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Abstract. We give a new proof for the existence of a non-Gaussian hierarchical
renormalization group fixed point, using what could be called a beta-function for
this problem. We also discuss the asymptotic behavior of this fixed point, and the
connection between the hierarchical models of Dyson and Gallavotti.

1. Introduction and Main Results

We consider the fixed point problem for the nonlinear operator Jί, defined by the
equation

{JT{f)){t)=-=L= I dse^'fis + βtr, ίeC, (1.1)

y(ί-β2)π -oo

with β = N~5/6 and N = 2. Our first result is the following.

Theorem 1.1. There is a function flR which can be written as a convergent product

) ) , (1.2)
rk/

with /IR(0), rl9 r2,... real and positive, and which satisfies J^(fιs) =/iR. Furthermore,
along the real axis, the limits

ί), (1.3)

exist, and they satisfy 0</+^2/_<oo.

Interest in this fixed point problem stems from the theory of critical phenomena
in statistical mechanics and quantum field theory. The transformation Jf is
directly related to a renormalization group (RG) transformation on a space of
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lattice field theories in three dimensions with a certain hierarchical symmetry;
more details, including a discussion of the role of N, are given in the remarks below.
Although these models are not very physical, they mimic extremely well what
appears to be the behavior of more realistic models, both qualitatively as well as
quantitatively. Due to their relative simplicity, hierarchical models have a long
history in the testing of RG ideas [1-7] for a more extensive list of references, see
[6].

The fact that Jί has a non-Gaussian fixed point has been proved before in [6],
using computer-assisted analysis.1 The proof which we present here follows a
different route, close to the traditional beta-function approach in quantum field
theory. It still involves a fair number of numerical estimates, but they can be
checked without the help of a computer. Our analysis uses three new and
interesting facts about the transformation Jί\
1. Under the iteration of Jί, the zeros of a polynomial approach the imaginary
axis.
2. The derivative of Jί is symmetric with respect to some inner product (given
below).
3. There is a connection between Jί and Dyson's RG transformation.
In [7] it was shown1 that the spectrum of the derivative of Jί at the fixed point /^
lies in the open unit disk, except for a simple eigenvalue δ > 1 (which is related to
the critical index for the free energy) and the trivial eigenvalue N. With the methods
used here, it is easy to prove the following additional property. For 0 < b < l ,
denote by J^φ) the Hubert space (of entire analytic functions) obtained by
completing the vector space of polynomials with respect to the norm associated
with the inner product

2b 2b ^ 2b

dt J dse 1+b 1~b f(t + is)g(t + ίs). (1.4)
y i—b"π -<*> -oo

Theorem 1.2. The derivative DJ^(flR) of Jί at the fixed point flR is a positive trace-
class operator on J^{β). Its trace is equal to 2|||/IR|||, where

= = = f dte~~^\f(ij\. (1.5)

The transformation Jί considered here differs from (the N = 2 analogue of)
Gallavotti's RG transformation SΓ [5] in that we use a scaling factor β = N~5/6

instead of α = ΛΠ1/6. For general JV, the transformation ^ is defined by the
equation

mg))(t) = ]/2φ J dse-2™2g(s + *t)N, ί e R , (1.6)
- o o

where v = l/(4α2 — 1), but in what follows we set again N = 2. In addition, both Jί
and 8Γ seem to be quite different from (a version promoted by Baker [2] of)
Dyson's original RG transformation J> for hierarchical models [1], which is given
by

=2α J dxe-2λχ2h(at + x)h(xt-x), ί e R , (1.7)

For N = &; but the case N=2 could be treated similarly



Renormalization Group Transformation for Scalar Hierarchical Models 539

with Λ, = (2α2 —l)v. However, all three of these transformations are related by a
"change of coordinates" in function space. To be more precise, let

gHT(ί) = V/2α^Λ'2, teΈL. (1.8)

Then a straightforward calculation shows the following.

Formal Identities 13.
(Fl) M o t / = efoM, where M = "multiplication by gHτ"
(F2) J ° i = ! foJ , where J = "convolution with gHT".

Note that /HT = 1 is a trivial fixed point for Jf (the high temperature fixed
point). The corresponding fixed points for &~ and 01 are gHT and hm(x) = δ(x),
respectively. Similarly, g u v = 1 is a trivial fixed point for 9~ (the ultraviolet fixed
point), and the corresponding fixed points for 0t and Jί are hm = γλ/(2πa2) and
/UV = 1/£HT> respectively.

It is clear that from the fixed point /IR of Jί (the infrared fixed point), described
in Theorem 1.1, we obtain a non-Gaussian fixed point giR = gκτ^R f°Γ ^" It *s l e s s

clear, however, whether the corresponding fixed point for 0t exists as a function.
But if we extend the definition of 01 to measures on R, then the following can be
proved.

Denote by C0(R) the Banach space (with the sup-norm) of all continuous
functions on R that vanish at infinity. On the dual C"0(R), which consists of all
finite Baire measures H on R, we define the transformation 0t by the equation

(mm (φ) = J dH(x) f dH{y)e~^x'y)\ {^^j, φ e C0(R). (1.9)

Theorem 1.4. The equation HlR * gHT = gIR defines a positive measure H^ in C'0(R),
and this measure is a (nontrivial) fixed point of the transformation 0t.

We note that if the function si->/IR(is) is in LL(R), then dHικ(x) = hm(x)dx, where
hlR is the continuous function given by the equation

hm(t) = eλt2- J ώ e - ^ / ^ i s ) , ίeR, (1.10)
71 - o o

and of course, hlR is a non-Gaussian fixed point for 0t. Unfortunately, we have no
proof that / I R(Ϊ.) e ̂ (R), but numerical investigations indicate that this is the case.
In fact, a computation of r l 5 . . .,r 4 0 0 0 (see the second remark below) suggests the
following.

Conjecture. The two limits l+ and /_ in (1.3) are equal

If we assume that indeed /+=/_, then it follows [11] that \fιR(is)\ is bounded by
exp( — τφ|6 / 5) as s-^ oo, for some K >0, which implies that the function hm, defined
by (1.10), is entire analytic.

Remarks.
• The normalization of the integral in (1.1) and the covariance of the Gaussian in
this integral can be changed without changing the essential features of the fixed
point equation Jr(f)=f If we choose any constants K, c>0 and define

4 - ? d s e f ( s + β t ) , te<E, (1.11)
yc -co
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then there exists a scaling Toftheform Tf= af(b.\ such that Jί = T " 1 o / o ΈThe
same holds for the transformations & and 01.
• The transformations Jί and ZΓ, as defined by Eqs. (1.1) and (1.6), depend on
three parameters N, α, and β. These parameters are related to the more commonly
used quantities d (dimension) and L (linear block size) by the equation

(1.12)

and their numerical values were obtained by choosing d = 3 (the most interesting
case) and L = 21/3. To explain the relations (1.12), we note first that a conjugacy
analogous to (F1) holds in general, for any real numbers d>0 and L> 1. Thus,
given e.g. the first two relations in (1.12), the third one follows if we require that the
fixed point problem for Jί be equivalent to that of 2Γ. Assume now that d is a
positive integer. If L is an integer larger than one, then, as shown in [6], there exists
a block spin transformation (with hypercubic blocks of linear size L) on a space of
d-dimensional hierarchical lattice field theories, which is conjugate to ^~, and
which has a Gaussian ultraviolet fixed point whose covariance decays like the
inverse Laplacian in d dimensions. If only N = Ld is an integer larger than one, but
not L, then a similar block spin transformation can be found (a product of d block
spin transformations, where the fc-th factor uses string-shaped blocks of length N
that are parallel to the fe-th axis of the lattice Zd, such that the blocks for the
product are hypercubes of linear size N% which is conjugate to 3Γά. In other words,
the relations (1.12) are such that the hierarchical models with N = 2,3,... mimic a
translation invariant model with short range interactions. We note that in the
translation invariant case, the model (and hence the physics) does not depend on
the choice of L. In the hierarchical case, L is actually a model parameter; but
numerical results (for d = 3) suggest that physically relevant quantities, such as the
critical index v, depend only very weakly on L. Our main reason for choosing
L = 21 / 3 is the conjugacy (F2) which allows us to construct a non-Gaussian fixed
point for Dyson's RG transformation.

• Numerically, the zeros rk of the function z ι-^/IR(|/—z), henceforth simply called
"zeros," can be computed as follows. If/ is given by a product of the form (1.2), then
the function / = Jί{f\ defined by (1.11), is formally given by a similar product with
zeros rur29.... The idea is to consider c in (1.11) a time parameter which can be
increased continuously from c = 0, where / = const/(/?.)2, to c = c = (l—β2)/2,
where / = constΛ^(/). Differentiation of (1.11) with respect to c yields an evolution
equation for the function J, and it is easy to find the corresponding evolution
equation (a system of nonlinearly coupled first order differential equations) for the
zeros rk = rk(c). By integrating these equations, after doubling and multiplying by
β~2 each zero at time c = 0, we obtain a RG transformation Jί\r\-+r{έ) which
maps the zeros ^ = (^i,r2,...) for / onto the zeros for Jί{f). Since, as mentioned
earlier, the exact value of c is irrelevant, we may as well choose c = έ(r) in such a way
that fiicir)) = rv In this case, Jίn{r) converges numerically to a fixed point as n-> oo,
for any reasonable initial set of zeros r.
• A formal relation similar to (F 2) exists between the non-hierarchical analogues
of ZΓ and ^ , that is, the RG transformation of Balaban [8], and the Wilson-
Kadanoff transformation used e.g. in [9].
• Many of the results given later in this paper are stronger than what is needed to
prove Theorem 1.1 and Theorem 1.2. For more information we refer to Sects. 2-4.
In addition, the results of Sects. 2 and 4 can easily be generalized to arbitrary
integers N ̂  2, where N is the power of/ that appears in the definition (1.1) of Jί.
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The remaining part of this paper is organized as follows. Section 2 contains
some general results concerning the Hubert space 3^{βγ some Banach space J^, and
the action of Jί on these spaces; and Theorem 1.2 is proved. In Sect. 3 we show
that Jί has a non-Gaussian fixed point in J^, close to an explicitly given
polynomial p of degree six. Here, some bounds are used which can be translated
into trivial numerical inequalities; this is done in Sect. 5. The proof of Theorem 1.1
is completed in Sect. 4, where we discuss the zeros and the asymptotic behavior of
the fixed point /IR. At the end of Sect. 4 Theorem 1.4 is proved.

