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Abstract. We define a semi-infinite analogue of the Weil algebra associated an
infinite-dimensional Lie algebra. It can be used for the definition of semi-infinite
characteristic classes by analogy with the Chern-Weil construction. The second
term of a spectral sequence of this Weil complex consists of the semi-infinite
cohomology of the Lie algebra with coefficients in its "adjoint semi-infinite
symmetric powers." We compute this cohomology for the Virasoro algebra. This is
just the BRST cohomology of the bosonic /fy-system with central charge 26.
We give a complete description of the Fock representations of this bosonic system
as modules over the Virasoro algebra, using Friedan-Martinec-Shenker bosoniz-
ation. We derive a combinatorial identity from this result.

1. Introduction

It is well-known that the Weil algebra, associated to a finite-dimensional Lie
algebra is very useful in geometry and topology.

Let us recall its definition.
Let G be a finite-dimensional Lie group, g - its Lie algebra. Denote by Λ *(g')

and S*(g') exterior and symmetric algebras of the dual space to g, correspondingly.
Put W(g) = A*(g')®S*(g'). Introduce grading on W(g):

W(g)=@Wk(g),

where

W\g)= 0 (g)
r+2p=k

Let Xt be basic elements of g. Denote by ct and yt the images of X\ in Λ *(g') and
S*(g'\ correspondingly. They are the generators of W(g). Define the differential d in
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W(g) as follows:

d'Ciί...cir®yj1...yjp=Σ(-l)k+ίcir..cik -cir®yikyj1...yjp

+ 2 L \ ϊ) Jkl 4C/Cii 'Cim" C i r ^O"i -yjPk,l,m

+ Σ fάmckcil...cir<S>γιγh...yjm...yj
k,l,m

where fjk are the structural constants of g.
This equips W(g) with the structure of a differential graded algebra. This

algebra is called the Weil algebra.
The differential d is a sum of the Koszul differential dk and the differential dc of

the standard cohomology complex of the Lie algebra g with coefficients in the
module S*(g') of coadjoint symmetric powers. This decomposition gives us two
spectral sequences.

In one of them the 0th differential is the Koszul differential dk and we conclude
that W(g) is an acyclic complex: H°(W(g)) = C, H\W(g)) = 0, iφO.

In another spectral sequence the 0th differential is dc and the first differential is
trivial. Therefore the second term of this spectral sequence is

tj_ ί°> if i is odd
2' ~i#''(g,S//2(g')) if i is even*

If G is compact, then the Weil algebra is homotopically equivalent to the
algebra of invariant differential forms on the universal bundle of G and this
spectral sequence coincides with the Leray spectral sequence of the universal
bundle, beginning from the second term.

Let us define, following [40] the universal connection and curvature over the
Weil algebra:

θ=ΣciXieW1(g)®g, Ω
i

One has:

Now let P-+M be a principal G-bundle. Denote by Ω(P) the complex of the
differential forms on P. Suppose we are given a connection θ' and a curvature Ω' on
P, θ'eΩ\P\ ΘΈΩ2(P). They determine the maps

which can be uniquely extended to the homomorphism of graded algebras

which carries the universal connection and curvature over the Weil algebra to the
connection and the curvature on P.

We also have a map from the spectral sequence of W(g) to the Leray spectral
sequence of the bundle P. In particular, we have a map

If G is compact, then Hq(g,Sp(gf))=Hq(g)®H°(g,Sp(g')) and this map is the
Chern-Weil homomorphism
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It gives the construction of the characteristic classes of P in terms of
the space H°(g, S*(g')) of invariant polynomials on g.

Thus, one can define the characteristic classes, using the Weil algebra. The Weil
algebra is also used for definition of the equivariant differential forms [3, 5, 9, 40]
universal Thorn class [40], for computation of Gelfand-Fuchs cohomology [28,
29], and in the proof of the local Riemann-Roch theorem [21]. In the works [4,35,
47] the Weil algebra is shown to be useful in an algebraic definition of the BRST
procedure in topological quantum field theory.

In this work we define a semi-infinite analogue of the Weil algebra, associated
to an infinite-dimensional Lie algebra g. We call it the semi-infinite Weil
complex. This complex has two spectral sequences, as well as the standard Weil
algebra. The first of these spectral sequences ensures that our complex is acyclic.
The second term of the second spectral sequence consists of the semi-infinite
cohomology of g with coefficients in a g-module S°°/2 + *(g), which can be called
"(co)adjoint semi-infinite symmetric powers of g." In this work we compute this
cohomology in the case when g is the Virasoro algebra.

Semi-infinite cohomology theory was formulated in standard mathematical
terms in [14]. In the past few years it was studied extensively in physics literature as
the BRST cohomology [8,45] (see [35a] for a detailed exposition of the BRST
construction). The main benefit of [14] and subsequent works [25, 39, 48, 49] is
that the powerful homological algebra technique, like spectral sequences, Hodge
decomposition, etc., can be used in this cohomology theory as well. In particular,
these methods were applied to give a new simple proof of the famous "no ghost"
theorem and its generalizations [22, 25, 38], and to carry out the quantum
Drinfeld-Sokolov reduction [18].

Semi-infinite cohomology theory is particularly suitable for the represen-
tations with highest weight. For example, in [16] we proved a semi-infinite
analogue of the Borel-Weil-Bott-Kostant theorem on the semi-infinite coho-
mology of the current algebra of a nilpotent Lie algebra *. This result follows from
the "two-sided" Bernstein-Gelfand-Gelfand resolution and it is closely related to
the geometry of the semi-infinite flag manifold [16].

Thus, we see that many of the classical results on the finite-dimensional Lie
algebras have "semi-infinite analogues."

