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Abstract. Strongly compled gravity theories with Virasoro central charges equal to
7,13, and 19 are shown to enjoy striking properties: at these values, the subset of
chiral operators with real Virasoro-weights, acting on a subspace ^phys, is shown
to be closed by fusion and braiding, and to leave this subspace invariant.
Moreover, the representation of the Virasoro algebra becomes unitary when it is
restricted to J"fphys. Strongly coupled 2D gravity with Cgrav = 7,13, or 19 may thus
be naturally truncated obtaining a consistent conformal theory (this result is
similar to the truncation that occurs for C = 1 — 6(p—p')2/ppf with p and p' integers,
where only a finite number of primary fields remains, as is well known in rational
theories). The proof of this unitary truncation theorem, already summarized in a
recent letter, is fully described here.

1. Introduction

This article is the third of a series [1-3] devoted to the solution of 2D gravity and
minimal models by means of quantum groups. The present approach is a direct
outcome of the algebraic approach to 2D critical systems which Neveu and I [4-6]
introduced long ago. Its distinctive feature is that it directly deals with chiral
operators that transform irreducibly under the action of the underlying quantum
group, while in the more widespread type of approach [7], one works with Green
functions and the link with quantum group is made at the level of group invariants
and g-Clebsch Gordan or q-6-j symbols. Thus, in [7], one does not clearly see how
the quantum group acts on the theory. Moreover, these approaches exclusively
deal with rational theories at C < 1. This is inappropriate for the strongly coupled
gravity which we have in mind in the present paper. The special values Cgrav = 7,13,
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and 19 were first put forward in [6] where closure under braiding was found to
hold at these values for a particular operator with real Virasoro weights. This
result was extended to ^-gravity in a recent paper [2] where contact between the
argument of [6] and the quantum group structure of 2D gravity [1] was also
made. Finally the following unitary truncation theorem was found to hold:

In Lίouvίlle theory, with Virasoro central charges 7,13, and 19,
the subset ^,hys of chίral operators with real Virasoro-weights,
acting on a subspace c^hys, is closed by fusion and braiding,
and only gives states that belong to 3fphys. The representation
of the Virasoro algebra restricted to ^fphys is unitary.

The present article provides the complete derivation of this theorem, sum-
marized in a recent letter [3], which shows that 2D gravity may be formulated for
the above values by only retaining operators with real Virasoro-weights. This
leads to completely consistent conformal theories.

In the quantum solution of the Liouville dynamics the basic chiral conformal
family of 2D gravity and minimal models appears naturally (see Appendix A for
some details). Its relation with quantum groups was studied in [1] (much more
about this below). For a given coupling constant γ, this conformal family involves
two possible quantum modifications given by:

u-l)), (1.1)

where the last identity follows from the fact that the central charge of the Liouville
theory is CLiou = 1 +3/7- We use the same conventions and notations1 as in [1].
They are summarized in Appendix A for completeness. Although it comes out
from the quantization of the Liouville theory, the conformal family we are
considering has an intrinsic meaning. It is characterized by the existence of two
quantum-deformation parameters, which we shall denote by h and K. They are
related by

hίϊ=π2, ft + /Γ=π(C-13)/6, (1.2)

where C is the central extension of the Virasoro algebra. In Liouville theory,
h = h-,K=h+, and C = CLiou. Choosing C < 1 one may as well describe the minimal
models, however. All quantities related to K are distinguished by hatted symbols.
In the weak coupling regime y < 1/8, h and /Tare real. Their role is asymmetrical.
For y->0, h ~ 2πy, while h blows up. Thus h/2π describes quantum modifications to
the chiral operators that are perturbative, while /Γcorresponds to non-perturbative
effects. In the strong coupling regime, on the contrary, (1/8<y< oo), K=h*, and
both h and Kmust be treated on the same footing, as we shall do following [1-3].
There are four basic fields: ψι(σ), ψ2(o)9 Φι(σ), $2(σ) The fields \pj (respectively $,-)
involve the quantum modification h (respectively K). Since these fields are chiral, we
may work on the unit circle z = eiσ 0 ̂  σ ̂  2π. They are solutions of a quantum
Schrόdinger equation which comes out of the Liouville dynamics, and is
equivalent to the Ward identities that reflect the decoupling of Virasoro null
vectors. See Appendix A for some pedagogical details. By operator-product
expansion, the above basic fields generate a family of operators ψ(m$(σ)9

Except that the letter ω is everywhere replaced by w
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-J^m^J, -J^rf^J, of the type (2J + 1,2J + 1) in the BPZ classification.
Their conformal weights are given by Kac's formula:

(that is, t/ ^IV) x (dσ)^Kac(J' '; C) is conformally invariant). A central role is played by
the zero-mode p0 (quasi momentum) of the underlying pair of equivalent free fields
(see Appendix A). It is convenient to define the rescaled variables

^ £. = ,- j/M. A = ro- tσ = tfr- (14)
/i y n 9 π' π'

so that for any function /

Ψ(m$f(w)= f(w + 2m + 2ιhπ/h)ψ(£$. (1.5)

The operators φS? thus live in Hubert spaces2 of the form

JV(w0)= 0 ^(w0 + n + ήπ/h). (1.6)
n,h= -oo

w° is to be determined, and ^(w) is the Fock space of states with quasi momentum
w. The SL(2, C)-invariant vacuum corresponds to w0 = 1 + π/h [1], but this choice
is not appropriate here.

The above ψ family is closed by fusion and braiding. However, the fusion
coefficients and ^-matrix are functions of w, and according to (1.5) do not
commute with the ψ fields. Thus the structure is unusual and its connection with
the standard quantum group not very transparent. This was overcome in [1, 8] by
changing basis to a new set of chiral operators noted ξ '̂̂ (σ) with — J^M^ J,
— J^M^J. The change of basis was determined so mat all w dependence
disappear from the .R-matrix and from the fusion coefficients. For the ξ fields the
quantum group structure is transparent. In particular, it was found that, for ξ(^
= ξ($, the β-matrix coincides with the standard ^-matrix of the quantum group
SL(2)q. Hence we may call the family of ξ fields the universal conformal family. We
shall see that the (so-called quantum) mathematical deformation of the underlying
group is dictated by the non-commutativity of the conformal field operators due to
physical quantum effects, i.e. by the uncertainty principle of quantum mechanics, if
the fields ξ(M(σ) — J^M^J span a representation of spin J of SL(2)q. The
properties of the universal family are thus completely determined by the quantum
group structure (more about this later on) and this is instrumental in the proof of
the unitary decoupling theorem which is our present aim. The whole discussion is
carried out assuming that q is not a root of unity, so that the representations of the
quantum algebra are trivial deformations of the q = 1 case.

Natural as they may be, group theoretically, the ξ operators are not always the
most useful operators to use, nevertheless. Indeed the ψ fields, contrary to the ξ
fields, have well-defined shift properties of the associated quasi momentum w.
Thus the former are more useful to discuss properties pertaining to the Hubert
space in which conformal theories are defined. Thus we shall use each basis in its
turn.

Mathematically they are not really Hubert spaces since their metrics are not positive definite
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The plan of the article is as follows. At first (Sect. 2) we complete the analysis of
[1] without specializing the value of C. After developing some useful machinery
about g-deformed special functions, we re-express the entries of the matrix that
relates ξ fields and ψ fields in terms of g-hypergeometric functions and determine
its inverse. The connection is next made between the short-distance operator-
product expansion of the universal family and the co-product associated with the
quantum group structure unravelled in [1]. The fusion coefficients are thereby
shown to coincide with the associated 3-) symbols. In Sect. 3, the mathematical
properties of the special choices C = 7, 13, and 19 are established. The two
quantum modifications are then such that h + fi= sπ, s integer, and we show that,
as a result, the Clebsch-Gordan coefficients, and braiding matrices, are respec-
tively related by very simple formulae. In addition, the physical Hubert space ̂ phys

is introduced so that the change of basis between ψ and ξ fields and between ψ and
ζ fields are suitably connected. The structure so obtained allows us next to prove
the unitary truncation theorem, for the fields with negative weights (Sect. 4), and
for the complete set of physical fields (Sect. 5). In the latter discussion, operators
with negative spins are needed. This case is handled by continuation from the case
of positive spins, making use of the connection made in Sect. 2 with g-deformed
special functions. A useful symmetry between spins J and — J — 1 is put forward.
Some concluding remarks are made in Sect. 6.

