+n+2)(7+n+1)}{(7+n+2-m)(7+n+1-m)} \sum_{k \geqq 7} \varrho^{k-7} A_{k, n}^{(m)} \tag{3.14}
\end{align*}
$$

and thus

$$
\begin{equation*}
S_{m, n+1} \leqq A_{7, n+1}^{(m)}+\varrho \beta^{2} \frac{(9+n)(8+n)}{(3+n)(2+n)} S_{m, n}, \quad m \leqq 6 . \tag{3.15}
\end{equation*}
$$

If $m<7<n$, then by combining (3.15) with the bound

$$
\begin{equation*}
\varrho^{7-(n+1)} A_{7, n+1}^{(m)}=\varrho^{-2(n-6)} \varrho^{(n+1)-7} A_{n+1,7}^{(m)} \leqq \varrho^{-4} \sum_{k \geqq 7} \varrho^{k-7} A_{k, 7}^{(m)}=\varrho^{-4} S_{m, 7} \tag{3.16}
\end{equation*}
$$

we find that

$$
\begin{align*}
\varrho^{7-(n+1)} S_{m, n+1} & \leqq \varrho^{-4} S_{m, 7}+\varrho^{7-n} \beta^{2} \frac{17 \times 16}{11 \times 10} S_{m, n} \\
& \leqq\left[\varrho^{-4}+\frac{136}{55} \beta^{2}\right] \max \left\{S_{m, 7}, \varrho^{7-n} S_{m, n}\right\} \tag{3.17}
\end{align*}
$$

The assertion (ii) now follows since

$$
\begin{equation*}
\|(I-P) A(g) h\|_{\varrho} \leqq\|h\|_{\varrho} \sup _{n \geqq 7} \sum_{m=0}^{6} \varrho^{7-n} S_{m, n}\left|g_{m}\right|, \tag{3.18}
\end{equation*}
$$

and since the term [...] in (3.17) is bounded by

$$
\begin{equation*}
[\ldots]<\left(\frac{\beta}{1-2 \beta^{2}}\right)^{-4}+\frac{136}{55} \beta^{2}=24-30 \times 2^{-1 / 3}+\frac{34}{55} 2^{1 / 3}<1 \tag{3.19}
\end{equation*}
$$

as can easily be verified by using the inequalities (I 1) below.
The following inequalities will be used later on, in order to estimate powers of $2^{1 / 6}$ and $\varrho^{ \pm 1}$.

Inequalities 3.3. If $\varrho-\beta /\left(1-2 \beta^{2}\right)$ is a sufficiently small positive number, then

$$
\begin{array}{ll}
0.793700<2^{-1 / 3}<0.793701, & 1.259920<2^{1 / 3}<1.259922 \\
0.890897<2^{-1 / 6}<0.890900, & 1.122461<2^{1 / 6}<1.122463 \\
0.659331<\varrho^{-1}<0.659339, & 1.516670<\varrho<1.516689 \tag{I3}
\end{array}
$$

Proof. One way to prove (I 1) is by comparing the third power of 635 with twice the third power of 504 , which shows immediately that

$$
\left(\frac{635}{504}\right)^{3}<2<\left(1+10^{-6}\right)\left(\frac{635}{504}\right)^{3},
$$

and then computing 504/635 and 635/504 to seven decimals. The other bounds are easy to verify, if one proceeds in the order they are given. For example, the upper bound on $2^{1 / 6}$ follows from (I 1) since $(1.122463)^{2}>1.259922$. Note that it suffices to verify (I 3) for $\varrho=\beta /\left(1-2 \beta^{2}\right.$); in this case the identity $\varrho^{-1}=2 \times 2^{-1 / 6}-2^{1 / 6}$ can be used.

We are now ready to discuss the transformation T_{g} given by Eq. (3.3). From now on, ϱ is assumed to be a fixed number larger than $\beta /\left(1-2 \beta^{2}\right)$, that satisfies the bounds (I3). The sets G and H are given by

$$
\begin{align*}
G & =\left\{g \in \mathscr{B}_{e}:\left|g_{n}-p_{n}\right| \leqq \delta_{n} \forall n\right\}, \tag{3.20}\\
H & =\left\{h \in \mathscr{B}_{e}:\|h\|_{e} \leqq \frac{1}{10}, P h=0, h_{n} \geqq 0 \quad \forall n\right\},
\end{align*}
$$

where p and δ are the following two functions (to simplify notation, we identify a function $f \in \mathscr{B}_{e}$ with the sequence of its coefficients f_{n}).

$$
\begin{align*}
& p=(0.909,0.492,0.251,0.112,0.045,0.016,0.005,0,0, \ldots) \\
& \delta=(0.005,0.010,0.004,0.008,0.007,0.005,0.003,0,0, \ldots) \tag{3.21}
\end{align*}
$$

Proposition 3.4. Assume that

$$
\begin{align*}
& \sigma \equiv \sum_{m=0}^{6} \sigma_{m}\left(p_{m}+\delta_{m}\right) \leqq 0.157 \tag{N1}\\
& \tau \equiv \varrho^{7} \sum_{m, n=0}^{6} S_{m, n}\left(p_{m}+\delta_{m}\right)\left(p_{n}+\delta_{n}\right) \leqq 0.064
\end{align*}
$$

Then the map T_{g} has a unique fixed point $h^{*}(g)$ in H, for every $g \in G$, and the map $g \mapsto h^{*}(g)$ is continuous on G.
Proof. Let $g, \tilde{g}, \hat{g} \in G$ and $h, \tilde{h}, \hat{h} \in H$, and assume that (N1) and (N2) hold. Then by Lemma 3.1 and Lemma 3.2 we have the bounds

$$
\begin{align*}
\left\|T_{g}(h)\right\|_{\varrho} & \leqq\|(I-P) A(g) g\|_{e}+2\|(I-P) A(g) h\|_{e}+\|(I-P) A(h) h\|_{e} \\
& \leqq \tau+2_{\sigma} \frac{1}{10}+\kappa \frac{1}{100} \leqq \frac{1}{10}, \tag{3.22}
\end{align*}
$$

and

$$
\begin{align*}
\left\|T_{\tilde{g}}(\tilde{h})-T_{\hat{g}}(\hat{h})\right\|_{\varrho} \leqq & \|(I-P) A(\tilde{g}+\hat{g}+2 \hat{h})(\tilde{g}-\hat{g})\|_{\varrho} \\
& +\|(I-P) A(2 \tilde{g}+\tilde{h}+\hat{h})(\tilde{h}-\hat{h})\|_{\varrho} \\
\leqq & K\|\tilde{g}-\hat{g}\|_{\varrho}+2\left(\sigma+\kappa \frac{1}{10}\right)\|\tilde{h}-\hat{h}\|_{\varrho} \\
\leqq & K\|\tilde{g}-\hat{g}\|_{\varrho}+\frac{1}{2}\|\tilde{h}-\hat{h}\|_{\varrho} \tag{3.23}
\end{align*}
$$

for some constant K. Since $T_{g}(h)$ has no negative coefficients, it follows from (3.22) that T_{g} maps H to H. Furthermore, by setting $\tilde{g}=\hat{g}=g$ in (3.23), we see that T_{g} is a contraction on H. Thus, T_{g} has a unique fixed point $h^{*}(g)$ in H. This fixed point can be obtained by iterating T_{g}, starting e.g. with $h=0$. By using (3.23), we find that

$$
\begin{align*}
\left\|h^{*}(\tilde{g})-h^{*}(\hat{g})\right\|_{\varrho}= & \lim _{n \rightarrow \infty}\left\|T_{\tilde{g}}^{n}(0)-T_{\hat{g}}^{n}(0)\right\|_{\varrho} \\
& \leqq \sum_{n=0}^{\infty} 2^{-n} K\|\tilde{g}-\hat{g}\|_{\varrho}=2 K\|\tilde{g}-\hat{g}\|_{\varrho} \tag{3.24}
\end{align*}
$$

This shows that the map $g \mapsto h^{*}(g)$ is continuous on G.

Note that the assertion of Proposition 3.4 implies that the map B, given by Eq. (3.4), is well defined on G, and continuous.

In order to simplify the necessary numerical computations, we now approximate each of the coefficients $A_{k, n}^{(m)}$, for $0 \leqq k, m, n \leqq 6$, by the largest number $Q_{k, n}^{(m)}$ with the property that $1000 Q_{k, n}^{(m)}$ is a non-negative integer, and that

$$
\begin{equation*}
\left|\mathrm{A}_{k, n}^{(m)}-\mathrm{Q}_{k, n}^{(m)}\right| \leqq \frac{1}{2000}, \quad 0 \leqq k, m, n \leqq 6 . \tag{N3}
\end{equation*}
$$

Definition 3.5. If g is a vector in $P \mathscr{B}_{e}$, denote by $Q(g)$ be the symmetric 7×7 matrix with entries

$$
\begin{equation*}
Q(g)_{k, n}=\sum_{m=0}^{6} Q_{k, n}^{(m)} g_{m}, \quad 0 \leqq k, n \leqq 6 \tag{3.25}
\end{equation*}
$$

Define vectors u, v, w in $P \mathscr{B}_{e} \approx \mathbb{R}^{7}$ by the following equations:

$$
\begin{align*}
& u_{k}=\frac{1}{2000} \sum_{m=0}^{6}\left(p_{m}+\delta_{m}\right) \sum_{n=|k-m|}^{\min \{k+m, 6\}}\left(p_{n}+\delta_{n}\right), \\
& v_{k}=\frac{1}{10} \varrho^{-7} \sum_{m=0}^{6} A_{k, 7}^{(m)}\left(p_{m}+\delta_{m}\right), \\
& w_{k}=\frac{1}{100} \varrho^{-14} A_{k, 7}^{(7)}, \quad 0 \leqq k \leqq 6 . \tag{3.26}
\end{align*}
$$

To simplify notation, if g is a vector in $P \mathscr{B}_{\varrho}$, denote by $|g|$ the vector whose components are $\left|g_{k}\right|$. Similarly, if M is a matrix, then $|M|$ denotes the matrix whose entries are $\left|M_{k, n}\right|$. Finally, if f and g are vectors in $P \mathscr{B}^{\rho}$, we shall write $g \leqq f$ iff $g_{k} \leqq f_{k}$ for all k.

Proposition 3.6. Assume that ($\mathrm{N} 1-3$) hold, and let $\gamma_{k}=3 \times 10^{-5}$, for $0 \leqq k \leqq 6$. If there is a symmetric 7×7 matrix M, such that

$$
\begin{align*}
& \left|(I-M(2 Q(p)-I))_{k, n}\right| \leqq \frac{1}{2000}, \quad 0 \leqq k, n \leqq 6, \tag{N4}\\
& |M|(|Q(p) p-p|+Q(\delta) \delta+u+2 v+w)+\gamma \leqq \delta, \tag{N5}
\end{align*}
$$

then B has a fixed point in G.
Proof. First, we note that M is nonsingular. This follows since

$$
(I-(2 Q(p)-I) M) g=g
$$

whenever $M g=0$, which by (N4) implies that $g=0$. Consequently, we may consider the fixed point problem for the map $g \mapsto \tilde{g}$,

$$
\begin{equation*}
\tilde{g}=g-M(B(g)-g), \tag{3.27}
\end{equation*}
$$

instead of B. Assume now that $g \in G$. Then

$$
\begin{align*}
\tilde{g}-p= & (g-p)-M\left[P A\left(g+h^{*}(g)\right)\left(g+h^{*}(g)\right)-g\right] \\
= & (I-M(2 Q(p)-I))(g-p)-M[(Q(p) p-p)+Q(g-p)(g-p) \\
& \left.+(P A-Q)(g) g+2 P A(g) h^{*}(g)+P A\left(h^{*}(g)\right) h^{*}(g)\right] . \tag{3.28}
\end{align*}
$$

From (N4) and (3.21), together with the fact that $|g-p| \leqq \delta$, it follows that

$$
\begin{equation*}
|(I-M(2 Q(p)-I))(g-p)|_{k} \leqq \frac{1}{2000} \sum_{n=0}^{6} \delta_{n} \leqq \gamma_{k}, \quad 0 \leqq k \leqq 6 . \tag{3.29}
\end{equation*}
$$

By the definition of Q, and by Lemma 3.2 and Lemma 3.1, we also have

$$
\begin{equation*}
|(P A-Q)(g) g| \leqq u, \quad\left|P A(g) h^{*}(g)\right| \leqq v, \quad\left|P A\left(h^{*}(g)\right) h^{*}(g)\right| \leqq w . \tag{3.30}
\end{equation*}
$$

This shows that $|\tilde{g}-p|$ is bounded by the left-hand side of (N5) which, by assumption, is bounded by δ. Thus, $\tilde{g} \in G$. The assertion now follows by Brower's fixed point theorem.