There are also many signs of the existence of a semi-infinite geometry: elliptic
genus [41], [8a] Floer cohomology [2,23], semi-infinite flag manifolds and
sheaves [16]. One can expect that in this geometry the semi-infinite Weil complex
plays a role, similar to the role of the Weil algebra in the finite-dimensional
geometry, namely, gives a natural construction of "semi-infinite characteristic
classes." More precisely, one can expect that there exist characteristic
homomorphisms:

g, S°°/2+<z(g))-># °°/2 + 2q(M, H°

for a principal G-bundle P^M, where H°°/2 + * denotes Lie algebra cohomology in
the left-hand side, and cohomology of the space (e.g. Floer cohomology) - in the
right-hand side. The idea is again to use algebraic methods for the definition of
geometric invariants. Hopefully, these characteristic classes are suitable for the
formulation of the index theorem on the loop spaces.

Usually in the definition of the semi-infinite cohomology one has obstructions
to the nilpotency of the differential [14], thus, in the case of the Virasoro algebra
the differential is nilpotent only if the central charge is equal to 26. On the contrary,
1 Note that it was also proved by other means and connected with N = 2 coset models in [30,37]
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the differential of the Weil complex is always nilpotent due to the "cancellation of
anomalies." In particular, in the Virasoro case it is equivalent to the fact, that the
central charge of its adjoint symmetric powers modules is equal to 26.

These modules are interesting on their own right. They are the Fock
representations of the bosonic /fy-system with conformal dimensions 2 and — 1.

For a general value of conformal dimension λ these representations can be
constructed in the following way. Denote by <£ the Lie algebra of vector fields on
the circle. Let &λ%μ be the ^-module of ^-differentials on the circle with
monodromy e2πiμ. It consists of elements of the form f(z)zμdzλ. There is a bilinear
non-degenerate if-invariant pairing between # ^ μ and c^'1_λ>_1_μ:

(f(z)zμdz\g(z)z-1-μdz1-λ)^ f f(z)g(z)-
s1 z

(z is a Fourier coordinate on the circle S1). In a standard way this defines a non-
degenerate anti-symmetric scalar product on F Λ μ = # A μ φ # 1 _ A > _ 1 _ μ . The
Heisenberg algebra Hλ μ associated to Vλtβ is just the bosonic /fy-system with
conformal dimensions λ and l—λ [27].

Let pe Z and Wλtμ(p) be a subspace of &λ%μ, spanned by elements zn+μdzλ, n^p.
Denote by Wi'-A,-i-μ(p) the subspace of ^r

ί^λf-1-μ, spanned by elements
zn~μdz1~λ, n> —p. Wλtμ®W[-λ,-i-μ is a maximal isotropic subspace in Vλμ. It

defines the irreducible Fock representation M^μ(p) of the Heisenberg algebra Hλ μ.
There is the (projective) Weil representation of the Lie algebra of symplectic
transformations of Vλμ (preserving our scalar product) in Mlμ(p). S£ preserves the
scalar product, therefore the Virasoro algebra J^, which is the central extension of
JS?, acts on Mϊμ(p) with central charge c = 2{6λ2 — 6/1 + 1). This is a representation
with highest weight.

There is a fermionic counterpart of this representation. One can introduce on
Vλffl a symmetric scalar product and associate to it the Clifford algebra CΛ μ, or,
in other words, fermionic fee-system. Let M^Jjj) be the irreducible Fock
representation of Cλ>μ, associated with the maximal isotropic subspace
^,μθWΪ- λ ,- i-μ ° f Vλ,μ [35a]. The Virasoro algebra acts on Mlμ(p) as well,
with central charge c=—2(6λ2 — 6λ + ί). This is also a representation with
highest weight.

It is natural to ask about the structure of M^μ and M^μ as modules over the
Virasoro algebra.

The structure of Mχμ(p) was found in [19], using bosonization of fermions
[10, 24, 27] (for bosonization on higher genus Riemann surfaces see [1]).
Bosonization means that we express all operators, acting on M^μ(p), in terms of a
Heisenberg algebra A. This algebra is the central extension of the commutative Lie
algebra #Q 0 of functions on the circle by means of the 2-cocycle:

(f(z),g(z))-+\f(z)dg(z).
s1

Note that this algebra is different from Hλ μ. In physics literature it is called the free
scalar field.

This bosonization is very important in representation theory, conformal field
theory, and integrable systems (KP hierarchy [10]).

After bosonization the module M^μ(p) becomes the direct sum of standard
irreducible Fock representations of A, and the action of the Virasoro algebra is
given by a quadratic expression on the generators of A. This simplifies the study of
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the structure of these representations and enables to give explicit formulas for
intertwining operators between them. The structure of these representations then
can be determined completely, using standard representation theoretical argu-
ments [19].

In this work we solve this problem for bosonic modules M~λ μ(p). To do this we
use the bosonization, which was found by Friedan, Martinec, and Shenker [27]
(see [36] and references therein for an account of this bosonization on Riemann
surfaces). A similar construction was also given by Kac and van de Leur and used
by them for a construction of a super KP hierarchy [31,32]. It is possible to
express operators, acting on Mχμ(p), in terms of the algebra A ®A of two scalar
fields. However our representation M^μ(p) is not isomorphic to the direct sum of
Fock representations of A® A, but is its submodule. Actually, this submodule is
the kernel of a vertex operator, acting on this bosonic Fock space. We can
determine the structure of this kernel, using the results of [19]. This enables us to
determine the structure of Mχ μ(p) as a module over the Virasoro algebra. Using
this result we reprove a very interesting combinatorial identity, which was proved
by Kac and Peterson in [34] by other means and which goes back to 1898 [42]
(see also [6,7]). Note that the famous Jacobi triple product identity can be
proved, using the bosonization of fermions.

