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Abstract. Scattering states of charged particles in a massive Euclidean lattice
gauge model are constructed.

1 Introduction

The particle spectrum of Euclidean Quantum Field Theories on the lattice has
been the object of extensive studies in various models (see [2, 10] for references).
Recently, under general assumptions (essentially existence of a transfer matrix and
mass gap), a full construction of the scattering states for particles of the vacuum
sector of those theories has been performed [3] following the ideas of Haag and
Ruelle [7, 8]. This work extends the main result of [3], namely the construction of
multiparticle states, to the charged particles of the Z, Higgs model whose existence
has been shown in [2]. The construction presented here depends in some details on
particularities of this model but they might certainly be adapted in its essential
tools to other massive models involving charged particles. In the general
framework of relativistic quantum fields the construction of the scattering states of
charged particles in massive theories was performed in [9].

As in [3], the main problem to be overcome is the lack of locality (Einstein
causality) of the real-time evolution. Following [3] we by-pass this problem by
making use of the exponential decay of certain Euclidean correlations, a fact
related to the existence of a mass gap in the spectrum of the Hamiltonian operator.

1.1. The Model and Previous Results

The Z, gauge-Higgs lattice model is particularly interesting for testing structural
properties of gauge theories. Detailed results on the superselection sectors’
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structure of its associated quantum spin system in the “free charges” region of its
phase diagram have been obtained in [1] (see also [5]). That work established for
that region of the phase diagram the existence of two inequivalent sectors, the
vacuum sector and a charged one (with associated Hilbert spaces here denoted by
H#, and S, , respectively). These sectors are believed to be the only existing ones in
this model (in d + 1 =3 there is also a magnetically charged sector). In [ 1] charged
states with finite energy have been explicitly constructed and in [2] it has been
shown that corresponding charged particle state exist in #,. The present work
completes the next step of showing the existence of multiparticle states with even
(in s#,) and odd (in 5#,) charged particles. Our notation follows [1] and [2]
closely.
The Z, gauge-Higgs model has the action

§= Y B,ot(p)+ X fie(b)oo(b), 1)

where ¢ and 7 are Ising fields living on sites and bonds respectively of Z**! (d > 2),
representing Higgs fields and gauge fields respectively, and where 8, and B, are
positive coupling constants. Above ¢ denotes the lattice exterior derivative:
ot(p)= bH ub),  da(b)= Hﬁb a(x), 2
edp xe
where Op is the set of bonds contained in the plaquette p and 0b is the set of sites
contained in the bound b.

The results of [1] and [2] have been obtained for g:=e~ %%z and h:=tanhp,
sufficiently small, a restriction maintained here to provide the necessary conver-
gence of the expansions.

For the quantum spin system associated to this model the time-zero field
algebra is generated by hermitian operators associated to the sites of Z¢, 7,(x),
05(x), and hermitian operators associated to the bonds of Z¢, t,(b), t5(b), satisfying
the algebra of Pauli matrices and commuting at different points (the g-operators
also commute with the t-operators). The operators o5 and g, are analogues of the
Higgs field and its canonically conjugated momentum, and the 75 and 7, operators
correspond to the gauge field and electric field respectively. These operators
generate local and global algebras of fields and gauge invariant observables and in
[1] a translation invariant vacuum state and translation covariant charged states
have been constructed, to which two inequivalent representations of the algebras,
one in space #; and the other in J#,, are associated.

In algebraic level the euclidean dynamics is generated by an automorphism
defined as the strong limit of local automorphisms implemented by local transfer
matrices, and is interpreted as the action of discrete euclidean time translations. It
is implemented in 7 and in 5, by two inequivalent global transfer matrices with
densely defined inverses [1,4].

To simplify the notation we shall denote both transfer matrices by the same
symbol, T, and shall not distinguish the representatives of ¢; and 7}, irrespective to
which they are acting in J#, or in 5, , and shall denote then again by o,(x), t5(b),
etc. The action of the space displacements by x e Z? is implemented by unitaries
denoted in both cases by U(x).