As shown earlier in (3.5), the conclusions of the last two propositions imply the following theorem. The proof of this theorem is completed in Sect. 5, by verifying that the numerical bounds ($\mathrm{N} 1-5$) are satisfied.
Theorem 3.7. \mathscr{N} has a fixed point in $G \oplus H$.

4. Proof of Theorems $\mathbf{1 . 1}$ and 1.4

In this section we show that any nonzero fixed point f^{*} of \mathscr{N}, that lies in \mathscr{B}_{e} for some $\varrho>\beta /\left(1-2 \beta^{2}\right)$, and is different from $f_{\mathrm{HT}} \equiv 1$, has the properties described in Theorem 1.1 and Theorem 1.4. An example of such a fixed point (and probably the only example) is described in Sect. 3. We note that the Gaussian fixed point f_{UV} lies in \mathscr{B}_{ϱ} if and only if $\varrho<\beta /\left(1-2 \beta^{2}\right)$.
Lemma 4.1. Assume that $f^{*} \in \mathscr{B}_{\varrho}$ for some $\varrho>\beta /\left(1-2 \beta^{2}\right)$, and that f^{*} is a fixed point for \mathscr{N}. Then there are constants K, l such that

$$
\begin{equation*}
\left|f^{*}(t)\right| \leqq K e^{l|t|^{6 / 5}}, \quad \forall t \in \mathbb{C} \tag{4.1}
\end{equation*}
$$

Proof. We may assume that $f^{*} \neq 0$. Let $r=\beta /\left(1-2 \beta^{2}\right)$, and define $\phi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$ $\cup\{\infty\}$ by the equation $\phi(s)=\left\|f^{*}\right\|_{r+s}$. Then, as a consequence of Lemma 2.7, we have

$$
\begin{equation*}
\phi(s) \leqq \phi\left(2 \beta^{2} s\right)^{2} \leqq \ldots \leqq \phi\left(\left(2 \beta^{2}\right)^{n} s\right)^{2 n} \tag{4.2}
\end{equation*}
$$

for all n. This shows that in fact $f^{*} \in \mathscr{B}_{\varrho}$ for all $\varrho>r$. Let $I=\left[1, \frac{1}{2 \beta^{2}}\right]$, and define

$$
\begin{equation*}
c \equiv \max _{x \in I} x^{-3 / 2} \ln \phi(x) \tag{4.3}
\end{equation*}
$$

For any $s \geqq 1$, there exists $n \geqq 0$ and $x \in I$, such that $s=\left(2 \beta^{2}\right)^{-n} x$. Since $2 \beta^{2}=2^{-2 / 3}$, we have thus

$$
\begin{equation*}
\phi(s) \leqq \phi(x)^{2 n}=\phi(x)^{(s / x)^{3 / 2}} \leqq e^{c s^{3 / 2}} \tag{4.4}
\end{equation*}
$$

Let now t be any complex number of modulus at least $(r+1)^{5 / 4}$, and define $\varrho=|t|^{4 / 5}$. From the bound (4.4) and Lemma 2.1 it follows that

$$
\begin{align*}
\left\|f^{*}\right\|_{(\beta / \Omega)}^{2} & =\sum_{n=0}^{\infty} \frac{(\beta / \varrho)^{2 n}}{(2 n)!}\left|\left\langle f^{*}, p_{2 n}\right\rangle_{(\beta / \Omega)}\right|^{2} \\
& =\sum_{n=0}^{\infty} \frac{(\beta / \varrho)^{2 n}}{(2 n)!} \varrho^{4 n}\left|\left\langle f^{*}, p_{2 n}\right\rangle_{(\beta)}\right|^{2}=\sum_{n=0}^{\infty} \varrho^{2 n}\left|f_{n}^{*}\right|^{2} \tag{4.5}\\
& \leqq\left\|f^{*}\right\|_{\varrho}^{2} \leqq e^{2 c(\varrho-r)^{3 / 2}}
\end{align*}
$$

and thus, using again Lemma 2.1,

$$
\begin{equation*}
\left|f^{*}(t)\right| \leqq e^{c(\varrho-r)^{3 / 2}} \frac{1}{\sqrt[4]{1-(\beta / \varrho)^{2}}} e^{\frac{\beta}{\varrho^{-\beta}}|t|^{2}} \leqq 2 e^{(c+2 \beta)|t|^{6 / 5}} \tag{4.6}
\end{equation*}
$$

As mentioned in the introduction, \mathscr{N} has the following property:
Lemma 4.2. If g is a polynomial whose zeros lie in a strip $|\operatorname{Re}(z)| \leqq a$, then $\mathscr{N}(\mathrm{g})$ is a polynomial whose zeros lie in the strip $|\operatorname{Re}(z)| \leqq \beta a$.

Proof. Let d be the degree of g. We use the following formula for $\mathscr{N}(\mathrm{g})$:

$$
\begin{equation*}
(\mathcal{N}(g))\left(\beta^{-1} .\right)=e^{\frac{1}{4}\left(1-\beta^{2}\right) D^{2}} g^{2}=\lim _{n \rightarrow \infty} g_{n} \tag{4.7}
\end{equation*}
$$

where

$$
\begin{equation*}
g_{n} \equiv\left(1+i \frac{\sqrt{1-\beta^{2}}}{2 \sqrt{n}} D\right)^{n}\left(1-i \frac{\sqrt{1-\beta^{2}}}{2 \sqrt{n}} D\right)^{n} g^{2} \tag{4.8}
\end{equation*}
$$

and where D denotes differentiation. Equation (4.7) can be regarded as an identity in the vector space \mathscr{V} of polynomials of degree $\leqq 2 d$, equipped with some norm, where D acts as a bounded linear operator. Since convergence in \mathscr{V} implies uniform convergence on compact subsets of \mathbb{C}, the assertion will follow if we show that all zeros of g_{1}, g_{2}, \ldots lie in the strip $|\operatorname{Re}(z)| \leqq a$. But this is a consequence of the following theorem by Takagi [10]: If p is a polynomial of degree n, Z the set of its zeros, and s a complex number, then the zeros of the polynomial $t \mapsto p(t)-s p^{\prime}(t)$ lie in the convex hull of the set $Z \cup(Z+n s)$.

That this property of \mathscr{N} yields some information about the fixed points of \mathcal{N} is evident from the following fact.

Lemma 4.3. Assume that $f^{*} \in \mathscr{H}_{(\beta)}^{e}$ is a fixed point of \mathscr{N}, and that $\mid\left\|f^{*}\right\| \|<\infty$. Then there exists a polynomial g such that $\mathscr{N}(\mathrm{g}) \rightarrow f^{*}$ in $\mathscr{H}_{(\beta)}^{e}$, as $n \rightarrow \infty$.
Proof. We may assume that $f^{*} \neq 0$, which actually implies that $f^{*}(t)>0$ for all $t \in \mathbb{R}$. Let N be the map on $\mathscr{H}_{(\beta)}^{e}$, defined by $N(f)=\mathscr{N}\left(f^{*}+f\right)-f^{*}$. This map is clearly C^{1}, and by assumption $N(0)=0$. By Corollary 2.3 the derivative $D N_{0}$ $=2 A\left(f^{*}\right)$ of N at zero is positive and compact. Denote by \mathscr{H}^{s} and \mathscr{H}^{u} the spectral subspaces for $D N_{0}$ associated with the spectrum lying in $[0,1)$ and $[1, \infty)$, respectively. By the stable manifold theorem [12], N has a local stable manifold $\mathscr{W}^{s} \ni 0$, which is the graph of a $C^{1} \operatorname{map} \phi: U \cap \mathscr{H}^{s} \rightarrow \mathscr{H}^{u}$, where U is some open neighborhood of zero in $\mathscr{H}_{(\beta)}^{e}$.
\mathscr{W}^{s} can also be characterized as the inverse image of zero of the map $\psi: U \rightarrow \mathscr{H}^{u}$, defined by $\psi(f)=\phi\left(f^{s}\right)-f^{u}$, where f^{s} and f^{u} are the components of f in \mathscr{H}^{s} and \mathscr{H}^{u}, respectively. This map ψ is clearly C^{1}, and the rank of $D \psi_{0}$ is equal to $n \equiv \operatorname{dim} \mathscr{H}^{u}$, i.e. if we choose a basis (linear coordinates) in \mathscr{H}^{u} and denote by $\psi_{k}(f)$ the $k^{\text {th }}$ coordinate of $\psi(f)$, then the gradients $h_{k} \equiv \nabla \psi_{k}(0), 1 \leqq k \leqq n$, are linearly independent. Thus, for $h_{0}=f^{*}$, the map

$$
\begin{equation*}
F_{h_{0}, \ldots, h_{n}}:\left(\lambda_{1}, \ldots, \lambda_{n}\right) \mapsto \psi\left(h_{0}+\sum_{k=1}^{n} \lambda_{k} h_{k}-f^{*}\right) \tag{4.9}
\end{equation*}
$$

is a C^{1} diffeomorphism from some open neighborhood $V \ni 0$ in \mathbb{R}^{n} to some open neighborhood of zero in \mathscr{H}^{u}. By the implicit function theorem, the equation
$F_{g_{0}, \ldots, g_{n}}(\lambda)=0$ has a solution $\lambda \in V$ for any $\left(g_{0}, \ldots, g_{n}\right)$ in $\bigoplus_{k=0}^{n} \mathscr{H}_{(\beta)}^{e}$ sufficiently close to $\left(h_{0}, \ldots, h_{n}\right)$. But since polynomials are dense in $\mathscr{H}_{(\beta)}^{e}$, this implies that $\psi\left(g-f^{*}\right)=0$ for some polynomial g. Since $g-f^{*} \in \mathscr{W}^{s}$, we have $N^{n}\left(g-f^{*}\right) \rightarrow 0$ as $n \rightarrow \infty$, and the assertion follows.

Corollary 4.4. Assume that $f^{*} \in \mathscr{H}_{(\beta)}^{e}$ is a fixed point of \mathscr{N}, and that $\left|\left|\left|f^{*} \|\right|<\infty\right.\right.$. Then all zeros of f^{*} lie on the imaginary axis.
Proof. By Lemma 4.3 there is a sequence of polynomials $g, \mathcal{N}(g), \mathscr{N}^{2}(g), \ldots$ converging to f^{*}, and by Lemma 4.2 the zeros of $\mathscr{N}^{n}(g)$ lie in the strip $|\operatorname{Re}(z)| \leqq \beta^{n} a$ for some $a<\infty$. Thus, since convergence in $\mathscr{H}_{(\beta)}^{e}$ implies uniform convergence on compact subsets of \mathbb{C}, f^{*} cannot have any zeros off the imaginary axis (using e.g. the standard formula for the number of zeros inside a circle).