The modules M^ _2(/?) are just the modules of adjoint semi-infinite powers of
the Virasoro algebra. Using the information on the structure of these modules we
can compute their cohomology. This gives us a description of the second term of
the spectral sequence of the semi-infinite Weil complex of the Virasoro algebra. In
fact, more careful analysis shows that the natural map

where h is the Cartan subalgebra of the Virasoro algebra is an isomorphism. So
"semi-infinite symmetric polynomials" on the Virasoro algebra coincide with the
symmetric polynomials on its Cartan subalgebra. This can be viewed as an
analogue of the Chevalle theorem.

We want to mention that in recent works [11, 12, 46] the bosonic represen-
tations MJf _2(p) are shown to be relevant to ID gravity. Cohomology, which we
compute in this paper, is an important ingredient there. We hope to discuss these
questions in a separate paper.

Similar problems are still open for affine Kac-Moody algebras. Work along
these lines is in progress.

The paper is arranged as follows. In Sect. 2 we give the definition of the semi-
infinite cohomology, symmetric and exterior powers, Weil complex, and modules
Mχμ(p) and Mχtlι(p). We state the main results at the end of Sect. 2. In Sect. 3 we
describe the structure of the modules Mχμ(p% using the bosonization procedure.
We also prove a combinatorial identity. In Sect. 4 we give the proof of the main
result on the semi-infinite cohomology, using standard homological technique.

The main results of this paper were announced in [17].

2. Preliminaries and Statement of the Main Results

2.1. Semi-Infinite Coadjoίnt Symmetric and Exterior Powers

Let g be a Lie algebra. Linear space V(g) = g®g' carries non-degenerate exterior
and symmetric forms: (,) and {,}. If we denote by <,> the standard pairing
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between g and g', then

if aeg,cegf,

if aeg',ceg,

) = {a,c}=0, if both a,ceg or g'.

This defines two algebras: the Heisenberg algebra H(g) and the Clifford algebra
C(g). The former is the quotient of the tensor algebra T*(g) of g by the ideal,
generated by the elements of the form [α, c\ = ac — ca = (a, c), where a, c e V(g), and
the latter is the quotient of T*(g) by the ideal, generated by the elements of the form
[a, c]+=:ac + ca = {α, c}? where a,ce V(g). Introduce grading on these algebras by
putting deg a = — 1, if a e g, deg a = 1, if a e g'.

Suppose we are given a decomposition of g into the sum of two linear
subspaces: g = feφn, which satisfies the following condition. Linear subspaces d of
g, such that dimb/bnd<oo and dimd/bnd<co, generate some topology on g.
The adjoint action of any xeg is continuous in this topology.

The linear subspace W= b®ή is a maximal isotropic (or Lagrangian) subspace
of V(g) with respect to the bilinear forms (,) and {,}. Symmetric algebra S*(W) is
embedded into H(g), and exterior algebra Λ *(W) is embedded into C(g). Let M"
and M + be the representations of H(g) and C(g\ induced from the trivial
representations of S*(W) and Λ *(W)9 correspondingly. These modules inherit
grading from H(g) and C(g): M± = 0 M*. Let us define an action of the Lie
algebra g on them. Z e Z

We will call the elements of F(g), which belong to W, annihilation operators,
and the elements of F(g), which belong to W\ creation operators.

Let a1...aι be a monomial in T*(V), where a{ belong to either W or W. The
monomial ah...ai]? where

Ί . . . Γ
σ =

is a permutation, is called normally ordered, if for some m operators αf l,..., αίw are
creation operators, while aim+1, ...,ah are annihilation operators.

Let ah...aiι be any normally ordered monomial. We denote by :a1...aι: the
element π " ^ . . . ^ ) of H(g) and the element sgn(σ)π+(aiι...ai) of C(g\ where π",
π + are the projections of T*(F) onto H(g) and C(g), correspondingly. This
definition is well-defined due to the isotropy of W and W. By linearity we extend
it to the whole T*{V).

Let x be an element of the Lie algebra g. Adjoint action of g defines the element
x of Hom(g,g) = g'(g)gC T*(V). This gives the projective representations ρ 1 of the
Lie algebra gin M 1 :Q±(x) = :x:. Note, that :x: is well-defined o n M 1 , and it
belongs to some completions of H(g) and C(g). If b = g (or b = 0). then M* are just
the modules of (co)adjoint symmetric and exterior powers of g. In the case when g is
infinite-dimensional and both b and n are infinite-dimensional we get some semi-
infinite analogues of the symmetric and exterior power modules, which we will also
denote by S°°/2 + *(g) and Λ °°/2 + *(g). In this case, in general, the action of g on
M± is projective, so that it defines a central extension of g and therefore
cohomology classes ω+ from H2(g). Let us compute them.

Let gb i: ̂  0 be a basis of b, and gb i < 0 be a basis of n. Denote by g , i e Z the dual
basis of g'. The Heisenberg algebra H(g) is generated by jSi5 γb i e Z (images of gb gj)
with the commutation relations:
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Module M~ is the irreducible representation of H(g) with vacuum vector,
annihilated by βb ΐ^O, yb i<0.

Analogously, the Clifford algebra C(g) is generated by bb cb i e Z (images of
gi,gd with th e anticommutation relations:

\cb bj] + = δUj, \bb bj] + = [cb cj] + = 0.

Module M+ is the irreducible representation of C(g) with vacuum vector,
annihilated by bb i ̂  0, cb ί < 0.

Let fjk be the structural constants of g:

Then '

Q'(gj)= Σfjk'-βiyk , Q+(gj)= Σfjk'biCk:. (1)

Let U be an infinite-dimensional linear space with the basis ub ίeZ. The
subspaces Uj of U, spanned by ub i <j, generates some topology on U. Denote by
gl the Lie algebra of continuous endomorphisms of U. It consists of infinite
matrices (αl7), with finitely many non-zero entries in the quadrant ί>n,j<n for
any n. We can define representations v* of gl in M± by putting v~(£ ί7 ) = i/?^-:,
v+(Eij)=: hie/., where Ei} is the standard matrix from gl. As is well-known [10, 33,
43] this representation of gl is projective and it defines elements ώ± from H2(gl)
= C [20]. Wick theorem says, that ώ " = — ώ + .

