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Abstract. The matrix integrals involved in 2ά lattice gravity are studied at finite
N. The integrable systems that arise in the continuum theory are shown to result
directly from the formulation of the matrix integrals in terms of orthogonal
polynomials. The partition function proves to be a tau function of the Toda lattice
hierarchy. The associated linear problem is equivalent to finding the polynomial
basis which diagonalizes the partition function. The cases of one Hermitian matrix,
one unitary matrix, and Hermitian matrix chains all fall within the Toda framework.

1. Introduction

Recently a great deal of progress has been made in the nonperturbative formulation
of low-dimensional toy models of string theory - two-dimensional gravity coupled
to c < 1 matter - by formulating the theory in terms of large-N matrix integrals
[1,2]. Soluble matrix integrals give the full partition function for string theory in
simple backgrounds. One of the most remarkable features is that the continuum
theory is governed by the KP hierarchy of commuting differential operators [2-4].
The Lax operators of KP provide different realizations of the Heisenberg algebra of
the spectral parameter and its conjugate momentum [4], and the commuting KP
flows parametrize the space of gravitational field theories for low cmatter. Continuum
analyses suggest [3, 5] that the partition function is a tau function of the KP
hierarchy.

These beautiful results raise many issues. One is to understand better the origin
of the integrable systems that appear at the level of the matrix integrals. Exactly
what is the connection of integrability to 2ά gravity? Are there gravity theories for
each integrable system having a thermodynamic limit? What is the precise nature
of the tau function that appears? We would also like to connect the matrix model
formulation to other approaches to 2ά gravity and string theory. It is important
to obtain lattice expressions for scaling operators in order to compare with
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continuum Id field-theoretic analyses [6], and to understand how to find the
continuum degrees of freedom in the matrix integral [7]. There are other lessons
to be learned as well, regarding the nonperturbative nature of string [8], the
spacetime geometry and symmetry of the models, the appearance of the 2ά
gravitational field as a (Euclidean) time parameter, the existence of an asymptotic
expansion of the partition function in powers of the string coupling without any
apparent string field theoretic graphical expansion. It is likely that to learn these
lessons will require a better understanding of the matrix integrals themselves and
not just the effective continuum theory.

We will show that as soon as one passes to the orthogonal polynomial
formulation of the matrix problem, an integrable system governs changes in the
matrix potential. This system is the Toda lattice hierarchy, and the times of the
commuting flows are the coupling constants of the matrix potential. Fundamentally
commutativity is simply well-definedness of correlation functions. The Hubert space
formulation in terms of orthogonal polynomials translates this into a classical
integrable system. Thus we find that the differential operator formalism of the
continuum is rooted in a discrete integrable matrix dynamics. The continuum
dynamics is very closely reflected in that of the lattice theory, as is common in
integrable field theories.

Our interest in the origin of integrability in these theories was stimulated by
the appearance of Douglas' beautiful paper [4] on the subject. Shortly thereafter
we discovered the relation to the Toda hierarchy, however the rather clean
formulation of the present paper was not arrived at until recently. In the meantime,
we have learned that E. Brezin; O. Alvarez and P. Windey; and E. Witten [9] are
also aware of the connection between Toda flows and the one-matrix model; and
also that an ITEP-Lebedev group [10] has obtained results similar but not identical
to our own in both the one- and two-matrix cases. It is likely that many others
have also come up with the idea.

2. Toda and the One Matrix Model

The solution to the one matrix model

3r = l&φe-r<*\ V(φ) = Σtktr{φk} (2.1)

proceeds by integration over the U(N) angle variables of φ, with the result

S(t) = J Π dλιAW e x P ( ~ Σ ί*# W ) . (2.2)
ί=l \ k,i )

Here the Jacobian Δ(λ) = dQtiψ^λj)) is the antisymmetrized product of monic
polynomials φn(λ) = λn -\— .By choosing the φn to be orthogonal with respect to
the measure e~v,

hnδnm = jdλφn(λ)e-v^ψm(λ), (2.3)

N

the partition function is simply 2£ = \\ hi9 and the problem reduces to finding a

recursion relation for the ht. This is readily achieved through consideration of
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matrix elements of λ and d/dλ in the polynomial basis [11],

KQnm = ί Ψn{λ)e " Viλ)λψm(λ\ (2.4)