Proof of Theorem 1.1. We take $f_{\text {IR }}$ to be the fixed point of \mathscr{N} described in Sect. 3, or any other non-constant fixed point f^{*} that lies in one of the spaces \mathscr{B}_{ϱ} with $\varrho>\beta /\left(1-2 \beta^{2}\right)$. Then, by Lemma 4.1, the logarithm of $f^{*}(t)$ is bounded from above by a constant times $|t|^{6 / 5}$, i.e. the limit l_{+}in (1.3) is finite. For the same reason, the norm $\left|\left|\left|f^{*}\right|\right|\right|$ is finite, which, by Corollary 4.4 , implies that all zeros of f^{*} lie on the imaginary axis. Thus, $z \mapsto f^{*}(\sqrt{z})$ is an entire function of order $\leqq 3 / 5<1$, whose zeros are all real and negative. It now follows from Hadamard's factorization theorem that f^{*} is given by a canonical product (1.2). This implies in particular that f^{*} is convex, and thus

$$
\begin{align*}
f^{*}\left(\beta^{-1} t\right) & =\frac{1}{\sqrt{\left(1-\beta^{2}\right) \pi}} \int_{-\infty}^{\infty} d s e^{-\frac{1}{1-\beta^{2}} s^{2}} \frac{1}{2}\left[f^{*}(t+s)^{2}+f^{*}(t-s)^{2}\right] \\
& \geqq \frac{1}{\sqrt{\left(1-\beta^{2}\right) \pi}} \int_{-\infty}^{\infty} d s e^{-\frac{1}{1-\beta^{2}} s^{2}} f^{*}(t)^{2}=f^{*}(t)^{2}, \tag{4.10}
\end{align*}
$$

for all $t \in \mathbb{R}$. The inequality (4.10) shows that the sequence

$$
n \mapsto\left(\beta^{-n} t\right)^{-6 / 5} \ln f^{*}\left(\beta^{-n} t\right)
$$

is non-decreasing, and hence convergent, for any given $t \in \mathbb{R}$. In particular, if $f(t)>1$ (such a t exists since f^{*} is not constant), then the limit is positive, proving that $l_{+}>0$. The inequality (4.10) also shows that the function $t \mapsto t^{-6 / 5} \ln f^{*}(t)$ varies by no more than a factor of two on any interval $\left[t, \beta^{-1} t\right]$. Hence $l_{-} \geqq l_{+} / 2$. This completes the proof of Theorem 1.1.

Proof of Theorem 1.4. Let $f_{\text {IR }}$ be the fixed point of \mathcal{N} described in Theorem 1.1, or any other fixed point with the properties: f_{IR} is entire analytic, and real-valued when restricted to the real axis, and $t \mapsto f_{\mathrm{IR}}(t) \exp \left(-\varepsilon|t|^{2}\right)$ is a bounded function on \mathbb{C}, for every $\varepsilon>0$. Given any positive integer k, let $d=2^{k-1}$. By using that $f_{\text {IR }}=\mathcal{N}^{k}\left(f_{\text {IR }}\right)$, we obtain a representation for $f_{\text {IR }}$ of the form

$$
\begin{equation*}
f_{\mathrm{IR}}(t)=\exp \left(-2^{k-1} \beta^{2 k} \frac{1}{1-\beta^{2}} t^{2}\right) f_{k}(t) \tag{4.11}
\end{equation*}
$$

with

$$
\begin{equation*}
f_{k}(t)=\int d \mu_{k}(s) e^{t L_{k}(s)} \prod_{j=1}^{d} f_{\mathrm{IR}}\left(s_{j}\right)^{2}=\int_{-\infty}^{\infty} d x e^{t x} \int d \mu_{k}(s) \delta\left(x-L_{k}(s)\right) \prod_{j=1}^{d} f_{\mathrm{IR}}\left(s_{j}\right)^{2} \tag{4.12}
\end{equation*}
$$

where μ_{k} is some Gaussian measure on \mathbb{R}^{d}, and where L_{k} is some real-valued linear functional on \mathbb{R}^{d}. This shows that f_{IR} is the limit (uniformly on compact subsets of \mathbb{C}) of functions f_{k} with the property that $s \mapsto\left(D^{2 n} f_{k}\right)(i s)$ is the Fourier transform of a positive finite measure on \mathbb{R}, for all $n \geqq 0$. Thus, by Bochner's theorem [13], the function $s \mapsto f_{\mathrm{IR}}(i s)$ is the Fourier transform of a positive measure whose moments are all finite (by "measure" we always mean Baire measure). In particular, $f_{\mathrm{IR}}(i$. may be represented as follows:

$$
\begin{equation*}
f_{\mathrm{IR}}(i s)=\int d H_{\mathrm{IR}}(x) e^{-\lambda x^{2}} e^{2 i \lambda s x}, \quad s \in \mathbb{R} \tag{4.13}
\end{equation*}
$$

for some positive measure H_{IR} on \mathbb{R}. Since the $n^{\text {th }}$ moment of $H_{\mathrm{IR}}\left(g_{\mathrm{HT}}\right.$.) is equal to $\sqrt{2} \alpha(2 \lambda)^{-n}$ times the $n^{\text {th }}$ derivative of f_{IR} at zero, the identity (4.13) can be extended (using the dominated convergence theorem) to arbitrary $s \in \mathbb{C}$ by means of a power series in s. Furthermore, by replacing the second exponential in (4.13) by the power series for $\exp \left(\lambda x^{2}\right)$, we see (using the monotone convergence theorem) that $H_{\mathbb{I}}$ is a finite measure. This shows that $H_{\mathrm{IR}} * g_{\mathrm{HT}}$ is equal to $g_{\mathrm{IR}} \equiv g_{\mathrm{HT}} f_{\mathrm{IR}}$, and that Eq. (1.9) defines a finite positive measure $\mathscr{R}\left(H_{\mathrm{IR}}\right)$ on \mathbb{R}.

In order to prove that $\mathscr{R}\left(H_{\mathrm{IR}}\right)=H_{\mathrm{IR}}$, we need a more precise version of the relation (F2) between the transformations \mathscr{T} and \mathscr{R}. By using the identity

$$
\begin{aligned}
& 2 v s^{2}+\lambda(s+\alpha t-x)^{2}+\lambda(s+\alpha t-y)^{2} \\
& \quad=\frac{\lambda}{2}(x-y)^{2}+\lambda\left(t-\frac{x+y}{2 \alpha}\right)^{2}+4 \alpha^{2} v\left[s+\frac{\lambda}{4 \alpha^{2} v}(2 \alpha t-x-y)\right]^{2}
\end{aligned}
$$

together with Fubini's theorem, we find that for any finite measure H,

$$
\begin{align*}
\left(\mathscr{T}\left(H * g_{\mathrm{HT}}\right)\right)(t) & =2 \alpha^{2} \sqrt{\frac{2 v}{\pi}} \int_{-\infty}^{\infty} d s e^{-2 v s^{2}} \int d H(x) e^{-\lambda(s+\alpha t-x)^{2}} \int d H(y) e^{-\lambda(s+\alpha t-y)^{2}} \\
& =2 \alpha^{2} \sqrt{\frac{2 v}{\pi}} \int d H(x) \int d H(y) e^{-\frac{\lambda}{2}(x-y)^{2}} e^{-\lambda\left(t-\frac{x+y}{2 \alpha}\right)^{2}} \int_{-\infty}^{\infty} d s e^{-4 \alpha^{2} v[s+\ldots]^{2}} \\
& =\int d H(x) \int d H(y) e^{-\frac{\lambda}{2}(x-y)^{2}} g_{\mathrm{HT}}\left(t-\frac{x+y}{2 \alpha}\right) \\
& =\left(\mathscr{R}(H) * g_{\mathrm{HT}}\right)(t), \quad t \in \mathbb{R} \tag{4.14}
\end{align*}
$$

Thus, since $g_{\text {IR }}$ is a fixed point of \mathscr{T}, it follows that $\mathscr{R}\left(H_{\text {IR }}\right) * g_{\mathrm{HT}}$ is equal to

$$
H_{\mathrm{IR}} * g_{\mathrm{HT}}=g_{\mathrm{IR}}
$$

Let now H be any positive measure satisfying $H * g_{\mathrm{HT}}=g_{\mathrm{IR}}$. Then by analytic continuation we obtain the analogue of the identity (4.13), where H_{IR} is replaced by H. Consequently, the Fourier transform of $H\left(g_{\mathrm{HT}}.\right)$ agrees with that of $H_{\mathrm{IR}}\left(g_{\mathrm{HT}}.\right)$. This implies that $H\left(g_{\mathrm{HT}}.\right)=H_{\mathrm{IR}}\left(g_{\mathrm{HT}}.\right)$, and therefore $H=H_{\mathrm{IR}}$.

5. Numerical Estimates

In this section we prove the numerical bounds (N 1-5) used in Sect. 3. To check this proof, the only skill needed is the ability to correctly add and multiply simple floating point numbers; and no particular computing tool is required. We choose to use a computer (instructed not to round) for most of the calculations; but by sacrificing two or three weekends, we could have done the same with just pencil and paper.

The symmetric matrix M which will be used to verify (N4) and (N5) is the following:

$$
M=\left[\begin{array}{ccccrrr}
1.053 & 0.594 & -0.768 & -0.994 & -0.688 & -0.354 & -0.147 \\
. & -1.967 & 2.086 & 2.652 & 1.837 & 0.946 & 0.393 \\
. & . & -0.399 & 0.166 & 0.079 & 0.040 & 0.017 \\
. & . & . & -2.370 & -1.201 & -0.649 & -0.271 \\
. & . & . & . & -2.329 & -0.824 & -0.366 \\
. & . & . & . & . & -1.651 & -0.350 \\
. & . & . & . & . & . & -1.258
\end{array}\right]
$$

The table below gives the components of $g \equiv p+\delta$, where p and δ are the vectors (polynomials) defined earlier in (3.21), and bounds on powers of ϱ. These quantities will be used frequently later on.

Table 1. The vectors p, δ, g, and bounds on $\varrho^{-7}, \ldots, \varrho^{7}$

$p_{0}=0.909$,	$\delta_{0}=0.005$,	$g_{0}=0.914$,	$\varrho^{1} \leqq 1.517$,	$\varrho^{-1} \leqq 0.660$
$p_{1}=0.492$,	$\delta_{1}=0.010$,	$g_{1}=0.502$,	$\varrho^{2} \leqq 2.301$,	$\varrho^{-2} \leqq 0.435$
$p_{2}=0.251$,	$\delta_{2}=0.004$,	$g_{2}=0.255$,	$\varrho^{3} \leqq 3.489$,	$\varrho^{-3} \leqq 0.287$
$p_{3}=0.112$,	$\delta_{3}=0.008$,	$g_{3}=0.120$,	$\varrho^{4} \leqq 5.292$,	$\varrho^{-4} \leqq 0.189$
$p_{4}=0.045$,	$\delta_{4}=0.007$,	$g_{4}=0.052$,	$\varrho^{5} \leqq 8.026$,	$\varrho^{-5} \leqq 0.125$
$p_{5}=0.016$,	$\delta_{5}=0.005$,	$g_{5}=0.021$,	$\varrho^{6} \leqq 12.18$,	$\varrho^{-6} \leqq 0.083$
$p_{6}=0.005$,	$\delta_{6}=0.003$,	$g_{6}=0.008$,	$\varrho^{7} \leqq 18.47$,	$\varrho^{-7} \leqq 0.055$

The above bounds of the form $\varrho^{k} \leqq r_{k}$ were obtained iteratively by setting $r_{k}=r_{k-i} r_{i}$, rounded up to 5 digits after the decimal point, where i is the integer part of $k / 2$. The iteration was started with the upper bounds $r_{ \pm 1}$ in the inequalities (I 3) of Sect. 3, and with $r_{0}=1$. At the end, the numbers r_{k} were rounded up to the number of decimals shown in Table 1.
5.1. Proof of (N1). Most of the work in proving that $\sigma \leqq 0.157$ and $\tau \leqq 0.064$ goes into estimating 62 of the coefficients $A_{k, n}^{(m)}$. The following bounds will turn out to be sufficient:

Table 2. Bounds on $A_{k, n}^{(m)}$ for $0 \leqq m \leqq 6$ and $m \leqq k \leqq 7 \leqq n \leqq 13$

$$
\begin{array}{lll}
\hline A_{7,7}^{(0)}=2^{-1 / 6} \times \frac{1000}{4096} \times \frac{\sqrt{2}}{1000} & \leqq 0.9 \times 0.3 \times 0.002 & \leqq 0.001 \\
A_{6,7}^{(1)}=2^{-1 / 6} \times \frac{1000}{4096} \times \frac{\sqrt{182}}{1000} & \leqq 0.891 \times 0.245 \times 0.0135 & \leqq 0.003 \\
A_{7,7}^{(1)}=\frac{700}{2048} \times \frac{\sqrt{1}}{100} & \leqq 0.4 \times 0.01 & \leqq 0.004 \\
A_{7,8}^{(1)}=2^{-1 / 3} \times \frac{1000}{4096} \times \frac{\sqrt{30}}{1000} & \leqq 0.8 \times 0.25 \times 0.01 & \leqq 0.002 \\
A_{5,7}^{(2)}=2^{-1 / 6} \times \frac{1000}{4096} \times \frac{\sqrt{2002}}{1000} & \leqq 0.90 \times 0.245 \times 0.045 & \leqq 0.010
\end{array}
$$

Table 2 (continued)

$$
\begin{aligned}
& A_{6,7}^{(2)}=\frac{1000}{1024} \times \frac{\sqrt{546}}{1000} \quad \leqq 0.98 \times 0.0234 \quad \leqq 0.023 \\
& A_{6,8}^{(2)}=2^{-1 / 3} \times \frac{1000}{4096} \times \frac{\sqrt{455}}{1000} \leqq 0.80 \times 0.25 \times 0.022 \quad \leqq 0.005 \\
& A_{7,7}^{(2)}=2^{-1 / 3} \times \frac{910}{8192} \times \frac{\sqrt{6}}{10} \quad \leqq 0.80 \times 0.112 \times 0.245 \quad \leqq 0.022 \\
& A_{7,8}^{(2)}=2^{-1 / 6} \times \frac{700}{2048} \times \frac{\sqrt{10}}{100} \leqq 0.891 \times 0.35 \times 0.032 \quad \leqq 0.010 \\
& A_{7,9}^{(2)}=\frac{3000}{16384} \times \frac{\sqrt{85}}{1000} \quad \leqq 0.2 \times 0.01 \quad \leqq 0.002 \\
& A_{4,7}^{(3)}=2^{-1 / 6} \times \frac{1000}{4096} \times \frac{\sqrt{6006}}{1000} \leqq 0.891 \times 0.2442 \times 0.078 \quad \leqq 0.017 \\
& A_{5,7}^{(3)}=\frac{1000}{2048} \times \frac{\sqrt{15015}}{1000} \quad \leqq 0.489 \times 0.1226 \quad \leqq 0.060 \\
& A_{5,8}^{(3)}=2^{-1 / 3} \times \frac{1000}{4096} \times \frac{\sqrt{2002}}{1000} \quad \leqq 0.80 \times 0.245 \times 0.045 \quad \leqq 0.009 \\
& A_{6,7}^{(3)}=2^{-1 / 3} \times \frac{3300}{8192} \times \frac{\sqrt{910}}{100} \leqq 0.794 \times 0.403 \times 0.302 \quad \leqq 0.097 \\
& A_{6,8}^{(3)}=2^{-1 / 6} \times \frac{300}{2048} \times \frac{\sqrt{546}}{100} \leqq 0.891 \times 0.147 \times 0.234 \quad \leqq 0.031 \\
& A_{6,9}^{(3)}=\frac{10000}{16384} \times \frac{\sqrt{4641}}{10000} \leqq 0.7 \times 0.007 \quad \leqq 0.005 \\
& A_{7,7}^{(3)}=2^{-1 / 6} \times \frac{910}{2048} \times \frac{\sqrt{5}}{10} \quad \leqq 0.891 \times 0.445 \times 0.224 \quad \leqq 0.089 \\
& A_{7,8}^{(3)}=\frac{4550}{16384} \times \frac{\sqrt{3}}{10} \quad \leqq 0.278 \times 0.174 \quad \leqq 0.049 \\
& A_{7,9}^{(3)}=2^{-1 / 3} \times \frac{2100}{8192} \times \frac{\sqrt{51}}{100} \leqq 0.80 \times 0.257 \times 0.072 \quad \leqq 0.015 \\
& A_{7,10}^{(3)}=2^{-1 / 6} \times \frac{10000}{32768} \times \frac{\sqrt{4845}}{10000} \leqq 0.9 \times 0.31 \times 0.007 \quad \leqq 0.002 \\
& A_{4,7}^{(4)}=\frac{100}{256} \times \frac{\sqrt{429}}{100} \quad \leqq 0.3907 \times 0.2072 \quad \leqq 0.081 \\
& A_{4,8}^{(4)}=2^{-1 / 3} \times \frac{3000}{8192} \times \frac{\sqrt{1430}}{1000} \quad \leqq 0.7938 \times 0.3663 \times 0.03782 \leqq 0.011 \\
& A_{5,7}^{(4)}=2^{-1 / 3} \times \frac{2100}{4096} \times \frac{\sqrt{2145}}{100} \leqq 0.794 \times 0.513 \times 0.464 \leqq 0.189 \\
& A_{5,8}^{(4)}=2^{-1 / 6} \times \frac{500}{1024} \times \frac{\sqrt{143}}{100} \leqq 0.90 \times 0.49 \times 0.120 \quad \leqq 0.053 \\
& A_{5,9}^{(4)}=\frac{30000}{32768} \times \frac{\sqrt{4862}}{10000} \quad \leqq 1.0 \times 0.007 \quad \leqq 0.007 \\
& A_{6,7}^{(4)}=2^{-1 / 6} \times \frac{770}{2048} \times \frac{\sqrt{65}}{10} \quad \leqq 0.891 \times 0.376 \times 0.807 \quad \leqq 0.271
\end{aligned}
$$

Table 2 (continued)

$$
\begin{array}{lll}
A_{6,8}^{(4)}=\frac{770}{4096} \times \frac{\sqrt{39}}{10} & \leqq 0.1880 \times 0.625 & \leqq 0.118 \\
A_{6,9}^{(4)}=2^{-1 / 3} \times \frac{300}{2048} \times \frac{\sqrt{663}}{100} & \leqq 0.7938 \times 0.1465 \times 0.2575 & \leqq 0.030 \\
A_{6,10}^{(4)}=2^{-1 / 6} \times \frac{10000}{65536} \times \frac{\sqrt{62985}}{10000} & \leqq 0.90 \times 0.16 \times 0.026 & \leqq 0.004 \\
A_{7,7}^{(4)}=\frac{10010}{32768} \times \frac{\sqrt{70}}{10} & \leqq 0.3055 \times 0.837 & \leqq 0.256 \\
A_{7,8}^{(4)}=2^{-1 / 3} \times \frac{910}{2048} \times \frac{\sqrt{21}}{10} & \leqq 0.794 \times 0.4444 \times 0.459 & \leqq 0.162 \\
A_{7,9}^{(4)}=2^{-1 / 6} \times \frac{9100}{32768} \times \frac{\sqrt{714}}{100} & \leqq 0.891 \times 0.278 \times 0.27 & \leqq 0.067 \\
A_{7,10}^{(4)}=\frac{10000}{16384} \times \frac{\sqrt{67830}}{10000} & \leqq 0.611 \times 0.0261 & \leqq 0.016 \\
A_{7,11}^{(4)}=2^{-1 / 3} \times \frac{30000}{262144} \times \frac{\sqrt{35530}}{10000} & \leqq 0.8 \times 0.12 \times 0.02 & \leqq 0.002 \\
A_{5,7}^{(5)}=2^{-1 / 6} \times \frac{150}{1024} \times \frac{\sqrt{858}}{10} & \leqq 0.8909 \times 0.1465 \times 2.93 & \leqq 0.383 \\
A_{5,8}^{(5)}=\frac{13500}{32768} \times \frac{\sqrt{1430}}{100} & \leqq 0.4120 \times 0.3782 & \leqq 0.156 \\
A_{5,9}^{(5)}=2^{-1 / 3} \times \frac{5000}{16384} \times \frac{\sqrt{24310}}{1000} & \leqq 0.794 \times 0.306 \times 0.156 & \leqq 0.038 \\
A_{5,10}^{(5)}=2^{-1 / 6} \times \frac{10000}{65536} \times \frac{\sqrt{92378}}{10000} & \leqq 0.90 \times 0.16 \times 0.031 & \leqq 0.005 \\
A_{6,7}^{(5)}=\frac{3465}{32768} \times \sqrt{26} & \leqq 0.1058 \times 5.10 & \leqq 0.540 \\
A_{6,8}^{(5)}=2^{-1 / 3} \times \frac{550}{2048} \times \frac{\sqrt{195}}{10} & \leqq 0.7938 \times 0.2686 \times 1.397 & \leqq 0.298 \\
A_{6,9}^{(5)}=2^{-1 / 6} \times \frac{9900}{65536} \times \frac{\sqrt{6630}}{100} & \leqq 0.891 \times 0.1511 \times 0.815 & \leqq 0.110 \\
A_{6,10}^{(5)}=2^{-1 / 3} \times \frac{195000}{262144} \times \frac{\sqrt{13566}}{1000} & \leqq 0.794 \times 0.744 \times 0.1165 & \leqq 0.069 \\
A_{6,10}^{(5)}=\frac{5000}{32768} \times \frac{\sqrt{25194}}{1000} & \leqq 0.153 \times 0.16 & \leqq 0.025 \\
A_{7,9}^{(5)}=\frac{3900}{8192} \times \frac{\sqrt{1785}}{100} & \leqq 0.202 \\
A_{7,7}^{(5)}=2^{-1 / 3} \times \frac{100000}{262144} \times \frac{\sqrt{646646}}{100000} & \leqq 0.80 \times 0.39 \times 0.009 & \leqq 0.003 \\
A_{7,8}^{(5)}=2^{-1 / 6} \times \frac{10010}{32768} \times \frac{\sqrt{210}}{10} & \leqq 0.8909 \times 0.3055 \times 1.45 & \leqq 0.395 \\
& \leqq 0.7977 \times 0.423 & \\
\hline
\end{array}
$$

Table 2 (continued)