Real-time translations are then defined in #(%;, ,) by

o )=T"* T teR. (3)
The following important result ([1], Theorem 6.4) has to be mentioned:

For any set of distinct points {X,...,x,} CZ’ there are eigenvectors of the
transfer matrix ¢, ., €Hy or H, (according whether n is even or odd,
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respectively ) inducing ground states (in the sense of [1]) with a configuration of

space translations: Uy, . v =0y .5y VWELL
The eigenvalues of ¢, . are denoted here by f,,

B,=p, for any x, by translation invariance.
The importance for us of the vectors ¢,,

.....

s, is the following. The gauge

.....

n
invariant vectors [] o3(x;))@,,,. . ,, can be interpreted as states of n dynamical

i=1
charges located at the points {x, ..., x,}. This suggests the use of vectors of the
n

.....

multiparticle states, replacing the vectors like ¢(x,)...@(x,)R2, where ¢(x) are
charged fields, used in the standard Haag-Ruelle construction. Charged fields
connecting #;, and s, are for the model presently not available (but there is an
announced result by Szlachanyi [6]) and here we show how to proceed in this case.
Otherwise the methods of [3] could in principle be used.

The following result on the existence of one-particle charged states has been
established in [2]:

The Fourier transform of the 2-point function

G(x0, X)= (03(0)¢, U(’.‘)Tlx‘)lo' 3(0)p,) 4

can be analytically extended for each p € (—n, ] to a meromorphic function of p in
the region Imp, <d(p) with an isolated simple pole at p,=iw(p), where w(p), the
energy-momentum relation of the particle, is smooth and d(p) is continuous with
&(p)>w(p)=m, m being the mass gap. The velocity v(p)=gradw(p) is nowhere
constant.
This implies that there is a closed subspace #{) of #, (the single particle
subspace) on which the relation
(T—e *®)| # V=0 )
holds. Here P is the momentum operator, i.e. the infinitesimal generator of spatial

translations, .
e?*=U(x), sp(P)C(—m,n]", (6)

and A is the closure of the linear space
9" = {qlf’ le= Z jdtﬁ—itf(zc’ t)OC,(O':»,()_C))(],’)x,
X

supp f nsp(H, P)C {(w(p), p). pe(—m,m)%}, f e ZR** ‘)}, ™

H being the Hamiltonian defined as H=—InT.

The results of [1] (and of [2]) have been obtained with the use of polymer and
cluster expansions for the “free charges” region of the phase diagram of the model.
We resume here the most important ingredients of those expansions, since the
results of Sect. 4 make strongly use of them. For details see [1, 2]. The polymers are
pairsy={P,N y}, where P, is a coclosed set of plaquettes, N, a closed set of bonds,
y being closed as a graph, where the graphs in question are constructed in the
following way: The vertices are the co-connected components P; of P, and the
connected components N; of N, and the edges are pairs {P;, N;}, where N; winds
an odd number of times w(P;, N;) around P;. For general P;, N; define

(P Nj=(—1)FeNa, ®)
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For the definition of a polymer model one needs a definition of compatibility
between polymers. Two polymers y,, y, are compatible, y, ~7,, if no elementary
3-cube has plaquettes in P, and P, as faces, if no point is a boundary point of
bonds in N, and N, and if co-connected component of P, has a odd winding
number with a connected component of N,, and vice-versa. They are called
incompatible y, ~vy, otherwise.

The activity of a polymer y is

p(y)=h""g\(P N, ©)
with (P,, N,)= [](P;, N}),|N,| being the number of bonds in N, and |P,| being the
inj
number of plaquettes in P,.
Let y; denote the product of link variables for a set L of bonds. Then one gets
for its vacuum expectation value the expression

{uwr= X hMexp {; cri(ag, m— 1)}- (10)

MeConn (L)

Above Conn(L) denotes the set of all sets of bonds M with 6M = 0K ; hWM =h™!; |
are clusters of polymers, ie., nonnegative integer valued functions with finite
support on the set of all polymers, u" = [] u(y)"'® (multi-index notation). The

v
coefficients ¢ are the Ursell functions, are of purely combinatorial nature, and
ay. y 1s defined by

0, if N, is connected with M,

_ 11
ar, m(?) {(pw LAM), otherwise. "

If M =0 we write a, g=ay.

The following results are often used. One is a remarkable property of the Ursell
functions: if =17 + I, with y, ~y, for all y, esupp I3, y, esuppl, then ¢, =0. The
other are the following estimates:

2 led WIS~ In e, 12)
lerl < ( il ) Fy(=Injul) . (13)
rey, Tl 2n fl el

for |pull=sup,|u()|""=max{h,g}; where |lu| is a fixed constant with
Fi(—In|pl)<oo; where |I'| =) TI'(y)ly| for |y|=|P,|+|N,|, and where F; is a
monotonically decreasing function (see [1], Appendix). The convergence of sums
like (10) follows from (12) together with [{M : M € Conn(L), |M|<n}|<|L| (2d +1)",
for h small.