Considering different matrix elements one is led to

1 ί)2 ^2

o ••. .
Integration by parts in (2.5) yields

P=V'{Q)+, (2.7)

where

are the projections of a matrix M into its upper triangular, diagonal, and lower
triangular parts, respectively. The matrix elements Pnn = 0, P n w + 1 = n, when
expressed in terms of Q, give recursion relations for α, = /ii + 1//if. In fact we see
that these, "string equations" may be rewritten

[Πβ)+,β] = l- (2-9)

Our first observation is that V'(Q)+ is a Lax conjugate of Q in the one-
dimensional GL(oo) Toda hierarchy [12,13], one of the simplest discrete integrable
systems. The SL(K) Toda chain consists of 2(K— 1) dynamical variables ak,bk,
fc=l,...,K—1 the entries of a KxK Jacobi matrix of the form (2.6). The
integrability results from the fact that there are K — 1 quantities tr {Qk} in involution
with respect to the natural symplectic structure

These Hamiltonians and their canonically conjugate times are a set of action-angle
variables for the system. To each of these conserved quantities is associated a
Hamiltonian vector field

-d~ = lQ\,Ql (2.10)

The string equation is in fact compatible with Toda flow; taking the ί, derivative
of Eq. (2.9) yields

= [/β'+- ι,Q]-Σ khίlQk

+- \ β 1 ] + , β ] - Σ fct*[β'+, [βV" S β ] ]

= 0. (2.11)

The first equality expresses the commutativity of the Toda flows, the second employs
the string equation.
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The Toda system arises as a natural dynamical system on the coadjoint orbits
of lower triangular matrices [12,14-16]. The discussion here is taken from [15,16].
That is, consider the factorization G = ΛB of GL(K) into A = upper unipotent
matrices and B = lower triangular matrices with nonzero diagonal. The cotangent
space T*(G) is a natural sympletic manifold with a left Λ-action and right B-action.
The symplectic form is ω v(ξ 1,ξ 2) = tr{v[ξ1,ξ2]} f o r v e8*> ί i ^ e g (trace is the
natural inner product). Let 0 be the orbit of a given point yeg* under the coadjoint
action of b, i.e.

φμ = {veg*|v = Ad£μ for some beB}. (2.12)

For us ad£μ = (bμb~1)+ for (beb). In particular the coadjoint orbit of

Σ = \ 0 1 ) (2.13)

under the action of B is

(2.14)

and the coadjoint orbits generally are matrices whose first m upper diagonals
are nonzero. Now consider any invariant Hamiltonian / o n P G ^ G x g * , i.e.

= 0. Then we have a dynamics consisting of geodesic motion on G

where Te is the derivative at the identity, Rg right multiplication by g. The quantity
μ0 is the "momentum" of the geodesic flow; the invariant Hamiltonians are the
invariant polynomials on g. Divide this motion by the right B action as well as
the part of the A action leaving fixed ε = ]Γe_α, the sum of the negative simple
roots (for GL(K) ε is the matrix Στ with unit lower diagonal); this yields a dynamics
on 8 + a 1 which is

- ( e + v(ή) = ad*ΛiδJt{e+mδv)(ε + v(ί)), (2.16)

where v(ί) is in the span a 1 ^ b* of the positive roots and the Cartan generators
and 77a is the projection onto a. Equation (2.16) is essentially the Lax equation
(2.10). Since g(t) = a(t)b(t), the solution to the reduced system is given by

)*(ε + v0). (2.17)

Thus the prescription for solving the Toda equations is (1) Compute g(t) =

^ Y (2) Factor g(t) = a(t)b(t); (3) Find ε + v(ί) = (Adβ(t))*(ε + v0). For
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G = GL(K), the desired factorization is

e-tkQk=W+(t)H{t)W1(t)

= upper unipotent x diagonal x lower unipotent, (2.18)

Q(t)=WΛty1Q(O)W+(t)=H(t)W.(t)Q(O)W.(t)-ίH(t)-K (2.19)

Note that W+ ={W_)T. Effectively one linearizes the problem by solving

W+ defines a change of basis in GL(K) which diagonalizes g. Now we have

W ί ) ~ ^ « π (120)

where Δj is the determinant of the upper left j xj minor of e~'kQk Note that the
product of the first Nht is simply 2ϋ = ΔN, and

is a discrete version of the string susceptibility. In the scaling limit it becomes the
Painleve potential.