$A_{7,11}^{(5)}=2^{-1 / 6} \times \frac{35000}{131072} \times \frac{\sqrt{3553}}{1000}$	$\leqq 0.9 \times 0.27 \times 0.06$	$\leqq 0.015$
$A_{7,12}^{(5)}=\frac{100000}{524288} \times \frac{\sqrt{490314}}{100000}$	$\leqq 0.2 \times 0.01$	$\leqq 0.002$
$A_{6,7}^{(6)}=2^{-1 / 3} \times \frac{990}{2048} \times \frac{\sqrt{429}}{10}$	$\leqq 0.7938 \times 0.4834 \times 2.0713$	$\leqq 0.795$
$A_{6,8}^{(6)}=2^{-1 / 6} \times \frac{14850}{65536} \times \frac{\sqrt{715}}{10}$	$\leqq 0.8909 \times 0.2266 \times 2.674$	$\leqq 0.540$
$A_{6,9}^{(6)}=\frac{5500}{32768} \times \frac{\sqrt{24310}}{100}$	$\leqq 0.1679 \times 1.56$	$\leqq 0.262$
$A_{6,10}^{(6)}=2^{-1 / 3} \times \frac{33000}{65536} \times \frac{\sqrt{46189}}{1000}$	$\leqq 0.7938 \times 0.5036 \times 0.2150$	$\leqq 0.086$
$A_{6,11}^{(6)}=2^{-1 / 6} \times \frac{30000}{65536} \times \frac{\sqrt{176358}}{10000}$	$\leqq 0.9 \times 0.46 \times 0.042$	$\leqq 0.018$
$A_{6,12}^{(6)}=\frac{100000}{524288} \times \frac{\sqrt{676039}}{100000}$	$\leqq 0.2 \times 0.01$	$\leqq 0.002$
$A_{7,7}^{(6)}=2^{-1 / 6} \times \frac{30030}{65536} \times \frac{\sqrt{462}}{10}$	$\leqq 0.8909 \times 0.4583 \times 2.150$	$\leqq 0.878$
$A_{7,8}^{(6)}=\frac{4290}{16384} \times \frac{\sqrt{770}}{10}$	$\leqq 0.2619 \times 2.775$	$\leqq 0.727$
$A_{7,9}^{(6)}=2^{-1 / 3} \times \frac{128700}{262144} \times \frac{\sqrt{13090}}{100}$	$\leqq 0.7938 \times 0.4910 \times 1.1442$	$\leqq 0.446$
$A_{7,10}^{(6)}=2^{-1 / 6} \times \frac{65000}{65536} \times \frac{\sqrt{49742}}{1000}$	$\leqq 0.891 \times 0.992 \times 0.224$	$\leqq 0.198$
$A_{7,11}^{(6)}=\frac{100100}{524288} \times \frac{\sqrt{969}}{100}$	$\leqq 0.191 \times 0.312$	$\leqq 0.060$
$A_{7,12}^{(6)}=2^{-1 / 3} \times \frac{21000}{131072} \times \frac{\sqrt{7429}}{1000}$	$\leqq 0.794 \times 0.1603 \times 0.0862$	$\leqq 0.011$
$A_{7,13}^{(6)}=2^{-1 / 6} \times \frac{500000}{2097152} \times \frac{\sqrt{193154}}{100000}$	$\stackrel{+}{-} \leqq 0.90 \times 0.239 \times 0.0044$	$\leqq 0.001$

The equalities in this table are obtained by simplifying (in an obvious way) the expression (2.18) for each of the coefficients $A_{k, n}^{(m)}$. Then, in order to verify e.g. that $A_{7,11}^{(5)} \leqq 0.015$, it suffices to check that $0.27 \times 131072 \geqq 35000$ and $(1000 \times 0.06)^{2}$ $\geqq 3553$, and that $0.9 \times 0.27 \times 0.06 \leqq 0.015$. Here, the bound $2{ }^{10} \leqq 0.9$ follows from inequality (I2) in Sect. 3.

By using the inequalities from the last two tables, we get immediately the following bounds on the sums $S_{m, n}$, defined in (3.10). Note that the coefficients $A_{k, n}^{(m)}$ are symmetric under permutations of the indices k, m, n, and that many of these coefficients are zero; see Lemma 2.5.

Table 3. Bounds on the sums $S_{m, n}$, for $0 \leqq m \leqq n \leqq 7$, which are not zero

$S_{m, n}=A_{7, n}^{(m)}+\varrho A_{8, n}^{(m)}+\varrho^{2} A_{9, n}^{(m)}+\varrho^{3} A_{10, n}^{(m)}+\varrho^{4} A_{11, n}^{(m)}+\varrho^{5} A_{12, n}^{(m)}+\varrho^{6} A_{13, n}^{(m)}$	
$S_{0,7} \leqq 0.001$	$\leqq 0.001$
$S_{1,6} \leqq 0.003$	$\leqq 0.003$
$S_{1,7} \leqq 0.004+0.00304$	$\leqq 0.008$
$S_{2,5} \leqq 0.010$	$\leqq 0.010$
$S_{2,6} \leqq 0.023+0.00759$	$\leqq 0.031$
$S_{2,7} \leqq 0.022+0.01517+0.00461$	$\leqq 0.042$
$S_{3,4} \leqq 0.017$	$\leqq 0.017$
$S_{3,5} \leqq 0.060+0.01366$	$\leqq 0.074$
$S_{3,6} \leqq 0.097+0.04703+0.01151$	$\leqq 0.156$
$S_{3,7} \leqq 0.089+0.07434+0.03452+0.00698$	$\leqq 0.205$
$S_{4,4} \leqq 0.081+0.01669$	$\leqq 0.098$
$S_{4,5} \leqq 0.189+0.08041+0.01611$	$\leqq 0.286$
$S_{4,6} \leqq 0.271+0.17901+0.06903+0.01396$	$\leqq 0.533$
$S_{4,7} \leqq 0.256+0.24576+0.15417+0.05583+0.01059$	$\leqq 0.723$
$S_{5,5} \leqq 0.383+0.23666+0.08744+0.01745$	$\leqq 0.725$
$S_{5,6} \leqq 0.540+0.45207+0.25311+0.08723+0.01588$	$\leqq 1.349$
$S_{5,7} \leqq 0.545+0.59922+0.46481+0.24075+0.07938+0.01606$	$\leqq 1.946$
$S_{6,6} \leqq 0.795+0.81918+0.60287+0.30006+0.09526+0.01606$	$\leqq 2.629$
$S_{6,7} \leqq 0.878+1.10286+1.02625+0.69083+0.31752+0.08829+0.01218 \leqq 4.116$	

In order to bound $\varrho^{-1} S_{m, 8}$, and then $\sigma_{m}=\max \left\{S_{m, 7}, \varrho^{-1} S_{m, 8}\right\}$, we use the inequality (3.15) with $n=7$, together with the bounds from Table 2 and Table 3.

Table 4. Bounds on $\sigma_{0}, \ldots, \sigma_{6}$

$$
\begin{array}{ll}
\varrho^{-1} S_{m, 8} \leqq \varrho^{-1} \times A_{8,7}^{(m)}+\frac{8}{3} \beta^{2} \times S_{m, 7} & \\
\varrho^{-1} S_{0,8} \leqq 0.66 \times 0.000+0.84 \times 0.001 \leqq 0.001, & \sigma_{0} \leqq 0.001 \\
\varrho^{-1} S_{1,8} \leqq 0.66 \times 0.002+0.84 \times 0.008 \leqq 0.009, & \sigma_{1} \leqq 0.009 \\
\varrho^{-1} S_{2,8} \leqq 0.66 \times 0.010+0.84 \times 0.042 \leqq 0.042, & \sigma_{2} \leqq 0.042 \\
\varrho^{-1} S_{3,8} \leqq 0.66 \times 0.049+0.84 \times 0.205 \leqq 0.205, & \sigma_{3} \leqq 0.205 \\
\varrho^{-1} S_{4,8} \leqq 0.66 \times 0.162+0.84 \times 0.723 \leqq 0.715, & \sigma_{4} \leqq 0.723 \\
\varrho^{-1} S_{5,8} \leqq 0.66 \times 0.395+0.84 \times 1.946 \leqq 1.896, & \sigma_{5} \leqq 1.946 \\
\varrho^{-1} S_{6,8} \leqq 0.66 \times 0.727+0.84 \times 4.116 \leqq 3.938, & \sigma_{6} \leqq 4.116 \\
\hline
\end{array}
$$

From these bounds, using the values of g_{0}, \ldots, g_{6} given in Table 1, it follows that $\sigma=\sigma_{0} g_{0}+\sigma_{1} g_{1}+\sigma_{2} g_{2}+\sigma_{3} g_{3}+\sigma_{4} g_{4}+\sigma_{5} g_{5}+\sigma_{6} g_{6}$

$$
\begin{aligned}
& \leqq 0.000914+0.004518+0.010710+0.024600+0.037596+0.040866+0.032928 \\
& \leqq 0.153
\end{aligned}
$$

which completes the proof of (N 1).
5.2. Proof of (N2). By definition, τ is obtained by adding up all the products $\varrho^{7} g_{m} S_{m, n} g_{n}$, for $0 \leqq m, n \leqq 6$. By using the values from Table 1 and Table 3, the sum over all $n \leqq 6$ of $S_{m, n} g_{n}$ is bounded as follows:

Table 5. Bounds on $(S g)_{m}$, for $1 \leqq m \leqq 6 ;(S g)_{0}=0$

$(S g)_{m} \leqq S_{m, 1} g_{1}+S_{m, 2} g_{2}+S_{m, 3} g_{3}+S_{m, 4} g_{4}+S_{m, 5} g_{5}+S_{m, 6} g_{6}$	
$(S g)_{1} \leqq$	$0.000024 \leqq 0.00003$
$(\mathrm{Sg})_{2} \leqq$	$0.000210+0.000248 \leqq 0.00046$
$(\mathrm{Sg})_{3} \leqq$	$0.000884+0.001554+0.001248 \leqq 0.00369$
$(\mathrm{Sg})_{4} \leqq$	$0.002040+0.005096+0.006006+0.004264 \leqq 0.01741$
$(\mathrm{Sg})_{5} \leqq$	$0.002550+0.008880+0.014872+0.015225+0.010792 \leqq 0.05232$
$(\mathrm{Sg})_{6} \leqq 0.001506+0.007905+0.018720+0.027716+0.028329+0.021032 \leqq 0.10521$	

Given these inequalities, and from Table 1 the values of g_{n} and the bound on ϱ^{7}, we find

$$
\begin{aligned}
\tau & =\varrho^{7}\left[g_{1}(\mathrm{Sg})_{1}+g_{2}(\mathrm{Sg})_{2}+g_{3}(\mathrm{Sg})_{3}+g_{4}(\mathrm{Sg})_{4}+g_{5}(\mathrm{Sg})_{5}+g_{6}(\mathrm{Sg})_{6}\right] \\
& \leqq 18.47[0.000016+0.000118+0.000443+0.000906+0.001099+0.000842] \\
& =18.47 \times 0.003424 \\
& \leqq 0.064
\end{aligned}
$$

which completes the proof of (N 2).
5.3. Proof of (N3). In the next table we define the numbers $Q_{k, n}^{(m)}$ and verify (N 3), by giving bounds of the form $A_{k, n}^{(m)} \in Q_{k, n}^{(m)} \pm \varepsilon$, where ε denotes the interval [0, 1/2000]. Here $a \in q+\varepsilon$ means that $a-q \in \varepsilon$, and $a \in q-\varepsilon$ means that $q-a \in \varepsilon$. The values $Q_{k, n}^{(m)}$ which are not given below are either zero (if $m+k<n$), or determined by symmetry.