2. Basic Properties of Jί

In this section, we derive some general bounds on the transformation Jί, and a
formula for its "matrix elements" A(™1.

In addition to the Hubert spaces Jf(b), defined in the introduction, we will also
consider the Hubert space J^(1) = L2(]R.,exp(—t2)dή, with the inner product

= 4= I dte-t2f{tW) (2.1)

If Hn denotes the nih Hermite polynomial, then the polynomials pn, defined by the
equation pn(t) = Hw(j/2ί), are an orthogonal basis for Jf(1). The following two
identities are well known and easy to prove:

Σ -.pπ(t) = Gz(t)=eV'2z'-z212, (2.2)

h 1 (s7 -i e\ i &

Σ ^Pn(s)pM-Eb(s,t)^-7^=e i-»2(s I-*2*. (2.3)
0 HI 1/1fc

Here, z,s,t are arbitrary complex numbers, and 0 < b < l .

Lemma 2.1. Let 0 < b ̂  1.
(i) <pn,pkχb) = b-nn!δk>n,fork,n = 0,l,2,....

(ii) Ifb<l then the elements of J^{b) can be identified with entire analytic functions.
Furthermore, for all feJ^(b) and ί e C ,

(2.4)

Proof. If 0 < b S 1 then for all x j e C w e have
00 "V*̂  00 A) 00 V ^ 00 Λ1

The second equality is the result of a straightforward Gaussian integration. The
identity (i) now follows by comparing coefficients. Assume now that 0 < ί ? < l .
From (i) and Eq. (2.3) we see that the function Eb(t,.) is in J^(b) for all ί e C :

N fok + n oo fok

II Eb(t,.) II fb) = lim X -j^jpn(t)pk(t) <pM, pk}(b) = £ — pk(t)pk(t)

= Eb(t,t)= — L ^ T ^ | ί | 2 - T ^ R e < < 2 \ ( Z 6 )
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Furthermore, if f=pn for some n^O, then

</,£fc(t, .)><» = Σ ^P fc(t)<PΛ,Pk>( i,)=/(0 (2-7)

for all ίe(C. This identity extends to arbitrary polynomials / by linearity.
Consequently, if {/„} is a Cauchy sequence of polynomials in J^{b), then {/„}
converges uniformly on compact subsets of C Thus, the limit is an entire analytic
function, and (2.7) extends to any fe J^(ft). The inequality (ii) is now obtained by
substituting the identity (2.6) into the bound

\f(t)\ = Kf,Eb(t,.)}ib)\^ \\f\\{b)\\Eb(t,.)\\{b). D (2.8)

Next, we consider the derivative of Jί at points fe J^{β) for which the norm
I, defined in (1.5), is finite.

Proposition 2.2. Assume that f is a function in J^iβ) with | | | / | | |<oo. Then the
operator A(f), defined by the equation

1 °° - 1 ίS-βt)2

| / ( 1 — /r)π -oo

is α bounded linear operator on ^ β ) , whose norm is less than or equal to \\\f\\\.
Furthermore, for any g,heJ^{β), the following holds:

<Λ(f)g, h\β) = ±= ί dte-t2f(t)g(t)W) (2.10)
yπ -oo

Proof Let / H τ = l Then for all z, £eC we have

00 £ W

Σ ~T (A(fm)Pn) (0 = (^(yHτ)^z) (0

= - — = = J dse ί~β2iS βt) + 2zS z2/2

= Gβz(t)= Σ ^!^«W' P 1 1 )

which implies that ^4(/Hτ)P« = βnPn f° r a ^ n Hence

<^4(/HT)P M > Pk>(^> = ^ Π < P W ? Pk}(β) = <Pn» Pk>(i) (2.12)

for all n and fe. Let now fg,h be arbitrary polynomials. Then (2.10) is obtained
from (2.12) by linear extension:

(A(f)g, h\β) = (A(fmHfg), h\β) = (fg, Λ>(1). (2.13)

By using the bound (2.4), we find that

• > w | £ - ^ f dίe- t 2 |/(t) | 1 2

'1 — p

=111/111 llglUI*llw. (2.14)

This proves the assertion, since polynomials are dense in Jifw. Π
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The following corollary, together with Theorem 1.1, implies Theorem 1.2.

Corollary 2.3. Assume that f is a function in J^iβ) with \\\f\\\ < oo and f(t) > 0 for all
ί e R . Then DJr(f) is a positive trace-class operator on J^iβ), and

Proof Note first that D^V(f) = 2A(f). It is clear from Proposition 2.2 that, given
our assumptions on /, A(f) is self-adjoint and positive. The trace of A{f) can be
computed by using Eq. (2.3):

oo βn oo βn 1 oo

tr(Λ(/))= Σ ^τ<A(f)Pn,pn\β)= Σ ^ 7 — ί
«=o n\ n=o r -

= _L I dte-t2f(t)Eβ(t,t) = HI/HI. • (2.15)
j/π -oo

From now on we restrict our attention to a subspace of J^iβ) which is invariant
under the action of Jί.

Definition 2.4. Denote by JPfa the real subspace of 34?{β) consisting of all even
functions in J^iβ) which take real values when restricted to the real axis. To every
such function / we associate an I2 sequence (/0,/i, •••) by defining

fn=-f=<f,P2n>(B), n = 0,l,2,.... (2.16)
j/(2n)!

Lemma 2.5. Assume that fg are functions in J^{

e

β), and that \\\f\\\ < oo. Then A(f)g
lies in J^iβ), and

(Λ(f)g)k= Σ 41/mgn, fc = 0,l,2,..., (2.17)
m,n = 0

where ^4^ = 0 if either k>m + n, or m>n + k, or n>k + m; otherwise

2k

Proof For fe, m, n = 0,1,2,..., define

( 2 1 8 )

(2-19)

Then, with the exception of the last inequality in (2.18), the assertion follows from
Proposition 2.2, since

1 ? . a „ .v .v (2fc)!(2m)!(2n)!
-7= ί dte-<2p2k(t)p2m(t)p2M '

(2.20)
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Here, \m — n\^k^m + n\ otherwise the integral is zero. To prove the last inequality
in (2.18), it suffices to show that A{™1, if nonzero, is bounded by

But

,2 r ^ - , 2 (2m)!(2n)! fe!fe!

(m + n)\(m + n)\ (k + m-n)\(k + n-m)\
k-\m-n\+j

-\m-n\+j k+j

π
jί\ (m + n+Mk+j)-\m-n\(k+j) '

and each factor in the last product is clearly ^ 1, whenever \m — n\^k^m + n. •

Remark. Since the coefficients ^ ^ are symmetric under permutations of the
indices, the fixed point equation for Jί is formally the equation for the stationary
points of the functional,

/>- Σ A%lfJJn, (2.23)
k,m,n = O

on a sphere ^ | / f c | 2 = const.
k

Since it is difficult in general to find good estimates for the norm of a bounded
operator on /2, we will continue our analysis of Jί on weighted I1 spaces.

Definition 2.6. For any given ρ ̂  1, denote by 0Sρ the vector space of all functions
in ^ ^ ) ? for which the sum

11/11,= Σ l/πlέ?" (2.24)
n = 0

is finite. Equipped with the norm || . ||p, MQ is a Banach space.

Lemma 2.7. Assume that r ;> 1 and ρ = β + 2β2r ^ί.If fίsa function in 38ρ then A(f)
is a bounded linear operator from 3ft\ to J>, and

M(/)g|l^ll/llρllgllρ, Vge^ ρ . (2.25)

[2k\
Proof By using the bound (2.18) and the fact that I I ^ 4fc, for all k ̂  0, we obtain

oo

r = - Σ ,

ϊ m^nk+m+^fί2k
J\ k

< J m Σ> f c + m i/P)ί m + ήl/l lg |^— _ ~ 1/ V ir / \ Ir I ' " ' m ' loπl'm,«-0 fe-0 IT \ ^ / \ κ /

ύ Σ IΛ llgJ Σ ( I )βm+"-k(2β2rf
m,n = O k = 0\ K> /

= Σ ι/miigni(i?+2^2rr+'i=ιι/ιιριigiιe. D (2.26)
m,n = 0
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3. Existence of a Non-Gaussian Fixed Point

In this section we prove the existence of a fixed point for the map Jf\f\-+ Λ(f)f in
the space J*ρ, for some

(3.1)
* \-2β2'

We assume the validity of five estimates (N1-5), which will be checked (i.e. broken
down into trivial numerical inequalities) in Sect. 5. Our basic strategy is the
following.

Denote by P the projection in ̂  , defined by the equation

f*9 i f n-d> (3 2)
O, if n>d, ( ]

with d = 6. We seek a fixed point of Jί in a region G@H, consisting of functions
fe Jρ with a relatively well specified polynomial part Pfe G, and a small higher
order part (I — P)feH. For any given geG, we define a map Tg by the equation

Tg(h) = (I- P)JT{g + h), /i e # . (3.3)

It will be shown that this map is a contraction on H. Hence Tg has a unique fixed
point h = h*{g) in H. Using this fixed point, which can be obtained by simply
iterating Ύφ we define a new map B,

B(g) = P^(g + /ι*(g)), geG. (3.4)

If we can prove that this map B (the beta function) has a fixed point g* 6 G, then the
function / * = g* + /ι*(g*) is a fixed point of Λ" in G®H:

= ϊX**(g*)) + B(g ) = Λ*(g*) + g* = / * . (3.5)

Remark. For a purely numerical computation of/*, the procedure outlined above
already works for d = 4. Numerically, the three largest eigenvalues of DJf(f*) are
approximately 2, 1.427, and 0.859. Thus, even a projection P of rank two (which
makes B a map on R 2) should do the job, if chosen appropriately. Our reason for
taking d = 6 is that this choice seems to minimize the amount of work needed to
estimate both B and Tg.

To carry out the abovementioned steps, we decompose a function fe J*ρ into a
polynomial part g = Pf9 and a remainder h. By decomposing the same way each of
the terms in the sum lV{f) = Λ(g)g 4- 2̂ 4(g) + A(h)h, we end up with six terms, and
each of them will now be estimated separately.