2. More on the General Properties of the ξ Fields

At first we consider the fields ξ($ separately - it goes without saying that each part
of the following discussion has its "hatted" counterpart. For any positive integer
2J, introduce group-theoretic state-vectors noted |J,M>, with — J^M^J, and
operators J+, J3, such that

J3|J,M> = M|J,M>, (2.1)

where, following [1-3], we started to use the notation |_x_|, defined by

[x J: = sm(hx)/smh. (2.2)

These operators satisfy the SL(2)q commutation relations,

[J3,J±]=±J±, [J+,J_] = L2J3J. (2.3)

First recall two basic results of [1],

Theorem (2.1). For 2J a positive integer let

(*), (2.4)

2-f \ ^/2Σemί(ra+m,/ J-M \ί J + M

"(2.5)

\- J * i ,„ 11 . rr i « i
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where the variable t takes all values such that the entries of the binomial coefficients
are non-negative integers. 1) For π>σ>σ'>0, these operators obey the exchange
algebra

Σ (J, JΉΆ ξftWWW, (2-7)
-J'^N'^J'

'|)R(| J, Ny ® \J', JV'», (2.8)

( oo l\ _p2ih)nihn(n-ί)l2 \

1+ £ M * e-^V+ΓΘe"1"-73^-)")- (2-9)
n= 1 L^J /

2) For Q<σ<σ'<π,the ξ fields obey the exchange algebra

Σ Φ3ΉZ ®W)&!>(σ),

(J,J')N

M%ί.=«J,M\®v,M'\)R(\J,Ny®\J',N'y), (2.11)
oo ("I _p-2>Ayι,,-;An(B-l)/2

^— ̂  - — - -ihtt]*
«=ι _

(2.12)
3) Tftβ two exchange formulae are related by the inverse relation

(2.13)

Proof. Based on the braiding properties of the ψ fields it is spelled out in [1]. The
normalization constants of this article are chosen to be κ3 = 1 and a2 = a±eih. Π

Theorem (2.2). For C> 1, and to leading order3 in the short distance singularity at
σ->σ', the product of ξ fields behaves as

-2hJJ'

where

' 2J7

l\ J+MI \ J
Λ(J,M;J',M') =

2J + 2J' \

Proof. See [1] with κ3 = \. Π

We now come to new results about the ξ family. First, in order to continue to
negative J (see [3]) we relate the coefficients of (2.4) to ^-deformed (so-called basic)
hypergeometric functions. For this purpose we need to introduce q-Gamma
functions [9, 10] which are such that

= LflJΓ(fl), Γ(0)=l. (2.16)

Proposition (2.3). // Im/z<0, the solution of (2.16) is

3 If C < 1 this term is no more leading, but still there. It corresponds to adding the spins J± and J2

to obtain the maximum spin J±+J2> The theorem still holds
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Proof. Easily verified explicitly. The result may be understood as follows. Choose
an arbitrary integer A, and write, for a integer,

or equivalently

Π (\-e-
=l

Taking ,4->oo gives (2.17) which, being convergent for Im/ι<0, is the correct
interpolation. Π

We shall also need the following

Theorem (2.4). The function

is given by

h Θ^π/h)

where <9t denotes the standard Jacobi Theta function [11].

Proof. Making use of (2.17) one gets

l - Γ Γ π 2/ι

(i_e-2. /.,)2 -sinΛ

(2.20)

with x = πv/h, τ= —h/π. Equation (2.19) follows from the Jacobi transformation
from the period τ = — h/π to τ = — 1/τ. Π

It is interesting to note that since hfi=π2,i = fί/π. Thus the Jacobi transforma-
tion exchanges the two quantum modifications h and K up to a sign, and one has

sinπx h £ {ί-2e2i"'hcos(2πx) + e4ί>'ί'\
S(X)= — - - (2-21)

We shall often use the fact that, for N integer,

S(x + N) = (-ί)NS(x). (2.22)

Next, as in [3], it is convenient to define basic or q-hypergeometric functions as4

(2-23)

The relationship with the definition commonly used in mathematics [10, 12, 13] is
displayed in Appendix B. Next we have the

4 Since all the standard functions we shall use are ^-deformed, the index q is omitted
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Theorem (2.5). Equation (2.5) is equivalent to

γ h -2ih(w + m)\

(* ' ' (2.24)

a = M-J, b=-m-J, c = l+M-w, /or M>w, (2.25)

a=-M-J, b = m-J, c = l-M + m, for M<m. (2.26)

Proo/ Take M > m for instance. Continue temporarily Eq. (2.5) to non-integer J by
replacing factorials by Γ functions. Letting t=— 2v + J— M + w, one gets

v>oΓ(l-α-v)Γ(l-6-v)Γ(c + v)
(2.27)

Next, it is an easy consequence of Eq. (2.22) that, in general,

. (2.28)

Equation (2.27) is transformed into the desired expression (2.24) by means of (2.28)
taken with x = a and with x = b. Π

Next the inversion of the transformation (2.4, 5) is determined by the

Theorem (2.6). // Eq. (2.4) holds, the ψ fields are given by the formulae

VL»= Σ ^\σ)(J,^, (2.29)
M=-J

where the coefficients (J, w\% are such that

(2.30)

(131)

Proof. First, it is an easy algebra to check that the theorem holds for J = 1/2, using
the explicit expressions:

|1 _\±l/2_ .ih
—

that follow from (2.5). Next, one establishes a recurrence relation in J by using the
leading-order fusion relations (we omit the divergent factors which are the same
throughout the proof)

Y^1/2V) W2, -α; J, -m; w), (2.33)

) ~ A(J, M; 1/2, Λ){ϊΐ V2 V) (2-34)

The explicit expression of JV(l/2, — α; J, —m w) is derived in [1]. Assume the
theorem holds up to spin J. Then

M
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Choose, for instance, α = 1/2. From the expression (2.5) of \J,w)^ one may verify
that

)in^^

Since

CίίΊ2/^ -(2ί smh)eίh/2lw], 7V(l/2, -1/2; J, -m;tπ) = |_^

(2.37)

and making use of (2.33, 34), one sees that the theorem holds for spin J + l/2
provided

C«?;i'?W^ (2.38)

and formula (2.31) follows. Π

Corollary (2.7). The coefficients | J, w)1^ satisfy the relation

£ (-\γ-M^J-^\J^TM\J,w + 2pΓ--p

M = δm,pC^(w). (2.39)
M=-J

Proof. Substitute (2.29) into (2.4). Π

Theorem (2.1) indicates that the braiding properties of the ξ fields are given by
the universal ^-matrix of SL(2)q, and are thus completely determined group
theoretically. This is also true for the short-distance operator-product expansion,
as the following shows.

Theorem (2.8). The short-distance operator-product expansion of the ξ fields is of
the form: J + j

j=\Jί-j2\

x gjlJ2(Jι> MI '2, M2\J19 J2; J, M ! + M2) (ξ$1+M2(σ) + descendants)} , (2.40)

where d(σ-σ') = l-e~~ί(σ~σ'\ (J^M^J2yM2\Jί,J2ιJ,Mί+M2) denotes the
Clebsch-Gordan coefficients of SL(2)q (see Appendix C)9 gJ

JlJ2 are
numerical constants, and Δ(J):= —hJ(J+ l)/π — J is the Virasoro-weight of ζ(M(σ)

Proof. This was already proven in [1] (see Theorem (2.2)) to leading order in the
singularity. Indeed, comparing the explicit expression given in [1] (Eqs. (2.14, 15))
with Eq. (C.3), one sees that

A(J1,M1;J2,M2) = (J1,M1;J2,M2|J1,J2;J1+J2,M1 + M2). (2.41)

On the other hand, A(Jl+J2) — A(J1) — A(J2)= —^hJ^J^n. The complete proof
works in the same way as in [1]. One proceeds by recursion in J1. First one derives
(2.40) in the case of Jl = 1/2 for arbitrary J2. For this, one performs the same
calculations as in Appendix D of [1] except that both terms ξ(j2± 1/2) are retained.
Next, assuming that (2.40) holds up to J l5 one multiplies both sides of this relation
by £i1/2Vι) and lets σ1-^σ first and σ-+σ' last. This gives a recurrence relation
between the fusion coefficients for spins J l5 J2 and those for spins J^ + l/2, J2

which is used, together with the explicit form of the Clebsch-Gordan coefficients
(see Appendix C) to derive (2.40) for spins Jί + 1/2, J2 and this establishes the
recursion. We shall not go into more details of this lengthy discussion. Π

In the following gJ

JlJ2 is omitted since it plays no role in the discussions.
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Theorem (2.9). Define the quantum group action on the ξ fields by

(2.42)

Then the operator-product ξ(^ \ \σ) ξ&fo') also gives a representation of the quantum
group algebra (2.3) with generators

±, J3: = J3®1 + 1®J3, (2.43)

where the tensor product is defined so that

(A®B) (&•>)£ ί£V)) : =(Λ£iίiV)) (Bf i£V)) , (2.44)

and where each term in the expansion over J transforms according to a representation
of spin J.

Proof. This is obvious for J3 since the M/s add up. For J+, compute

+ M2\[_J2 + M2 + 1J (£&V)fί#± >')) . (2.45)

Substitute (2.40) in both sides, and make use of the following recurrence relations
for q-C.G. coefficients (see Appendix C):

^ J2; J, Mί + M2)

(2.46)
One gets

= Σ
J = \Jι~J2\

x (J1? Af ! J2, M2| J19 J2; J, M, + M2)(ξ$l+M2 ± ,(σ) + descendants)} , (2.47)

and the result follows by inspection. Π

Equation (2.43) coincides with the definition of the co-product of SL(2)q [14].
One thus see that, in conformal theories, the physical origin of the co-product is the
operator-product expansion.