2. The Construction of the Scattering States

Let E, denote the Spectral projections of T and define i(T)= [ h(1)dE,, where
(0,1]

he C*([0,1]), 0<h(x) <1, xe[0,1], with h(e™?)=1 for 0=y=<y,, hle™*)=0 for
y=y, for y,>y,. For the construction of n-particle states we shall need
y1>n-sup{w(p), pe(—mn, n]?}, the Maximal energy of a n-particle state. Below we
shall mostly use g(x):=h(x)>.
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We consider the one-particle states written in the form

¥,= Z [dtfOx, Oh(T)o(03(x)) (14
with
O 0= ﬁﬁ §dpf(p, poJe irot~He@rostins - geR . (15)

For f'e 2(R?*') we define the velocity content of supp f as the set of values of
the group velocity associated to it:

V(7)={gradw(p), (&(p), p)esuppf nsp(H, P)} . (16)
The functions f© have the following decay properties (see [12]):

Proposition 1. For f© as in (15) with fe 2(R**") we have:
a) For all NeN there are constants Cy>0 so that

|f O OIS Cyd+Is) ™21 +le—s) ™" a7

uniformly in x.
b) There exists a positive constant C so that for every s,

ST delf 0l =CU +ls). (18)

xeZ4 —

¢) Forall L, M, N €N there is a positive constant C;_,, y so that, if for all s with
s|>1,

dist (ﬁ V( 7)) >0 (19)
for some constant 6 >0, then
|fOX, O < Cppp, (1 +Is— ) (1 +[s) ™ ™(1+|x]) 7. (20)

To follow the Haag-Ruelle construction we propose to use the vectors

'Pf 1, ...,fn(s) = Z fdtl . 'dtn 'Hl fi(S)().cis ti) (331 ..... x,.)—itn
Xn 1=

X1yeeey

X W(T)ot, (05(x1)) _H2 h(T)?0, (03X ). ....5. (21)
j=
as approximants for the scattering states for s— + oco. We have
d 2 o
75 Vi) = k’k,Z=1 %;xn lex fdty---dt,dty---dt,
x T1 f90s0t) T1 S5 5F (s, %' 1.1), 22
where
(s) , ik
f=y (23)
{0 j= k ,

ds”7 °
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and

Fle, X 60):= By, ) (B, )™

X (an (o3(x ){H g(T)ay(o5(x; ))} b, {I_] g(Ta, (05(x;) }qﬁxl,,..,xn)-
(24)
The main result is the following Theorem:

Theorem 1. Let {f}/- CHR"Y) with {¥,}1_,C2V, ¥, +0, and with non-
overlapping velocities: V(f)nV f) i%j. Then:
i) For each neN there is a positive constant C, so that for all seR,

=C,(I+lsh™". (25)

PRI

ii) The strong limits
lim ¥ . 7.(5) (26)

exist in Hy or A, (according with n being even or odd respectively) and the
convergence to the limit vectors, denoted respectively by Y™ . is faster than any
power in s for s— + oo respectively.

i) For v, . W, . ., GS given above then

(q)out/m o lpgllll“'.":gn) (3n,k Z n (wf;’ wgn(i)) s (27)
n o

.....

where the sum is over elements n of the permutation group of {1,...,n}.

Remarks. Above, ii is an immediate consequence of i. The proof of part iii will not
be given here since, as in the relativistic case, it follows the ideas of the proof of part
ii. Parts ii and iii establish the existence of asymptotic particle states and the
statistics of the particles (bosonic in this case).

Definition 1. To simplify the notation we introduce the ordered sets

(:ula "‘:,u'm,u'n+1> “'5,“211):: (t;ls ~~~st/15t]’ [ERE] tn) (28)
and
(Zl) [Kd Z Zn+15 "'>22n):: ('Zc;a ""2{/1’-2619 ~~-,2Cn), ‘ (29)
and write
2n—1 .
Flx, ¥ 1) = <¢ [ 1 asui)g(T)T“ﬂl—“**”] aa<z2n>¢znﬂ,m,zz"> :
(30)

Definition 2. We denote by o set of all partitions of {z,, ..., z,,} into ordered pairs
such that

l€6$l—{(211, znﬂ)a(_zip_zini.z)’"'9(_21‘"9 Ziz,[)} (31)
with i,e{1,...,n} and i, ,€{n,...,2n} for all a, 1 <a<n.