Lemma3.1. Let K = 0.46. Then for any two functions h,Kin {I — P)@ρ we have

(i) um^ρ-^MMMvfc=o,i,...,6.
(ii) ||(/-Pμ(Λ)ί'||^ιc||Λ||ρ | |«Ί| i r

Proof Without loss of generality we may assume that h and K are of norm one. To
prove (i), we use that for fc^6 and i ^ 14,
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The last inequality in (3.6) follows since

By combining the bounds (2.18) and (3.6), we find that

| ^ sup ρ~{jn+ή)A{£ί]ι:/

4

and (i) follows. To prove (ii), we use again the bound (2.18):

\\(I-P)A(h)K\\ρ^ sup Σ
m,π^7 k = Ί

m + «
<1 CΠ1Λ

k=Ί

= l / 4 " 7 U ) sup 03/̂ (1 + 2M<l/4- 7 Γ 7 Ί (3.9)

The last square root in (3.9) equals |/429/2048, which is smaller than 0.46, as can
easily be checked by verifying, e.g. that 2048 x 0.46 x 0.46 > 429. Q

In order to estimate mixed terms of the form A(g)h, we will need bounds on the
following sums Smn:

Sm,n= Σ Qk'Ί<l (3.10)

Lemma3.2. Define σm = max{Sm>Ί,ρ~1Sm9S}. If g is a function in P3#ρ, and h a
function in (I — P)$β, then

(i) \(A(g)h)k\^\\h\\ρρ-Ί Σ 4™>|gJ,fc = 0,l,...,6.
m=O

(ii) ||(/-i*M(g)A|le^ll*lle Σ σjgj
m = O

Proof Clearly,

iμ(g)Λ)J^||Λ||β Σ lg»l max Q'nA^n. (3.11)
m = 0 l^n-^k + m

The following bound shows that the maximum in (3.11) is taken for n = 7. If
j = \k — m\<n and Z = max{fc,m}<n, then

ρ-(«+l)^m)+ i β ΫQ

2β (nH

Q

pι + 2)(2n + l)(Jl

ί+m-k)(n + :

(n+D2-72

ί + m-ή) ^

= Q

2β (n + l)(2l-n-j)
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This proves (i). In order to verify (ii), we note first that since

Aim) —R2\
Jik+ί,n+l~ P

we have

7 4 m > , (3.14)
^/ -t-n-r L — m)\i -r n-f 1 — rri) k^i

and thus

fQ-I-nWK-4-»Λ

(3.15)

fe>7 fc>7

If m<7<n, then by combining (3.15) with the bound

nΊ-{n+l) A{m) _ n~ 2(π- 6)Λ(n+ 1)- 7 ̂ (m) < Λ ~ 4 V nfc- 7 >|(m) _ Λ - 4 o

/ĉ 7 (3.16)

we find that

\ -7, ί? 5 M [. (3.17)
tn, / * si tn,n) ^«^.J. >y

The assertion (ii) now follows since

6

«^7 m = 0

and since the term [...] in (3.17) is bounded by

V . Λ - 1 / 3 i Λl/3^-i ^ 1 Q \

as can easily be verified by using the inequalities (11) below. •

The following inequalities will be used later on, in order to estimate powers of
2 1 ' 6 a n d ρ ± 1 .

Inequalities 3.3. // ρ — β/(l —2β2) is a sufficiently small positive number, then

(11) 0.793700 < 2 ~1 / 3 < 0.793701, 1.259920 < 21 / 3 < 1.259922,

(12) 0.890897<2"1/6<0.890900, 1.122461 < 2 1 / 6 < 1.122463,

(13) 0.659331 < ρ - 1 <0.659339, 1.516670<ρ < 1.516689.

Proof. One way to prove (11) is by comparing the third power of 635 with twice the
third power of 504, which shows immediately that

f635\3 ^ - 9 W 1 \iΓ\-6\ /635\3
15047 <4<y±-riv MI047 >
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and then computing 504/635 and 635/504 to seven decimals. The other bounds are
easy to verify, if one proceeds in the order they are given. For example, the upper
bound on 2 1 / 6 follows from (11) since (1.122463)2 > 1.259922. Note that it suffices
to verify (13) for ρ = β/(l - 2β2); in this case the identity ρ" * = 2 x 2 " 1 / 6 - 2 1 / 6 can
be used. •

We are now ready to discuss the transformation Tg given by Eq. (3.3). From now
on, ρ is assumed to be a fixed number larger than β/(ί —2β2\ that satisfies the
bounds (13). The sets G and H are given by

(3.20)

where p and δ are the following two functions (to simplify notation, we identify a
function / e 3§Q with the sequence of its coefficients /„).

p = (0.909,0.492,0.251,0.112,0.045,0.016,0.005,0,0,...),

δ = (0.005,0.010,0.004,0.008,0.007,0.005,0.003,0,0,...).

Proposition 3.4. Assume that

6

(Nl) σ= £ σm(pm4-(5J^0.157,
m = 0

6

(N 2) τ = ρ 7 £ Sw, n(pm + δm) (pn + δn) ̂  0.064.
m, n = 0

Then the map Tg has a unique fixed point /ϊ*(g) in H, for every geG, and the map
g \-> h*(g) is continuous on G.

Proof Let g,g,geG and h,£, fieH, and assume that (N1) and (N2) hold. Then by
Lemma 3.1 and Lemma 3.2 we have the bounds

a ιl(/-pμ(g)g||ρ+2||(/-pμ(g)A||β+ ικ/-

^x + 2ffio+KjhoUTo, (3.22)

and

ύK\\g-έ\\β+i\\K-h\\Q9 (3.23)

for some constant K. Since Tg(h) has no negative coefficients, it follows from (3.22)
that Tg maps H to H. Furthermore, by setting g = £ = g in (3.23), we see that Tg is a
contraction on H. Thus, Tg has a unique fixed point /ι*(g) in H. This fixed point can
be obtained by iterating Tφ starting e.g. with h = 0. By using (3.23), we find that

n-κχ>

oo

gliβ (3.24)

This shows that the map g H* h*(g) is continuous on G. •
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Note that the assertion of Proposition 3.4 implies that the map B, given by
Eq. (3.4), is well defined on G, and continuous.

In order to simplify the necessary numerical computations, we now approxi-
mate each of the coefficients Ak% for 0 ̂  k, m, n ̂  6, by the largest number β^« with
the property that lOOOQĵ  is a non-negative integer, and that

(N3) | A K - Q t ^ 2 c k , O^fe, m,n^6.

Definition 3.5. If g is a vector in P$8φ denote by Q(g) be the symmetric 7 x 7
matrix with entries

(3.25)β(g)

Define vectors w, v9 w in P

6
tn= T
K, n x_jm = 0

^ « R 7

6

bo Σ (P
m = 0

6

ρ-7 Σ
m = 0

6k!

by

« +

the following equations:
min{fc + m,6}

«=|k-m|

(3.26)

To simplify notation, if g is a vector in P0$Q, denote by \g\ the vector whose
components are \gk\. Similarly, if M is a matrix, then \M\ denotes the matrix whose
entries are \Mk J. Finally, if/ and g are vectors in P08ρ, we shall write g ^ / iff gk :g/fe

for all k.

Proposition 3.6. Assume that (Nl-3) hold, and let yk = 3 x 10"5, for 0^/c^6. //
is α symmetric 7 x 7 matrix M , SMC/I ί/iαf

(N4)

(N5)

then B has a fixed point in G.

Proof First, we note that M is nonsingular. This follows since

whenever Mg = 0, which by (N4) implies that g = 0. Consequently, we may
consider the fixed point problem for the map g i—• g,

g = g-M(B(g)-g), (3.27)

instead of B. Assume now that geG. Then

= (/-M(2β(p)-i))(g-p)-M[(β(p)p-

+ ( ^ - β) (g)g + 2P^(g)/z*(g) + P4(Λ*(g))fc*(g)]. (3.28)

From (N4) and (3.21), together with the fact that |g-p|^<5, it follows that

\(I-M(2Q{p)-I))(g-p)\k^2ioo Σ δn^Ίk, O^/c^ό. (3.29)
O
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By the definition of Q, and by Lemma 3.2 and Lemma 3.1, we also have

\(PA - Q) (g)g| ^ u, \PA{g)h*(g)\ ύ v, \PA(h*(g))h*{g)\ £ w. (3.30)

This shows that \g—p\ is bounded by the left-hand side of (N5) which, by
assumption, is bounded by δ. Thus, geG. The assertion now follows by Brower's
fixed point theorem. •

As shown earlier in (3.5), the conclusions of the last two propositions imply the
following theorem. The proof of this theorem is completed in Sect. 5, by verifying
that the numerical bounds (N1-5) are satisfied.

Theorem 3.7. Jί has a fixed point in G@H.

4. Proof of Theorems 1.1 and 1.4

In this section we show that any nonzero fixed point / * of Jί, that lies in $Q for
some ρ>β/(l —2β2), and is different from /HT = 1> has the properties described in
Theorem 1.1 and Theorem 1.4. An example of such a fixed point (and probably the
only example) is described in Sect. 3. We note that the Gaussian fixed point / u v lies
in J*ρ if and only if ρ < β/(l - 2β2).

Lemma 4.1. Assume that f*e&ρ for some ρ>β/(l —2β2), and that f* is a fixed
point for Jί. Then there are constants K, I such that

\f*(t)\^Kem6/5, VίeC. (4.1)

Proof We may assume that / * φ θ . Let r = β/{l-2β2), and define 0:R+->IR+

u{oo} by the equation φ(s)= | |/*| |Γ + S. Then, as a consequence of Lemma 2.7, we
have

φ(s) ^ φ(2β2s)2 S ύ Φ((2β2ys)2n (4.2)

for all n. This shows that in fact / * e J>ρ for all ρ>r. Let / = l > y ^ > a n c * define

c=maxχ-3/2lnφ(x). (4.3)
xel

For any s^ 1, there exists n^0 and xel, such that s = (2β2)~nx. Since 2β2 = 2"2/3,
we have thus

φ(s) S Φ(x)2n = φ(x){slx)3/2 ύ ecsV2. (4.4)

Let now t be any complex number of modulus at least (r +1) 5 / 4 , and define ρ = |ί |4 / 5.
From the bound (4.4) and Lemma 2.1 it follows that

| | / * | | 2 - V {P/ρ) \/f* n \ | 2

= Σ ~ V Ί < / * , P 2 n > ( / , , l 2 = Σ Qln\m2 (4-5)
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and thus, using again Lemma 2.1,

yi-{β/ρ)2

As mentioned in the introduction, Jί has the following property:

Lemma 4.2. // g is a polynomial whose zeros lie in a strip |Re(z)| ̂ a, then Jr{g) is a
polynomial whose zeros lie in the strip

Proof. Let d be the degree of g. We use the following formula for
2 = lim gn, (4.7)

where

gn^[X + iV-^-D\[\-i^-^-D)g\ (4.8)

and where D denotes differentiation. Equation (4.7) can be regarded as an identity
in the vector space V of polynomials of degree ^ 2d, equipped with some norm,
where D acts as a bounded linear operator. Since convergence in V implies
uniform convergence on compact subsets of (C, the assertion will follow if we show
that all zeros of g1? g2,... lie in the strip |Re(z)| ̂  a. But this is a consequence of the
following theorem by Takagi [10]: If p is a polynomial of degree n, Z the set of its
zeros, and s a complex number, then the zeros of the polynomial 11-> p(t) — sp'(t) lie
in the convex hull of the set Zκj{Z + ns). •

That this property of Jί yields some information about the fixed points of Jί is
evident from the following fact.

