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Abstract We consider the quantum mechanical Ising ferromagnet in a strong
transverse magnetic field in any number of dimensions, d. We prove that in the
ground state the power law correction to the exponential decay of the two point
function is d/2. The proof begins by writing the ground state as a classical system
in one more dimension. (Thus the classical Ornstein-Zernike power of (d—1)/2
becomes d/2). We then develop a convergent polymer expansion and use the
techniques of Bricmont and Frόhlich [5].

When a lattice spin system is away from any critical points, the truncated
correlation functions usually decay exponentially. This exponential decay is
typically accompanied by a power law correction, i.e., the decay goes as
exp( — |x|/£)/|x|p. An interesting question is to determine this power p. For classical
systems the "generic" power is (d —1)/2. This is known as Ornstein-Zernike decay
and has been proved in a variety of models by a variety of methods. (The literature
in the classical case is vast. Some of the early references may be found in [5].) Now
consider the ground state of a quantum mechanical spin system that is not critical.
(For example, take the quantum mechanical Ising model in a strong transverse
magnetic field.) This ground state is like a classical system in one more dimension,
so the Ornstein-Zernike decay would be a power of d/2.

We prove that the power is indeed d/2 for one of the two point functions in the
quantum mechanical Ising model in a strong magnetic field. The Hamiltonian of
this model is

with ε small. When ε is sufficiently small this model has been proven to have a
unique ground state [18]. We only consider the two point function <σfσ*>.

Our proof begins by using the Trotter product formula to write the ground
state of the quantum system as a classical system in one more dimension. An early
use of this now standard technique is Ginibre's proof of the existence of long range
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order in the highly anisotropic Heisenberg antiferromagnet at sufficiently low
temperatures [10]. It was also used by Thomas and Yin [24, 25] to study the low
temperature states of various models. Suzuki [23] used this formula to show that
the model we study can be expressed as the limit of a sequence of classical Ising
models in one more dimension.

The next step in the proof is to develop a convergent expansion for the classical
system in one more dimension. This expansion is complicated by the continuous
nature of the extra dimension. We approximate this continuous time system by a
discrete time one and develop an expansion with the convergence uniform in this
approximation. (For a different approach to controlling this approximation in the
quantum Ising model in a random transverse field see Campanino et al. [7].) Our
expansion is driven by the smallness of the parameter ε. Thus one can think of such
an expansion as a rigorous version of perturbation theory. Completely different
approachs to making the ground state perturbation theory rigorous have been
developed by Kirkwood and Thomas [13] and by Albanese [1]. Neither of these
approaches uses the Feynman-Kac formula. Kirkwood and Thomas write the
Schrόdinger equation in a clever form and use it to develop the expansion.
Albanese shows that one can construct a "dressing transformation" which takes
the ε = 0 ground state into the ground state for nonzero ε. Having developed a
convergent expansion for the two point function we then use the techniques of
Bricmont and Frόhlich [5] to prove the Ornstein-Zernike power law correction to
the exponential decay. Their techniques are similar to techniques used by
Gallavotti [9] to study the phase separation line in the two dimensional classical
Ising model. The Bricmont Frόhlich method must be modified somewhat for our
quantum mechanical model. The modification is similar to the method used by
Dobrushin, Kotecky and Shlosman to study the surface tension in the classical
Ising model at low temperature [8],

In classical systems the power law correction to the exponential decay is not
always (d —1)/2. In Sect. 3 we consider some quantum spin systems in which the
power is not d/2. An important question on which we can shed no light is whether
any of these counterexamples are generic in the sense that if one adds a small finite
range perturbation to the Hamiltonian then the decay is still not of the Ornstein-
Zernike form.

At first glance it appears that it should be straightforward to prove Ornstein-
Zernike decay in a large class of quantum systems by the following method. For
many models that are small perturbations of systems with a trivial ground state,
e.g. the model studied in this paper, one can show that the model is equivalent to a
classical model in one more dimension by introducing a "blocking" in the time
direction that results from the Trotter product formula. Roughly speaking, one
introduces a time scale τ and divides the time axis [0, /?] into segments of length τ.
Such a blocking technique was used by Thomas and Yin in their study of the
quantum mechanical Ising model in a strong transverse magnetic field and the
highly anisotropic Heisenberg model at low temperatures [24, 25].