Formulas (1) define embeddings of the central extension of g into the central
extension oϊgl, and ω± eH2(g) are the restrictions of ώ± eH2(gl). So ω~ = — ω + .

Under the action of the central extension of the Lie algebra g the modules M±

are decomposed into the direct sum of submodules: M± = 0 Mf.
lZ
0
leZ

2.2. Semi-Infinite Cohomology

Now let N be a representation of g, which is locally finite with respect to b (that is
fc-submodule, generated by any element of JV is finite-dimensional). Define an
operator dN of degree 1, acting on C(g,N) = N0M+. Let d1 be the canonical
element in Hom(g, g) = g'(g)g C U{g)®C{g\ corresponding to the identity, and d2 be
the canonical element from Hom(g®g,g)=j$'®g'®gcT(g\ defined by the
commutation in the Lie algebra g. Note that :d2: is well defined on M + . We put

This operator is well-defined on C(g, N). Let us compute d\. In order to do that
we have to write an explicit formula for dN, using the basis, introduced in Sect. 2.1.
We have:

dN=ΣQN(gi)®ci-l/2
i ίί,j,k

where ρN denotes the action of g on N.
One can easily check that

where ωtj=ω+(gbgj).
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The cocycle — ω+ defines a central extension of the Lie algebra g

An element of the Lie algebra g is a pair (x, c), x e g, ce C. The commutation
relations are:

Now let AT be a g-module, where any element c from the center acts by
multiplication by c. Then obviously, d^ = 0' and so dN equips C(g,N) with the
structure of complex. If b = 0 (or b = g\ then ω~ = 0 and this complex coincides
with the standard complex of (co)homologies of the Lie algebra g. If both b and n
are infinite-dimensional, then this complex is the complex of semi-infinite
cohomologies of the Lie algebra g with respect to the decomposition g = nφfe [14].
Its iih cohomology group is denoted by Hco/2 + i(g,N).

If H2(g) is not equal to 0, then semi-infinite cohomology is not defined, unless
the module N is a protective representation of g, corresponding to the cocycle -ω +

(djf = O only on this case).
In a standard way one can define relative semi-infinite cohomology. Let h be a

subalgebra of g. Then h = hn@hb9 where hn = hr\n, hb = hr\b. Let N satisfies the
conditions above. We define a subcomplex C(g, h, N) of C(g, N), such that
1) l®(ΛBΘΛ;)Cl/(g)®C(g) acts on C(g,h,N) by 0;
2) for any xeh, x ® l + l®ρ~(x) acts on C{g,h,N) by 0.

Note, that if g is the universal central extension of g

then H2(g) = 0 and the semi-infinite cohomology complex C(g, N) is well-defined
for any g-module N. Cocycle -ω+ e H2(g) defines a character χ of the center K. It is
clear, that C(g, K, N) = C(g, N), if any k e K acts on N by multiplication by χ(fc), and
C(g,X,JV) = 0, otherwise.

23. Semi-Infinite Weil Complex

Now let g = b®n be a decomposition into the direct sum of two subalgebras.
Let W(g) = M~®M+. Introduce grading on W(g) by putting W\g)
= 0 Mfc~ ® M / . Let us introduce an operator d of degree 1 on W(g). Let d0 be

j+2k=l

the canonical element in g'®gCH(g)®C(g), corresponding to the identity
operator on g. Put

Proposition 1. d% = dodM - + dM - d0 = d^ - = 0.

Proof is clear, the last equality follows from the fact, that ω~ = —ω+ (see
Sect. 2.1). •

Definition 1. The complex (W(g), d) is called the semi-infinite Weil complex of the
Lie algebra g with respect to the decomposition into the direct sum of two
subalgebras g = b®n.
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If b = 0, then this complex is just the Weil algebra, which was defined in the
Introduction.

We can easily write the explicit formula for the differential d in terms of the
basis, introduced in Sect. 2.1 :

Σi Σ &fif Σ
i Uj,k i,j,k

As in the standard case we can define two filtrations on W(g): Ff and Ff,

, Fp

2= 0 M
i

The following proposition is the precise analogue of the key property of the
usual Weil algebra (see the Introduction).

Proposition 2. 1) W(g) is an acyclic complex: H°{W{g)) = C, Hi(W{g)) = 0, ΐφO,
2) in the spectral sequence, associated with the filtration F*, the second term is

if Pis odd

^2 +«(g, S°°/2+pl2{g)) if p is even'

Proof is the same, as in the standard case. The convergence of the spectral
sequences, associated to our filtrations, is ensured by the fact, that both b and n
are subalgebras. •

2.4. Virasoro Algebra

Virasoro algebra & is the central extension of the Lie algebra i f of vector fields on
the circle. If z is a Fourier coordinate on the circle, then we can choose the basis T(ί)
= z~ι+1d/dz, i e Z , C in J?, where C is the central element and the following
commutation relations hold:

[T(n),T(m)]=(n-m)

For any p e Z let bp be the subalgebra of J?, spanned by T(m\ m> —p, and np be
the subalgebra of J^, spanned by T(m), mf^—p. Denote b = b1,n = nί.

Let S* and Λ * be the modules of semi-infinite adjoint symmetric and exterior
powers of the Virasoro algebra with respect to the decomposition Jέ? = bp®np.

These modules appear to be the particular cases of the families of the Fock
representations of bosonic and fermionic ghost systems [27] (corresponding to
dimensions 2 and —1).