Proof of Theorem 1. One starts with the following result on clustering properties
of F(x,x',t,t'). The proof is given in the next subsection.
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Theorem 2. For F(x,x’,t,t') as above there are, for each qe N, positive constants
Cop 1=a=n so that

|F(>_C, .ZC,, t, [,)— G('X’ -ZC,’ t, t) é i (1 + “t”)qa

1 +D(2)(Z))(" 1)a? (32)

with
G(J_C, 'X,9 t: t,):= < é() ltao-3(xa)¢xa z’hl g(Jln bl) ® T ltao-3(xc)¢&c> (33)
for

T,:=1%'@T®" 9, 0<aZn, (34)
where ||t] := max |u;— p;| and where
i¥j
D(IZ)(Z)ED(IZ)(ZD (] ZZn):=min{D(22)(zl5 . ZZn) D3 21’ . ’Zln)} (35)
with
DP(2)=DPAzys s 220) 1= min {lxa—xsl} (36)
a,be{l,...,n},a*b
and

DP(2)=DPAz,, ..., 2,,): = min {min {lxa— x5}, min {Izcé—zc;l}}~ (37)

Replacing (32) into (22) and using that Z H Wy, ¥y, ) =0, since the p,

are independent 7, we get

d ! ’
— ¥, 0 <const Z Z Y [dty---dtdt\---dt,
ds ‘v KK =1 31,0000 %n ¥100r 50

n—1
X H A% £l H £ ) Zl 1+ l|t])* (1 +DP() "~ D
(38)
and from this the proof of Theorem 1 is completed by making use of the decay
properties of the functions f(x, t) (Proposition 1) and the fact that they represent

a set of wave functions with non-overlapping velocities, in complete analogy with
the relativistic case (see [3, 8,10]). [

2.1. Proof of Theorem 2

The first step to the proof of Theorem 2 is to approximate g(T)T* by polynomials
on the transfer matrix, following ideas of [3, 10]. This is possible since g(T)T*, in
contrast to T*, is norm continuous in T. Using Chebishev polynomials for the
approximation we write for peR,

g(T)T™*=E™(u)+R™(w), (39)
where

EM= ¥ aWT"= ¥ bTeT-1) (40)
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is the approximating polynomial of degree N and the rest R™)(u) is given by
RMw= [ 2V, wdE,, with 2V um)= Y b(WT(2i—1). (41)
0.1] nSN

Above T,(-),ne N, are Chebishev polynomials T,(x): = cos(narccosx), xe[—1,1]
and

n/2

b(w)=mn"1(2-3,,) | gl(cosa)?)e?mineoner2imidy, (42)

—n/2
Relation (42) comes from the fact that Chebishev polynomials form a complete
orthogonal basis in I?([—1,1], (1—x?)~2dx) (see e.g. [11]) and the second
equality in (40) is the defining relation of the a™’s in terms of the b,’s (see also the
Appendix). The two following lemmas hold:

Lemma 1. For the al’s given in (40) there are functions A(e)>0 and C() so that for
=0,

N
Tn(p) = ZO lagV(p)le ™" (43)
has the bound vyy(u) £ C(0)e* ™ uniformly in peR, for all NeN. We can choose
A(a) =2 argsinh(e " *?) and C(a)=2(e™)/(e?® —1).
Lemma 2. For 2™, ), N=1, neR defined in (41) there is for each geN a
positive constant C, so that |RA™(2, )] < C,N =4~ V(1 +|ul)”.

The proofs are given in the Appendix, see also [10, 3]. Replacing (39) into (30)
we get F(’X: 26/7 t) t/) = FE(-ZC, -cha t’ t/) + FR(-ZCa -X’Ia ta t/)a Where

N 2n—1
FE(ZC’ -ZC/a t’ tl)= Z -0 1:[1 ailIZ)(Ha_/’ta-\‘- I)I(Z7 {nj}) (44)
for o
2n—1
I(_Z’{nj}):= (¢z1,...,zna I: 'I—:[l G3(Zi)T"lj| 0'3(22n)¢g"+1,‘.,,22n>5 (45)
and
FR(X, -ZC/$ t7 t/)
2n—1
= ) <¢)z1,...,zn’ l: H Us(Zi)@i,B(ﬂi_ﬂiH)] 0'3(2621.)45;"”,...,;2,.)» (46)
Bc{1,...,2n— 1} i=1
B+0
where