One can then hope to prove Ornstein-Zernike decay in this classical system by
one of the many methods developed for the classical case. The problem is that the
Hamiltonian of the resulting classical system does not have finite range. It has been
asserted that several methods for proving Ornstein-Zernike decay for models with
a finite range Hamiltonian can be extended to infinite range Hamiltonians, but this
is not correct without some fairly restrictive conditions on the Hamiltonian. A
counterexample may be constructed as follows. Kirkwood and Thomas [13]
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showed that when the magnetic field is large enough, the ground state of the model
we are considering has a representation as a classical model in the same number of
dimensions. The Hamiltonian of this classical model is of the form

where V is summed over all finite sets of sites, σ(V)= Π σi a n d c(V) is a real
ieV

coefficient. The Hamiltonian contains terms with arbitrarily large V, but c(V) has
exponential decay of the form \c(V)\ ^exp(—m\\ V\\\ where || V\\ is the cardinality of
the smallest connected set of sites containing V. If such decay were indeed sufficient
to imply Ornstein-Zernike decay, then the power for this model would be (d —1)/2,
but we will prove it is d/2.

Finally we should comment on whether our results can be extended to the
ground states of other quantum spin systems. A natural model to consider next is
the anisotropic antiferromagnet

where ε is small. This model has two infinite volume ground states. One can
develop a convergent expansion for this model similar to the expansion in this
paper, but the geometric analysis of the resulting expansion is more complicated.
We have not been able to use it to prove that the power law correction to the
exponential decay is d/2. We consider it an open and interesting question to study
the power law correction in the ground state of other quantum spin systems.

2. The Main Result

In this section we will consider the Hamiltonian

(2.1)

The sum over <(/> is over all nearest neighbor pairs. If we multiply this

Hamiltonian by - we obtain the Hamiltonian of the quantum mechanical Ising
o

model in a transverse magnetic field of magnitude -. I Of course this overall factor
8 \

of- is irrelevant since we are only interested in the ground state. I We will take the
ε /

parameter ε to be small, so the transverse field is large. For sufficiently small ε this
model has a unique infinite volume ground state [18]. We only consider the
asymptotic behavior of the ground state expectation of σf σ* when the difference
ί—j is along a lattice direction.
Theorem. Let e be a unit vector in one of the lattice directions. If ε is sufficiently
small then

as n-^co. Here <> denotes the unique infinite volume ground state. The two
quantities are asymptotic in the sense that there exist constants cx>0 and c2<oo
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such that

c 1 έΓ m | " l / |n | ' l / 2 ^

For d= 1 this result was already known. The one dimensional model is closely
related to the two-dimensional classical Ising model and has been solved exactly.
Pfeuty [21] used results of Lieb etal. [16] and McCoy [19] to compute the
expectation of σfσx in the ground state for the one dimensional model. It has
exponential decay with a power law correction of \i—j\~1/2 when ε is small.

The remainder of this section is devoted to the proof of this theorem. We begin
by reviewing a well known geometric representation of expectations in this system
[23]. Initially we work in a finite hypercube A with periodic boundary conditions.
We will develop a convergent expansion for our geometric representation, and the
existence of the infinite volume limit will follow. A simple variant of the Trotter
product formula implies

(2.2)

where

jeΛ J ' <ij>eΛ* * J

(A* denotes the set of nearest neighbor bonds in A.)
Inserting a sum over a complete basis between the factors in (2.2) we obtain

= lim
#-•00

fl" ( £ ) ~*B'( - l ^ J \ψNβ). (2.3)

Each ψt is summed over the states in the orthonormal basis in which the σ* are
--H*ί ε \

diagonal. The matrix element (ψt+1\e N ίl — —Hx)\ψt} factors into the

_ _ wz p

product of (ψt+1\e N \ψt+1} and < φ ί + 1 | l — — Hx\ψt}. The second factor

vanishes except in two cases. If ψt+1 is equal to ψt, then this matrix element is just 1.
If there is a bond <ί/> such that ψt+1 = σftfψt then the matrix element is ε/N. The