How does all this relate to matrix models? Suppose we have solved the string
equations (2.9) for some values of the couplings tk = ik. Then the partition function
at any nearby point in coupling space is given by [3]

^ N W = <ΨN{t)\e~^-^\ ΨN(t)) EE τ(ί). (2.21)

Namely, the infinite-dimensional matrix Q is a point in the coadjoint orbit
Q = ε + vosΘΣ of GL(oo). The "wavefunction" ΨN( = Δ(λ) of (2.2)) is simply the
highest weight state of the N-fold antisymmetric tensor representation. On the
individual wavefunctions λ acts by the matrix Q. Qk acts in the antisymmetric
tensor representation as

so indeed a change in the potential exp(-^St^) acts on Δ(λ) as in (2.21). The
factorization (2.18) is precisely the operation of rediagonalizing the inner product in
terms of new monic polynomials φι{t,λ) = [W_(ί, i)~\i$& %)> ami the h^t) are the
ratios of the new norms to the old ones. τ(ί) is a "tau-function" of the Toda
hierarchy. One must be careful - a tau function was defined for this system also
in [17] which is not the same as (2.21), basically because these authors work with
a completely different set of L2 functions. If we choose the potential V(i) to be
gaussian then the diagonalization (2.18) refers the system to the infinite set of
functions on R1 spanned by Hermite polynomials, whereas in [17] the diagonal-
ization refers to the doubly-infinite set of functions on the circle spanned by
exponentials einθ. These two systems do not appear to be related. When we refer
to "the" tau function of the Toda hierarchy we will always mean (2.21).
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In the standard tau-function formalism [17], a central role is played by the

"wavefunction" w(t,λ) = τί tn—λ~n I. Consider the characteristic polunomial

wN(t,λ) = < n(0ldet N (A- 0 | ΨN(t)}

= λ \ ΨN(t)\exp { [ l J ( f J ]}l n(0> = λNτ(tn -
 l

nλ~ή. (2.22)
It is the analogue in our context of the wavefunction; its zeros are the expectation
values of the eigenvalues of the original matrix φ, moreover [11] wN(t,λ) is the
Nth orthogonal polynomial ψN(t9 λ). Clearly solving for wN(ί, λ) for all N is equivalent
to determining W+(t,λ). It seems likely that one can adapt the structures of [17]
to the present context and obtain a "Hirota form" of the flow equations. Basically
one follows the same steps, replacing the matrix representative Σ of the spectral
parameter λ in their basis eιnθ of functions on the circle by Q(f), the one appropriate
for our reference basis ψ(t, λ) of functions on the line.

Finally, many of the interesting scaling theories involve matrix potentials for
which the integral (2.2) does not exist. It has been proposed [18] to define the
partition function by analytic continuation from regions where the theory exists.
In the present context this means continuation of the Toda flows to complex time
and perhaps complex Jacobi matrices as well. In the finite dimensional SL(K) Toda
chain some results appear to be known [16]. The solution for the entries of Q will
generically develop poles in tkeC whenever e~tkQk does not allow a W+HW-
factorization. The geometry is apparently related to the cell decomposition of
Gc/Bc, where B is the Borel subgroup. It would be interesting to understand the
geometry in greater detail and extend the results to GL(oo).

3. Unitary Matrices and the Quaternionic Toda Hierarchy

A similar story transpires in the unitary one-matrix model

£i k t r {M*}. (3.1)

Once again eliminating the U(N) angular degrees of freedom,

<T = § ft dzβZ(z)expΓ-Σ(tfcz*+ + ί f c *z£_)W (3.2)
α = l (_ k,a J

Here z ± = ί z ± - ) , |z| = l, and the Jacobian A is most conveniently organized in

terms of the functions [19]

sk = zk+112 - z~k~1/2 + * Σ akJ{zJ+1/2 - z~j-1/2). (3.3)
3 = 0

Then with fceZ+ for U(2N), fceZ+ - | f o r U(2N-1), we can represent the Jacobian
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A as

Isfa)] j=l,...,2N(or2N-l)

For U(2N— l),s0 vanishes identically and is omitted. The polynomials (3.3) are to
be chosen orthogonal with respect to the measure dμ = dze~v~v, i.e.