2.5. Bosonic and Fermionic Ghost Systems

Let λ9 μeC and β(n% y(ή) be the generators of the Heisenberg algebra with the
commutation relations:

ίy(n),β(m)-]=δn,_m. (2)
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We can introduce fields β(z\ γ(z) with the operator product

\μ+2λ

, (3)

and mode expansion

V + 2 Λ

) (4)

β(z)= Σ β(n)z-"-"-2λ, (5)
neZ

E
neZ

(6)

For p G Z let M(p) be the irreducible representation of this Heisenberg algebra with
the vacuum vector |p>, satisfying the following conditions:

y(n)\p} = 0, n ^ p , β(n)\p> = 0, n>-p. (7)

Our definitions are slightly different from the standard ones [27], because we allow
λ, μ to be arbitrary complex numbers.

Put

J(z)= -:β(z)y(z):= £ / ( Φ " " " 1 (8)
«eZ

Here and further we use the "universal" normal ordering, defined with respect to
the vector |0>.

[Rn)9 β(nίf] = - β ( n + m),

(9)

We have a grading on M ~ (p) with respect to the action of the operator J(0): M ~ (p)
= ®M-{p)b so that |p>GM"(p)p.

ieZ

Now let us define the action of the Virasoro algebra on M~(p)t. Introduce the
field T(z)= Σ T(n)z-"-2 and put

neΈ

T(z)=-λ:β(z)dzy(z):H^-λ):dzβ(z)y(z):-Uμ+^)(μ + 2λ)z-2. (10)

The operators T(ή) generate the Virasoro algebra with central charge 2(6/l2

— 6/1 +1), and the following relations hold:

(11)

(12)

Thus, the operators T(ή) = z~n+1d/dz act on y(m) as on ^-differentials z~m+μdzλ

and on jS(m) as on (1 - ^-differentials z~m~1~μdz1~λ. So M"(p) is just the Weil
representation Mχμ(p) of the Virasoro algebra, which was defined in the
Introduction.

In particular, if = JΣΓ_1 and £?' = tF2 due to the pairing, defined in the
Introduction. Therefore M2,-2(p)ι is nothing but Sι

p.
The fermionic counterpart of this construction is basically the same. We have

the generators b(n), c(n\ n e Z of the Clifford algebra with the anti-commutation
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relations:

We define the fields b(z\ c(z) with the operator product

b(z)c(w)

c(z)b(w)

(W

z — \

z — w\w

μ + 2λ

μ + 2λ

(13)

(14)

(15)

and mode expansion as in (5), (6).
To construct the fermionic Fock representation M+(p) we just have to replace

the bosonic generators in the formulas (7), (8), (9) by the fermionic generators. We
have a grading on M+(p) by eigenvalues of the operator J(0): M+(p) = 0 M+(p)b

such that |p> e M+(p) _ p. The formula ιe z

2 (16)

defines the fermionic representations M^μ(p) of the Virasoro algebra (semi-infinite
forms modules), with central charge — 2(6/l2 — 6A + 1). If we replace β(n\ y(ή) by
b(n\ c(n\ then the formulas (11), (12) remain true. This shows that Mχμ(p) is the
spinor representation of the Virasoro algebra, associated with the linear space Vλtlι,
equipped with the symmetric scalar product (see Introduction). It is clear that the
module M^ _ 2{p)ι coincides with Λ ι

p.

2.6. Statement of the Main Results

The main result of our paper is the computation of the semi-infinite cohomologies
of the Virasoro algebra with coefficients in its adjoint semi-infinite symmetric
power modules. The cohomology will be computed with respect to the
decomposition S£ = b®n.

First we compute the relative cohomologies with respect to "Cartan subal-
gebra" of the Virasoro algebra. This subalgebra h is spanned by T(0). Let us denote

m+1 m+1 m+1 m-1

- 2 -1
m

0
m

1
- 1 m-1

2
m-2

m-1
1

m
0

Diagram 1. Values of kj;1 for p= —2m, m ^
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m+1 m+1 m+1 1 m m-1

2m+1 2m+1 2m+1 0 2m-1 2m-3

-2 -1
-1 m-1

2
m-2

m-1
1

m
0

Diagram 2. Values of d%1 for p= — 2m, m ^

Theorem 1.1) // p = 2m, m^O, then

2) If p = 2m-l,m^09ρ ρ

3) if p>0, then hρ

J = hϊί'~ι (Poincare duality).

This theorem will be proved in Sect. 4.
Note, that "Poincare duality" follows from the existence of the anti-involution v

on the Virasoro algebra: v(T(n)) = T(-ή), v(C) = C. Obviously, v(np) = b1-p9 v(bp)
= n 1_ p, that it why the modules Sι

p and /\JP are contragradient to the modules
S^Lp and Λϊ-P» correspondingly.

From this theorem one can deduce the result on the absolute cohomologies
H^l2+\Se, Sι

p). Let us denote the dimension of this space by dρ

J.
We can use the so-called Serre-Hochshild spectral sequence [28], associated

with the Virasoro algebra and its subalgebra h. Its second term is equal to

Eγ = H\h, C)(χ) #°°/2+->(JS?, Λ, Sι

p).

We know, that H°(h, C) = C, H\h9 C) = C, and all other cohomologies vanish.
From the Theorem 1 we see that this spectral sequence collapses in the second
term. So

This gives the following result.

Theorem 2. 1) // p = — 2m, m^O, then

2) // p= - 2 m - 1 , m^O,
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Now let us consider the semi-infinite Weil complex of the Virasoro algebra,
associated with the decomposition i£ = b®n.

If we put p = 1, Theorem 2 will give us the description of the second term of the
spectral sequence, associated to the filtration Ff (see Sect. 2.3) of this Weil
complex. Actually, from the explicit construction of the cohomology classes, which
is implied in the proof of the Theorem 1 (see Sect. 4), we have a stronger result.