2M

first factor simply equals e N , where M is the number of- spins in the state ψt+v

A choice of ψl9 ...,ψNβ is equivalent to a classical Ising configuration on the
d + \ dimensional lattice A x {1,2, ...,Nβ}. We represent each configuration that
occurs in the sum (2.3) by a set of bonds in this lattice. (The bonds will be bonds
which join two lattice sites, not bonds in the dual lattice.) If site i is — in the state
ψt+ί then we include the bond <(ι,ί)> (i, ί +1)>. We refer to such bonds as time
bonds since they are parallel to the "time" direction. If ψt+1 = σfσxψt for the bond
<(/> then we include the bond <(i, t\ (/, ί)>. These bonds will be called space bonds.
There can be at most one space bond at any given time. A space bond implies that
the spins at ί and j flip at time t. Thus the spin at site i will be - either before or after
time t. The same remark applies to site j . Thus a space bond must have one time
bond attached to each of its endpoints. Each of these time bonds can point
forwards or backwards in the time direction.
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If the time bond <(i, t)9 (i, t +1)> is present, then the time bond <(i, t +1), (*, t + 2)>
must also be present unless there is a spin flip at time t +1. In other words a string
of time bonds can only end by hitting a space bond. Each endpoint of a time bond
can hit at most one space bond since there can be at most one space bond at any
one time. These two restrictions imply that the collection of bonds corresponding
to a term ψi9...,ψNβ for which the matrix elements are all nonzero must form a set
of disjoint loops. In the time direction these loops typically consist of a segment of
O(N) consecutive time bonds, which we refer to as a time segment. Furthermore,
given any set of disjoint loops for which there is at most one space bond in each
time slice, there is a choice of ψu .-.,ψNβ which is described by this set of loops. In
other words there is a one to one correspondence between the terms in the sum in
(2.3) and these sets of disjoint loops.

We associate the matrix elements with the loops in the following way. Each
time bond implies a factor of exp( — 2/N), while each space bond implies a factor of
ε/N. We define the weight W(ΐ) of a loop / to be

S(ί)

(2.4)

where T(l) and S(l) denote the number of time and space bonds respectively in the
loop. Then we have shown

ΛΓ->oo ϊ i ln:d,* Til

The sum is over all choices of disjoint loops. It implicitly includes a sum over n, the
number of loops. The * on the sum stands for the global constraint that there can
be at most one space bond at any given time, while the d denotes the constraint that
the loops must be disjoint. The factor of ί/nϊ arises because any collection of
disjoint loops may be labelled in n\ different ways.

The global constraint * makes it difficult to carry out an expansion for our
system, but as we will show, it becomes irrelevant in the N-+co limit. We should
think of the lattice spacing in the time direction as being 1/JV. Then one can see that
in the AΓ^ oo liniit the probability that the constraint * is violated goes to 0 as 1/JV.
More precisely, we will prove that the above equation for Tr e ~βH is also valid if we
omit the constraint *. Consider the bounds

The first inequality follows from the fact that all the weights are positive and so the
sum (2.5) increases when we drop the constraint * on the terms allowed. To see why
the second inequality is true, consider writing out the last trace in the form of (2.3)

and replacing exp ( — — Hx J by its power series. All the terms will be nonnegative

and every term in the sum (2.5) will appear. Thus the result is an upper bound on
(2.5). Finally we complete the proof by noting that as N-χχ> the upper and lower
bounds on (2.5) given in (2.6) both converge to Ύre~βH. Our proof that the
constraint * is irrelevant took advantage of the nonnegativity of the weights W(l).
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We should emphasize that a similar proof works for models in which the weights
are not nonnegative. One simply bounds the difference between the sum with and
without the constraint * in terms of a model in which the off diagonal matrix
elements of the Hamiltonian are replaced by their absolute value and then uses
the above argument.