Next we come to properties of the general fields ξ(£ $ fields, with both J and J
non-vanishing. The hatted quantities, which ̂ now appear together with the
unhatted ones, are noted[xj: = sinίx/sinί, Jj,ϋτ)^, ^(J1,M1ιJ2,M2), and so on.
First the fusion to leading order is given by the

Theorem (2.10). To leading order in the singularity at σ->σ', the O.P.E. of the fields

ξ(^ιs «!w«y)~(d(σ-στ(J

x A(J1; M1; Λ, Λ*ι J2i M2, J2,

^J^J^ J^^A^jJ Q-A^J^J^Q-Δ^J^J^C), (2.49)

λ(Jlt M,, J,, ti ! J2, M2, J2, tij : = e^M ̂  ~M>^ + "^ -**™

M^ J^MJ. (2.50)
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Proof. Proceed by recursion from the relation (omitting the divergent factors)

derived in [1]. First compute λ(ί/29 α, 0, 0; J, M, J, M), α= ±1/2, from the
associativity of the fusion between operators. Consider £i1/2VKΛfVθ£jiV") Let
σ->σ' first followed by σ->σ". It must lead to the same result as σ'->σ" first followed
by σ-*σ" . This gives

/l(l/2, α, 0, 0; J, M, J, M) = έ?'«(β>- A'2U(l/2, α; J, M) .

Similarly

λ(0, 0, 1/2, dc; J, M, J, Λ?) = eiπ(&J-M'2)Z(l/2, ά; J, M) .

Next impose the same associativity condition on the product

One obtains

A(Ji + 1/2, M! + α, J l5 J&i ^2, M2, J2? M2) = A(J l 9 M1? J l5 M, J2, M2, J2, M2)

and using the above relation

λ(Jί + 1/2, M! + α, J15 M! J2, M2, J2, M2) = /l(J1? M^J^M,; J2, M2, J2, M2)

χ ^(«>2-M2/

This together with the similar hatted recurrence leads to (2.50). Π

Next the complete quantum group action on the ξ family is given by the
following generalisation of Theorem (2.9):

Theorem (2.11). For the general £j£$ fields, the natural quantum group action is

®% = M?t$, (2.51a)

= Mξ^l. (2.51b)

These operators satisfy the SL(2)q x SL(2)% commutation relations

[J+,J_] = L2J3J, CΛ^-] = L2J3J5 [Λ^J=0- (2.52)

The associated co-product is

J± = J± ±

J± = J± ± .

Proof. We shall skip details, since they become cumbersome. It is elementary to
check that (2.5 la, b) satisfies (2.52). Moreover it is straightforward to check that
the co-product is indeed consistent with the leading-order fusion-coefficient (2.50)
using the recurrence realisation for C.G. coefficients (2.46). Π
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Theorem (2.12). General Operator-Product Expansion. The general fusion-
coefficients of the ξ(£fy fields are given by

J2|

χ βiπ[M1J2-M2Jι + M1J2-M2Jι]

^ (2.54)

Proof. A straightforward extension of the proof of Theorem (2.8). Π

We need general braiding properties of ζ(M\'^M\(σ) and ί̂ ' Λf2(
σ') They are given

by the

Theorem (2.13). For π>σ>σ'>Q,one has:

Mι)-Jι(N2 + M2)-J1(N2 + M2)] (256)

Consider, for σ>σί>σf>σ'ί9

First, letting σ-^σt and σ'->σ'1? and working to leading order, gives (once again we
omit the divergent factors)

Second, exchanging first the operators, one gets for the same product

2N1 ^2πi[MlJ2-M2Jι+NlJ2-N2Jι]

χe- 2*i( Ji Ji + J2 J2) e/π[Λί ! Ji - Λi Ji + ΛT2 J2 - ΛT2 J2] £(J2,

Equating the two expressions establishes the theorem.

3. Mathematical Properties at the Special Values

From now we derive the properties which only hold if

h + ίi=sπ, 5 = 0, ±1, or, equivalently, C = 1+6(5 + 2), (3.1)

h = f (s - i]/4-s2) , K= f (s + /1/4-s2) = h* . (3.2)

Our aim in this section is to show that, for these values, hatted and unhatted
quantum-group quantities are very simply related. The simplest [2, 3] is the

Theorem (3.1). If (3.1) holds, and for any positive integer N and arbitrary real
number α, one has

(3.3)
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Proof. Compute

ΛhN _0-ihN 0iNπ(s - ί ]/4-s2)/2 _ _ - iNπ(s - i ]/4-s2)/2

_ isπ(N-l)/2

P)/2 _e- iπ(s - i J/4^)/2

Nπ ]/4^/2 _(_ 1 \Ns p- Nπ ]/4

The second term is real and positive. Thus the phase of [NJ is —sπ(N—l)/2. Since
]N] is the complex conjugate of |JVJ the relation follows. Π

Corollary (3.2). The following relations hold (general q-hypergeometric functions
are defined in Appendix B)

IN]I =e-
ίsπN(N-^12 IN] ! , tβJv = LβJv e-

ίsπv(v+2N- 3)/2 , (3.5)

9...,ar+ί -ίsπ[Σaj-Σbj-ί}

Proof. A straightforward algebra from (3.3). Π

Next we relate the Clebsch-Gordan coefficients by the

Theorem (3.3). // (3.1) holds the hatted and unhatted Clebsch-Gordan coefficients
are related by

lJ1,M1;J2,M2]j1,J2;J,Afi=(J1,-M1',J2,-M2\J1,J2;J,-M)
χfiγ{(Jl-MMJ2+M2) + (Jl+J2-J)(Jl+Ml+J2-M2)}ί^γ1+J2-J

Proof. Take expression (C.3) of Appendix C for the hatted C.G. coefficients:

Jι+J2~J

(3'8)

One relates this expression to unhatted quantities piece by piece, using (3.1, 3, 5),
and recalling that the 2J's and 2M's are integers, as well as Ji±Mt. First, write

]2J + 1J \J-M1 -M2J!y + M! + M2J!

LΛ+J2+J+1J!
One finds

(3.9)
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Second, let

where, according to Eq. (3.5),

φ2=-i(Jι+J2-J)(Jι+J2-J-V (3-10)
Third, write

i - J2 + jJtJt -Mt J!t Jt +MJ!

obtaining

<p3 = i(M?-Jf) + i(J1 + J2-J)(l-4M1+J-J1-J2). (3.11)

Fourth, in a similar way,

- J, + J2 + Jj! ΪJ2 + M2J !t J2 - M2 J !
ΐ J2 + M2- μ]\ lJ-J1-

with

φ4 = ̂ (M2

2-Jl) + i(J1+J2-J)(l+4M2 + J-Jl-J2). (3.12)

Fifth consider

obtaining

<p5 = ±(Ji+J2-J)(Ji+J2-J-i). (3-13)

Sixth let
ih(M2Jι-MίJ2) _e

where
φ6 = M2J1-M1J2. (3.14)

Next consider the sum over μ. The μ-dependent term of the phase factor is

The first three terms in the second expression are even numbers, so that the
μ-dependent terms simply gives (_ i^M-Ji+^+J+i) -Q^ summatiOn over μ
becomes

Ji+J2-J
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Since h + K=sπ,

One compensates for this change of sign by letting v = Jΐ

Jί+J2-J
<? = βih(Jί+J2-J)(Jι+J2 + J+i)(_<\Jί+J2-J y

v = 0

1

The sum coincides with the similar expression for the unhatted case if one replaces
M ! and M2 by their opposite. Finally the factor in front combines with the first
term on the right-hand side of the starting point (3.8) leading to:

Altogether one finds:

(j1,M1;J2,M2ΪJ1,J2;J,Al)=(J1,-M1;J2,-M2|J1,J2;J,-Af)(-l^
3 (3.16)

and the result is derived by collecting Eqs. (3.9-15). Π

Closure under fusion of the physical family is ensured by the following

Corollary (3.4). // (3.1) holds, the C.G. coefficients satisfy the orthogonality relation

/i, -Mι; J2, -M2TJ15 J2; J, -M)(J,,M^ J2,M2|J15 J2; J,M)
Mι,M2

χ(_ns{(Jι+M1)(J2-M2) + (Jι+J2-J)(Jι-M1+J2 + M2)} = / |\Jι+J2-J^ A (3.17)

Proof. This is an easy consequence of the last theorem combined with the
orthogonality properties of the C.G. coefficients. The latter are discussed in
Appendix C. Π

Finally the braiding properties are related by the

Theorem (3.5). // (3.1) holds, the hatted and unhatted R-matrices are related by the
relation