Lemma 4.3. Assume that f* e J^{

e

β) is a fixed point of Jί, and that | | |/*| | | < oo. Then
there exists a polynomial g such that Λ^(g)-*/* in J ̂ , as n-*oo.

Proof We may assume that / * φ θ , which actually implies that /*(ί)>0 for all
ίeR. Let N be the map on jQ)9 defined by N(f) = J^(f*+f)-f*. This map is
clearly C1, and by assumption iV(0) = 0. By Corollary 2.3 the derivative DN0

= 2A(f*) of AT at zero is positive and compact. Denote by Jfs and J^u the spectral
subspaces for DN0 associated with the spectrum lying in [0,1) and [l,oo),
respectively. By the stable manifold theorem [12], N has a local stable manifold
i^s3θ, which is the graph of a C1 map φ: Un^-^jf, where U is some open
neighborhood of zero in jf£y

if* can also be characterized as the inverse image of zero of the map ψ: U-ϊJff"*,
defined by ψ(f) = φ(fs)—fu, where fs and /" are the components of / in Jfs and
J^fu, respectively. This map ψ is clearly C1, and the rank of Dψ0 is equal to
n = dimJ{fw, i.e. if we choose a basis (linear coordinates) in Jfu and denote by ψk(f)
the feth coordinate of ψ(f% then the gradients hk = Vψk(0), 1 ̂ fc^rc, are linearly
independent. Thus, for h0 = / * , the map

Fho,...,hn-βί,...,λn)^ψUio+Σ^A-f*J (4.9)

is a C1 diffeomorphism from some open neighborhood KaO in 1R" to some open
neighborhood of zero in ̂ f". By the implicit function theorem, the equation
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n

F&Of ,,mιgn(λ) = 0 has a solution λ e V for any (g0,..., gM) in 0 J^{

e

β) sufficiently close to
fc = O

(/z0, ...,/zn). But since polynomials are dense in J^(

e

βp this implies that ψ(g— /*) = 0
for some polynomial g. Since g — / * e Ψ^s, we have Nn(g — /*)->0 as n-» oo, and the
assertion follows. Π

Corollary 4.4. Assume that f*e3tf?e

{β) is a fixed point of Jί, and that | | |/*| | |<oo.
Then all zeros of f* lie on the imaginary axis.

Proof By Lemma 4.3 there is a sequence of polynomials g, Jf(g), J/*2(g),...
converging to /*, and by Lemma 4.2 the zeros of jVn(g) lie in the strip |Re(z)| g βna
for some a< oo. Thus, since convergence in J f̂  implies uniform convergence on
compact subsets of C, /* cannot have any zeros off the imaginary axis (using e.g.
the standard formula for the number of zeros inside a circle). •

Proof of Theorem l.ί. We take /IR to be the fixed point of Jί described in Sect. 3, or
any other non-constant fixed point / * that lies in one of the spaces 08Q with
ρ > β/(l — 2β2). Then, by Lemma 4.1, the logarithm of /*(£) is bounded from above
by a constant times |ί|6/5, i.e. the limit /+ in (1.3) is finite. For the same reason, the
norm || |/*| | | is finite, which, by Corollary 4.4, implies that all zeros of/* lie on the
imaginary axis. Thus, z *->f*(]/z) is an entire function of order <£ 3/5 < 1, whose
zeros are all real and negative. It now follows from Hadamard's factorization
theorem that / * is given by a canonical product (1.2). This implies in particular
that /* is convex, and thus

=L= j
]/ ( l - jS 2 )π -o

J dse^sf*(t)2=f*(t)2, (4.10)
y(l-β2)π -o

for all ίeR. The inequality (4.10) shows that the sequence

-nty6/5 In f*(β-nt)

is non-decreasing, and hence convergent, for any given ίelR. In particular, if
f(t)> 1 (such a t exists since / * is not constant), then the limit is positive, proving
that / + >0. The inequality (4.10) also shows that the function ί ^ r 6 / 5 l n / * ( ί )
varies by no more than a factor of two on any interval [ί, β~ 1t]. Hence /_ ̂  1+/2.
This completes the proof of Theorem 1.1. •

Proof of Theorem i.4. Let /IR be the fixed point of Jί described in Theorem 1.1, or
any other fixed point with the properties: /IR is entire analytic, and real-valued
when restricted to the real axis, and t *-+fΪR(t) exp( — ε|ί|2) is a bounded function on
<C, for every ε>0. Given any positive integer fc, let d = 2k~1. By using that
/IR = e/Γ*(/IR), we obtain a representation for /IR of the form

(4.11)

with
d oo d

:V>)) J_l Jm\9j) 9

(4.12)
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where μk is some Gaussian measure on Rd, and where Lk is some real-valued linear
functional on R d . This shows that /IR is the limit (uniformly on compact subsets of
(C) of functions fk with the property that s i—• (D2nfk) (is) is the Fourier transform of a
positive finite measure on R, for all n^O. Thus, by Bochner's theorem [13], the
function si—•/IR(zs) is the Fourier transform of a positive measure whose moments
are all finite (by "measure" we always mean Baire measure). In particular, /IR(z.)
may be represented as follows:

flκ(is) = J dH1R(x)e ~ λχ2e2ίλsx, s e R , (4.13)

for some positive measure HlR on R. Since the nth moment of HlR(gHΎ.) is equal to
]/2a(2λ)~n times the nth derivative of/IR at zero, the identity (4.13) can be extended
(using the dominated convergence theorem) to arbitrary s e <C by means of a power
series in s. Furthermore, by replacing the second exponential in (4.13) by the power
series for exp(Ax2), we see (using the monotone convergence theorem) that HlR is a
finite measure. This shows that H I R * gHT is equal to giR^gH T/ I R, and that Eq. (1.9)
defines a finite positive measure &(HlR) on R.

In order to prove that @l{HlR) = iί I R, we need a more precise version of the
relation (F 2) between the transformations 2Γ and M. By using the identity

2vs2 + λ(s + oct- x)2 + λ(s + at - y)2

together with Fubini's theorem, we find that for any finite measure H,

— f dse
n -co

~2vs2

^) J

(4.14)

Thus, since gIR is a fixed point of 9~, it follows that &(HIR) * gHT is equal to

Let now H be any positive measure satisfying H*gHΎ = glR. Then by analytic
continuation we obtain the analogue of the identity (4.13), where HlR is replaced by
H. Consequently, the Fourier transform of H(gm.) agrees with that of iί I R(gH T.).
This implies that H(gHT.) = ifIR(gHT.), and therefore H = HlR. •

5. Numerical Estimates

In this section we prove the numerical bounds (N1-5) used in Sect. 3. To check this
proof, the only skill needed is the ability to correctly add and multiply simple
floating point numbers; and no particular computing tool is required. We choose
to use a computer (instructed not to round) for most of the calculations; but by
sacrificing two or three weekends, we could have done the same with just pencil
and paper.
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The symmetric matrix M which will be used to verify (N 4) and (N 5) is the
following:

1.053

M =

0.594

-1.967

-0.768

2.086

-0.399

-0.994

2.652

0.166

-2.370

-0.688

1.837

0.079

-1.201

-2.329

-0.354

0.946

0.040

-0.649

-0.824

-1.651

-0.147

0.393

0.017

-0.271

-0.366

-0.350

-1.258

The table below gives the components of g=p + δ, where p and δ are the vectors
(polynomials) defined earlier in (3.21), and bounds on powers of Q. These quantities
will be used frequently later on.

Table 1. The vectors ρ,δ,g, and bounds on ρ~7, ...,ρ7

po=0.909, (50=0.005, go=0.914,

p, =0.492, 5, =0.010, e, =0.502,
p 2 = 0.251,
p3=0.112,
p 4 = 0.045,
p 5 = 0.016,
p 6 = 0.005,

= 0.010, g l = 0.502, ρ 2 ^ 2.301,
= 0.004, g2 = 0.255, -3--"™

δ3 =0.008,
(54 = 0.007
<55 = 0.005

o z , , 3

 = 3.489,

g3=0.120, ρ4

 = 5.292,

g4 = 0.052, ρ5

 = 8.026,

g5 = 0.021,

ρ" 1 ^0.660

ρ ' 2

= 0.435

ρ" 3

=0.287

ρ-^0.189

δ6=0.003, g6=0.008, ρ7

 = 18.47,
ρ" 6 ^0.083

ρ" 7

 = 0.055

The above bounds of the form ρk S rk were obtained iteratively by setting rk = rk_ tri9

rounded up to 5 digits after the decimal point, where i is the integer part of fe/2. The
iteration was started with the upper bounds r±ίin the inequalities (13) of Sect. 3,
and with r o = l. At the end, the numbers rk were rounded up to the number of
decimals shown in Table 1.