We now have a representation of the partition function as a gas of loops with a
hard core condition, i.e., the loops cannot touch. If ε is small the activities of these
loops are small and we can hope to develop a convergent expansion for the
logarithm of the partition function with the convergence uniform in N. The
polymer expansion we must carry out is somewhat unusual in that the time
direction is continuous. The condition for convergence of the polymer expansion
given by Kotecky and Preiss [14] is ideally suited for this purpose. They proved
that there is a convergent polymer expansion if one can find a constant ρ < 1 and a
positive function a(ΐ) of the polymers / (which are loops in our case) such that for
each polymer /',

X W(l)eail)SQa(l'). (2.7)

(The convergence of the polymer expansion when a similar condition holds can be
proven by other methods, e.g., the methods in [6].) For a loop / we define

\l\ = S(t)+T(t)/N. (2.8)

[Recall that S(ΐ) and T(l) are the number of space and time bonds respectively in the
loop.] Then we take a(l) = \l\. The definitions of W(l) and a(I) imply

Γ £ Ύil)

=[-^ exp[-T(/)/iV],

where ε = eε.
We define the corners of a loop to be the sites (i, t) such that both a time and a

space bond hit (i, t). Equivalently, the corners are the endpoints of the space bonds
since two space bonds cannot share an endpoint.The set of corners of a loop / will
be denoted by C(ϊ). Note that C(/) has 2S(l) elements. The periodic boundary
conditions in the time direction allow loops without any corners. For any site i the
set of bonds <(/, t\ (ί,t +1)>, t = 1,..., Nβ, is a valid loop. Its weight is e~2β, so it will
not contribute to the ground state.

If / and ΐ overlap, then at least one of the following is true: /' contains a corner of
/, / contains a corner of /', or both of / and /' have no corners. If the loop /' has
corners then this observation implies

X W(l)ea(l)^ X X W(l)ea(l)

Z:ZnΓΦ0 (k,t)elf l:(k,t)eC(l)

+ Σ Σ W(t)eaW. (2.9)
(fc,ί)eC(Γ) l:(k,t)el

The number of corners in the loop /' is equal to 2S(/'), while the number of sites
(k,t)elf may be crudely bounded by 2T(lf). Since 2S(0 + 2T(/')/iV = 2|/'|, it follows
that (2.9) may be bounded by

2|/'|maxfsupAΓ X W(l)ea(l\ sup X W{ΐ)ea(l)\. (2.10)
\(k,t) l:(k,t)eC(l) (k,t) l:(k,t)el j

To bound the first of the two terms in this maximum we consider

[ £ Ύ(l)

- exp[-T(/)/iV]. (2.11)

iVJ
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If we let n = S(Γ), then the number of corners in / is 2n. In addition to the n space
bonds the loop will contain n time segments. (Recall that a time segment is a
sequence of consecutive time bonds.) We can generate an arbitrary loop which has
(fc, t) as a corner as follows. Starting at the corner (fc, ί) we choose a time direction,
i.e., forwards or backwards. This yields a factor of 2. Next we choose a length t for
the time segment. This can be anything from 1 to Nβ. The term exp[— T(ΐ)/N~\
contains a factor of exp( — t/N) for each time segment, so the sum over this choice is
bounded by

Nβ oo oo

Σ exp(-t/JV)g Σ exp(-ί/iV)gJV f e-'dt=N. (2.12)
ί = l ί = l 0

The time segment we have just chosen ends at some bonds (k, s). Next we choose a
space bond with one endpoint at (k, s). This produces a factor of 2d. We repeat the
above process a total of n times. It is crucial to note, however, that in the last
repetition, the choice of the length of the time segment is fixed by the constraint
that / must be a loop. Consequently there will be only n — ί factors of N from (2.12).
There are n factors of 1/JV inside the sum in (2.11) and a factor of N in front of the
sum. Thus the factors of N and ί/N cancel exactly and the resulting bound is

Γ
Σ

l:(k,t)eC(l)\_

F Ύ(l)

exp[-

To bound the second of the two terms in (2.10) we must consider

Σ \^]Sil) expl-T(t)/Nl. (2.14)

The analysis is similar to the above with one important exception. We now
generate the loop by starting from a site which is in the interior of one of the time
segments rather than a corner. Thus there will be n +1 choices of lengths for the
time segments. As before the last choice is fixed by the constraint that we have a
loop. Thus we obtain n factors of AT from (2.12) which exactly cancel the n factors of
ί/N in (2.14). The resulting bound is again the right side of (2.13). We have shown
that (2.10) is bounded by

1 Ί-4rfε*

If the loop /' has no corners, the second term in the right side of (2.9) is not
present but we must include a new term to include the possibility that / is also a
loop without corners. There is only one such / which intersects /', namely Γ itself. For
this loop, W{l)ea{l) = e~β. Thus in this case

l .lnl'ΦΦ

We have assumed that β ^ 1/2 so that the length |/'| of the cornerless loop /' is at
least 1/2.