R™M(y) if aeB,
O sl9) { EV0) i agB. @7
for any BC{1,...,2n—1}. The terms in the sum in (46) are called rest terms since
they contain at least one factor R™(y) in the scalar product. The right-hand side of
(44) will be called Euclidean term and will be object of an detailed analysis in the
next sections.
The proof of Theorem 2 follows after the two following lemmas:

Lemma 3. For each ge NN there are positive constants c, , so that

s "t 14 [|e])*
[Fr(x, ', t,t)| < ;1 Carg |:(N<q—-1)a:| (48)
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Lemma 4. The approximation of Fg(x,x',t,t) by G(x,x,t,t') is governed by the
following estimate:

, n—1 1 t qa
Fal 5,600~ Gl ¥, ) ket 070+ ' e, [(%(”—")l—] @)

k, A, « and the c, ;'s being positive constants( A=2(2n— 1)argsinh(1)).

The proof of Lemma 4 is much more involving and shall be the subject of the
next section.

Proof of Lemma 3. We majorize the sum over the rest terms by

I1 IIR‘”’(ua—/taH)ll] [bl_[ HE‘"’(ﬂb—#bH)ll} (50)

Bc{1,...,2n—1} I:aeB eBec
B+0

where B°={1,...,2n—1}\B. Using the simple bound [E™(w)|=|g(T)T*
— R =14 |R™(w)|| we majorize (50) by

@"—-1) I IR™ (G, — g 1)l

Bc{l,...,2n—1}
B+0

_ (4 1pa— Mo 1) _ "G (L + ey
<(22n—1_1 a_ a < — |, 51
=2 )Bcu,.g’jn—l} al;[B N1 = a§1 Caa| "NG-1a o1

B+

c,,, being positive constants, where in the first inequality above we made use of
Lemma2. []

To complete the proof of the Theorem 2 take N=[g(1+D¥(z))] for ¢
sufficiently small (0 <e<a/A), where [ - ] is the lowest integer function. Then (32)
follows straightforward from (48) and (49) for noew constants ¢, ,. [

3. Proof of the Lemma 4

The following theorem is the technically central result of this work.

Theorem 3. For g and h sufficiently small one has the following Euclidean clustering
property:

|I(Zs {nj})—'](acalcl’ {nj})l éke_anlmm 5 (52)
where
I, )= 11 (03 be T*05(x)b,.) (53)
with a1
E)= % m, (54)
b=n—a+1

for some k, a>0 (depending on n, B, and B,).

The proof is given in the next section. A stronger decay than that implied by
(52) can be obtained with more work, but (52) is enough for our purposes. Defining

N 2n—1
H(x,x',t,t):= r I ANty — o+ 1) J(x, X', {1}), (55)
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and using the result of Theorem 3 and (44) we get
|FE('.).C> 'cha l’ t,) - H(-X: -Xla ta t{)l

N 2n—1
<k )3 [T 16 (s — pta s 1)le ™7 @ S ketN 20106, (56)
B niy...,n2n-1=0 a=1

where the last inequality follows from Lemma 1, taking 4 =(2n — 1) A4(0). The proof
of Lemma 4 is then completed with the following lemma, which together with (56)
implies (49):

Lemma 5.
Vg . . (T Jfel*
|H(x, X', t,1')— G(x, X', t, )| < ; [W : (57)
Proof of Lemma 5. We start from the identity:
J()_c,)_c"{nj})z <® 03(X) Py @ TE®) @1 0—3(xc)<j)xc>. (58)
Now we write
n n—1 n 2n—1
@)} T = Ul (’Z*c)nc dljl ('%—d)nhid: l:ll (gvln*al)na: (59)
where 7, is defined in Theorem 2. Hence, in analogy with (39) one has
N 2n—1 n
YTl aV— sy @ T
iy ony nop-1=0 a=1 b=1
2n—1 N
= nl Z a( )(:ua .ua+1)('/|n al)
= I_[ {g(g—ln—zﬂ) (‘9‘|rl—41|)l.(u117uu+ v— R(N)} 5 (60)
a=1

R™ representing the rest terms. Expanding the product in the right-hand side of
2n—1

(60) one gets H (T o) (T jy—g)™* "< plus terms containing at least one

factor R™, whlch are bounded as (48) since |g(7,)7.*| <1. Finally note that
2n—1 n
H (=/|n—a z(ua Ha+1) — ® TE N g Ty )) = ® Tith—t) (61)

b=1

This proves Lemma 5. []

4. Proof of Theorem 3. The Euclidean Clustering

The first step is to express I(z, {n;}) in terms of cluster expansions (see [1]). There
are two cases to consider: n=even and n=odd.