Table 6. Definition of $Q_{k, n}^{(m)}$ and bound on $A_{k, n}^{(m)}$, for $0 \leqq m \leqq k \leqq n \leqq 6$

$A_{k, n}^{(m)}$	$\in 1 \times 1$	$Q_{k, n}^{(m)}$ $A_{0,0}^{(0)}=1 \times \sqrt{1}$
$A_{1,1}^{(0)}=2^{-1 / 6} \times \frac{1}{4} \times \sqrt{2}$	$\in 0.890[89,90] \times 0.25 \times 1.414[2,3]$	$\in 0.315-\varepsilon$
$A_{2,2}^{(0)}=2^{-1 / 3} \times \frac{1}{8} \times \sqrt{1}$	$\in 0.79[3,4] \times 0.125 \times 1$	$\in 0.099+\varepsilon$
$A_{3,3}^{(0)}=\frac{10}{32} \times \frac{\sqrt{1}}{10}$	$\in 0.31[2,3] \times 0.1$	$\in 0.031+\varepsilon$
$A_{4,4}^{(0)}=2^{-1 / 6} \times \frac{100}{128} \times \frac{\sqrt{2}}{100}$	$\in 0.89[0,1] \times 0.7[8,9] \times 0.014[1,2]$	$\in 0.010-\varepsilon$
$A_{5,5}^{(0)}=2^{-1 / 3} \times \frac{100}{256} \times \frac{\sqrt{1}}{100}$	$\in 0 .[79,80] \times 0 .[39,40] \times 0.01$	$\in 0.003+\varepsilon$
$A_{6,6}^{(0)}=\frac{1000}{1024} \times \frac{\sqrt{1}}{1000}$	$\in[0.9,1.0] \times 0.001$	$\in 0.001-\varepsilon$
$A_{1,1}^{(1)}=\frac{1}{2} \times \sqrt{1}$	$\in 0.5 \times 1$	$\in 0.500-\varepsilon$
$A_{1,2}^{(1)}=2^{-1 / 3} \times \frac{1}{8} \times \sqrt{6}$	$\in 0.793[7,8] \times 0.125 \times 2.449[4,5]$	$\in 0.243+\varepsilon$
$A_{2,2}^{(1)}=2^{-1 / 6} \times \frac{1}{4} \times \sqrt{2}$	$\in 0.890[89,90] \times 0.25 \times 1.414[2,3]$	$\in 0.315-\varepsilon$
$A_{2,3}^{(1)}=\frac{10}{32} \times \frac{\sqrt{15}}{10}$	$\in 0.3125 \times 0.387[2,3]$	$\in 0.121+\varepsilon$
$A_{3,3}^{(1)}=2^{-1 / 3} \times \frac{3}{16} \times \sqrt{1}$	$\in 0.79[3,4] \times 0.1875 \times 1$	$\in 0.149-\varepsilon$
$A_{3,4}^{(1)}=2^{-1 / 6} \times \frac{10}{64} \times \frac{\sqrt{14}}{10}$	$\in 0.890[8,9] \times 0.156[2,3] \times 0.37[4,5]$	$\in 0.052+\varepsilon$
$A_{4,4}^{(1)}=\frac{10}{16} \times \frac{\sqrt{1}}{10}$	$\in 0.625 \times 0.1$	$\in 0.063-\varepsilon$
$A_{4,5}^{(1)}=2^{-1 / 3} \times \frac{30}{256} \times \frac{\sqrt{5}}{10}$	$\in 0.79[3,4] \times 0.11[7,8] \times 0.22[3,4]$	$\in 0.021-\varepsilon$

Table 6 (continued)

$A_{5,5}^{(1)}=2^{-1 / 6} \times \frac{50}{256} \times \frac{\sqrt{2}}{10}$	$\in 0.89[0,1] \times 0.195[3,4] \times 0.14[1,2]$	$\in 0.025-\varepsilon$
$A_{5,6}^{(1)}=\frac{1000}{1024} \times \frac{\sqrt{66}}{1000}$	$\in 0.97[6,7] \times 0.0081[2,3]$	$\epsilon 0.008-\varepsilon$
$A_{6,6}^{(1)}=2^{-1 / 3} \times \frac{30}{256} \times \frac{\sqrt{1}}{10}$	$\in 0 .[79,80] \times 0.11[7,8] \times 0.1$	$\epsilon 0.009+\varepsilon$
$A_{2,2}^{(2)}=\frac{3}{16} \times \sqrt{6}$	$\in 0.1875 \times 2.4[49,50]$	$\epsilon 0.459+\varepsilon$
$A_{2,3}^{(2)}=2^{-1 / 3} \times \frac{1}{8} \times \sqrt{10}$	$\in 0.793[7,8] \times 0.125 \times 3.16[2,3]$	$\in 0.314-\varepsilon$
$A_{2,4}^{(2)}=2^{-1 / 6} \times \frac{10}{64} \times \frac{\sqrt{35}}{10}$	$\in 0.89[0,1] \times 0.156[2,3] \times 0.59[1,2]$	$\in 0.082+\varepsilon$
$A_{3,3}^{(2)}=2^{-1 / 6} \times \frac{15}{64} \times \sqrt{3}$	$\in 0.890[89,90] \times 0.234[3,4] \times 1.73[2,3]$	$\in 0.362-\varepsilon$
$A_{3,4}^{(2)}=\frac{10}{32} \times \frac{\sqrt{42}}{10}$	$\in 0.3125 \times 0.64[8,9]$	$\in 0.203-\varepsilon$
$A_{3,5}^{(2)}=2^{-1 / 3} \times \frac{100}{256} \times \frac{\sqrt{210}}{100}$	$\in 0.793[7,8] \times 0.390[6,7] \times 0.14[4,5]$	$\epsilon 0.045-\varepsilon$
$A_{4,4}^{(2)}=2^{-1 / 3} \times \frac{7}{64} \times \sqrt{6}$	$\in 0.793[7,8] \times 0.1093[7,8] \times 2.4[49,50]$	$\in 0.213-\varepsilon$
$A_{4,5}^{(2)}=2^{-1 / 6} \times \frac{10}{32} \times \frac{\sqrt{15}}{10}$	$\in 0.890[8,9] \times 0.3125 \times 0.387[2,3]$	$\epsilon 0.108-\varepsilon$
$A_{4,6}^{(2)}=\frac{300}{1024} \times \frac{\sqrt{55}}{100}$	$\in 0.29[2,3] \times 0.07[4,5]$	$\in 0.022-\varepsilon$
$A_{5,5}^{(2)}=\frac{450}{1024} \times \frac{\sqrt{6}}{10}$	$\in 0.4[39,40] \times 0.24[49,50]$	$\epsilon 0.108-\varepsilon$
$A_{5,6}^{(2)}=2^{-1 / 3} \times \frac{50}{256} \times \frac{\sqrt{11}}{10}$	$\in 0.793[7,8] \times 0.195[3,4] \times 0.33[1,2]$	$\epsilon 0.051+\varepsilon$
$A_{6,6}^{(2)}=2^{-1 / 6} \times \frac{330}{1024} \times \frac{\sqrt{3}}{10}$	$\in 0.890[8,9] \times 0.322[2,3] \times 0.17[3,4]$	$\in 0.050-\varepsilon$
$A_{3,3}^{(3)}=\frac{5}{32} \times \sqrt{10}$	$\in 0.15625 \times 3.16[2,3]$	$\epsilon 0.494+\varepsilon$
$A_{3,4}^{(3)}=2^{-1 / 3} \times \frac{150}{256} \times \frac{\sqrt{70}}{10}$	$\in 0.793[7,8] \times 0.58[59,60] \times 0.836[6,7]$	$\epsilon 0.389+\varepsilon$
$A_{3,5}^{(3)}=2^{-1 / 6} \times \frac{90}{128} \times \frac{\sqrt{7}}{10}$	$\in 0.890[8,9] \times 0.70[3,4] \times 0.264[5,6]$	$\epsilon 0.166-\varepsilon$
$A_{3,6}^{(3)}=\frac{100}{512} \times \frac{\sqrt{231}}{100}$	$\in 0.195[3,4] \times 0.15[19,20]$	$\epsilon 0.030-\varepsilon$
$A_{4,4}^{(3)}=2^{-1 / 6} \times \frac{7}{32} \times \sqrt{5}$	$\in 0.890[89,90] \times 0.21875 \times 2.23[6,7]$	$\epsilon 0.436-\varepsilon$
$A_{4,5}^{(3)}=\frac{105}{512} \times \sqrt{2}$	$\in 0.2050[7,8] \times 1.414[2,3]$	$\epsilon 0.290+\varepsilon$

Table 6 (continued)

$A_{4,6}^{(3)}=2^{-1 / 3} \times \frac{30}{128} \times \frac{\sqrt{33}}{10}$	$\in 0.793[7,8] \times 0.234[3,4] \times 0.57[4,5]$	$\in 0.107-\varepsilon$
$A_{5,5}^{(3)}=2^{-1 / 3} \times \frac{15}{128} \times \sqrt{10}$	$\in 0.7937[0,1] \times 0.1171[8,9] \times 3.16[2,3]$	$\in 0.294+\varepsilon$
$A_{5,6}^{(3)}=2^{-1 / 6} \times \frac{450}{4096} \times \frac{\sqrt{330}}{10} \in 0.890[8,9] \times 0.109[8,9] \times 1.81[6,7]$	$\in 0.178-\varepsilon$	
$A_{6,6}^{(3)}=\frac{550}{1024} \times \frac{\sqrt{10}}{10}$	$\in 0.537[1,2] \times 0.316[2,3]$	$\in 0.170-\varepsilon$
$A_{4,4}^{(4)}=\frac{350}{512} \times \frac{\sqrt{70}}{10}$	$\in 0.683[5,6] \times 0.836[6,7]$	$\in 0.572-\varepsilon$
$A_{4,5}^{(4)}=2^{-1 / 3} \times \frac{21}{128} \times \sqrt{14}$	$\in 0.7973[0,1] \times 0.1640[6,7] \times 3.74[1,2]$	$\in 0.487+\varepsilon$
$A_{4,6}^{(4)}=2^{-1 / 6} \times \frac{70}{512} \times \frac{\sqrt{462}}{10} \in 0.890[8,9] \times 0.1367[1,2] \times 2.1[49,50]$	$\in 0.262-\varepsilon$	
$A_{5,5}^{(4)}=2^{-1 / 6} \times \frac{105}{1024} \times \sqrt{35}$	$\in 0.890[89,90] \times 0.1025[39,40] \times 5.916[0,1] \in 0.540+\varepsilon$	
$A_{5,6}^{(4)}=\frac{30}{256} \times \frac{\sqrt{1155}}{10}$	$\in 0.1171[8,9] \times 3.39[8,9]$	$\in 0.398+\varepsilon$
$A_{6,6}^{(4)}=2^{-1 / 3} \times \frac{4950}{8192} \times \frac{\sqrt{70}}{10} \in 0.793[7,8] \times 0.604[2,3] \times 0.836[6,7]$	$\in 0.401+\varepsilon$	
$A_{5,5}^{(5)}=\frac{189}{1024} \times \sqrt{14}$	$\in 0.18457[0,1] \times 3.741[6,7]$	$\in 0.691-\varepsilon$
$A_{5,6}^{(5)}=2^{-1 / 3} \times \frac{1050}{2048} \times \frac{\sqrt{231}}{10} \in 0.7937[0,1] \times 0.512[69,70] \times 1.5198[6,7]$	$\in 0.618+\varepsilon$	
$A_{6,6}^{(5)}=2^{-1 / 6} \times \frac{297}{1024} \times \sqrt{7}$	$\in 0.890[89,90] \times 0.2900[3,4] \times 2.645[7,8]$	$\in 0.684-\varepsilon$
$A_{6,6}^{(6)}=\frac{2310}{4096} \times \frac{\sqrt{231}}{10}$	$\in 0.56[39,40] \times 1.519[8,9]$	$\in 0.857+\varepsilon$

In the third column of this table we have used an abbreviated notation for intervals by writing, e.g. $0.29[2,3]$ instead of [0.292, 0.293]; and the product of two intervals $[x, y]$ and $[s, t]$ in \mathbb{R}_{+}is defined to be the interval $[x s, y t]$. Now, in order to verify, e.g. that $A_{4,6}^{(2)} \in 0.022-\varepsilon$, it suffices to check that

$$
1024 \times 0.292 \leqq 300 \leqq 1024 \times 0.293 \text { and }(100 \times 0.074)^{2} \leqq 55 \leqq(100 \times 0.075)^{2},
$$ and that $0.292 \times 0.074 \geqq 0.0215$ and $0.293 \times 0.075 \leqq 0.022$.

5.4. Proof of (N4). We first compute the matrix $Q(p)$, as defined in (3.25), using the values of p_{m} and $Q_{k, n}^{(m)}$ from Table 1 and Table 6, respectively.