_
l>2MίM2 — 2> l-N2-Nl

Proof. Write formulae (2.8, 9) explicitly for the hatted braiding matrix:

' l ' ;

where n = M1 — Nl=N2 — M2. Making use of (3.1, 3, 5) repeatedly, one gets

-ihn(n-l)l2
χ M _e-2ih\n f _ eihn(Mι-M2)
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where, (using Mv + M2 = N1+ N2),

On the other hand, formulae (2.11, 12) give

-ι7ιm(m-l)/2
χ /Ί _ e ~ 2ίh\m eihm(M2 -Mi)

where m = M2 — N2 = N1 — Mί. Comparing the above expressions and using the
property (J ι, J 2)^^ 2

 = (^ 2^1)^2^^ one arrives at tne desired relation. Π

Finally, we shall need a relationship between | J, w)% and its hatted counterpart
Jj, GJ)M. This will not hold for arbitrary values of w, but only for the special ones
that occur in the physical Hubert space introduced in [2, 3, 6] :

Definition (3.6). The physical Hubert space is defined by

^phys:= φS Θ ^KJ, (3.20)
r = 0 n= — oo

where ^(wrtn) is the Fock space with quasi momentum

The importance of this choice for our coming discussion is coming from the

Proposition (3.7). In ^phys w and w are related by (N is an arbitrary integer)

s)), (3.22)

rtH-N]. (3.23)

Proof. Simple calculations [2, 3] using (1.2), (1.4), and (3.21). Π

In the unitary truncation theorem, one will show that one may consistently
restrict the operator algebra to ^fphys. This is satisfactory since one has the

Theorem (3.8). In the space ^phys, the Virasoro-highest-weίghts are real and
positive, and the representation of the Virasoro algebra is unitary.

Proof. As recalled in Appendix A, the Fock space ^(w) corresponds to the highest
weight

v '~ 87 2 4π V hj 4π

An easy computation [2] shows that

(3.24)
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which is indeed real and positive. Since C > 1 the corresponding representations of
the Virasoro algebra are unitary. Π

Finally in jfphys, \J9w% and]j 9 w% are related by the

Theorem (3.9). Introduce the operator

κ:=_ei(hπ-h*,)ei(h-h)/2f (3>25)

In J ̂ phys one has

i __{ j\s(J + M)(J + M-l)/2+J + M

Proof. Start from expression (2.5) for |j,m)^:

. ^ i /7 2J Λ .* ,„_ ,^, Y J-M W J + M

(3.27)

ί runs over values of the form t = 2μ + J—M + m, with μ integer. Thus, according to
Eqs. (3.1, 22),

Jίht(w + m) __ Jίht(w - m) Λsπmt Jίh(J -M + m) (hw - hw)

Next one has, according to Eq. (3.2),

J-M
ι-ί)/2y

\ / J + M \
I

ι-t)/2J \(J + M + w + ί)/2/

Collecting the ί-dependent terms of the last two relations gives

eisπ(t2/2 + mi) _ ^isπ(J - M + m) (J - M + 3m)/2

The dependence in t disappears. One does find the same sum as in | J, m — 2m)^ up
to a factor. Applying (3.1) repeatedly completes the derivation. Π

4. The Physical Fields with Negative Weights

At this point we have the mathematical machinery at our disposal. Our next task is
to derive the unitary decoupling for the fields χ(-\σ) which take the general form

j

M=-J

where the ε$'s are ± 1 factors to be determined below. For pedagogical reasons,
we shall build them up, step by step, using the fusion to leading order. The
decoupling theorem will be fully checked later on. In the expansion (4.1) the
coefficients do not depend upon w apart from the KJ~M factor. We shall show later
on that

j
= 0 3f(wrn + 2m)> (4-2)

m= -J
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so that, for any integer N9

χWκN = (-l)s2JNκNχW. (4.3)

Previous computations [2] show that

yd/2)/ σ\ _ £(1/2, 1/2) / \ _μ ,,£(1/2, 1/2) f \ (Λ Λ\
Λ - Ψ) — S 1/2, - 1/2W T Kς _ 1/2> 1/2W , (4.4J

which is of the form (4.1). The field χ(^} may be determined from the

Theorem (4.1). // (4.3) holds, if to leading order in the singularity at σ-»σ',

χ^/^χ^σO^^σ-σOί-^^^χ^^^V), (4.5)

and if χ(_/2\σ) is given by (4.4); then one has for any non-negative integer 2J,

*<_»= Σ K

J-M(-\rJ-M^-M-^ξ^lM(σ). (4.6)
M= -J

Proof. Introduce

and the corresponding ^(J, M). Assume that χ(ί} is of the form (4.1). The fusion to
leading order gives (omitting the divergent factor as usual)

v(l/2)/_\ v(J)(_/)^p(J)ε(J+l/2,J+l/2) _, 2J+1/ \\2sJ (J) κ(J + 1/2, J+ 1/2)
X- \σ)X- σ ~£J ζj+l/2,-J-l/2^K (—1) ε-jζ-J-l/2,J+l/2

+ V κJ-M(-l)s(J-
M= -J

+ (J, -M- 1)A-(J, M + 1)}

It follows from Corollary (3.4) that

ί~(J, -M)/l+(J,M) + (-l)s(J-

One verifies that χ(ί} is also of the form (4.1) if ε$ obey the relations:

The solution is indeed

fi(J) = (_1).(

Equation (4.6) is very simple since the coefficients do not explicitly depend upon J:

^>) = ̂ J + *ί.-J+ι+(-l)Iκ2^ 5.-J+2 + «c3^ 5.-/+3 + .... (4-8)

The set of χ(^} fields is closed under operator-product expansion as shown by the

Theorem (4.2). // Eq. (4.3) holds, the operator-product expansion of the χ(ί} fields is
given by

χ(^V)#-2)(σ')~ ^Y,2 (— l)s(J l+j2~J)(J l+j2~J~1)/2+s(Jl+j2~J)(JΓ2~Jl+J)

J=\Jl~J2\

x(_l)'ι+'2-JκJι+J2-J(Wσ_σ>)^ (49)
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Proof. It follows from Theorem (2.12) that

Σ
Mι,M2 (.J,J = |J,-J

where

This may be rewritten as

ΛΓ = i(J-M)(J-M- !) + (/! + J2-J)(J1+J2-J-l)i

+ C/i + J2 - J) ( J2 - Λ + J) (mod 2) , (4.10)

where terms are arranged so that the integer-character of N is explicit. N (mod 2)
only depends upon M and the summation for fixed M coincides with that of
Corollary (3.14). Only fields with J = J appear on the right-hand side. The first
term of (4.10) reproduces ε($ so that the summation over M gives back the physical
field χ(? and (4.9) follows. Π

Next the braiding properties of the χ(^ fields are particularly simple:

Theorem (4.3). // Eq. (4.3) holds, the exchange properties of the χ(^ fields are given
by

χ(ίl\σ)χ(ί2\σ') = e~ 2πίε(2 +s}JlJ2χ(^2\σ')χ(^\σ) ,

where ε is the sign of σ — σ'.

Proof. Choose ε = l for instance. Theorem (2.13) and Eq. (4.3) give

Y ί J lVιτW ( j 2VπΛ— V ^./i-MipC/O C/!,./!) / \ ,.J 2- M2p—

Mι;M2, -M2 *N2, -P2\ Λ Γ i , -Pι\

Next apply Theorem (3.5) and make use of the identity

Mι)o(J2)( 1\2sJ1(J2-M2)_p(Jι+J2)/ Ί\s(Jι+
— — "

which comes out in the derivation of Theorem (4.2). One finds altogether

Mί,M2',Nl,N2;Pί,P2

X(,iπ[(N1-Pi)J2-(N2-P2)J1](τ j yV2Ni Γf 7-\M!M2xe \J 1>J 2)MιM2\
J2>J l)P2Pι

χ eisn[Nl(J2-N2)- ^^ + ̂ )]^2.^2((T^J/i.^i((T) .

The sum over M t and M2 reduces to the inverse relation (2.13) of Theorem (2.1),
and only Pί=N1 and P2 = N2 contribute as required by the closure. Pulling
κJί ~Nl to the right of ξ(N^-2p2 to reconstruct χ(^° on the right-hand side, one gets the
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overall phase factor in the remaining summation over N{ and N2. It is given by

Mι+J2)0isπ2J2(Jι-Nί),,isπ[Nι(J2-N2)-Jι(J2 + N2)]-.P(Jι)P(J2),,-2πsJίJ2εNι + N2 e e — %! %2 e ,

which completes the proof. Π

The last part of this section is concerned with the fact that the physical family
may be consistently restricted to ^fphys. This is seen by going back to the φ-fields,
making use of the

Theorem (4.4). The fields χ(^ defined by (4.6) are equiυalently given by

χv\σ) = (-l)4j2e-ίsπj2 £ C%\w)eim[^-hw + (h-»/2ψJ>JJm. (4.12)
m=-J

Proof. Equation (4.9) of [1] gives

<^M(*)= Σ (-i)4J2μ,π7)sΪJ,^:>^», (4.13)
-J^m^J; -J^m^J

which is to be substituted into (4.6). Making use of Theorem (3.9) one gets, on the
other hand,

M

(4.14)

where the last equality is a consequence of Corollary (2.7). Substituting into (4.6)
completes the proof. Π

Corollary (4.5). Equations (4.2, 3) hold, namely, for any integer N,

χ^KJe 0 ^(ro 2J; /£>*» = (_ i)^Ύ_V.
m=-J

Proof. Easy consequence of Theorem (4.4) together with the shift properties of the
φ-fields:

.^J, (4.15)

that follow from (1.5). Π

Finally collecting the results of the section we arrive at the

Theorem (4.6). Unitary Truncation Theorem for the χ^ Fields. For
C = 1 + 6(5 + 2), 5 = 0, ±1, and when it acts on ̂ phys; the set ^p^ys of operators χ(l\
with positive integer 2J, is closed by fusion and braiding, and only gives states that
belong to ^fphys.