4.0.1. The Case n=even. According to [1] (see the proof of its Theorem 6.4) the
vector states ¢, . and ¢, . can be strongly approximated by

aip(Ta(Lyy, . ) oip(Ta(Lyy, n}))Q” -t (62)
(Qe A, is the vacuum vector) and

O‘iq(Ts(L( ))Q [ O‘zq(fa(L{n+ 1 2n}))Q” ! (63)

..........
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respectively, with p, ge N, where, as in [1], 75(B):= [] t4(b), for a set of bonds
B
BeZ’ and where L, and L,

be
,,,,, am CZ* are sets of time-zero bonds with
aLu ..... n)={Z1,---’Zn} and 0L(n+1 ..... 2n)={Zn+1:---:Z2n}- Then I(Z,{”j}) may be
expressed as

2n—1
<aip(13(L{1,..‘,n)))Q: l: J:[l Ua(Zj)T"j:| aa(Zzn)“iq(Ts(L{n+1,...,2n)))9>
lim Iz
P g l|“ip(T3(L(1,...,n)))Q|| I|aiq(T3(L(n+l ,,,,, 2n}))Q[|
= lim {Ygr.e) <XLp.p>_1/2<XLq,q>_l/2, (64)
P.g=
where
n i—1
K? q_{(“P,L(l ..... n))}U [!1 T(Z‘)< D, ;1 n,,)] V]
2n 2n—1 2n—1
5 |: U+1 T(ZJ) ( Z na,q+ Z >] Y {(q_'_ Zl na’L(n+1 ..... 2n)>} (65)
j=n a=
and
L*? p_{( p Ly, .., n))}U I:U T(Zi)( D P)] U{(P, Ly, n})} (66)
and

where {(—p, Ly,.., )} is the set of bonds L1 . placed on the Euclidean time
hyperplane at time —p and T®)(a, b) is the temporal line j jomlng the points (a, x)
and (b, x) (for a<b). The right-hand side of (64) is given in terms of the cluster
expansion by
i €xXp {1/2 % Crﬂr(af(p,q,M+a§Kp.q,9M—a£l—p.p—a{; q,q)}, (68)
MeConn (KP:9) r

where 0 is the reflection on the (x° —0) hyperplane (see [1]), from which the limit
p,q— o0 may be taken directly and is given by

> h™ exp {1/2 Y crp"(ak, p+ by, op — 4L, —aiz)}, (69)
M eConn (K) r
where
K= lim K?? and L;= lim L;»?, i=1,2, (70)
p,q—*© p—>©
with
n 2n
L,= ikzjl M,, L,= iz&jﬂ M,, M,=T¥(—c0,®). (71)
Note that 0K ={zy, ...,z,,} CZ***, with

z;= <z ELI n,->. (72)

so Conn(K) depends only on {z,,...,z,,}.
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4.0.2. The Case n=odd. In this case, according with [1] (see the proof of its
Theorem 6.4), we can approximate strongly ¢, . and ¢, ., . ., by

“ip(%(L(}l, ...,n)))d)o ”aip(‘[3(121 ,,,,, n)))¢o|| ! (73)
and
O‘iq('fs(LQ{n+ 1, ..‘,2n}))¢0“aiq(r3(l‘%n+ 1,..., 2n}))¢’0 -1 (74)
respectively, with p, geN, 0L,  ,={z,,...2,40 and 0%,
={Zn+1.?"'722n}A0‘ )
As in the previous case we express the scalar products in terms of cluster
expansion and after taking the limits p,q—cc we write I(z, {n;}) as

) h™exp {1/2 ) Crﬂr(aﬂ,M + agx,oM - aio, i aio, 2)01{40} > (75)
MeConn (K) r - - -

where Ly ;=L AM,,.

Definition 3. The sets Conn(K) occurring in (69) and (75) can be decomposed into
the disjoint union of three sets: Conn(K)=V°+ V! + V2 where