Table 7. The symmetric matrix $Q(p)$

Let T be the symmetric matrix $T=2 Q(p)-I$. Using the values $Q(p)_{k, n}$ given above, we obtain the following for T.
$T=\left[\begin{array}{cccc}0.818000 & 0.309960 & 0.049698 & 0.006944 \\ \cdot & 0.186656 & 0.424346 & 0.098798 \\ \cdot & \cdot & -0.201924 & 0.377490 \\ \cdot & \cdot & \cdot & -0.464024 \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & . \\ 0.000900 & 0.000096 & 0.000010 \\ 0.017990 & 0.002770 & 0.000346 \\ 0.109482 & 0.023766 & 0.004112 \\ 0.289800 & 0.097062 & 0.023746 \\ -0.645554 & 0.204930 & 0.075338 \\ \cdot & -0.772982 & 0.135782 \\ . & . & -0.859598\end{array}\right]$

Table 8. The matrix product $M T$

(k, n)	$(0,0)$	$(0,1)$	$(0,2)$	$(0,3)$	$(0,4)$	$(0,5)$	$(0,6)$
$M_{k, 0} T_{0, n}$	0.861354000	0.326387880	0.052331994	0.007312032	0.000947700	0.000101088	0.000010530
$M_{k, 1} T_{1, n}$	0.184116240	0.110873664	0.252061524	0.058686012	0.010686060	0.001645380	0.000205524
$M_{k, 2} T_{2, n}$	-0.038168064	-0.325897728	0.155077632	-0.289912320	-0.084082176	-0.018252288	-0.003158016
$M_{k, 3} T_{3, n}$	-0.006902336	-0.098205212	-0.375225060	0.461239856	-0.288061200	-0.096479628	-0.023603524
$M_{k, 4} T_{4, n}$	-0.000619200	-0.012377120	-0.075323616	-0.199382400	0.444141152	-0.140991840	-0.051832544
$M_{k, 5} T_{5, n}$	-0.000033984	-0.000980580	-0.008413164	-0.034359948	-0.072545220	0.273635628	-0.048066828
$M_{k, 6} T_{6, n}$	-0.000001470	-0.000050862	-0.000604464	-0.003490662	-0.011074686	-0.019959954	0.126360906
$(M T)_{k, n}$	0.999745186	-0.000249958	-0.000095154	0.000092570	0.000011630	-0.000301614	-0.000083952
(k, n)	$(1,0)$	$(1,1)$	$(1,2)$	$(1,3)$	$(1,4)$	$(1,5)$	$(1,6)$
$M_{k, 0} T_{0, n}$	0.485892000	0.184116240	0.029520612	0.004124736	0.000534600	0.000057024	0.000005940
$M_{k, 1} T_{1, n}$	-0.609691320	-0.367152352	-0.834688582	-0.194335666	-0.035386330	-0.005448590	-0.000680582
$M_{k, 2} T_{2, n}$	0.103670028	0.885185756	-0.421213464	0.787444140	0.228379452	0.049575876	0.008577632
$M_{k, 3} T_{3, n}$	0.018415488	0.262012296	1.001103480	-1.230591648	0.768549600	0.257408424	0.062974392
$M_{k, 4} T_{4, n}$	0.001653300	0.033047630	0.201118434	0.532362600	-1.185882698	0.376456410	0.138395906
$M_{k, 5} T_{5, n}$	0.000090816	0.002620420	0.022482636	0.091820652	0.193863780	-0.731240972	0.128449772
$M_{k, 6} T_{6, n}$	0.000003930	0.000135978	0.001616016	0.009332178	0.029607834	0.053362326	-0.337822014
$(M T)_{k, n}$	0.000034242	0.999965968	-0.000060868	0.000156992	-0.000333762	0.000170498	-0.000098954
(k, n)	$(2,0)$	$(2,1)$	$(2,2)$	$(2,3)$	$(2,4)$	$(2,5)$	$(2,6)$
$M_{k, 0} T_{0, n}$	-0.628224000	-0.238049280	-0.038168064	-0.005332992	-0.000691200	-0.000073728	-0.000007680
$M_{k, 1} T_{1, n}$	0.646576560	0.389364416	0.885185756	0.206092628	0.037527140	0.005778220	0.000721756
$M_{k, 2} T_{2, n}$	-0.019829502	-0.169314054	0.080567676	-0.150618510	-0.043683318	-0.009482634	-0.001640688
$M_{k, 3} T_{3, n}$	0.001152704	0.016400468	0.062663340	-0.077027984	0.048106800	0.016112292	0.003941836
$M_{k, 4} T_{4, n}$	0.000071100	0.001421210	0.008649078	0.022894200	-0.050998766	0.016189470	0.005951702
$M_{k, 5} T_{5, n}$	0.000003840	0.000110800	0.000950640	0.003882480	0.008197200	-0.030919280	0.005431280
$M_{k, 6} T_{6, n}$	0.000000170	0.000005882	0.000069904	0.000403682	0.001280746	0.002308294	-0.014613166
$(M T)_{k, n}$	-0.000249128	-0.000060558	0.999918330	0.000293504	-0.000261398	-0.000087366	-0.000214960
(k, n)	$(3,0)$	$(3,1)$	$(3,2)$	$(3,3)$	$(3,4)$	$(3,5)$	$(3,6)$
$M_{k, 0} T_{0, n}$	-0.813092000	-0.308100240	-0.049399812	-0.006902336	-0.00894600	-0.000095424	-0.000009940
$M_{k, 1} T_{1, n}$	0.822013920	0.495011712	1.125365592	0.262012296	0.047709480	0.007346040	0.000917592
$M_{k, 2} T_{2, n}$	0.008249868	0.070441436	-0.033519384	0.062663340	0.018174012	0.003945156	0.000682592
$M_{k, 3} T_{3, n}$	-0.016457280	-0.234151260	-0.894651300	1.099736880	-0.686826000	-0.230036940	-0.056278020
$M_{k, 4} T_{4, n}$	-0.001080900	-0.021605990	-0.131487882	-0.348049800	0.775310354	-0.246120930	-0.090480938
$M_{k, 5} T_{5, n}$	-0.000062304	-0.001797730	-0.015424134	-0.062993238	-0.132999570	0.501665318	-0.088122518
$M_{k, 6} T_{6, n}$	-0.000002710	-0.000093766	-0.001114352	-0.006435166	-0.020416598	-0.036796922	0.232951058
$(M T)_{k, n}$	-0.000431406	-0.000295838	-0.000231272	1.000031976	0.000057078	-0.000093702	-0.000340174

Table 8 (continued)

(k, n)	$(4,0)$	$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$	$(4,5)$	$(4,6)$
$M_{k, 0} T_{0, n}$	-0.562784000	-0.213252480	-0.034192224	-0.004777472	-0.000619200	-0.000066048	-0.000006880
$M_{k, 1} T_{1, n}$	0.569396520	0.342887072	0.779523602	0.181491926	0.033047630	0.005088490	0.000635602
$M_{k, 2} T_{2, n}$	0.003926142	0.033523334	-0.015951996	0.029821710	0.008649078	0.001877514	0.000324848
$M_{k, 3} T_{3, n}$	-0.008339744	-0.118656398	-0.453365490	0.557292824	-0.348049800	-0.116571462	-0.028518946
$M_{k, 4} T_{4, n}$	-0.002096100	-0.041898710	-0.254983578	-0.674944200	1.503495266	-0.477281970	-0.175462202
$M_{k, 5} T_{5, n}$	-0.000079104	-0.002282480	-0.019583184	-0.079979088	-0.168862320	0.636937168	-0.111884368
$M_{k, 6} T_{6, n}$	-0.000003660	-0.000126636	-0.001504992	-0.008691036	-0.027573708	-0.049696212	0.314612868
$(M T)_{k, n}$	0.000020054	0.000193702	-0.000057862	0.000214664	1.000086946	0.000287480	-0.000299078
(k, n)	$(5,0)$	$(5,1)$	$(5,2)$	(5, 3)	$(5,4)$	$(5,5)$	$(5,6)$
$M_{k, 0} T_{0, n}$	-0.289572000	-0.109725840	-0.017593092	-0.002458176	-0.000318600	-0.000033984	-0.000003540
$M_{k, 1} T_{1, n}$	0.293222160	0.176576576	0.401431316	0.093462908	0.017018540	0.002620420	0.000327316
$M_{k, 2} T_{2, n}$	0.001987920	0.016973840	-0.008076960	0.015099600	0.004379280	0.000950640	0.000164480
$M_{k, 3} T_{3, n}$	-0.004506656	-0.064119902	-0.244991010	0.301151576	-0.188080200	-0.062993238	-0.015411154
$M_{k, 4} T_{4, n}$	-0.000741600	-0.014823760	-0.090213168	-0.238795200	0.531936496	-0.168862320	-0.062078512
$M_{k, 5} T_{5, n}$	-0.000158496	-0.004573270	-0.039237666	-0.160249362	-0.338339430	1.276193282	-0.224176082
$M_{k, 6} T_{6, n}$	-0.000003500	-0.000121100	-0.001439200	-0.008311100	-0.026368300	-0.047523700	0.300859300
$(M T)_{k, n}$	0.000227828	0.000186544	-0.000119780	-0.000099754	0.000227786	1.000351100	-0.000318192
(k, n)	$(6,0)$	$(6,1)$	$(6,2)$	$(6,3)$	$(6,4)$	$(6,5)$	$(6,6)$
$M_{k, 0} T_{0, n}$	-0.120246000	-0.045564120	-0.007305606	-0.001020768	-0.000132300	-0.000014112	-0.000001470
$M_{k, 1} T_{1, n}$	0.121814280	0.073355808	0.166767978	0.038827614	0.007070070	0.001088610	0.000135978
$M_{k, 2} T_{2, n}$	0.000844866	0.007213882	-0.003432708	0.006417330	0.001861194	0.000404022	0.000069904
$M_{k, 3} T_{3, n}$	-0.001881824	-0.026774258	-0.102299790	0.125750504	-0.078535800	-0.026303802	-0.006435166
$M_{k, 4} T_{4, n}$	-0.000329400	-0.006584340	-0.040070412	-0.106066800	0.236272764	-0.075004380	-0.027573708
$M_{k, 5} T_{5, n}$	-0.000033600	-0.000969500	-0.008318100	-0.033971700	-0.071725500	0.270543700	-0.047523700
$M_{k, 6} T_{6, n}$	-0.000012580	-0.000435268	-0.005172896	-0.029872468	-0.094775204	-0.170813756	1.081374284
$(M T)_{k, n}$	0.000155742	0.000242204	0.000168466	0.000063712	0.000035224	-0.000099718	1.000046122

The verification of (N4) is now reduced to the straightforward (but tedious) task of computing the product $M T$, where M is the matrix given at the beginning of this section.

By looking at the values of $(M T)_{k, n}$ in Table 8, it is easy to see that $\left|\delta_{k, n}-(M T)_{k, n}\right|$ $\leqq 0.0005$, for $0 \leqq k, n \leqq 6$. This completes the proof of (N 4).
5.5. Proof of (N5). We begin with the matrix $Q(\delta)$, as defined in (3.25), using the values of δ_{m} and $Q_{k, n}^{(m)}$ from Table 1 and Table 6, respectively.

Table 9. The symmetric matrix $Q(\delta)$

Then, from the data in Tables 1, 7, 9 , we can determine the two vectors $Q(p) p$ and $Q(\delta) \delta$.