Proof. Closure by fusion and braiding was derived above (Theorems (4.1, 2))
assuming that (4.3) holds, which is confirmed by Corollary (4.5). The fact that J fphys

is left invariant by the χ(ί) fields is an immediate consequence of Corollary
(4.5). D
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Proposition (4.7). The set of operators χ(-\σ) has Virasoro weights

Kac g

which are real and negative.

Proof. Simple computations using Eq. (1.3). Π

5. The Physical Fields with Positive Weights

There remains to study ̂ plys which is the part of physical family j/phys made up
with fields of positive weights. As shown in [3], one has to combine unhatted fields
of spin — J— 1 with hatted fields of spin J, and operators with negative spins must
be discussed. First we have the

Theorem (5.1). In ^fphys there exist operators ip(£ with negative J which satisfy

φl1/2V)viV)= Σ sSm'W«
β=±l/2;m'

<1-m-β) = S%:!!!:1 -1/2(-ro); (5.2)

Y#V)lί&V) = e~ 2""MV) γ#V); (5-3)

¥^~Φ$V%>~(-irvί-"*>ψ!& (5.4)

Proof. Since C> 1, ̂ phys is a direct sum of trivial Verma modules. In each such
space, the states generated by powers of the Virasoro generators applied to the
highest-weight vector are linearly independent and form a basis. Thus, any matrix
element of a primary field may be computed from its matrix elements between
highest-weight states, by only making use of its transformation law under
conformal transformation. It follows that for positive J the fields ψ$ are uniquely
characterized, up to normalization, by their conformal weights
A (J) = - hJ(J +l)/π — h and their shift properties \p(£f(w) = f(w + 2m)ψ(^ recalled
in Appendix A (formula (A.20)). For negative J, we define the \p(£* operators by the
same two conditions. Then going back to [1], one sees that the starting point - that
is the fusion and braiding properties of φ+^/2 with ψ$ - has a natural and well
defined continuation to negative J. Indeed, the discussion was solely based on the
following facts. First, the fields v^ι/2 satisfy a quantum Schrόdinger equation;
second, the fields ψ^ are primary with conformal weight Λ(J}\ third, the total shift
of the product ψ(±ι/*2(σ)ψm\σ') is 2m± 1. By definition, these properties hold true
for negative J. Moreover, the solution of the recursions that determine the
properties of the ψ fields (Appendix A of [1]) remains basically the same except for
trivial changes. Thus the exchange properties of φ+^ίo") and t/?£fV) takes the
same form for negative and positive J. We shall skip details in order to avoid
another lengthy discussion. Π

After this continuation is made the key question is: which values of m should
one consider? We shall see that, for negative J, there exists a consistent family of
fields ψ%} with J + l^m^-J-1. This is first indicated by the
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Theorem (5.2). The S-matrix of Eq. (5.1, 2) satisfies

(5.5)

1. (5.6)

Proof. Simple computations. Π

Corollary (5.3). For J < — 1, S(^m'β satisfies Yang and Baxter's equations with m and
rri going from J+l to — J— 1, and it is consistent to restrict (5.1) to this interval.

Proof. Equation (5.5) has the form of a "gauge transformation" of the ̂ -matrix that
preserves Yang and Baxter's equations as is well known. Π

Next the ξ fields with negative J are defined by the

Definition (5.4). For any negative integer 2J<-2, the fields ξ$9 J-h
^ — J—1, are given by

(5.7)

a = M — J, fe=—m —J, c = l+M —m, when M>m,

a=—M — J, b = m — J, c = \— M + m, when M<m.

This definition is motivated by the

Theorem (5.5). Up ίo α factor that only depends on J, Egs. (5.8) are the continuation
of (2.24-26) to negative integer values of J.

Proof. The hypergeometric functions are identical. Concerning the binomial
coefficients in front of (2.24), write (say for M > m)

2J

M-rn ~ Γ(1+J-M)

S(-J-m) } S(M-J) Γ(M-J) Γ(-J-m)

S(-M-J) ]/ Γ(-2J)Γ(-M-J) LM-mJ! '

According to Eq. (2.22), S(-J-m)= -S(-J-m-l) so that
S(-J-m)oc(-l)J+w, and

is independent of M. Thus

S(-J-m),/S(M-J)
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where ocj only depends on J. The binomial factor of (2.24) finally becomes

-2(J+1)VΊ
M_m

and this established the theorem. Π

The ξ$ and <5* J~1) operators are closely related. This is first apparent in the

Theorem (5.6). One has

^. (5.12)

Proof. An immediate consequence of the following identity due to Rodgers [10]
(see Appendix B)

F(a,b;c;e-2ihu)

together with Theorem (2.5). Π

This symmetry between J and — J — 1 is also present at the purely group
theoretical level:

Proposition (5.7). The explicit formulae for the universal R-matrίces (2.8, 9), and
(2.11,12), and for the q-C.G. coefficients (C.3) are invariant under the change

Proof. The explicit expressions of the .R-matrices follow from computing the matrix
elements of powers of J± obtaining products of terms of the type
I/L J + M J L J ± M + 1 J that are left invariant. Moreover, the q-C.G. coefficients are
computed by solving equations (C.2) where the explicit dependence in J is only
through similar factors and which is thus invariant. They are thus themselves
unchanged if J is replaced by — J — 1. Π

With this proposition, together with Theorem (5.6), one sees that the only
important change in going from J to — J — 1 is the factor λ(£ in the transformation
from the φ fields to the ζ fields. This explains why the S-matrix of Eq. (5.1, 2)
transforms as proven in Theorem (5.2). The above considerations put together lead
to the

Conjecture (5.8). For J>0, the fields ξ(MJ'1} vviί/z -J<M<J, introduced by
Definition (5.4), span a representation of spin J of SL(2)φ and enjoy the same fusion
and braiding properties as the fields ξ$.

Discussion. A mathematically rigourous proof is not available at present, although
the following consistency arguments are very convincing. The basic point is that,
since Eq. (2.1) are invariant by J-> — J — 1, the operator-algebra of the ^-fields has
a consistent extension which is symmetric with respect to J= — 1/2. Indeed, it
follows from Theorem (5.5) that, for J^O, J2>0, — J^M^ J1?and —J2^M2

^J2, the exchange and braiding properties of <^M/I~I ) with Qul are the
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continuation of those of ξ^ with ζ^ and are thus given by the quantum-group R
matrix and C.G. coefficients. Then a consistent solution of the conformal algebra is
obtained by taking the exchange and braiding of ξ^^1 ~ 1} with ^if/2" υ to ̂ e also

deduced by symmetry from the positive spin case. According to Proposition (5.7),
this means that they are also given by quantum-group R matrix and C.G.
coefficients. Due to (5.12), the coefficients |-J-1)^, with J>0, -J^M^J,
satisfy a pseudo-orthogonality relation similar to (2.39). After inverting the
relation between ξ- and tp-fϊelds, one deduces that the ιpL~J~1) form a closed
algebra. It is related with the algebra of the t/^-fϊelds by transformations similar to
(5.5). By construction one arrives at a consistent solution of the conformal
bootstrap for any sign of J. The corresponding operator-algebra of two operators
with negative spins is not yet mathematically established, but we shall assume that
it holds in order to proceed. Π

The symmetry between J and — J — 1 motivates the

Definition (5.9). The set ̂ ptys is made up with the operators

y-̂  JV), (5.14)
M=-J

with 2 J a positive integer. The associated set of physical weights is given by the

Proposition (5.10). The set of operators χ(ί\σ) has Virasoro weights

, (5.15)

which are real and positive.

Proof. Simple computations. Π

Finally we arrive at the

Theorem (5.11). Unitary Truncation Theorem for the χ(+} Fields. For
C = 1 + 6(s + 2), s = 0, + 1, and when it acts on ̂ fphys; the set ̂ ptys of operators χ(+} is
closed by fusion and braiding, and only gives states that belong to ^phys.