Since \ϊ\ = a{ΐ\ we have shown that (2.7) holds if

l-4ds+e~β<l/2
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This inequality is true if ε is sufficiently small and β is sufficiently large.
Condition (2.7) implies there is a convergent expansion for the logarithm of the

partition function. If we define a cluster to be a set of loops lί9 ...,/„ such that |J Zf is
connected, then there is a function ΦT(C) of the cluster C such that ι

There are explicit formulae for ΦT(C) (Eq. (2) of [14], or Theorem 3.1 of [6]), but
we will mainly be concerned with bounds on it.

Having developed a convergent expansion for the partition function, we next
consider the unnormalized correlation function Ύτ(e'βHσf&j). The term σfσ*
implies that the spins at sites i and j must each flip at time 0. Geometrically this
means there must be a time segment which either starts or ends at i and a time
segment which either starts or ends at j . The path which begins with the time
segment at i can only end at the time segment at j . Thus we have

Ύr(e-'Hσϊ(φ= Σ W(t)W(!i)>..., W(IJ, (2.17)
l,h,...,ln' d

where I is summed over all paths from (i, 0) to (/, 0) and ll9..., ln are summed over all
loops. As before the d indicates that l9ll9...9ln must be pariwise disjoint. The weight
W(l) of the path / is still given by (2.4).

We define

Z(\l)= Σ W(lίχ...,W(ln),
lu...,ln:d,l

where the constraint I means that the loops Zl5 ...,/„ cannot intersect Z. This
partition function also has a convergent expansion of the form (2.15). The only
change is that only those clusters C which are disjoint from I appear in the sum.
Thus (2.17) can be written as

and so the normalized correlation function is

Σ ΦT(Q - Σ <W
C C:Cnl = Φ J

Σ ΦT(Ql (2.18)
C:CnZΦ0 J

Before continuing the development of the expansion we should decide which
terms in (2.18) are important and which ones are small. There is an important
difference here between the classical and quantum cases. In the classical case, e.g.
the Ising model in two dimensions at high temperature, the path / will be a straight
line most of the time with occasional excursions in the direction orthogonal to the
line from i to j (see Fig. 1). These rare excursions may be thought of as excitations
since each one carries a small factor (roughly equal to β). In the quantum case the
continuous nature of the extra dimension implies that a typical walk will look like
Fig. 2. There will be an excursion in the time direction at every site, and so these
excursions cannot be treated as excitations. The excitations in the quantum case
are when the walk contains space bonds which do not point in the direction ofί—j.
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-θ 0 O

Fig. 1. A typical walk in the classical case in two dimensions. Most of the time the walk consists of
horizontal bonds, but occasionally there is a vertical bond or the walk can even backtrack. These
excitations are enclosed in dashed boxes

Fig. 2. A typical wal, in the quantum case in one space dimension (the horizontal axis). The
vertical axis is the time axis. At every site the walk will have a bond of some length in the time
direction. Excitations are when the walk backtracks (as shown in the dashed boxes) or sidetracks,
i.e., contains a bond which points in one of the space directions other than the space direction
shown. No examples of sidetracking are shown in the figure since they only occur when there are at
least two space dimensions

We assume e is el9 the unit vector in the 1-direction, and refer to the coordinate
axis in the 1-direction as the 1-axis. If we think of the path / as running from 0 to
neί9 then the bonds in / have a direction. Most of the space bonds will point in the
et direction, but occasionally the path will backtrack or sidetrack and the space
bonds will point in some other direction. We take the set of space bonds in / which
do not point in the eγ direction and project this set onto the 1-axis. The resulting set
will consist of closed intervals which begin and end at lattice sites on the 1-axis and
of isolated lattice sites on the 1-axis. We denote this set by E(ΐ) and call it the
excitation set of/. To save some writing we will use the term X-interval to refer to a
closed interval on the 1-axis whose endpoints are lattice sites including the
degenerate case where the interval is a single lattice site. Note that E(l) is a disjoint
union of X-intervals.