The advantage of this basis is that it realizes the relevant "canonical" commutation
relations

zτ, [z + ,z_]=0, zl-zl=4 (3.4)

in terms of tridiagonal quaternion matrices:

z
fr\ Γ V Γ / O ^ . \ (U . Ίl /O\ ~ i U . - d A , 1 - . \ i / Λ . V ^ / O v — i Z . V1 /O\ , ' _ \ T / fc

(3.5)

The notation a Σ means the matrix whose superdiagonal is (aί9a2,...), bt is

1,fe2? ) Evaluation of various matrix elements of zd yields

The string equations are the matrix realization of (3.4), which give recursion
relations for the cfs and ί?'s. The flows are generated by (zι+1z_)+ for tt and
(zιl 1 z + ) + for if, and the upper-triangular/lower-triangular factorization that solves
for the partition function takes place in GL(oo,Q). Thus integrability is also
manifest in the unitary one-matrix model. In the scaling limit one finds [20] that
unitary matrix models produce a subset of the universality classes of the Hermitian
one-matrix model, so perhaps the above is of somewhat less importance than the
Toda system of Sect. 2, nevertheless it is interesting to see what types of integrable
systems arise in the lattice models themselves. One advantage is that the twofold
structure of wavefunctions observed by [21] is apparent here, but appears to be
special to this particular model. We might also remark that no clear surface
interpretation of these models has yet emerged, casting some doubt on whether
the class of matrix models coincides with the space of string theories1.

1 On the other hand, note that it does not seem essential that the asymptotic expansion of the
partition function have such an interpretation; if, for instance, there were a matrix model for the
superstring its asymptotic expansion could not be related to surfaces since the cosmological
constant is not available as a probe of the theory. The diagrammatic vertices would glue together
little pieces of "surface," but this surface need not be the string itself embedded in spacetime
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4. The Two-Matrix Model and the Id Toda Hierarchy

Finally we come to multimatrix integrals of the form

Z = l Π ®Φmexpί-ΣVn,(Φm) + tr{ΦmΦm+1}l V(φ) = γjtfhτ{φk

m\. (4.1)
m = 0

It is possible to successively integrate over the U(N) angular variables of each
matrix [22], with the result

* = J Π Π A,,m4(AM)expΓ- £ t\λa,mY + λa,mλa,m+1~]Δ(λ0). (4.2)
m = O α = l [_ k,a,m _J

We now have the freedom to choose the polynomials φ in Δ independently of the
φ in Δ, so as to diagonalize the quadratic form implicit in (4.2),

Mo = ί ft Π^m )^M)expΓ- Σ tKλ
m = 0 α= 1 |_ k,a,m J

= <Ψi\Ψj>- (4.3)

As in the previous cases we define the coordinate matrices

<Φi\λι\φj> = hiQW = QWhj (4.4)

depending on whether we act to the right or to the left. Similarly the derivative
operator

- JEo ^ J + ̂ A + i lWo)

In the last line P{M) is the contribution from differentiating φ; it is a lower triangular
matrix with 1,2,3,... on the subdiagonal. Similarly P ( 0 ) is upper triangular with
1,2,3,... on the superdiagonal; Q(M) has unit superdiagonal and is otherwise lower
triangular; and Q ( 0 ) has unit subdiagonal and is otherwise upper triangular. Given
p(0)ρ(0) satisfying [P,Q] = 1, the equations of motion (4.5) guarantee the com-
mutation relations are satisfied for successive matrices along the chain until we
reach P ( M ) , <2(M); however, in contrast to the one-matrix model, [P ( 0 ) , β ( 0 ) ] = 1
alone is insufficient to determine the matrix elements of both operators. Instead
one must evolve (4.5) to the other end of the chain, where the Heisenberg relations
for P ( M ) , β ( M ) provide sufficient data to solve for the matrix elements recursively.
Given one solution, we can perturb each of the matrix potentials to find nearby
partition functions; as in the one-matrix model this can be expressed as a matrix
element in GL(oo)9

2s(t) = < fw(f)|exp [ - (4 M ) - i[M))(Qi

= τ(ί) (4.6)
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Our goal is to express (4.6) as an integrable system. For the general (M + l)-matrix
integral this is rather difficult; however we will now show that in the case of the
two-matrix model the flows in ί(0) = ί, ί(1) Ξ f are those of the two-dimensional
Toda hierarchy [23,17] (we believe the M ^ 2 models to be governed by nonlocal
conservation laws of the Id Toda hierarchy). Equation (4.5) becomes

( j

for H = diag(^). Note also from (4.4) that since β ( 1 ) = H~ 1 β ( 1 ) H , the Heisenberg
algebras of the two pairs of matrices are analogous.