Proof. Thanks to Theorems (5.7, 8), closure by fusion and braiding is verified by
computations identical to the ones performed for the ^~hys family in Sect. 4.
(Theorems (4.2, 3)). Moreover, Theorem (5.6) shows that the proof of Theorem (4.4)
may be repeated for the χ '̂s obtaining a formula similar to (4.12). Up to the factor
λm(vή, they are thereby expressed as a linear combination of the operators
v4T-m l f J )5 similar to the expression of χ(ί\ in terms of ψ(^-}

m. Thus £#^hys leaves
J^phys invariant. Π

Finally, one has the complete unitary truncation theorem:

Theorem (5.12). Truncation Theorem for the Fields with Real Virasoro-Weights.
For C=\ +6(5 + 2), 5 = 0, ±1, and when it acts on ̂ phys; the set <s/phys : = ̂ plys
u^phys °f operators χ(+} is closed by fusion and braiding, and only gives states that
belong to ̂ phys.

Proof. There only remains to check closure under fusion and braiding. The
previous argument based on the symmetry between J and — J — 1 immediately
leads to the conclusion. Π
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Concluding Remarks

Let us turn, at last, to physics. First, the present discussion only considered each
chiral component separately. It is straightforward to combine the two chiralities in
order to achieve modular invariance [2]. Second, taking D free fields as worldsheet
matter [5, 6], one sees that one may construct consistent string emission vertices if
D = 26 — Cgrav = 19, 13, 7. The mass squared of the emitted string-ground-state is
m2 = 2(Δ — \\ where A is the conformal weight of the 2D-gravity-dressing operator
[5]. Since an infinite number of tachyons is unacceptable, this selects the J/ptyS

family with positive weights A+. Bilal and I have already unravelled striking
properties of the associated Liouville strings [17] at space-time dimensions 7 and
13, as well as, of the Liouville superstrings at 3 and 5 dimensions. Remarkably, one
finds that the target-spaces which are selected by the consistency of the Liouville
dynamics, as we just discussed, have very special properties that do ensure the
consistency of the string dynamics. In particular, the above-mentioned Liouville
superstring theories are space-time supersymmetric. Another striking point is that
no tachyon remains, even for the bosonic Liouville-strings. Third, clearly, £/*hys is
also selected if we consider the associated conformal theories by themselves, in
order to avoid correlation functions that grow at very large distance. In this
connection, and although bona fide target-spaces are suitable, one may "play the
game" of fractal gravity, since Eqs. (4.6), (5.15) show that A~(J,C) + A +(J, 26 - C)
= 1, and since the set of values 7,13,19 is left invariant by C->26 — C. Comparing
with the string case, one sees that the £#phys describes the matter. The calculation of
the associated critical exponents is in progress. It is a challenge to derive these
models from the matrix-approach to 2D gravity.

From the technical side, the next step is the determination of the Green
functions. There is no problem for j/phys since the Coulomb gas representation is
applicable [18]. For j/ptys> on the contrary, negative spins appear and the situation
is more involved. It is likely that the symmetry J-> — J — 1 put forward in Sect. 5
will be of help.

Appendix A

First recall some basic points about the weak coupling regime following [1-3,15].
In the conformal gauge, the classical dynamics is governed by the action:

2πy

Classically, it is a conformal theory such that exp(2Φ) is conformal with weights
(1,1). The canonical Poisson brackets (P.B.) give one P.B. realization of the
Virasoro algebra with CLiou = 3/y for each chiral component. The chiral modes
may be separated very simply using the

Theorem (A.I). The function Φ(σ, τ) satisfies the equation

32Φ <52Φ

do di
if and only if

(A.3)
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where fj (respectively gj), which are functions of a single variable, are solutions of
the same Schrodinger equation

f j ' + T ( x + ) f j = 09 (respectively -g] + T(x.)gj = 0). (A.4)

The solutions are normalized such that their Wronskians ///2 ~/ι /2 and g\g2 — 8182
are equal to one.

Proof. 1) First, check that (A.3) is indeed a solution. Taking the Laplacian of the
logarithm of the right-hand side gives

i=l,2

where d± =(d/dσ±id/dτ)/2. The numerator has been simplified by means of the
Wronskian condition. This is equivalent to (A.2).

2) Next, check that any solution of (A.2) may be put under the form (A.3). If
(A.2) holds, one deduces

= 0; with T(±}'. = eφd\e~φ. (A.5)

Γ(±) are thus functions of a single variable. The equation involving T(+) may be
rewritten as

with solution

*'Φ=^._Σ //*+)£/*-); with -//+τ<+>/,=o,

where the gj are arbitrary functions of x_. Using Eq. (A. 5) that involves T(~\ one
finally derives the Schrodinger equation — g' + T( ~ }g7 = 0. Thus the theorem holds
with T= Γ(+) and T= T(~\ Π

Equation (A.4) shows that the potentials of the two Schrodinger equations
coincide with the two chiral components of the stress-energy tensor. Thus these
equations are the classical equivalent of the Ward identities that ensure the
decoupling of Vίrasoro-null-vectors. From the canonical Poisson brackets (P.B.)
one finds two P.B. realizations of the Virasoro algebra such that the /f (respectively
gt) are primary fields with weights ( — 1/2, 0) (respectively (0, — 1/2)). At the classical
level it is trivial to compute powers of e~φ:

N N ΛM

which is primary with weight ( — N/29 — N/2). e~Nφis thus built up from powers of
the solutions of the basic fields fj and gj. For positive N one has a finite number of
terms but the weights are negative. Operators with positive weights have N
negative so that (A.6) involves an infinite number of terms. Setting N= — 2 gives
weights (1, 1) in agreement with the fact that the potential term of (A.I) is equal to
e2Φ which must be a marginal operator. It is natural that fj~ 2 has weight one since
it is the classical equivalent of the screening operators.

Consider for instance the + chiral component. One may work at τ = 0 without
loss of generality. The potential T(σ) is periodic with period, say, 2π and we are
working on the unit circle. Any two independent solutions of the Schrodinger
equation are suitable. It seems natural at first sight to diagonalize the monodromy
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matrix, that is to choose two solutions noted ψjj=l, 2, that are periodic up to a
constant5. It is convenient to introduce

dj are suitable normalization constants. The fields φj are periodic up to additive
constants and have the expansion

,2. (A.7)
B Φ O

The canonical P.B. structure of the action (A.I) leads to the

Theorem (A.2). The chiral fields φj, are such that

{</>;K), φ\(σJ}PΛ. = {φ'&ά </>'2(σ2)}P.B. = 2π5'(σ i - ^2) , (A.8)

(A.9)

(A.10)

P(oυ=-P(o2>.

Proof. Equation (A. 10) is trivial to derive from the Schrόdinger Eq. (A.4). It is the
associated Riccati equation. Equation (A.I 1) follows from the fact that the product
of the two eigenvalues of the monodromy matrix is equal to one, as a standard
Wronskian argument shows. For the P.B. relations see [4]. Π

In the language of field theory, the φ's are two equivalent free fields such that
(A.10) takes the form of a L^-Sugawara stress-tensor with a linear term. The latter
is responsible for the classical Virasoro central charge CLiou = 3/y. Clearly the two
free fields play a symmetric role and one could as well build e~φ from different sets
of Schrόdinger solutions. Such a possibility is at the origin of the quantum group
action as [1-3] show.

Let us now come to the quantum case. The basic point of the method is to
quantize the above classical structure in such a way that the conformal structure is
maintained. In particular, the quantum version of e ~ φ must be a primary field. This
is ensured by the following

Theorem (A.3). On the unit circle, z = eiσ, and for generic y, there exist two
equivalent free fields:

ΦW = <AP + pψσ + i Σ e-^py/n, j=l,2, (A.12)
B Φ O

such that

[ftK), φ\(σjβ = lφ'2(σι), φ'2(σ2}} = 2πiδ'(σι - <τ2) , j#> = - p<0

2> , (A.I 3)

7V(1) (respectively N(2)) denote the normal orderίngs with respect to the modes of φ1

(respectively of φ2). y is an arbitrary coupling constant.