Vo= {M MeConn(K), M= () M, M;~M, i+j, so that for
i=1

,,,,,

alli, 1 <i<n:0M;={z,,z,,} forsomez,,z, €{zy,...,2,,},a;%b,,
with z, € {x,,....x,} and z, € {x|,....,x}} ¢, (76)
V= {M MeConn(K), M= () M;, M;~M, i%}j, so that for
i=1
alli,1<i<n:0M;={z,,z, | forsomez,,z, €{zy,...,25,},a;%b,

but with {z,,z, } C{xy,....,x,} or {z,,2, } C{x},....,x,}

(77
and
s
V= {M‘MeConn(K), M= |) M, M;~Mj, i%j, f<n and
i=1
|0M,|>?2 for some i,1§i§f}. (78)
Definition 4. To simplify (69) and (75) define
r r I I
aK M+a9K OM—aL —aL, n=even,
A, M, n):= . ’ ! ? 79
(M. {<a£,M+a5K,9M—a£Q, —dl, )b, n=odd,
and for later purposes, for M;CMe V",
A M, 1):= [alr@,M, + agKZ,OM, - ‘15:]2 - l]aguj, (80)
with the simplifying notation af for aj, and with
=M, uM,, (81)
and
a,—1 b,—1
K} =T (—oo, l; nz) U TE) <l; n, oo>, (82)

P [ T T I AT [ !
where ¢M = 1z,,z, | with z, € {X|, .., X}, 2, € 1X1, .0 X,
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We have the following result, which holds for both n even or odd:

Proposition 2. There are constants k, k', «>0 so that
Y hMexp {1 /2 z crpl AN, M, n)}’ <ke 0@ (83)

MeV!

and
ék/e—aD(“)(zl ----- 22n)’ (84)

Y hMexp {1/2 Y e AT, M, n)}

MeVv?
where D™z, ..., z,,) is the length of the smallest “minimal tree” of bonds joining
four elements of {zy,...,z,,} CZ***.

Proof. The proof uses standard techniques of cluster expansions, by showing with
the use of (12) that both for (83) and for (84) one has

}z criF AT, M, n)] <AM|,
r

for a constant A(g,h). For (83) we observe that the left-hand side decays
exponentially with

min { min {lza— 2}, min , {|zc—zdl}} , (85)

a,be{l,...,n},a*b c,de{n+1,...,2n},c¥

which has DP)(z,, ..., z,,) as lower bound. []

Let us now concentrate on the sum over M e VV°. We have to establish the
exponential decay of the difference

Y=Yz}, {n}227"):= z o h™ exp {1/2;crqu(r,M,n)}

-2 H (03(2:)0:,, TV 04(z,,. )0, (86)
with —
NG,a):= Y n;. 87)
Jj=ia
Theorem 4. There are positive constants k and o such that
[Y|< ke—aD“"(21. “+esZ2m) (88)
Proof. Each M € V° is composed by a disjoint union U M;. We write
ji=1
Y= Y KWMEM,n)+R(zq, .. 250), (89)

yo
where Me

E(M,n)=exp {1/2 ; crul A(T, M, n)} —exp {Zn: 1/2° Y, crp" AT, M, 1)} (90)
with

R(zy - zo)=(—1) Y ¥ <H hM°> exp {; 1/2 ; crul A(T, Mj,1)} 91)

icoc MeM;

where, for ieo,
M {M‘M U M,, with O0M,={z, ,z, . .}, 1<a=<n, with

a=1

M ,~ M, for some (a,b), a#b}. ©92)
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In analogy with Proposition 2, R(zy, ..., z,,) has the bound
lR(Zla "')ZZn)léke_aDM)(Zh.“’zzn)a (93)

for constants k and o. Due to this fact we consider only the sum over M e V°in (89).
First define

OM,n)=1/2 % e AT, M, n), (94)
r
where
AT, M, n):= A(I', M, n)— [Z AFMJ,I):| 95)
The following question has to be considered: what is, for each M € V°, a sufficient
geometrical condition on I for A(I', M,n)+0? Write
Al M, 1)=a§2 M,"‘aers2 oM, azu,*am ) (96)

where OM;={z,, z, }, S}:=K?AM,_. Then the clusters I' of interest are of two
types: a) Iis formed by polymers Wthh wind around only one of the sets S;UM,,
say S,0M,, (eventually with I' ~M,), so that

r _ . _T
Agsz,0My = 452, My = Az = a;p=1, Vk*a. 97

b) I' violates condition a), which means that I" winds around at least two sets S ;UM ;,
say S;,UM, and S;0M,, c*d. By a geometrical reasoning this implies that

IM|+IM | +1/2IT'|| 2 DM woM,). (8)

It is easy to check that a) implies A(I', M, n)=0. So the clusters I" contributing
to (94) satisfy (98). By (13) this implies the following bound:

|O(M, n)| <
kexp {m < “””) [2 min (D(“’(aMCuaMd)—lMcl—|Md|)]}
H/'tc” M, ,MgCcM
<kexp {2111 ( ':‘:’L) [D¥(z,, ...,zz,,)—|M|j}, (99)

since ull < [pll, min D®(OM UIM)ZD®(z,,...,2,,) and [M|Z|M|+|M,].
Mo MacM

Above k is a positive constant. Let us return to (90).