Theorem 3. In the spectral sequence, associated with the filtration F2 of the semi-
infinite Weil complex of the Virasoro algebra the second term is given by

, if 7 = 0,1 and J^O

[O, otherwise.

The map Ejil(Jg)-+Eji\h), induced by the embedding h-+£P is an isomorphism.

Our plans are the following: in the next section we study in detail the structure
of M}tμ(p) as the modules over the Virasoro algebra by means of Friedan-
Martinec-Shenker bosonization. We then use this information in order to deduce
some combinatorial identities and prove our theorems.

3. Bosonization and the Structure of Representations

In this section we apply the Friedan-Martinec-Shenker bosonization to the Fock
representations Mχtμ{p)t of the bosonic ghosts to determine their structure as
modules over the Virasoro algebra. But first let us recall how bosonization works
in the fermionic case.

3.i. Bosonization of Fermions

Let A be a Heisenberg algebra with generators j{ή), n e Z and commutation
relations

We introduce fields j(z)= £ j{n)z~n~γ and φ(z) = q+j(0)logz- £ j(n)z~n,
neZ wΦO

where the operator q is the conjugate to j(0):[q9j(0)] = δHtO. It is clear, that j(z)
= dzφ(z). The field φ(z) is called the free bosonic scalar field. We have the operator
product

φ(z)φ(w)~\og(z-w). (17)
Let α e C and Jίfa be the irreducible representation of A with the vacuum vector va,
satisfying the following conditions:

We see that r

For any ηeC, η + 0 introduce the so-called vertex operator
V(η,z)= X exp(^)z^F(^,φ-",

neZ

acting from f̂α to 34fa+η:

V(η, z) = :Qxip(ηφ(z)): = exp(ηq)zaη

xexpΛ/ £ j(-ή)znln)exp(η Σ j(-n)znln).
\ n>0 I J \ n<0 I )

We have the well-known operator product



630 B. Feigin and E. Frenkel

which means that

[;(n), V(η9m)] = ηV(η9n + m)9 :j(z)V{η9z):=±dgV(η9z).

Also
V(η,z)V(v,w) = (z-wΓ' V(η,z)V(v,w):. (18)

Let us define the action of the generators b(ή), c(n) of the Clifford algebra on the
module 0 J^a+ί by the formulas

b(z)= Σ b(ri)z-n-«+' = V(-l,z), (19)
neZ

Φ)= ΣΦK"+*=F(l,z), (20)
nεZ

where ot = μ + 2λ.
From (18) it follows that b(z), c(z) have the operator product, given by (14), (15),

and therefore b(ή), c(ri) obey the standard anti-commutation relations (13). The
vector va-p satisfies the conditions (6), imposed on the vector \p}. So here is the
unique homomorphism ε+ : Mχ Jp)-+ 0 ^ ζ + / over the Clifford algebra, such that
8 + (\p}) = Va.p.

On thepther hand, we can define the action of the algebra A on Mχtμ{p) by the
operators ^(nj + αz" 1 , which obey the same commutation relations asj(n). This
gives us a homomorphisms J^α_p + /->M^μ(p)z over the Heisenberg algebra A,
which is in fact an isomorphism, because ϋ ^ _ p + ί is irreducible over A. So we have
established an isomorphism between Mχ (p) and 0 Jfa+ι over both Heisenberg

ϊeZ

and Clifford algebras. In particular, we see that Mχ μ{p)t is isomorphic to

t ( 0 ) t
t μ ι p ( ) o t μ p ,

Let us rewrite the action (16) of the Virasoro algebra on Mχtβ, given in terms of
fermions, as an action of this algebra on J4?a in terms of bosons. We have:

Γ(z)=i:;(z)2: + α0aj(z), (21)

where ao = λ —1/2. Denote this representation of the Virasoro algebra by ^ 0 > α .
This is a representation with highest weight /i = α(α — 2αo)/2 and central charge
c = l-12α§.

In [19, 44] (see [15] for a brief account of the results) intertwining operators
between modules J^ 0 > α were constructed, using vertex operators (so-called,
screening operators). This gave the possibility to determine completely the
structure of these representations (see [19]). We want to note also that these results
gave a method for computation of the correlation functions in the two-
dimensional minimal models (the integral representation) [13], the method which
has also proved to be very useful in other models of conformal field theory.

3.2. Bosonization of Bosons

Denote N(p)= 0 M ^ ί ® J ^ ( _ α + ; 7 + o , where oc = μ + 2λ(i = ]/— 1) (see Fig. 1).
ZeZ

Let us define an action of the generatory β(ή), y(ή) of the Heisenberg algebra on
N(p% putting

β(z)= Σ β{n)z-n-« = dzb{z)V{-Uz), (22)
neZ

γ(z) = Σ y(n)z-"+*- * = c(z)V(i, z). (23)
πεZ
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N(p + 1-I) N(p-I) N(p-1-I)

2-I)

Fig. 1. The bosonization of bosons. The dot (/,p) denotes the module

It is easy to check that these operators satisfy the operator products (3), (4), and
therefore the operators β(z\ y(z) satisfy the standard commutation relations (2).

The vector |0>®t; l ( _ a + p ) satisfies the conditions (6), imposed on the vacuum
vector \p} of Mχμ(p). This allows to define the homomorphism ε~ : MχJ(p)-+N(p)
over the Heisenberg algebra, generated by β(ή), γ(n), putting ( | »
= |0>(g>ι;i(_α+p).

Because of the irreducibility of Mλ μ(p) this homomorphism is an embedding.
We would like to characterize the image of this embedding.

Proposition 3. The image of the homomorphism ε~ coincides with the kernel of the
operator c(0), acting from N(p) to N(p—1).