The two-dimensional Toda hierarchy is a set of flows on two matrices
L = (ΣT + upper triangular) and M = H~1(Σ + lower triangular)//; denoting

dnM = [Ln

+,Ml dnM = [Ml,Ml (4.8)

The mutual commutativity of these flows is expressed in the flatness conditions

_ dnL
m

+-dmLn

+ + lLΊ,LnΛ = O,

3nMZ - dmMZ + [M™, M n J = 0,

dnL
m

+ - δ w M Ί + [Lΐ, M»J = 0. (4.9)

There is an associated linear problem; one can find an upper triangular matrix
W with unit diagonal (the analogue of W+ of the one-matrix case) and a
lower triangular matrix V (the analogue of HW_ of the one-matrix case), such
that

L(ί, I) = W(t9 Ϊ)L{U t)W- \U t\ M(ί, t) = V(t, t)M(t9 t)V \t9 ΐ). (4.10)

The flow equations for W9 V are simply

dnV=-LΊV9 dnV=-MlV. (4.11)

Clearly if we choose as initial conditions L = β ( 0 )(ί, t), M = Q{1)(t, t) satisfying the
string equations (4.7), then the flow (4.11) preserves the Heisenberg relations
lPi0\Q{0)-] = lQil\H-1Pii)H'] = \. The derivatives (4.5) are related to the flow
generators by considering separately the upper and lower triangular parts of (4.7).
Thus the two-matrix model partition function is a tau function of the two-
dimensional Toda hierarchy; the matrices W and V provide the desired change of
basis to diagonalize the quadratic form at couplings ί, ψ^t) = V^j(t)9 φi(ή =
ψj(t)Wβίm

9 we have

= < ΨN\ W~\U t)V(t, t)\ ΨN> = τ(ί,f). (4.12)

We conclude this section with a derivation of (4.12); the proof is directly adapted
from section (1.2) of [17]. Define

HT = We~{ϊ-ίyύ, 1T = Ve(t~tH; (4.13)
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then it is straightforward to show that

dnar = L\ or, dnar = - MI if. (4.14)

Now note that

dnr-r-x=dnir-ir-l = -Ml. (4.15)

By induction, %\δg dβ

m\dβ

m\ Ξ= 5*3* acts as

dξdlr-r-ί = didlir'ir-i; (4.16)

in other words T T " lΛT(t91) = HT" 1'V(U t) = A, a constant matrix. Thus

W~iV = e-
{ϊ-*a Ae-{t-tVL (4.17)

as advertised. This factorization is a matrix analogue of the Riemann-Hilbert
problem [17].

5. Discussion

At the end of Sect. 2 we noted that the Toda tau function arising in matrix models
differs significantly from that of standard free fermion formulations [17]. There
do exist a collection of "fermions" [3] whose wavefunctions are the orthogonal
polynomials φi9 whose ground state is the state in which the partition function is
evaluated. But they are not really free in the usual sense; although all correlations
can be written in terms of the two-point correlation, their two-point correlation
[3] is quite different due to the different Hubert space. In particular, there is no
natural pairing of positive and negative frequency modes - states above and below
the Fermi surface - as there is in the usual free fermion tau function. The "bottom"
of the Fermi sea is quite different from the "top" of the sea of unfilled levels. We
can define the partition function at couplings t given a solution to the string
equation at ί, but there is no sensible ί->0 limit as there is in [17]. We believe the
matrix integral at i plays the role of the "star operator" of recent continuum
formulations [21,5], perhaps in a somewhat more concrete realization.