Proof. See [4]. Π

Equation (A. 14) defines the quantum Virasoro-generators. The corresponding
central charge is C=l + 3/y. It is noted C instead of CLiou since, clearly, the

5 We only deal with the generic case where the monodromy matrix is diagonalizable
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structure is intrinsically defined. The chiral family is built up [4] from the following
four solutions of an operator Schrόdinger equation equivalent to the decoupling of
Virasoro null vectors

i***'), j = 1,2, (A. 15)

(A.16)
where dj and ctj are normalization constants. Since there are two possible quantum
modifications h and K, there are four solutions. By operator-product, ψpj =1,2,
and ipy, 7 = 1,2, generate two infinite families of chiral fields which are denoted ipjf
— J^m^J, and ψ(2\ — J^m^J; respectively, with ψ(-lιj*2 = ψί9 ψ(ι/2)==Ψ2>

) = Φ2 An easy computation shows that

3 |/ 3 J 9 ]l 2π 4\V 3 ' I/ 3
(A.17)

Ψm\ Ψή\ are °f the type (1,2J) and (2J, 1), respectively, in the BPZ classification.
For the zero-modes, it is simpler [1-3] to define the rescaled variables

h - fί , 4 Λ^

From now on p(

0

1) is simply denoted by p0. At this point a pedagogical parenthesis
may be in order: the hatted and unhatted ψ fields have the same chirality. If we go
to τφO they are both functions of x+. There are two counterparts φ^x.) and
φ^}(x_) with opposite chirality, which may be discussed in exactly the same way.
Returning to our main line we recall that the Hubert space in which the operators
ψ and ψ live, is a direct sum [1-3,15] of Fock spaces ^(w) spanned by the
harmonic excitations of highest-weight Virasoro states noted \w, 0>. They are
eigenstates of the quasi momentum m, and satisfy Ln\w, 0> = 0,n>0;
(L0 — A(w))\w, 0> = 0. The corresponding highest weights Δ(w) may be rewritten as

Λ i J + Γ -T-^2' (A 19)2 4π\ hj 4π v ;

The commutation relations (A. 13) are to be supplemented by the zero-mode ones:

The fields ψ and ψ shift the quasi momentum p(

0

υ = — p(

0

2) by a fixed amount. For an
arbitrary c-number function / one has

M = f(w + 2m) viJ) , t / ) / ( m ) = f(w + 2Λπ/h)φ> . (A.20)

The fields ψ and ψ together with their products live in Hubert spaces6 of the form

(A.21)

w° is a constant which is arbitrary so far. The SL ,̂ C)-invariant vacuum
corresponds to w0 = 1 + π/h [1], but this choice is not appropriate for our purpose.

Mathematically they are not really Hubert spaces since their metrics are not positive definite
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At the quantum level, one makes use of the above chiral conformal family, since
the quantum field equation is likely to imply that the quantum Schrόdinger
equation holds for each chiral component. Associated with each quantum
modification one finds a quantum version of (A. 3). Since (A. 15) involves h and /z
instead of y, these should be considered as defining the quantum operators
exp( — ηΦ) and exp( — ήΦ) with η = l/h/(2πγ) and ή = |//ί/(2πy). Indeed, they have
the same conformal weights as ψ£/2) and $!1/2), respectively, for each chiral
component. By short-distance operator-product expansion, one generates the
fields exp[ — (2Jη + 2Jή)Φ~\. The basic point of introducing the two normal
orderings N(j\ 7 = 1,2, was to obtain a conformal regularization of the metric
tensor operators such ase~nφ and e~ήφ. In terms of the Liouville field Φ, it is rather
involved and field-dependent. Which η should one choose? For γ going to zero, η
has a finite limit while ή blows up. Thus if one wants to keep a smooth classical
limit, only η should appear. This is possible with open boundary condition [5].
With closed boundary conditions, both η's should be kept in order to couple
rational theories with gravity [15].

In any case, the quantum modifications are real only if C > 25 or C < 1. Thus the
construction of the metric tensor operator just recalled fails for 1 < C < 25, which is
the case considered here. The chiral families may be continued, however, and this is
taken to be the way to deal with 2D gravity in the strong coupling regime, if a
consistent truncation may be found as we show in the main body of the paper fully
generalising the partial results of [2, 6].

Appendix B

The purpose of the present section is to make connection between the conventions
used in the present series of articles, and the notations of the mathematical
literature concerning ^-deformed special functions. The basic difference is that, in
quantum group discussions, one makes use of ^-symbols of the type (2.2), that is
[_a\ = sin(/zα)/sin/z, that are symmetric in Λ-> — h while g-deformed special functions
are formulated [10,12,13] in terms of ^-factors of the type

The quantum parameter is temporarily noted ρ since it does not coincide with the
parameter q. Indeed an easy computation shows that

\e-2iha;e-2ih)v, (B.2)
1 \U)

so that for unhatted quantities ρ = e~2ih. This choice of sign, which is the same as in
Eq. (2.17), is such that the infinite product (y; ρ)^ is convergent for lmh< 0 which is
the case of interest (see (3.2)).

Concerning g-hypergeometric functions, it is convenient to write the standard
definition [10,12,13] under the form

,-2ίΛβι e-2ihas

' '"^ . g-2ίh.
,-2ihcι g-2ihcr'> '

oo ίp — 2ihaι. p — 2ih\
= γ rJ? ^ >y\~^ ^L ^ __ zv£-> (0-2ihcι. p-2ίh\ ίp-2ihcr. p-2i\ι\ ίp-2ih. p-2ih\ /TJ o\

V = Ό \& ) «^ /V ' ' ' \ 5 / V \ 5 7V I Π, J> I
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We shall only need hypergeometric functions with s = r + ί. The generalization of

Its relation with (B.3) is

( a a \ /e~2ihaι e~2ihar+1

JΓ''^1;^^^ ; e-2l* ; z gΛ(Σα<-Σc<-

and, in particular, ' * '

(B.6)

The definition of r+ίFr is symmetric in h contrary to r+1φr, where the quantum
parameter is identified with e~2ih. This choice is made on account of the negative
sign of the imaginary part of h (see (3.2)) which ensures convergence if needed. In
most cases, we are dealing with finite series so that this point is not essential,
however, and the other sign could be used. This will be the case in Appendix C.

The continuation to negative J is based on an identity due to Rodgers [10],
-2iha -2ihb

6 >e . a-2ih.
e-2ihc

-2ίh(a + b-c) p-2ih\ / -2ih(c-a) .,-2ih(c-b)
_ > ;°° I ' -2ih. -2ih(a + b-c)

(B.8)

which is the deformation of a standard identity on hypergeometric functions. This
may be retransformed using (B.2) and (B.6) and the relation

Γ(a) = eiha(a- 1)/2(2i sinfc)1 -\e~™; e-2ih)J(e~2iha; e~2ih)x , (B.9)

obtaining

xF(c-a,c-b;c;e-2ihu).

Similarly, the hatted hypergeometric functions are defined by

^v
Z 'r + ι r , , ? = ΐ Γ - τ - TA T T ,T i

V bl9...,br J v [&lJv [&rJvLVJ !

and their relation with the standard ^f-hypergeometric functions is best written as

ι 2iharαp ι u l 9 ...,"r+ι _ I* > > ^ . 2ih. _^-iΛ(Σβ l-Σc,-
r+1 Λ r r ' Z / ~ » +l^l p2ihCί P2ίhcr >e >Ze

\ c l5 ...,cr / \ e , ...,e

The change of sign with respect to (B.5) is for convergence purposes, since the
imaginary part of fi is positive.

For h + K=sπ, one has

7ι,...A

Thus

Γ ' ~ =r+ι^V
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Appendix C

In this section we recall for completeness some basic material concerning
g-Clebsch Gordan (q-C.G.) coefficients. We shall make frequent use of the
following identity

Σ (''}('L-i \ f\ I \ f\
<2ι+β2 = Q,<2ι>0,<2 2 >0 \\L\J \^2

which is straightforwardly proven by recursion.
The expression of the q-C.G. coefficients (J1,M1; J2,M2|Jl5 J2; J,M) follows

from the

Theorem (C.I). The solution of the recurrence relation

f1 ? M! y2, M2| J1? J2; J, M1 + M2)

(C.2)

is given by

(J1; M, J2,

-IJ [_J,+J2+J+\\\

Jl+J2~J
χ iΛ(M2Jι-MιJ2) y

Proof. It goes in strict parallel with the standard case of 517(2) [16]. One proceeds
by recursion [14]. First let

and choose the upper sign in (C.2). Its left-hand side vanishes. This gives the
recursion

with solution

i)=f(J 1 )e i h ( J + 1 ) ( M l -J'>( - \}Jl ~Mί
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Equation (C.I) leads to the relation

1_|. ih(Jι + J2-J)(J2-

So that we may impose the condition £ (/(M1))
2 = l. This gives

Mi

f( T \ Λh(Jι+J2-J)(Jτ-Jι +J+D/2 I / [_A/j j . |_ZJ-Γ IJ.
j(Jι) = e

and the partial result

(J1,M1;J2,J-M1|J1,J2;J,J)

Next define

Equation (C.2) with the plus sign leads to

and, after iteration,

g(M1,M2)=
r

If we choose n = J — Mί — M2 the summation involves

g(M1+r,J-Af1-r) =

Since by definition |N + 1J ! = L/V + 1J L^J ! one has [1J ! = LQJ! and, by consistency,
LQJ! = 1. Collecting everything, one obtains a first expression

(1. M<- 7. M.I 7 7 7 MΊ — δ\J 1>1V1 1) J 2> 1V12\J 1>J 2> J>m)~°M,Mι

J-M
y

v =o
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Next we transform the result into a more symmetric expression. Apply (C.I) to
the term