Proof The operators β(n\ y{n\ given by formulas (22), (23) do not depend on b(0)
and therefore commute with c(0). So s~(Mχμ(p)) is contained in the kernel of the
operator c(0). To prove that it coincides with the kernel, one should define an
action of the operators j(n% b(ή), neZ and c(m), mφO on M^μ(p), which
corresponds to the action of this operator on N(p) under the homomorphism ε~. It
can be easily done [26],

b(z) = dzβ(z)V(i, z), dzc{z) = dzy{z)V{ - i, z),

and the action of j(z) = dzφ(z) is given by the operators i(j{z) — αz" 1 ). •

Now let us rewrite the action (10) of the Virasoro algebra on the module
M^μ{p) in terms of the operator j(n), fe(z), c(n). We have

T(z) = : dzb(z)c(z): <5 J(z), (24)

where α o = — A+1/2. Thus T(z) is a sum of two Virasoro algebras with central
charges c = — 2 and c = 1 + 12αo

In order to make total bosonization we can bosonize the fee-ghosts by another
free scalar field ψ(z) according to (19), (20). Denote f(z) = dzψ(z). Then we have

β(z) = -: dzφ) e x P (- Φ) ~ iφ(z)) ,
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This gives the isomorphism Mo,I = Jf_i i P and, according to (21),

T(z)=i:f(z)2 :-$dJ'(z)+i:j(z)2: + modj(z)

is the corresponding action of the Virasoro algebra on
= <%?-Lj®<^i<x0,i(-<x + p + l)> ' G ^ *

Denote by J&Ί the kernel of the operator Q = J :exp(t/;(z)): dz, acting from 3tf_ ι_ t

to 3ί?_ι_ ι + v Note, that Q is just the intertwining operator, constructed in [19,44],

in this particular case. From Proposition 4 it follows that

So in order to describe the structure oίM^J^p^ as a module over the Virasoro
algebra we have to determine the structure of the module J^.

Denote by Lm the irreducible representation of the Virasoro algebra with
highest weight hm = m(m +1)/2 and central charge c= — 2.

Proposition 4. ^ ^ 0
fc^O

Proof. Consider the complex C* of modules over the Virasoro algebra, C1 = MQJ
= Jf_i p with the differential Q. Obviously, β 2 = 0, because Q = c(0). Moreover,

this complex is acyclic, because the kernel Kerβ of the operator Q is the subspace
of 0 MQ b generated by b(n), c(ή), n < 0, and the image coincides with b(0) Ker Q,

leZ

so that Q is the isomorphism between its image and kernel.

The composition structure of the modules Jf_ j_ t over the Virasoro algebra is

shown on the Fig. 2 [19]. The dots denote the irreducibles quotients Lm of JfLi t

and the arrows show the interrelations between them. In particular, we see that
\Π L-'\l\ + 2k~^'Jt-— ϊ~* \D M/| + 2 f c + l ^ υ

k^O 2' k^O

Note also that Jf_j_ _1_ / is contragradient to ^ _ i_ γ We have to prove that

0 Lm + 2fc coincides with the kernel of the operator Q.

• L-m-1 Lm

• L-m Lm+1

? L-m+1 ? L m + 2

? L-m+2 ? Lm+3

• L_m+3 Lm + 4

a b

Fig. 2. The structure of the modules #L 1 / 2 , W . (a) m<0, (b) m^O
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%, %

4"m+1 f ί t ί .

î >? 4 f I I 1 ^
t i t I ! l !ί

® ®®
Fig. 3. The action of Q on 0M o

+

( { . Encircled are the factors, which belong to Kerβ/ e Z

Suppose that for some k, L^ + 2k does not belong to the kernel. Then it should
map onto a submodule L^ + 2k of 3tf_±_ ι + v but there are no such submodules in
there, see Fig. 3. 2

Otherwise, suppose, that for some fc, Lιι] + 2k+ί is a factor of the kernel. Our
complex C* is acyclic, therefore there should be a quotient L^ + 2k+i of J f _ i t_v

mapping onto. But there is no such quotients in there. • 2

As a corollary we get a complete description of the structure of the modules

ΛfΓ.μ(P)l

Theorem 4.

where αo=—Λ. + 1/2, α =

In particular, if we put λ = 2,μ=—2, then, as we know (see Sect. 2.5) M2" _ 2(p)j
= Sι

p is the module of semi-infinite symmetric powers of the Virasoro algebra. In
this case we have the following.

Corollary 1.
SP

In the next subsection we will deduce from this result an amusing com-
binatorial identity, which can be viewed as a bosonic counterpart of the Jacobi
triple-product identity. Then, in Sect. 4, we will prove Theorem 1.

In the conclusion of this subsection, we would like to mention a simple
consequence of our results: the extension

does not split over the /fy-Heisenberg algebra. We also want to note that M~(p)
coincides with the 0th cohomology space of the complex

which makes it possible to consider Q as BRST-like operator.
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33. Combinatorial Identities

In this subsection we will prove a character identity, using Theorem 3. But first let
us deduce a fermionic counterpart of this identity.

Let us take the module M + = M Q 0(0) and compute its character

The module M + is generated by b(ή), n^O and c{n), «<0. Therefore from the
formulas (8), (12) it is clear that

ch+(u,q)= Π

On the other hand, M + ̂  0 jf_ i_,. The module j f _ i . is generated by j(n\ n< 0,
/eZ 2' 2'

and it is easy to see that [T(0), j(n)]= —nj(ή), nΦO. So its character is equal to
ql{l+1)/2φ(q), where φ{q) stands for the Euler partition function φ(q)
= Π ( 1 - 4 T 1 - Therefore ch+(u,q) = φ(q) Σ w~Y(/+1)/2, and we get the famous

«>0 ZeZ

Jacobi triple product identity
Π ( l + u 4 n ) ( l + u - γ + 1 ) = #?) Σ M~V ( Z + 1 ) / 2 .