Proposition 3. For a, beR one has |e® —e”| < 81/4|h — q|!/*elmax(@b)l,

Proof. First, for x=0 one has (1 —e™¥)<8"Y*x!/* To see this note that 1 —e *< x.
So

(1—e ™ P=1-2e *4+e <2l—e %< 2x.
Now (1 —e™*<|/2x'/2. Therefore

(1—e ™2 <2(1—e %) <2)/2x12.
So

lea_ebl =emax(a,b)(1 __e~|b~a|)g81/4|b_a|1/4e|max(a,b)| . D
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Taking a= 1/2Zcr,urA(FMn) b=1/2 Z ZcrurA(FM 1) with a—b

=O(M, n) and using the fact that both |a| and |b| have A|M|+ B as upper bound,
where 4 and B are positive and independent of M, we conclude from Proposition 3
and (99) that

IEM, m) <k exp {A|M|+ 21 <|||I5I:|> [D(‘*’(zl,...,zh)—wu} (100)

for some constant k. Therefore

TEEIA < y ( i >—1/2)|M|
) (II#JI) Mglvo e’h Tl (101)

According with [1], ||u|| =max(g, h) and one has

Y, HWME(M,n) <

MeVO

hllpll ™ =hmin(g™ "2, k=12 <h'/2. (102)

In (102) one sees the need for the exponent 1/4 in Proposition 3. Hence by choosing
h small enough the sum in (101) becomes uniformly bounded on {z;, ..., z,,} and
we conclude

Mz, (] \POE e zani2
Y h E(M,n)‘ék , (103)

Mevo (A

which together with (93) proofs Theorem 4. []

Now we complete the proof of Theorem 3. Joining estimates (83), (84), and (88)
we establish that

Ske 7@, (104)

Iz, {n})— % ﬂ 03208z, TV V03(z;,., )P2,,.,.)

ieoc a=1

since Dz, ..., 220) S D¥(zy, ..., 2,,). From the cluster expansions, or equivalently
from the existence of a mass gap, one has

3 11 O3(z)ba, TV 03z, )be,)~ 11 (03600 T*O0s(58,)| (105

ieoc a=1

—aD)
ék”e a Qz(g)’

which finally proofs Theorem 3. []

5. Appendix

Here we present the proofs of Lemmas 1 and 2.

Proof of Lemma 1. According with (40) we have

n

0= 3 00| 2 (106)

T,.(2x — 1):I

x=0

We use the fact that T,,(2x — 1) = T,,,(x'/?), which follows from the identity T,(T,(x))
=T, (x) and from T,(x)=2x*—1. Applying the explicit polynomial form of T;(x)
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(see [11])
T.(x)= ol <n> ) <S> —1)ix" 2 (107)
)= sgo 2s qgo q ( ’
we get
N . " 2
aM(t)=(—1)" ; b, () (—1)" :Zﬁ <2r:> <ms_n> (108)
So we have
N N m 2 N
NS T e Y bl X ( 2’?) <m5_n> LG (109)
where
—am o a < 2m S
U, =e kg'oeksgk<2S> <k> (110)

The right-hand side equals
12{(e*?+1/1+e %> +(e~**—]/1 +e~*)*"} =cosh(2mb) <™, (111)

for b:=argsinh(e~*?) and A(x)=2argsinh(e ~*?). Since |b,(t)| <2 using (111) we
get easily

2e4®
NCE (m) etV (112)
Proof of Lemma 2. Using |T,(x)|<1, Vxe[—1,1], we have
|Z N, )l = ’;ZN b1l - (113)

Taking (42), using the identity
. a4 .
2" =(2in)"1 — ™, ¥nx1,qeN, (114)
do?
integrating by parts and using smoothness of g(-) it is possible, for each ge N, to

find a constant C,, depending on the function g(-) but independent of n, so that
b ()] = Cyn (1 +]|u)? holds'. The lemma follows from (113). [

Acknowledgement. T am indebted to Klaus Fredenhagen for the suggestion of this work and for
valuable hints and discussions.

! Using stationary phase methods a sharper estimate for |b,(1)] can be found, which is
nevertheless not so useful for our purposes and more difficult to handle
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