There is also an analogy to the work of [24 and 25]; the reference theory i is
arbitrary. The shift is accomplished by Eq. (2.19),

β(ί) = W+{t, iΓιQ(t)W+(t, i) = H(ί, t)W-{t, ΐ)Q(ΐ)WΛU t)'ιH(t> 0" S

which allows us to rewrite the theory in terms of perturbations about couplings
t. There is no "background independent" formulation, since the point with vanishing
matrix potential is highly singular. Rather there is a kind of affine structure: the
space of theories coupled to Id gravity can, for low c, be formulated about any
convenient point, with no preferred coordinate origin (except perhaps the trivial
theory c = — 2, but only because the calculations are simplest there). Our
formulation of the space of minimal models coupled to gravity justifies the scenario
of [25]. We have found a space (the Grassmannian Gr (N, oo)) in which the theory
space is embedded linearly; we introduce perturbations by exponentiating local
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operators; the string equation can be thought of as a kind of renormalization group
equation, showing how the theory flows if we change the mass scale (cosmological
constant, N). Integrability means that the flow in the coupling space can be made
linear; the nonlinearity enters when we try to eliminate i or change N. The linear
embedding in GL( oo) helps explain why topological gravity is related to dynamical
gravity. Topological gravity enumerates each point on the surface as a part of the
moduli space of punctures. The fact that we can condense punctures to make
physical surfaces of finite extent results from the possibility to exponentiate the
"puncture operator" and flow to the dynamical gravity critical point.

The flows may also be linearized directly in the phase space of Jacobi matrices;
the linearization is transparent in action-angle variables. The action variables are
the eigenvalues (or their symmetric polynomials); the angle variables are the
coordinates on the Jacobian of the spectral curve C — {Λ.J. Moser [12] has given
a description of these angle variables; for the SL(K) Toda system, consider the
matrix element of the resolvent

ψκ(λ)

One can show that — logrf = Λ*, thus the logr t are the desired coordinates. The
dtk

flow is isospectral; a^b x are rational functions of rhXt. The isospectral nature of
the flows is rather curious; it cannot survive the K -• oo limit and the analytic
continuations that, for instance, take single cut distributions to multiple cut
distributions of eigenvalues.

Much has been made recently of the fact that the continuum matrix model tau
function satisfies the Virasoro constraints Lnτ = 0, n = — 1,0,1,... . The same is
true at the discrete level; the moments of the one-matrix loop equation [18]

are precisely the Virasoro constraints. We pick out Ln by contour integration
around \λ\ = oo against A""1, expressing the result in terms of the tk and their
derivatives:

[ oo 7) n fl 7) Ί

£ ^ } ) = ̂ o. ,,3,In other words (5.2) is the stress tensor T(λ). The first two constraints L^1,L0 are
the string equations PN N = 0, PNfN+1 = N. It would be interesting to extend this
analysis to the loop equations of the multimatrix case.

There is also a connection to the work of [21], in that the string equations
and flow equations may be thought of as the compatibility conditions for the triplet
of operators
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acting on the wavefunctions φi(t,λ). We have not so far been able to find evidence
at the discrete level of the finite-dimensional vector bundle which plays such a
crucial role in [21] and which seems to be related to the Dynkin diagram of the
corresponding matter theory which is being coupled to gravity. One obvious place
to look is the difference equation Qφ = λφ; when Q is order r, where order is
defined to be the number of nonvanishing diagonals, one needs r initial conditions
to specify a solution.

In Sect. 4 we specialized to the two-matrix model mostly for reasons of
simplicity. However this does not appear to impose any restriction on the class of
minimal model critical points that can be studied. In the one-matrix model we are
limited by the fact that Q is always a tridiagonal matrix, and so is related in the
scaling limit to a second-order differential operator (the Toda flows scale to the
KdV flows, the upper/lower triangular decomposition becomes the differential/
integral splitting of pseudodifferential operators, etc.). In the two matrix model
this restriction is lifted; the orders of β ( 1 ), β ( 0 ) are determined from (4.7) by the
degree of Vo, Vί9 respectively. These orders are the discrete analogues of the orders
of the continuum differential operators ^,,2 of [4]. We have enough parameters
to tune the scaling limit so as to find any Lax pair of the KP hierarchy, since both
Q and P may have as high an order as we like (or as low; we recover the one-matrix
universality classes when one of the two matrices has gaussian potential). The
ability to find any c < 1 theory in the two-matrix model is rather reminiscent of
quenched large-iV systems of [26]. There the spacetime degrees of freedom were
nontrivially embedded in the angle degrees of freedom of the matrices, and infinite
spacetime properties reproduced on a hypercube of one lattice spacing. It appears
here that the angle degrees of freedom may be effectively quenched; since all relevant
operators of the discrete series are written in terms of the eigenvalue distribution,
the M nontrivial U(N) matrix probability distributions are irrelevant degrees of
freedom and should be dynamically determined by the eigenvalue distribution.
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