5Λ. Proof of (N1). Most of the work in proving that σ^0.157 and τ^0.064 goes
into estimating 62 of the coefficients Ak™l. The following bounds will turn out to be
sufficient:

Table 2. Bounds on Affi for 0 = m = 6 and

_ . _ _ 1000 Vl

4096 1000

1000 ]/Ϊ82

4096 X 1000

' 100

1000 j/30
4096 X Ϊ 0 0 0

looo 1/2002

=
0.9x 0.3x0.002

 =
 0.001

< 0.891 x 0.245 x 0.0135 < 0.003

= 0.4x0.01

0.8x 0.25x0.01

< 0.004

< 0.002

4096 1000
< 0.90 x 0.245 x 0.045

 =
 0.010
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Table 2 (continued)

555

1000 1/546
6)7
 1024 1000

1000 1/455

4096
 X
 1000

7
'
8

8192 10

2048 100

=
 3000 1/85

7
'
9
 16384 1000

6>9

16384

1000

2048

= 2~
1/3
x

= 2-^
3
x

6

10000

1000

4096

j/15015

1000

looo i
4096

 X

3300 I

8192

300 1

2048

1/464Ϊ

/6006

1000

/2002

1000

/9Ϊ0

100

/546

100

16384 10000

2048
 X
 10

16384 10

^0.98x0.0234 ^0.023

^0.80 x 0.25 x 0.022 ^0.005

^0.80 x 0.112 x 0.245 g 0.022

^0.891x0.35x0.032 ^0.010

g 0.2x0.01 g 0.002

^ 0.891 x 0.2442 x 0.078 ^ 0.017

^0.489x0.1226 ^0.060

^ 0.80 x 0.245 x 0.045 ^ 0.009

^ 0.794 x 0.403 x 0.302 ^ 0.097

^0.891x0.147x0.234 ^0.031

^0.7x0.007 ^0.005

V-ί < 0.891 x 0.445 x 0.224 < 0.089

1/, 2100

ί<3>Q = 2 ~ 1 / 3 X X8192 100

10000 1/4845
= 2~1/ό x

3 32768 ~ 10000

_100 j/429
7 ~256 X 100

_1/3 3000 |/Ϊ430
8 = X 8 Ϊ 9 2 X 1000

t W-2-1/3 x ^ ° ° x ^ 1 4 5
k 7 " 2 X 4096 X 100

5
'

8
 1024 100

(4)
 _ 30000 |/4862

l5
'

9
~ 32768

 X
 10000

t
(4)

 =
2 -

1 / 6
X - ^ X ^

6 ) 7
 2048 10

^0.278x0.174 ^0.049

^ 0.80 x 0.257 x 0.072 ^ 0.015

^0.9x0.31x0.007 v ^ 0.002

^0.3907x0.2072 ^0.081

^ 0.7938 x 0.3663 x 0.03782 ̂  0.011

gθ.794 x 0.513 x 0.464 ^0.189

^0.90x0.49x0.120 ^0.053

^1.0x0.007 ^0.007

< 0.891 x 0.376 x 0.807 < 0.271
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Table 2 (continued)

4096 10

2" 1 / 3

1UU

^0.1880x0.625 £0.118

^0.7938x0.1465x0.2575 ^0.030

,,, 10000 1/62985
= 2 x ^ x ^ ? Γ ^0.90x0.16x0.026 ^0.004

^0.3055x0.837 ^0.256

910 1/2T
x y-—

10

_
1/6
 9100 |/7Ϊ4

X
 32768

 X
 100

10000 1/67830

0.794x0.4444x0.459 ^0.162

^0.891 x 0.278 x 0.27 ^0.067

_ 30000 1/35530
; X i X l - ^.8x0.12x0.02 ^0.002

150 l/δ58
— — x ^ ^0.8909x0.1465x2.93 ^0.383

5000 l/24310

1000

65536 10000

32768

550 l/l95
x K

10

9900 l/6630
2 x x

5000 1/25194

32768

100000 1/646646

= 2" 1 / 3 x x j/Ϊ4

32768 10

3900 1/Ϊ785

^0.794x0.306x0.156

^0.90x0.16x0.031

^0.1058x5.10

^0.7938x0.2686x1.397

^0.891x0.1511x0.815

^0.153x0.16

^0.80x0.39x0.009

^0.7938x0.1833x3.742

^0.8909x0.3055x1.45

< 0.477x0.423

^0.038

^0.005

^0.540

^0.298

^0.110

^0.025

^0.003

^0.545

^0.395

< 0.202

gθ.794x 0.744x0.1165 50.069
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Table 2 (continued)

557

^.2-^^χ
35S3

131072 1000

100000

524288 100000

'
7
 OΓk/lO

429

2048 10

-1/6
 1 4 8 5 0

X
 65536

 X
 10

5500 1/24310
x

32768 100

^ . r ^ ^ , ^

524288 100000

7 7 65536

Λ<^429°.χ]/™

65536 1000

100100 |/969
:
524288

 X
 100

21000
>=2-

1 / 3 7429
x '—

131072

500000

1000

]/Ϊ93154

2097152
 X
 100000

^0.9x0.27x0.06 ^0.015

^0.2x0.01 g 0.002

^ 0.7938 x 0.4834 x 2.0713 ^ 0.795

S 0.8909 x 0.2266 x 2.674 S 0.540

^0.1679x1.56 ^0.262

S 0.7938 x 0.5036 x 0.2150 g 0.086

^0.9x0.46x0.042 ^0.018

^0.2x0.01 S 0.002

^0.8909 x 0.4583 x 2.150 g 0.878

^0.2619x2.775 ^0.727

^0.7938 x 0.4910 x 1.1442 ^0.446

^0.891x0.992x0.224 ^0.198

^0.191x0.312 ^0.060

^0.794 x 0.1603 x 0.0862 ^0.011

<0.90 x 0.239 x 0.0044 <0.001

The equalities in this table are obtained by simplifying (in an obvious way) the
expression (2.18) for each of the coefficients A(™1 Then, in order to verify e.g. that
A^n^O.015, it suffices to check that 0.27x131072^35000 and (lOOOxO.06)2

;> 3553, and that 0.9 x 0.27 x 0.06 ̂  0.015. Here, the bound 2 ' () ̂  0.9 follows from
inequality (12) in Sect. 3.

By using the inequalities from the last two tables, we get immediately the
following bounds on the sums S m π , defined in (3.10). Note that the coefficients A{™1
are symmetric under permutations of the indices fc, m, n, and that many of these
coefficients are zero; see Lemma 2.5.
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^ m ^ n ^ 7 , which are not zero

o 7 ^ ^0.001
S 1 6 ^ 0.003 S 0.003
Si' 7 S 0.004 + 0.00304 ^ 0.008
52 '5g0.010 S 0.010
S2' 6 ^0.023+0.00759 ^0.031
S2' 7 ^ 0.022 + 0.01517+0.00461 g 0.042
S3 '4^0.017 ^0.017
53 5 g 0.060+0.01366 g 0.074
S3 '6^0.097 + 0.04703 + 0.01151 ^0.156
S3'ΊS 0.089 + 0.07434+0.03452 + 0.00698 S 0.205
5 4 4g0.081+0.01669 ^0.098
S4 5g0.189+0.08041+0.01611 ^0.286
S 4 6 ^0.271 +0.17901 +0.06903 + 0.01396 ^0.533
S 4 7 S 0.256 + 0.24576+0.15417 + 0.05583 + 0.01059 ^ 0.723
S5' 5 ^ 0.383 + 0.23666 + 0.08744 + 0.01745 ^ 0.725
S5' 6^0.540 + 0.45207 + 0.25311+0.08723 + 0.01588 g 1.349
S5' 7 ^ 0.545 + 0.59922 + 0.46481 + 0.24075 + 0.07938 + 0.01606 ^ 1.946
S6 6 ^ 0.795 + 0.81918 + 0.60287 + 0.30006 + 0.09526 + 0.01606 S 2.629
S6 '7^0.878 +1.10286 +1.02625 + 0.69083 + 0.31752 + 0.08829 + 0.01218^4.116

In order to bound ρ" 1 S l l l f 8 , and then σm = m a x { S m 7 , ρ " 1 S m 8 } , we use the

inequality (3.15) with n = 7, together with the bounds from Table 2 and Table 3.

Table 4. Bounds on σ0,..., σ6

ρ " % 8 ^ 0.66 x 0.000 + 0.84 x 0.001 ̂  0.001, σ0 ̂  0.001
Q'^is ^0.66 x 0.002 + 0.84 x 0.008^0.009, σx ^0.009
ρ" ^ j ' 8 ^0.66x0.010 + 0.84x0.042 ^0.042, σ 2 ^ 0.042
Q " ̂ 3 s S 0.66 x 0.049 + 0.84 x 0.205 ̂  0.205, σ3 ̂  0.205
ρ " 1 5 4 3^0.66x0.162 + 0.84x0.723^0.715, σ4^0.723
ρ" 15 5 ' 8g0.66x0.395 + 0.84x 1.946^1.896, σ 5 g 1.946
ρ~ ̂ 6^ 8 ^0.66x0.727+ 0.84x4.116 ^3.938, σ6^4.116

From these bounds, using the values of g0, ...,g6 given in Table 1, it follows that

σ = σogo + σigi + σ2g2 + σ3g3 + σ 4g 4 + σ5g5 + σ6g6

^ 0.000914 + 0.004518 + 0.010710 + 0.024600 + 0.037596 + 0.040866 + 0.032928

^0.153,

which completes the proof of (N1).

5.2. Proof of (N2). By definition, τ is obtained by adding up all the products

Q7gmSmfngn, for 0 :§ m, n ̂  6. By using the values from Table 1 and Table 3, the sum

over all n^6 of Smngn is bounded as follows:

Table 5. Bounds on (Sg)m, for 1 ̂ m ^ 6 ; (<Sg)o =

(Sg)m S Sm, l g ί + Sm, 2 g 2 + Smt 3 g 3 + SM> 4 g 4 + SWt 5 g 5 + Sm> 6 g 6

(Sg)i g 0.000024 ̂  0.00003
(Sg)2 ^ 0.000210 + 0.000248 ̂  0.00046

(Sg)3 ̂  0.000884 + 0.001554 + 0:001248 ̂  0.00369

(Sg)4 S 0.002040 + 0.005096 + 0.006006 + 0.004264 ̂  0.01741

(Sg)5 ^ 0.002550 + O.OO888O + 0.014872 + 0.015225 + 0.010792 ̂  0.05232
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Given these inequalities, and from Table 1 the values of gn and the bound on ρ7, we
find

)i + g2(Sg)2 + g3(Sg)3 + g*

^ 18.47[0.000016 + 0.000118 + 0.000443 + 0.000906 + 0.001099 + 0.000842]

= 18.47x0.003424

= 0.064,

which completes the proof of (N2).

53. Proof of (N 3). In the next table we define the numbers Q^l and verify (N 3), by
giving bounds of the form A%1 e Qjjβ ± ε, where ε denotes the'interval [0,1/2000].
Here aeq + εmeans that a — qεε, and aeq — ε means that q — aeε. The values Q{™1
which are not given below are either zero (if m + k < n\ or determined by symmetry.