Excitations can also arise from the clusters C that appear in (2.18). The
projection π(C) of a cluster C is the union of the projections of the loops in C onto
the 1-axis. Because C is connected, π(C) will be connected and thus π(C) is a single
X-interval. For an Jf-interval X we define

Then

Σ
C l

ΦT(Q.

ΦT(C)=ΣK(X,1),
X

where the sum is over all X-intervals X which intersect π(l).
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We pause to bound K(X, /). If π(C) = X then the number of space bonds in the
loops in C must be at least as large as \X\9 the length of X. Each of these space
bonds carries a factor of ε, so we have a bound of the form

\K{X,me-M™\lnn-\X)\, (2.19)

where we can take M as large as we like by taking ε sufficiently small. We now
rewrite (2.18) as follows. First define

Then

Σ W(ϊ) exp _
I I C:CnZΦ0

= Σ Σ
Y l:E(l) =

Σ Σ Σ
Y Xu...,Xn l:E(l) = Y

The Xl9..., Xn are summed over X-intervals which are distinct but not necessarily
disjoint, i.e., Xt and Xj cannot be the same set but they may intersect. Y is summed
over subsets of the 1-axis which are unions of disjoint X-intervals. Let
B=\JXiuY and let B=\JBt be the decomposition of B into connected

i i

components. (Each Bt will be an X-interval.)
Next we must divide the weight W(l) among the connected components £ f. This

weight W(l) contains a factor oϊs/N for each space bond in /. The path / begins and
ends with time segments, so / contains exactly one more time segment than space
bonds. So rather than associating a factor oϊε/N with each space bond in /, we can
associate a factor of ε/N with each time segment and include an overall factor of
N/ε. With this convention W(ϊ) simply consists of a factor of exp( — 2t/N)ε/N for
each time segment of length ί, and an overall factor of N/ε.

Next we consider sites on the 1-axis which are not in B. If k is such a site, then
the path I contains only one time segment whose projection onto the 1-axis is the
site k. The path / must be going in the 1-direction when it enters k and when it
leaves k. Thus the behavior of the path / at site k is completely specified by a time tk

(which can be negative or positive) which gives the length and direction of this time

segment. We have a factor -—Σ f°r e a c h S^Q n o t *n B- We denote this factor by just
N tk

ε\dtk. In addition W(l) contains a factor of exp( — 2t/N) for each time segment of
length ί, and so a factor of exp( — 2tJN) for each site k on the 1-axis which is not
in B.

Now consider a component Bn of B. By definition the sites just outside Bn are
not in £(/). It follows that the path / will contain exactly two space bonds which
connect sites in π~ 1(Bn) to sites not in π~ ι(Br). (If 0 or ne1 is in Bn, then there will be
one such bond.) We picture the site 0 as being to the left of the site ne1 so that we
may describe one of the space bonds as being on the left and one on the right. Let tt

and tr be the times of the left and right such space bonds and define sk = tr—tv (If
OeBn then tt = 0, and if neγeBn then ίr = 0.) Thus sfc is the net change in the time
produced by that part of I in π~ί(Bn) just as tk was the change in time associated
with a site k on the 1-axis but not in B. Let ir and it be the spatial coordinates of
these two space bonds. Let P be the (d— 1) dimensional hyperplane that is
perpendicular to both the 1 -axis and the time axis. Let jk be the projection of ir — it
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onto P. So jk is the change in the second through dth spatial coordinates resulting
from that part of I associated with Bk. Considering where the walk I begins and
ends we see that the sum of all the times tk and sk must be zero and the sum of the
lattice vectorsjk must also be zero. (If d = 1 then there is no plane P and some of the
following expressions simplify.)