Table 10. The vectors $Q(p) p$ and $Q(\delta) \delta$

	$k=0$	$k=1$	$k=2$	$k=3$	$k=4$	$k=5$	$k=6$
$Q(p)_{k, 0} p_{0}$	0.826281000	0.140876820	0.022587741	0.003156048	0.000409050	0.000043632	0.000004545
$Q(p)_{k, 1} p_{1}$	0.076250160	0.291917376	0.104389116	0.024304308	0.004425540	0.000681420	0.000085116
$Q(p)_{k, 2} P_{2}$	0.006237099	0.053255423	0.100158538	0.047374995	0.013739991	0.002982633	0.000516056
$Q(p)_{k, 3} p_{3}$	0.000388864	0.005532688	0.021139440	0.030014656	0.016228800	0.005435472	0.001329776
$Q(p)_{k, 4} \mu_{4}$	0.000020250	0.000404775	0.002463345	0.006520500	0.007975035	0.004610925	0.001695105
$Q(p)_{k, 5} s_{5}$	0.000000768	0.000022160	0.000190128	0.000776496	0.001639440	0.001816144	0.001086256
$Q(p)_{k, 6}{ }^{6} p_{6}$	0.000000025	0.000000865	0.000010280	0.000059365	0.000188345	0.000339455	0.000351005
$(Q(p) p)_{k}$	0.909178166	0.492010107	0.250938588	0.112206368	0.044606201	0.015909681	0.005067859
	$k=0$	$k=1$	$k=2$	$k=3$	$k=4$	$k=5$	$k=6$
$Q(\delta)_{k, 0} \delta_{0}$	0.000025000	0.000015750	0.000001980	0.000001240	0.000000350	0.000000075	0.000000015
$Q(\delta)_{k, 1} \delta_{1}$	0.000031500	0.000075470	0.000046580	0.000020400	0.000009620	0.000002960	0.000000670
$Q\left(\delta_{k, 2} \delta_{2}\right.$	0.000001584	0.000018632	0.000034268	0.000028032	0.000016196	0.000007236	0.000002236
$Q\left(\delta_{k, 3} \delta_{3}\right.$	0.000001984	0.000016320	0.000056064	0.000085504	0.000074136	0.000044336	0.000019112
$Q(\delta)_{k, 4} \delta_{4}$	0.000000490	0.000006734	0.000028343	0.000064869	0.000085715	0.000071855	0.000041797
$Q(\delta)_{k, 5} \delta_{5}$	0.000000075	0.000001480	0.000009045	0.000027710	0.000051325	0.000060690	0.000048180
$Q(\delta)_{k, 6} \delta_{6}$	0.000000009	0.000000201	0.000001677	0.000007167	0.000017913	0.000028908	0.000031359
$(Q(\delta) \delta)_{k}$	0.000060642	0.000134587	0.000177957	0.000234922	0.000255255	0.000216060	0.000143369

By computing all products $g_{m} g_{n}$, for $0 \leqq m \leqq n \leqq 6$, using Table 1, and adding them up according to the definition (3.26) of u, we find the following values for $2000 u_{k}$:

Table 11. The vector $2000 u$

	$k=0$	$k=1$	$k=2$	$k=3$	$k=4$	$k=5$	$k=6$
$g_{0} g_{0}$	0.835396						
$2 g_{0} g_{1}$		0.917656					
$2 g_{0} g_{2}$			0.466140				
$2 g_{0} g_{3}$				0.219360			
$2 g_{0} g_{4}$					0.095056		
$2 g_{0} g_{5}$						0.038388	
$2 g_{0} g_{6}$							
$g_{1} g_{1}$	0.252004	0.252004	0.252004			0.014624	
$2 g_{1} g_{2}$		0.256020	0.256020	0.256020			
$2 g_{1} g_{3}$			0.120480	0.120480	0.120480		
$2 g_{1} g_{4}$				0.052208	0.052208	0.052208	
$2 g_{1} g_{5}$					0.021084	0.021084	0.021084
$2 g_{1} g_{6}$						0.008032	0.008032
$g_{2} g_{2}$	0.065025	0.065025	0.065025	0.065025	0.065025		
$2 g_{2} g_{3}$		0.061200	0.061200	0.061200	0.061200	0.061200	
$2 g_{2} g_{4}$			0.026520	0.026520	0.026520	0.026520	0.026520
$2 g_{2} g_{5}$				0.010710	0.010710	0.010710	0.010710
$2 g_{2} g_{6}$					0.004080	0.004080	0.004080
$g_{3} g_{3}$	0.014400	0.014400	0.014400	0.014400	0.014400	0.014400	0.014400
$2 g_{3} g_{4}$		0.012480	0.012480	0.012480	0.012480	0.012480	0.012480
$2 g_{3} g_{5}$			0.005040	0.005040	0.005040	0.005040	0.005040
$2 g_{3} g_{6}$				0.001920	0.001920	0.001920	0.001920
$g_{4} g_{4}$	0.002704	0.002704	0.002704	0.002704	0.002704	0.002704	0.002704
$2 g_{4} g_{5}$		0.002184	0.002184	0.002184	0.002184	0.002184	0.002184
$2 g_{4} g_{6}$			0.000832	0.000832	0.000832	0.000832	0.000832
$g_{5} g_{5}$	0.000441	0.000441	0.000441	0.000441	0.000441	0.000441	0.000441
$2 g_{5} g_{6}$		0.000336	0.000336	0.000336	0.000336	0.000336	0.000336
$g_{5} g_{6}$	0.000064	0.000064	0.000064	0.000064	0.000064	0.000064	0.000064
$2000 u_{k}$	1.170034	1.584514	1.285870	0.851924	0.496764	0.262623	0.125451

In order to bound the vector $10 \varrho^{7} v$, we use again the components of g from Table 1, together with the bounds on $A_{k, 7}^{(m)}$ from Table 2.

Table 12. Bound on the vector $10 \varrho^{7} v$

$$
\begin{array}{rlr}
10 \varrho^{7} v_{k}=A_{k, 7}^{(1)} g_{1}+A_{k, 7}^{(2)} g_{2}+A_{k, 7}^{(3)} g_{3}+A_{k, 7}^{(4)} g_{4}+A_{k, 7}^{(5)} g_{5}+A_{k, 7}^{(6)} g_{6} \\
10 \varrho^{7} v_{1} \leqq & 0.000024 \leqq 0.000024 \\
10 \varrho^{7} v_{2} \leqq & 0.000210+0.000184 \leqq 0.000394 \\
10 \varrho^{7} v_{3} \leqq & 0.000884+0.001260+0.000776 \leqq 0.002920 \\
10 \varrho^{7} v_{3} \leqq & 0.002040+0.004212+0.00396+0.002168 \leqq 0.012389 \\
10 \varrho^{7} v_{5} \leqq & 0.002550+0.007200+0.009828+0.008043+0.004320 \leqq 0.031941 \\
10 \varrho^{7} v_{6} \leqq & 0.001506+0.005865+0.011640+0.014092+0.011340+0.006360 \leqq 0.050803
\end{array}
$$

Next, we consider the vector $\lambda \equiv|Q(p) p-p|+Q(\delta) \delta+u+2 v+w$. The components $w_{k}=0.01 \varrho^{-7} \varrho^{-7} A_{k, 7}^{(7)}$ of w are easy to bound using Table 1 and Table 2; only two digit precision is needed. We also have to compute $|Q(p) p-p|, u$, and $2 v$, using the data from Table 1 and Tables $10-12$. The vector $Q(\delta) \delta$ can be found in Table 10. Putting it all together, we obtain the following.

Table 13. Bound on the vector λ

$$
\begin{aligned}
& \lambda_{k} \equiv|Q(p) p-p|_{k}+(Q(\delta) \delta)_{k}+u_{k}+2 v_{k}+w_{k} \\
& \lambda_{0} \leqq 0.000179+0.0000661+0.000586+0.000000+0.000001=0.000827 \\
& \lambda_{1} \leqq 0.000011+0.000135+0.000793+0.000002+0.000001=0.000942 \\
& \lambda_{2} \leqq 0.000062+0.000178+0.000643+0.000006+0.000001=0.000890 \\
& \lambda_{3} \leqq 0.000207+0.000235+0.000426+0.000034+0.000003=0.000905 \\
& \lambda_{4} \leqq 0.000394+0.000256+0.000249+0.000138+0.000008=0.001045 \\
& \lambda_{5} \leqq 0.000091+0.000217++0.000132+0.000352+0.000017=0.000809 \\
& \lambda_{6} \leqq 0.000068+0.000144+0.000063+0.000560+0.000027=0.000862
\end{aligned}
$$

The product of the matrix $|M|$ with the above bound on λ (multiplied by 1000) is given in the next table.

Table 14. Bound on the product $1000|M| \lambda$

	$k=0$	$k=1$	$k=2$	$k=3$	$k=4$	$k=5$	$k=6$
$1000\|M\|_{k, 0} \lambda_{0}$	0.870831	0.491238	0.635136	0.822038	0.568976	0.292758	0.121569
$1000\|M\|_{k, 1} \lambda_{1}$	0.559548	1.852914	1.965012	2.498184	1.730454	0.891132	0.370206
$1000\|M\|_{k, 2} \lambda_{2}$	0.683520	1.856540	0.355110	0.147740	0.070310	0.035600	0.015130
$1000\|M\|_{k, 3} \lambda_{3}$	0.899570	2.400060	0.150230	2.144850	1.086905	0.587345	0.245255
$1000\|M\|_{k, 4} \lambda_{4}$	0.718960	1.919665	0.082555	1.255045	2.433805	0.861080	0.382470
$1000\|M\|_{k, 5} \lambda_{5}$	0.286386	0.765314	0.032360	0.525041	0.666616	1.335659	0.283150
$1000\|M\|_{k, 6} \lambda_{6}$	0.126714	0.338766	0.014654	0.233602	0.315492	0.301700	1.084396
$1000(\|M\| \lambda)_{k}$	4.145529	9.624497	3.235057	7.626500	6.872558	4.305274	2.502176

By using these bounds, and the values of δ_{k} from Table 1, it is now easy to check that $(|M| \lambda)_{k}+3 \times 10^{-5} \leqq \delta_{k}$, for $0 \leqq k \leqq 6$. This completes the proof of (N5).

References

1. Dyson, F.J.: Existence of a phase transition in a one-dimensional Ising ferromagnet. Commun. Math. Phys. 12, 91 (1969)
2. Baker, G.A.: Ising model with a scaling interaction. Phys. Rev. B 5, 2622 (1972)
3. Bleher, P.M., Sinai, Ya.G.: Critical indices for Dyson's asymptotically hierarchical models. Commun. Math. Phys. 45, 347 (1975)
4. Collet, P., Eckmann, J.-P.: A renormalization group analysis of the hierarchical model in statistical mechanics. Lecture Notes in Physics, Vol. 74. Berlin, Heidelberg, New York: Springer 1978
5. Gallavotti, G.: Some aspects of the renormalization problems in statistical mechanics. Memorie dell' Accademia dei Lincei 15, 23 (1978)
6. Koch, H., Wittwer, P.: A Non-Gaussian renormalization group fixed point for hierarchical scalar lattice field theories. Commun. Math. Phys. 106, 495 (1986)
7. Koch, H., Wittwer, P.: Computing bounds on critical indices. In: Non-Linear Evolution and Chaotic Phenomena. Gallavotti, G., Zweifel, P. (eds.). NATO ASI Series B: Phys. Vol. 176. New York: Plenum Press 1988
8. Balaban, T.: Ultraviolet stability in field theory. The ϕ_{3}^{4}-model. In: Scaling and Self-Similarity in Physics. Fröhlich, J. (ed.). Boston: Birkhäuser 1983
9. Gawȩdzki, K., Kupiainen, A.: Rigorous renormalization group and asymptotic freedom. In: Scaling and Self-Similarity in Physics. Fröhlich, J. (ed.). Boston: Birkhäuser 1983
10. See e.g. Theorem (18.2a) in: Marden, M.: Geometry of polynomials. Mathematical Surveys, Number 3. Providence, RI: American Mathematical Society 1966
11. See e.g. Theorems (4.1.8) and (4.2.1) in: Boas, R.P.: Entire Functions. New York: Academic Press 1954
12. See e.g. Theorem (5.1) in: Hirsch, M.W., Pugh, C.C., Shub, M.: Invariant manifolds. Lecture Notes in Mathematics, Vol. 583. Berlin, Heidelberg, New York: Springer 1977
13. See e.g. Theorem (IX.9) in: Reed, M., Simon, B.: Methods of modern mathematical physics, I: Functional analysis. New York: Academic Press 1980

[^0]: * Supported in Part by the National Science Foundation under Grant No. DMS-8802590
 ** Supported in Part by the Swiss National Science Foundation

[^1]: ${ }^{1}$ For $N=8$; but the case $N=2$ could be treated similarly