Table 6. Definition of βgj and bound on A^l

i . i - X 4 X l

2 , 2 - X 8 X l

A*'4 = 2 X Ϊ 2 8

As<5 = 2 X 2 5 6

( 0 ) 1000 ]/ΐ
6 > 6 ~ 1 0 2 4 X 1000

^)-2-^χ1χl
1.2 g *

^ 2 , 2 = 2 x - x j

2 ' 3 = 3 2 X l θ ~

3
3 ' 3 ~ X Ϊ 6 X

Ad) 0-1/6 1 0

^ 3 , 4 - 2 x 6 4 x

(i) 1 0 ]fi

_ 3 30

/2

/ϊ

xϊoo

xϊoo

1

/6

/2

]/Ϊ4
10

1/5x - —

G l x l

G0.890[89, 90] x 0.25 x 1.414[2,3]

G0.79[3,4] x 0.125x1

G 0 . 3 1 [ 2 , 3 ] X 0 . 1

G0.89[0,1] x 0.7[8,9] x 0.014[l,2]

G 0 . [ 7 9 , 8 0 ] X 0 . [ 3 9 , 4 0 ] X 0 . 0 1

G [0.9,1.0] x 0.001

Gθ.5xl

G0.793[7, 8] x 0.125 x 2.449[4,5]

G0.890[89,90] x 0.25 x 1.414[2,3]

G0.3125X0.387[2 ,3]

G 0 . 7 9 [ 3 , 4 ] X 0.1875x1

GO.89O[8, 9] x 0.156[2,3] x 0.37[4,5]

G0.625X0.1

G0.79Γ3.41 X0.11Γ7.81 X0.22Γ3.41

QSΆ
Gl.OOO-ε

Gθ.315-ε

G 0.099+ ε

G 0.031+ε

G 0.010-ε

G 0.003+ ε

G 0.001-ε

G 0.500-ε

G 0.243+ ε

Gθ.315-ε

Gθ.l21+ε

G 0.149-ε

G 0.052 + ε

G 0.063-ε

G 0.021-εx
256 10
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Table 6 (continued)

4<i) = 2 ~ 1 / 6

(1) 1 0 0 0

^ 5 ' 6 1024

4 % = 2-1/3

,4(2) 2 ' 1 / 6

2 , 4 -

4% = 2 ' -

4%=^χ

Λ<2> J'1'3

3,5 —

(2) -1/6
4 , 5 -

^|(2)
5 5 1024

5,6

^ 3 = | X

Λ(3) 2 - 1 ^ 3

^(3) 2 " 1 / 6

(3) 1 0 0

3 ' 6 ~ 5Ϊ2 >

50
X 256 )

l/66
x -

1000

30
X 256 5

κ l o

χiχ/ΐθ

10

64

15
x — x

64

l/42

"Ίo"
100

X )

256

7
x — x

64

10
X 3 2 X

|/55
x

100

V*x ~—
10

50

256

330
Xΐθ24

j/ΐo

150
X )

256

90
X Ϊ28 ̂

1/23Ϊ
100

7
X 32 X

10

|/2Ϊ0
100

]/Ϊ5

10

j/ϊϊ
10

x ^

<Ίo"

G 0 . 8 9 [ 0 , 1 ] xO.195[3,4] xO.14[l,2]

G 0 . 9 7 [ 6 , 7 ] X 0 . 0 0 8 1 [ 2 , 3 ]

G 0 . [ 7 9 , 8 0 ] X 0 . 1 1 [ 7 , 8 ] X 0 . 1

G0.1875X2.4[49,50]

G 0 . 7 9 3 [ 7 , 8 ] X 0 . 1 2 5 X 3 . 1 6 [ 2 , 3 ]

G0.89[0, 1] x 0.156[2,3] x 0.59[l,2]

G0.890[89,90] x 0.234[3,4] x 1.73[2,3]

GO.3125XO.64[8,9]

GO.793[7, 8] x 0.390[6,7] x 0.14[4,5]

GO.793[7, 8] x 0.1093[7,8] x 2.4[49,50]

GO.89O[8, 9] x 0.3125 x 0.387[2,3]

G 0 . 2 9 [ 2 , 3 ] X 0 . 0 7 [ 4 , 5 ]

G 0 . 4 [ 3 9 , 4 0 ] X 0 . 2 4 [ 4 9 , 5 0 ]

GO.793[7, 8] x 0.195[3,4] x 0.33[l,2]

G0.890[8,9] xθ.322[2,3] xO.17[3,4]

G0.15625X3.16[2,3]

GO.793[7, 8] x O.58[59,60] x 0.836[6,7]

G 0.890[8,9] x O.7O[3,4] x 0.264[5,6]

GO.195[3,4]XO.15[19,2O]

G0.890[89, 90] x 0.21875 x 2.23[6,7]

G 0.025-ε

G 0.008 ε

G 0.009+ ε

G 0.459+ ε

Gθ.314-ε

G 0.082+ ε

G 0.362-ε

G 0.203-ε

G 0.045-ε

Gθ.213-ε

G 0.108-ε

G 0.022-ε

Gθ.lO8-ε

G 0.051+ε

G 0.050-ε

G 0.494+ ε

G 0.389 + ε

Gθ.l66-ε

G 0.030-ε

G 0.436-ε

105

5Ϊ2
GO.2O5O[7,8] x 1.414[2,3] Gθ.29O + ε
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Table 6 (continued)

1 6 0.793[7,8]x0.234[3,4]x0.57[4,5] e0.107-ε

e0.7937[0,l]x0.1171[8,9]x3.16[2,3] eθ.294 + ε

] eO.178-ε

e0.170-ε

561

x — x
128 lu

x x]/Ϊ0
128

ΐΓ

x

— x
256

2-1/3

1RQ

21

Ϊ28
 X

70

512
 X

105

Ϊ024'

/ΪΪ55

1/462

10

xj/35

60.537[l,2]x0.316[2,3]

6θ.683[5,6] xθ.836[6,7] e 0.572-ε

e0.7973[0,l]x0.1640[6,7]x3.74[l,2] eθ.487 + ε

e0.890[8,9]x0.1367[l,2]x2.1[49,50] eθ.262-ε

e0.890[89,90]x0.1025[39,40]x5.916[0,l]e0.540 + ε

10

—— x

e0.1171[8,9]x3.39[8,9] eθ.398 + ε

|/Ϊ4

— x|/7

eθ.793[7,8] xO.6O4[2,3] xθ.836[6,7] e0.401+ ε

e0.18457[0,l]x3.741[6,7] e 0.691-ε

6θ.7937[O,l]xO.512[69,7O]xl.5198[6,7] eθ.618 + ε

6 0.890[89,90]x0.2900[3,4]x2.645[7,8] e 0.684 -ε

e0.56[39,40] x 1.519[8,9] eθ.857 + ε

In the third column of this table we have used an abbreviated notation for intervals
by writing, e.g. 0.29[2,3] instead of [0.292,0.293] and the product of two intervals
[x, y] and [5, ί] in R+ is defined to be the interval [xs, yi]. Now, in order to verify,
e.g. that A{£6 e 0.022 -ε, it suffices to check that

1024 x 0.292 ̂  300 ^ 1024 x 0.293 and (100 x 0.074)2 ̂  55 ̂  (100 x 0.075)2,

and that 0.292 x 0.074^0.0215 and 0.293 x 0.075^0.022.

5.4. Proof of (N 4). We first compute the matrix Q(p\ as defined in (3.25), using the
values of pm and Qffi from Table 1 and Table 6, respectively.
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Table 7. The symmetric matrix Q(p)

Q(P)k,n

Q(0)o,o
Q(P)I,O

Q(p)ui
Q(p)2,o
Q(P)2Λ
Q(p)2,2
Q(ph,o

β(P)3,3:

Q(P)4,0
Q(P)4,1
β(P)4,2

Q(p)s,o
Q(ph,i
Q(P)S,2
Q(P)5,3
Q(P)5Λ

Q(p)β,o
Qip)β,i
Qip)β,2

Q(p)β,s
Q(p)β,β

giPi+Q {ΆP2+Q&P3+Gί>4+QΐlPs+Qί6lPβ
= 0.909000 =0.909000

0.154980 =0.154980
= 0.286335+0.246000 + 0.060993 =0.593328

0.024849 =0.024849
0.119556 + 0.079065 + 0.013552 =0.212173

= 0.089991 + 0.154980 + 0.115209+0.035168 + 0.003690 = 0.399038
0.003472 =0.003472

0.030371 +0.016688 + 0.002340 =0.049399
0.059532 + 0.078814 + 0.040544 + 0.009135 + 0.000720 =0.188745

= 0.028179+0.073308 + 0.090862 + 0.055328 + 0.017505 + 0.002656 + 0.000150 = 0.267988
0.000450 =0.000450

0.005824 + 0.002835 + 0.000336 = 0.008995
0.020582 + 0.022736 + 0.009585 + 0.001728 + 0.000110 = 0.054741

0.025584 + 0.050953 + 0.043568 + 0.019620 + 0.004640 + 0.000535 = 0.144900
=0.009090+0.030996+0.053463 + 0.048832 + 0.025740+0.007792+0.001310 = 0.177223

0.000048 =0.000048
0.000945 + 0.000400 + 0.000040 = 0.001385

0.005040 + 0.004860 + 0.001728 + 0.000255 = 0.011883
0.011295 + 0.018592 + 0.013050 + 0.004704+0.000890 = 0.048531

0.010332 + 0.027108 + 0.032480 + 0.021915 + 0.008640 + 0.001990 = 0.102465
= 0.002727 + 0.012300 + 0.027108 + 0.032928 + 0.024300 + 0.011056 + 0.003090 = 0.113509

0.000005 = 0.000005
0.000128 + 0.000045 = 0.000173

0.000990 + 0.000816 + 0.000250 = 0.002056
0.003360 + 0.004815+0.002848 + 0.000850=0.011873

0.005522+0.011984 + 0.011790+0.006368 + 0.002005 = 0.037669
0.003936 + 0.012801+0.019936 + 0.017910+0.009888+0.003420=0.067891

= 0.000909 + 0.004428 + 0.012550 + 0.019040 + 0.018045 + 0.010944 + 0.004285 = 0.070201

Let Tbe the symmetric matrix T=2Q(p) — I. Using the values Q{p)Kn given above,
we obtain the following for T.