Now consider the part of W(l) that we should associate with Bn. Each time
segment has a factor of exp(—2t/N)ε/N where t is the length of the time segment.
Let ln denote the portion of / which lies in π" ι(Bn). The definition of the B=\jBi

i

decomposition implies /„ will have only one connected component, and so /„ is itself
a path. [However, note that E(ln) need not be connected.] Let W(ln) be the product
of the factors of exp( — 2t/N)ε/N in W(ϊ) coming from time segments whose
projections onto the 1-axis is a site in Bn. The weights k{Xj9 ϊ) for XjCBn do not
depend on all of /, just /„; in other words k(Xj,ΐ) = k(Xp/„) if XjCBn.

We now define for an X-interval B, a time s and a lattice vector jeP,

W(B,s,j) = N Σ k(Xul)...k(Xm,W(n,

where the sum is over all walks / and Jf-intervals Xt such that (J Zfu£(/) = B. The
i

sum over walks / in this definition is subject to the following constraints. First
suppose that neither of 0 or ne1 is in B. Pick a site kt such that π(kt) is the left
endpoint of B. Let kr be the site whose time coordinate equals the time coordinate
of kt plus s and whose spatial coordinate equals the spatial coordinate of kt plus j
plus (\B\ — ί)eί9 where \B\ is the number of lattice sites in the interval B. [So \B\ — 1 is
the length of B and π(kr) will be the right endpoint of B.~] Then the walk / in the
above must begin at kt and end at kr. Thus the walk must produce a time change of s
and a change in the second through dth spatial coordinates of/'. This definition does
not depend on the choice of the site kt because of the translation invariance. If 0 e B
then we take kt to be the site with spatial and time coordinates equal to 0. If nex e B
we replace |β| — 1 in the above by the distance from the left endpoint of B to nev If
both 0 and neγ are in B we take kx = 0 and replace |B| — 1 by n. Note that we have
included a factor of N in the definition of W(B, Sj). This is a natural thing to do in
view of the restriction that the change in the time resulting from / is constrained to
be a particular value s. Of course we will have to have a factor of ί/N someplace
else to cancel this N.

To bound W(B,s,j) we use the bound on K(X,t), (2.19) and the definition of
W(ΐ). Note that since K(X, I) is small, k(X, I) is essentially equal to K(X, I). It is
straightforward to show that the sums in the definition of W(B, sj) converge using
the techniques that we used to prove (2.7). We need to show more, namely, that
W(B, sj) is small relative to the weight we get from walks which do not backtrack
or sidetrack as they go through B. Recall that \B\ is the number of lattice sites in B.
A walk which never backtracks or sidetracks will have |JB| factors of ε associated
with its passage through B since it will have \B\ time segments associated with B,
each of which carries a factor of ε. Likewise any term which contributes to W(B, sj)
will have at least |B| factors of ε. Each lattice site in B must come from \J Xt or £(/)
and so will contribute an additional factor of ε. Let \j\ be the I1 norm of j . Then |j'| is
less than or equal to the number of bonds in I which do not point in the positive et

direction. So the number of additional factors of ε is at least \j\. Any walk which
contributes to W(B,s, j) will also contain a factor of β"2'5', so we can extract a
factor of e " | s | and still control the sums in the definition of W(B, s, ). The resulting
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bound is

\W(B9s9j)\£eWe-μW-W-M, (2.20)

where μ can be made as large as we like by taking ε sufficiently small.
Remembering the overall factor of N/s, the correlation function is now

ε" 1 £ ίds1...ίdsmΣ^ΣW(Bl9s1J1)...W(Bn0smtjJ
BU...,Bm J! jm

x Π (sίdt.e-^δί Σ sk+ Σ ) ( Σ
iφB \*=1 iφB / \k=ί

where Bί9 ...,Bm are summed over disjoint Jf-intervals and j l 9 ...,jm are summed
over lattice vectors in P, the (d — 1) dimensional hyperplane orthogonal to the
1-axis and the time axis. The set B denotes (J Bt. The function δ(t) is shorthand for

i

the function that equals N if t = 0, and equals 0 otherwise. The function <5(d~ 1)(/) is
the function which equals 1 if ; = 0 and 0 otherwise (/' ranges over P). Recall that

J dsi is short for—Σ- This factor of ί/N cancels the factor of AT that was included in
iV Si

the definition of W(B, sj). The global constraints are treated just as in the classical
case [5], i.e.,

7
-Nπ

In the first integral k runs from — Nπ to Nπ. In the second integral q runs over all
points in Rd~ * with each component between — π and π. Of course, the advantage
of these representations is that the integrands factor over the polymers Bt.