Λ^O /eZ

Now let us take the bosonic module M~ =MQO(O) and compute its character
ch"(u,^) = trM-M" / ( 0 )^Γ ( 0 ). This module is generated by β(n), n^O and y(n), n<0.
Again, using (8), (12), we have

ch-(!i,ί)= ΓΊ (l-uqT^-u-'q^1)-1.

On the other hand, Theorem 4 says that

^ 2'

The character of Lm, m^O is equal to (qm(m+ί)ί2-qim+ί)im+2)/2)φ(ql due to the
exact sequence

Therefore ch~(w,g) is equal to

Φ(q)2 Σ u'
leZ

fι(q)= Σ (-ίY~ιqhltJ, where Λz , is the highest weight of the module
j*\ι\

lj®_i_ _ ί p ; ̂  |/|. It is clear that ̂ ^. = (7-/+l)(/ + ' + 2 )A It is instructive to

look at Fig. 4, where hhj are marked on the plane (x = power of u, y = power of q). It
is clear from this picture that any of them lie on a line of the form y = |/| (|/| +1)/2

0. Therefore

Σft(q) Σ
leZ leX

where, certainly,

f u m q l m , if /^
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Fig. 4. Powers of u and q in the right-hand side of the identity

Finally, we obtain the identity in the most beautiful form, which is due to [34],

Π (i-tt«τ1(i-«~V+1Γ1=fl«)2 Σ (-llV""1"2!!-"?')"1.
«^0 /eZ

This identity was also proved in [6, 7, 34], ..., and it goes back to 1898 [42].
Note that multiplying both sides by φ(q) we obtain an expression of the Kostant
partition function of the affine Kac-Moody algebra ^4(

1

1) in terms of the Euler
partition function [34].

4. Proof of the Main Theorem

In this section we prove Theorem 1, which was formulated in Sect. 2, using the
results of Sect. 3.

Let us recall some notations. Suppose, χ is an element of ft = /z©CC-dual space
to the Cartan subalgebra fi of the Virasoro algebra. So χ is a pair (h = χ(T(0)\
c = χ(Q). Denote by Cχ the one-dimensional representation of fi, corresponding to
χ. It can be trivially extended to the Borel subalgebra S=bφCC.

Introduce the Verma module Mχ = Mhc with highest weight χ over the
Virasoro algebra J?, Mγ—U{^) (x) Cy. Denote by M* the contragradient module

Uφ)

to Mχ. For χ = (h, c) let χ' = (1 — h, 26 — c). For any if-module N with central charge
26 put hj(N) = dimH°°/2+J'(Jέf, h, N) (with respect to the decomposition <£ = bφn).
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Proposition 5 [14].

h\Mχ®M*)=\\ * V = *'J-°χ [0 otherwise.

Proof follows from the semi-infinite analogue of the Shapiro lemma (see also
[25]). D

Suppose Mχ is a Verma module of the type II or III0 in the classification of
[19]. It means that there is only one "chain" of singular vectors in Mχ, or, by other
words, there is a weight χ1 en, such that

is exact, where Lχ denotes the irreducible module with highest weight χ.
Introduce the weights χm inductively by putting χm+1 = (χm)v There is a duality

in the representations of the Virasoro algebra [14], which gives χ'm = (χ')-.m.

Proposition 6.

h°{Lx®Lχ.) = ί, h°(Lχ®Lχ,) = U

h\Lχ®Lχ>ι) = \, h~\Lχ®Lχ,) = 1,

in all other cases hj(Lχ®Lv) = 0.

Proof. We can replace the module Lχ by the complex Mχi^Mχ and the module Lv

by the complex Mf^M*^ It is easy to compute the cohomology of the tensor
product of these complexes, using Proposition 5. This gives the result, if we observe
that χ\ = v1 implies v = χ'2. •

We will compute hj^ι = hj(Sι

p) (see Sect. 2.6), using this result. We confine
ourselves with the case p^O. The case p>0 can be pursued in the same way.

From the Corollary to the Theorem 4 we know that

Sp= 0 £|ϊ| + 2fc®^-ii,i(- 2 +p+ I)'0 |ϊ| + 2fc®-ii,i

The composition structure of the modules J^p = ̂ _ l f i{-i+P) *s shown on Fig. 5.

t
i*

L'P

L'P+1

L'P +2

L'p+3

4 t
L'o

a

Fig. 5. The structure of the modules Jf. (a) p^O, (b) p>0

L'"t
L'o

ί

t

b

L-P+1

L'-p+2

L'-p+3

• L'

I
• L',
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In particular, the highest weights of the composition quotients of Jfp are of the
form -(m-2)(m + l)/2 = /i^_1, where hm = m(m +1)/2.

Denote L_k = LhU, fc^O. If m^O, then we have the following exact sequences:

0-> 0 LVi-^2m-+ ® A ^O, (25)

0^©< oLV^m-i^m®< o£2, -i^0. (26)

Note, that fflv is contragradient to ffl±-v.

Proposition 7. 1) Let m^.0, n^O be of equal parity. Then

0, m>—n

π, m= —n

2) Let m^O, n^O fee of different parity. Then

0, m>—n — \

Λ , m=-n-l

In other words, n n

3) Let m, n^O. // m<n, then hj(Lm®Jίfn) = 0.

Proof is based on the straightforward computation of the long exact sequences,
associated to the short exact sequences (25), (26), or their dual. •

Proof of Theorem 1. Let p=-2m, m^O. By the Theorem 1, h^x

i). By the Proposition 7, it is equal to (m + l)δjt0 + mδjf _ l 5 if

^ - Q ^ - i , if 0</^m, and 0, if />0.
In all other cases the proof is the same. •
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