T=

0.818000 0.309960

0.186656

0.000900

0.017990

0.109482

0.289800

-0.645554

0.049698

0.424346

-0.201924

0.000096

0.002770

0.023766

0.097062

0.204930

-0.772982

0.006944

0.098798

0.377490

-0.464024

0.000010

0.000346

0.004112

0.023746

0.075338

0.135782

-0.859598



Table 8. The matrix product MT

(M
M
ktO
T
Otn

M
kΛ
T
i>n

M
k
\
2
T
2
\
n

M
k
[

3
T

3
[

n
M
k 4

T
4
' „

M
k 5
T
5 n

M
k
\T

6 n

{MT\[
n

(Kn)
M

k 0
T
0 n

M
kΛ
τ;,

n
M
k2
T
2n

M
k
[

3
T

3
[

n
M
k 4

I
4 n

M
k 5

T
5n

M
k 6
T
6
 „

(MT\[
n

(M
M

k 0
T
0 n

M
k
 ιT^

n

M
k
\
2
T
2
\
n

M
k
\
3
T
3
\
n

M
f c
'

4
T

4
'

π

M
k
]

5
T

5
[

n
M

k 6
T
6 n

{MT)
k
,
n

(Kn)
M

k 0
T
0 n

M
k
\T

X n

M
k
,
2
T
2
[
n

M
K3
T
3n

M
k 4
T
4 n

M
k
,
5
T
5
[
n

M
k
,
6
T

6>n

(MT\
n

(0,0)
0.861354000
0.184116240

-0.038168064
-0.006902336
-0.000619200
-0.000033984
-0.000001470
0.999745186

(1,0)
0.485892000

-0.609691320
0.103670028
0.018415488
0.001653300
0.000090816
0.000003930
0.000034242

(2,0)
-0.628224000
0.646576560

-0.019829502
0.001152704
0.000071100
0.000003840
0.000000170

-0.000249128

(3,0)
-0.813092000
0.822013920
0.008249868

-0.016457280
-0.001080900
-0.000062304
-0.000002710
-0.000431406

(0,1)
0.326387880
0.110873664

-0.325897728
-0.098205212
-0.012377120
-0.000980580
-0.000050862
-0.000249958

(1,1)
0.184116240

-0.367152352
0.885185756
0.262012296
0.033047630
0.002620420
0.000135978
0.999965968

(2,1)
-0.238049280
0.389364416

-0.169314054
0.016400468
0.001421210
0.000110800
0.000005882

-0.000060558

(3,1)
-0.308100240
0.495011712
0.070441436

-0.234151260
-0.021605990
-0.001797730
-0.000093766
-0.000295838

(0,2)
0.052331994
0.252061524
0.155077632

-0.375225060
-0.075323616
-0.008413164
-0.000604464
-0.000095154

(1,2)
0.029520612

-0.834688582
-0.421213464
1.001103480
0.201118434
0.022482636
0.001616016

-0.000060868

(2,2)
-0.038168064
0.885185756
0.080567676
0.062663340
0.008649078
0.000950640
0.000069904
0.999918330

(3,2)
-0.049399812
1.125365592

-0.033519384
-0.894651300
-0.131487882
-0.015424134
-0.001114352
-0.000231272

(0,3)
0.007312032
0.058686012

-0.289912320
0.461239856

-0.199382400
-0.034359948
-0.003490662
0.000092570

(1,3)
0.004124736

-0.194335666
0.787444140

-1.230591648
0.532362600
0.091820652
0.009332178
0.000156992

(2,3)
-0.005332992
0.206092628

-0.150618510
-0.077027984
0.022894200
0.003882480
0.000403682
0.000293504

(3,3)
-0.006902336
0.262012296
0.062663340
1.099736880

-0.348049800
-0.062993238
-0.006435166
1.000031976

(0,4)
0.000947700
0.01Ό686060

-0.084082176
-0.288061200
0.444141152

-0.072545220
-0.011074686
0.000011630

(1,4)
0.000534600

-0.035386330
0.228379452
0.768549600

-1.185882698
0.193863780
0.029607834

-0.000333762

(2,4)
-0.000691200
0.037527140

-0.043683318
0.048106800

-0.050998766
0.008197200
0.001280746

-0.000261398

(3,4)
-0.00894600
0.047709480
0.018174012

-0.686826000
0.775310354

-0.132999570
-0.020416598
0.000057078

(0,5)
O.OOO1O1O88
0.001645380

-0.018252288
-0.096479628
-0.140991840
0.273635628

-0.019959954
-0.000301614

(1,5)
0.000057024

-0.005448590
0.049575876
0.257408424
0.376456410

-0.731240972
0.053362326
0.000170498

(2,5)
-0.000073728
0.005778220

-0.009482634
0.016112292
0.016189470

-0.030919280
0.002308294

-0.000087366

(3,5)
-0.000095424
0.007346040
0.003945156

-0.230036940
-0.246120930
0.501665318

-0.036796922
-0.000093702

(0,6) *
0.000010530 S
0.000205524 §

-0.003158016 g
-0.023603524 N

1

-0.051832544 g.
-0.048066828 »
0.126360906 Q

-0.000083952 g

(1,6) £
0.000005940 g

-0.000680582 cΓ
0.008577632 3
0.062974392 £.
0.138395906 §
0.128449772 o*

-0.337822014 CΛ
-0.000098954 £[

P

(2,6) X
-0.000007680 §
0.000721756 3

-0.001640688 g*
0.003941836

 p
-

0.005951702 2
0.005431280 o.

-0.014613166 ST
-0.000214960

(3,6)
-0.000009940
0.000917592
0.000682592

-0.056278020
-0.090480938 &
-0.088122518
0.232951058

-0.000340174



Table 8 (continued)

(*,»)

k,66,n

(MT)k,n

(M)
MktOTOtn

MkΛTUn

Mk,2T2,n

Mk,3T3,n

Mk,5T5,n

Mk,6T6,n

(MT)k,n

(M
Mk>oTOtn

MkΛTUn

Mk,2T2,n

Mk,3T3,n

MkΛT4>n

Mk,5T5,n

Mk,6T6>n

(MT)k,n

(4,0)

-0.562784000

0.569396520

0.003926142

-0.008339744

-0.002096100

-0.000079104

-0.000003660

0.000020054

(5,0)

-0.289572000

0.293222160

0.001987920

-0.004506656

-0.000741600

-0.000158496

-0.000003500

0.000227828

(6,0)

-0.120246000

0.121814280

0.000844866

-0.001881824

-0.000329400

-0.000033600

-0.000012580

0.000155742

(4,1)

-0.213252480

0.342887072

0.033523334

-0.118656398

-0.041898710

-0.002282480

-0.000126636

0.000193702

(5,1)

-0.109725840

0.176576576

0.016973840

-0.064119902

-0.014823760

-0.004573270

-0.000121100

0.000186544

(6,1)

-0.045564120

0.073355808

0.007213882

-0.026774258

-0.006584340

-0.000969500

-0.000435268

0.000242204

(4,2)

-0.034192224

0.779523602

-0.015951996

-0.453365490

-0.254983578

-0.019583184

-0.001504992

-0.000057862

(5,2)

-0.017593092

0.401431316

-0.008076960

-0.244991010

-0.09021316S

-0.039237666

-0.001439200

-0.000119780

(6,2)
-0.007305606

0.166767978

-0.003432708

-0.102299790

-0.040070412

-O.OO83181OO

-0.005172896

0.000168466

(4,3)

-0.004777472

0.181491926

0.029821710

0.557292824

-0.674944200

-0.079979088

-0.008691036

0.000214664

(5,3)

-0.002458176

0.093462908

0.015099600

0.301151576

-0.238795200

-0.160249362

-0.008311100

-0.000099754

(6,3)

-0.001020768

0.038827614

0.006417330

0.125750504

-0.106066800

-0.033971700

-0.029872468

0.000063712

(4,4)

-0.000619200

0.033047630

0.008649078

-0.348049800

1.503495266

-0.168862320

-0.027573708

1.000086946

(5,4)

-0.000318600

0.017018540

0.004379280

-0.188080200

0.531936496

-0.338339430

-0.026368300

0.000227786

(6,4)

-0.000132300

0.007070070

0.001861194

-O.O785358OO

0.236272764

-0.071725500

-0.094775204

0.000035224

(4,5)

-0.000066048

0.005088490

0.001877514

-0.116571462

-0.477281970

0.636937168

-0.049696212

0.000287480

(5,5)

-0.000033984

0.002620420

0.000950640

-0.062993238

-0.168862320

1.276193282

-0.047523700

1.000351100

(6,5)

-0.000014112

0.001088610

0.000404022

-0.026303802

-0.075004380

0.270543700

-0.170813756

-0.000099718

(4,6)

-0.000006880

0.000635602

0.000324848

-0.028518946

-0.175462202

-0.111884368

0.314612868

-0.000299078

(5,6)

-0.000003540

0.000327316

0.000164480

-0.015411154

-0.062078512

-0.224176082

0.300859300

-0.000318192

(6,6)

-0.000001470

0.000135978

0.000069904

-0.006435166

-0.027573708

-0.047523700

1.081374284

1.000046122

I
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The verification of (N 4) is now reduced to the straightforward (but tedious) task of
computing the product MT, where M is the matrix given at the beginning of this
section.

By looking at the values of (MT)kn in Table 8, it is easy to see that \δk n-(MT)k n\
^ 0.0005, for 0 <; fe, n <; 6. This completes the proof of (N 4).

5.5. Proof of (N 5). We begin with the matrix Q{δ\ as defined in (3.25), using the
values of δm and Qgl from Table 1 and Table 6, respectively.