J1-J2-M-

This gives

Substitute into Eq. (C.4) and sum over v. One finally makes use of the identity

vr ιy

which is a consequence of Eq. (C.I), and the result follows. Π

Next we establish the connection between q-C.G. coefficients and orthogonal
polynomials. First we need the

Theorem (C.2). The Hahn polynomials defined by

- 2ihx» a n
2ih 2ih

or equivalently by

0>(χ-abN)= F^nl/c, α, σ, iM ) — 3r 2

satisfy the orthogonality relations

Σ ^(x; α, 6, N)^m(x; α, fe, N)ρ(x) = (dj2^. w , (C.I)

,7 _ ~ih[n(

Proof. See e.g. [13]. Π

The connection is established by the

Theorem (C.3). Equation (C.3) is equivalent to (M = M1+M2),

( ' j
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Proof. Using the obvious relations

one first rewrites (C.3) as

Next the desired hypergeometric function is obtained by making use of the general
relation7 (s = γ + δ — α — β + ri)

2iha 2ihβ -2ίhn \ / 2ih(y-a). 2ih
. .2iΛ 2iΛ 2ih«α

y^ ^2ίfc

X
*

-. p

^ )n
02ihδ. 02ih\

\^ ? ̂  Λi

or equivalently

. 2ίh 2ίh

s-1)

' ( }

Choosing n = J-M, α = M1-J1, ^8=7! + ]̂ ! + !, y=J2-J + M! + l, and
δ= —J2—J + Ml gives

P /Mi Ji9J1+Mi + ί9M J. eίh(j+M+i)\= IΛ ^2 ΛL
1 2 \^ j 2 _j + j/Vί1 + l,M1-J-J2' / LΛ-<J + Mι + lJ«

Finally substituting this last relation in Eq. (C.I 1) and comparing with the general
expression (C.6) of the Hahn polynomials, one completes the derivation. Π

The above discussion essentially follows [14], where the transformation (C.12)
is not applied, however. This change of parameter in the Hahn polynomial is
instrumental for deriving the orthogonality properties of the C.-C.G. coefficients
which are expressed by the

7 The fc=0 limit of this relation is in Ref. [12]
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Corollary (C.4). q-C.G. coefficients satisfy the relations

Proof. Immediate consequence of the above two theorems. Π

Appendix D

In this appendix we rederive some of the properties of the χ(ΐ> fields by only making
use of the ψ fields, in order to show the full equivalence of the two formulations.
The braiding properties follow from the

Theorem (D.I). Acting on ^(wr^ with wftn given by Eq. (3.21), the fields

V:= Σ
m=-J

satisfy the braiding equation

(ε is the sign of σ — σ')9 if c$ is given by

J-m

Proof. It is a generalisation of the particular case worked out in [2, 6]. Recall some
more results of [1]. The fields ψ%} satisfy

) vij V) = Σ tfώ*' VLV) v#'2 V) ,
β=±l/2;m'=-J...J

where the non-vanishing S(^m'β are

!!:ι -1/2(-m), (D.5)

with similar formulae for the hatted fields. The braiding of the ψ and ψ fields is
trivial:

vL»vkV)=e-2ίπJ>εvkV)vLJV) - (D.6)
The fusion to leading order is of the form

Vίif. P.7)
The beginning of the derivation is to start from the ansatz (D.I), assume that α(± 1/2
is given by (D.3), and make use the relations just recalled to derive that, in ^(mr>n),

Σ Wt9 (D.8)
ί=l
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where

W — V ΓnWMίm \nW(τπ \$-m- l/2vm 1/2
^1=2, laί/2 (Wn)am Wι+lP-l/2-m^l/2m

m

_μ (1/2)/ \ (J) / \^-m-l/2 o m l / 2 η (J, J) / /\ (1/2, 1/2) / \
' a-l/2\Wn)am + l\wn-l)^l/2-m- 1^-1/2 ro+lJ W -m\σ )Ψl/2, -l/2\σ)>

W = V Yπ^l^ίm WJ> (TTΊ \$-ml/2 cm- 1/2KK2= L Lαl/2 \wn)am- \\wn+ I/*3- 1/2 -m+ 1^1/2 m-1
m

^^vy !̂/

1̂  (D.9b)
1/2

jJβSίί iK- iJ^Γ/J-^i^ί /i ^Vf ] vίίΛ. -Jσ')^ !̂'-2'!/^) ,(D.9c)

^ Σ [<2

2KRVπ+1)S:T
m

+1]< ?m-1(^ (D.9d)

Since it is the same throughout, the index r of wrtn is not explicitly written any
more. For the braiding matrices, one makes use of the fact that, for any integer v,

to let their arguments equal to tππ. The symbols S(^nβ(w^, and S^2"^(ώπ) have been
replaced by S"m, and S?& in order to avoid clumsy notations as much as possible.
Since they involve φ operators that do not appear in Eq. (D.2), W3 and W4 must
disappear. The determinant of the corresponding linear system with unknowns
^/2\^n}^\wn+l) and α^^^Jα^+iK-i) should vanish. This gives

o-m-l/2om+l- l/2c-m-l 1/2 cm 1/2 _ e-m-1/2 em+ 1 - l/2o-m- 1 l/2cml/2
ύ-l/2-m* 3 l/2m ^1/2 -m- 1 ° - 1/2 m+ 1~ ~~ ^1/2 -m- 1° -1/2 m+ I*3 - 1/2 -m ^l/2m

or equivalently

ttπn + J — mj \wn — J-m-lJ _ Lϋ7π — J + mJ|_mπ + J + m+lJ

This equation is easily seen to follow from Theorem (3.1) and Proposition (3.7). The
vanishing of D3 next gives the recurrence relation

βffK+l) = ci(h-h)/2( 1

Considering now the first two contributions (W^ and W2)9 one sees that the
theorem will be fulfilled if

^= e-iπsj*a{%2\wn+ 2m)αLJK) , (D.I la)

= e-'«"eL%2/2(w.+ 2JαLJK) . (D.I Ib)

Combine Eqs. (D.10) and (D.I la). After some computations one gets

. .
L ϋ 7«+l+2mJ L^«-
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This recursion has the solution

^JX)=4J)(-i)2Jwe~^ (D.13)
where c(£ is still arbitrary. Determine it from the other recursion relation, which is
satisfied if:

so that we find
27
^

(_Λ\(r+l)(J-m)pί(J~m)(h-h}l2
ί V β

The normalization is fixed by letting c(/} = 1, and Eq. (D.3) follows. Π

Next, the fusion properties to leading order of the fields φ(^/2) with φ(ί} are given
by the

Theorem (D.2). In ^(wr n) and to leading order, the fusion of the fields φ(^ is given
by

<£-V)^^ (D.14)

Proof. Recall the relevant fusion properties to leading order, from App. E of [1]:

(1/2,1/2) (J,J) / 1\2[J-2αm]
ΨΛ, -a Ψm, -m \ λ/

x N(l A α; J, m; m) tf (1 A - α; J, - m; m)̂ ^1/-'/-^ /2) ,

(omitting the σ and σ' dependence as usual). Substitute the ansatz (D.I) into the
left-hand side of (D.14) and make use of the last equalities. This gives

, ( 1 / 2 ) / \ (J )/ \. (J+1/2.J+1/2) _μ y (JV
~τ α-l/2l"7«;α-JVC 7n-l>'1P-J-l/2,J+l/2 ' L αm V ϋ 7 nJΨm+l/2, -m-1/25

m= - J

where

(J)/ x = /7d/2V \Λ(^m W _ 1 Vβ(J-m
(x m\wn) = aίf2 \wn)am\wn+l)\ *) p

Using the recurrence relation (D.10) one finds

Finally, from the above expression of a%\mn) one verifies that
Jn(J+ΐ/2)(τπ }am + 1/2 V^J >

J (J+l/2) / \
a±J±l/2\Wn)'

—
) ~ m + 1/2

\ _ -isπJ (J+l/2)
—

Thus (D.3) follows.
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Corollary (D.3). In &(wr^ the fields φ(ί} and χ(_} are related by

Proof. Consider first Eq. (4.4):

(1/2)/ \ _ 2(1/2, 1/2) / \ , ^£(1/2, 1/2) / \
A - \σ) — s 1/2, - ι/2W T κ;ς _ 1/2> 1 / 2iσj .

The expression χ(^/2) in terms of ψ fields was the starting point of [2]. Recalling
Eq. (3.25), that is κ= -ew™-^ew~w^ One does find, after some computations,

: = 2i sin/z ̂ -^+-)/2 ,

(D.18)

which proves the theorem for J = 1/2. Next, comparing (D.14) with (4.5), one sees
that the theorem will be verified by recursion if the d(J)'s satisfy

and formulae (D.16) follow. Π

As an overall crosscheck, one may of course directly verify that (D.16) is
equivalent to (4.12) in 3fphys. This appendix thus shows that one may equivalently
work with the ψ fields. However calculations become messy and this should be
avoided unless one is specifically interested into the shifts of the quasi momen-
tum w.
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