Table 9. The symmetric matrix Q(δ)

Q(δ)k,n

Q(δ)0 0 = 0.005000 = 0.005000
β(<S)1'0= 0.003150 =0.003150
β ^ i Ί =0.001575 + 0.005000+0.000972 =0.007547
Q(δ)2\ = 0.000396 =0.000396
Q(δ)2' 1 = 0.002430 + 0.001260 + 0.000968 = 0.004658
Q(δ)2' 2 = 0.000495 + 0.003150 + 0.001836 + 0.002512 + 0.000574 = 0.008567
β(5) 3 Ό= 0.000248 =0.000248
β(<5)3' 1 = 0.000484 + 0.001192 + 0.000364 = 0.002040
Q(δ)3\ = 0.001210+0.001256 + 0.002896+0.001421 +0.000225 =0.007008
Q(δ)3' 3 = 0.000155 + 0.001490 + 0.001448 + 0.003952 + 0.002723 + 0.000830 + 0.000090 = 0.010688
Q{δ)4' o = 0.000070 = 0.000070
Q(δ)A ! = 0.000416 + 0.000441 + 0.000105 = 0.000962
Q{δ)4 2 = 0.000328 + 0.001624 + 0.001491 + 0.000540 + 0.000066 = 0.004049
Q(δ)4 3 = 0.000520 + 0.000812 + 0.003112 + 0.003052 + 0.001450 + 0.000321 = 0.009267
Q(δ)4 4 = 0.000050 + 0.000630 + 0.000852 + 0.003488 + 0.004004 + 0.002435 + 0.000786 = 0.012245
Q(δ)5'0= 0.000015 =0.000015
Q(δ)5'! = 0.000147+0.000125 + 0.000024 = 0.000296
Q(δ)5' 2 = 0.000360 + 0.000756 + 0.000540 + 0.000153 = 0.001809
Q(S)s 3 = 0 °00180 + 0.001328 + 0.002030 + 0.001470 + 0.000534 = 0.005542
Q(δ)5\ = 0.000210 + 0.000432 + 0.002320 + 0.003409 + 0.002700 + 0.001194 = 0.010265
Q(δ)s' 5 = 0.000015 + 0.000250 + 0.000432+0.002352 + 0.003780+0.003455+0.001854 = 0.012138
Q(δ)6 0 = 0.000003 = 0.000003
Q(δ)6'! = 0.000040 + 0.000027 = 0.000067
Q{δ)6 2 = 0.000154 + 0.000255 + 0.000150 = 0.000559
Q(δ)6 3 = 0.000240 + 0.000749+0.000890+0.000510 = 0.002389
Q(δ)6\= 0.000088 + 0.000856 + 0.001834 + 0.001990 + 0.001203 = 0.005971
Q(δ)6 5 = 0.000080+0.000204+0.001424 + 0.002786+0.003090+0.002052 = 0.009636
Q(δ)6' 6 = 0.000005 + 0.000090 + 0.000200 + 0.001360 + 0.002807 + 0.003420 + 0.002571 = 0.010453

Then, from the data in Tables 1, 7, 9, we can determine the two vectors Q(p)p and
Q(δ)δ.



Table 10. The vectors Q(p)p and Q(δ)δ

Q(p)k, 0P0

Q(p)k 2P2

Q(p)k,sP3

Q(p)k 5P5

Qip)k βP6

(Q(p)p)k

Q(δ)k 0^0

Q{δ)
k
,
2
δ
2

Q(δ)
k
 \δ

4

Q(δ)
k 5
δ
5

Q(δ)k,βδ
6

(Q(δ)δ\

k = 0
0.826281000
0.076250160
0.006237099
O.OOO388864
0.000020250
0.000000768
0.000000025
0.909178166

k=0
0.000025000
O.OOOO315OO
0.000001584
0.000001984
0.000000490
0.000000075
0.000000009
0.000060642

k = l
0.140876820
0.291917376
0.053255423
0.005532688
0.000404775
0.000022160
0.000000865
0.492010107

/c = l
0.000015750
0.000075470
0.000018632
0.000016320
0.000006734
0.000001480
0.000000201
0.000134587

k = 2
0.022587741
0.104389116
0.100158538
0.021139440
0.002463345
0.000190128
0.000010280
0.250938588

k = 2
0.000001980
0.000046580
0.000034268
0.000056064
0.000028343
0.000009045
0.000001677
0.000177957

k = 3
0.003156048
0.024304308
0.047374995
0.030014656
0.006520500
0.000776496
0.000059365
0.112206368

/c = 3
0.000001240
0.000020400
0.000028032
0.000085504
0.000064869
0.000027710
0.000007167
0.000234922

/c=4
0.000409050
0.004425540
0.013739991
0.016228800
0.007975035
0.001639440
0.000188345
0.044606201

/c=4
0.000000350
0.000009620
0.000016196
0.000074136
0.000085715
0.000051325
0.000017913
0.000255255

k = 5
0.000043632
0.000681420
0.002982633
0.005435472
0.004610925
0.001816144
0.000339455
0.015909681

k = 5
0.000000075
0.000002960
0.000007236
0.000044336
0.000071855
0.000060690
0.000028908
0.000216060

k = 6
0.000004545
0.000085116
0.000516056
0.001329776
0.001695105
0.001086256
O.OOO351OO5
0.005067859

k = 6
0.000000015
0.000000670
0.000002236
0.000019112
0.000041797
0.000048180
0.000031359
0.000143369

I
Pa
D.

!
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By computing all products gmgn, for 0 ^ m ^ n ^ 6 , using Table 1, and adding
them up according to the definition (3.26) of w, we find the following values for
2000uk:

Table 11. The vector 2000M

fc = 0

g o g o
 0.835396

2g
o
gi

2g
o
g

2

2g
O
g3

2g
0
g4

2g
O
g5

2g
O
g6

g
l g l

 0.252004

2gig
2

2gig
3

2gig
4

2gig
5

2gig
6

g 2 g 2
 0.065025

2g
2
g3

2g
2
g4

2g
2
g

5

2g
2
g

6

g
3
g
3
 0.014400

2g
3
g4

2g
3
g

5

2g
3
g

6

g
4
g
4
 0.002704

2g
4
g5

2g
4
g6

g
5
g
5
 0.000441

2g
5
g6

g
6g6
 0.000064

2000u
fc
 1.170034

k = l

0.917656

0.252004

0.256020

0.065025

0.061200

0.014400

0.012480

0.002704

0.002184

0.000441

0.000336

0.000064

1.584514

k = 2

0.466140

0.252004

0.256020

0.120480

0.065025

0.061200

0.026520

0.014400

0.012480

0.005040

0.002704

0.002184

0.000832

0.000441

0.000336
0.000064

1.285870

/c = 3

0.219360

0.256020

0.120480

0.052208

0.065025

0.061200

0.026520

0.010710

0.014400

0.012480

0.005040

0.001920
0.002704

0.002184

0.000832

0.000441

0.000336
0.000064

0.851924

/c = 4

0.095056

0.120480

0.052208

0.021084

0.065025

0.061200

0.026520

0.010710

0.004080

0.014400

0.012480

0.005040

0.001920

0.002704

0.002184

0.000832

0.000441

0.000336
0.000064

0.496764

/c = 5

0.038388

0.052208

0.021084

0.008032

0.061200

0.026520

0.010710

0.004080

0.014400

0.012480

0.005040

0.001920

0.002704

0.002184

0.000832

0.000441
0.000336

0.000064

0.262623

/c = 6

0.014624

0.021084

0.008032

0.026520

0.010710

0.004080

0.014400

0.012480

0.005040

0.001920
0.002704

0.002184

0.000832

0.000441

0.000336

0.000064

0.125451

In order to bound the vector ίΰρΊv, we use again the components of g from
Table 1, together with the bounds on A{™\ from Table 2.

Table 12. Bound on the vector 10ρ7ι;

ρ ^
10ρ7ϋ4

10ρ7ι;5 S
7

i + 4 2 )

7 g 2 + 4 3 )

7 g 3 + 4 4 )

7 g 4 + 4 ! 7 g 5 + 4 6 )

7 g 6

0.000024 S 0.000024
0.000210 + 0.000184^0.000394

0.000884+0.001260 + 0.000776^0.002920
0.002040 + 0.004212 + 0.003969 + 0.002168 g 0.012389

0.002550+0.007200+0.009828 + 0.008043 + 0.004320 g 0.031941ρ 5

10ρ7υ6 S 0.001506 + 0.005865 + 0.011640 + 0.014092 + 0.011340 + 0.006360 ^ 0.050803

Next, we consider the vector λ = \Q(p)p—p\ + Q{δ)δ + u + 2υ + w. The components
wk = 0.01ρ~7ρ~7v4ĵ 7 of w are easy to bound using Table 1 and Table 2; only two
digit precision is needed. We also have to compute \Q(p)p—p\9 w, and 2v9 using the
data from Table 1 and Tables 10-12. The vector Q{δ)δ can be found in Table 10.
Putting it all together, we obtain the following.
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Table 13. Bound on the vector λ

h Q p ) p p k ( Q ( ) ) k k k k

λ0 ^ 0.000179+0.000061 + 0.000586+0.000000 + 0.000001
λ, ^ 0.000011 + 0.000135 + 0.000793 + 0.000002 + 0.000001
λ2 g 0.000062+0.000178 4- 0.000643 + 0.000006 + 0.000001
λ3 ^ 0.000207 + 0.000235 + 0.000426 + 0.000034 + 0.000003
λ4 S 0.000394+0.000256+0.000249+0.000138 + 0.000008
λ5 ^0.000091 +0.000217 + 0.000132 + 0.000352 + 0.000017
λ6 S 0.000068 + 0.000144 + 0.000063 + 0.000560 + 0.000027

0.000827
0.000942
0.000890
0.000905
0.001045
0.000809
0.000862

The product of the matrix \M\ with the above bound on λ (multiplied by 1000) is
given in the next table.

Table 14.

1000|M|fc (Λ
1000|M|fc ^
1000|M| fc'2;i2

1000|M|fc'3A3

1000|M|k '4A4

1000|M| f c ' 5 l 5

1000|M|fc;6/l6

ioooflMμ)k

Bound on the product 1000|M|/l

k = 0

0.870831
0.559548
0.683520
0.899570
0.718960
0.286386
0.126714
4.145529

fc=l

0.491238
1.852914
1.856540
2.400060
1.919665
0.765314
0.338766
9.624497

k = 2

0.635136
1.965012
0.355110
0.150230
0.082555
0.032360
0.014654
3.235057

k = 3

0.822038
2.498184
0.147740
2.144850
1.255045
0.525041
0.233602
7.626500

k = 4

0.568976
1.730454
0.070310
1.086905
2.433805
0.666616
0.315492
6.872558

k = 5

0.292758
0.891132
0.035600
0.587345
0.861080
1.335659
0.301700
4.305274

k = 6

0.121569
0.370206
0.015130
0.245255
0.382470
0.283150
1.084396
2.502176

By using these bounds, and the values of δk from Table 1, it is now easy to check
that (\M\λ)k + 3x l(Γ5^<5fc, for 0^/c^6. This completes the proof of (N5).
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