For each site i'φ B we have a factor of

ε J dtt exp( - 2|ί f| + ikQ = -—^—-.

The number of sites iφB is 1 + n - Σ \Bj\. Thus

1
T dk I dd-γqZ{Kq) (2.21)

-JVπ - π

with

'•>q)= Σ

x Π Γί dsι Σ W{Bb sb h) εxp(ίkSι + iq Λ)l. (2.22)

(The limits on the k and g integrals are as before.) We define

/ g \-|Bi|

f, K q) = ( 1 + f c 2 / 4 ) f dst
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so
ε X n + 1

If k is large then the factor of (1 + fe2/4)|β| in W(B, k, q) is large. This makes it
difficult to control an expansion for lnZ(fc, q). Thus we first consider the case that
\k\ ^ K, where K iŝ a constant to be chosen later. The bound (2.20) on W(B, sj) and
the definition of W(B, k, q) imply

l ( / Σ ί
j

where μ' is essentially μ—2 In K. The above estimate shows that Z(fc, q) is a polymer
gas with small activities if μ>21nK. Thus InZ(k,q) has a convergent polymer
expansion. We can write the result as

, <?, n

/(fc,<?) is the "free energy" per site between 0 and nex and is independent of n.
g(k, q, ή) comes from the terms in the expansion that reach all the way from 0 to neγ.
It is exponentially small in n. h(k,q) comes from "boundary effects" and is
independent of n.

If \k\>K we do not attempt to prove the convergence of an expansion for
InZ(k,q). Instead we return to (2.22). We claim that Z(k,q) for \k\>K is
exponentially small in n relative to Z(fc, q) for k near 0. In (2.22) there is a factor of
(1 + k2/4)~1 for each site not in [j By This is small if we take K large. For sites in

j

Bt we have smallness from the W(Bb sbj^ factors. This proves the claim, so the[j

correlation function <σfσ̂ > is asymptotically given by (2.21) with the integral
restricted to \k\£K.

We now have

x exp[>/(/c, q) + g(k, q, ή) + h(k, qf] (2.23)

with the usual limits on the integral over q. We pause now to deal with the /?->oo
and iV->oo limits. (Recall that the JV-»oo limit is the limit in the Trotter product
formula.) For a fixed value of N and β we can take the infinite volume limit in our
expansions, in particular in (2.23). The bounds which insure convergence of the
expansions are uniform in β and N. The usual application of the dominated
convergence theorem shows that we can now take the JV->oo and j8->oo limits of
the quantities /(/c, q% g(k, q, n\ and h(k, q).

Since g(fc, q, n) is exponentially small in n, the above is asymptotic to the same
expression with g(k, q, n) omitted. Thus we must consider the integral

dk ί ^"^ex P {(n + l)[-ln(l+k2/4)+/(k,g)] + /i(fc^)}. (2.23)
(2π) -

The function /(k, q) has an expansion in powers of ε. The lowest order terms arise
from walks / which have one space bond pointing in a direction other than the
positive e1 direction. Such an excitation gives a B that consists of a single site. The
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contribution to W(B, fc, q) from these excitations is

( c \ ~ 1 oo oo
-j—1 J dtγ \ dt2 X ε 2 exp[-2 | ί 1 | -2 | ί 2 | + ϊfc(ί1 + ί2) + ̂  7]

1 H~ k / 4 y — oo — oo j : Ij| = l

ε d

where gf is the fth component of q. All the other terms that contribute to /(fc, q) are
smaller by at least a factor of ε. It is easily seen that these terms are also even in fc
and in each qv Thus /(fc, q) has its maximum at fc = 0, q = 0 and the expansion of
/(fc, g) about this maximum to second order in fc and q and to first order in ε is

d

— εk2(d—1)/2 —ε £ qf. A standard steepest descent argument (see, e.g., [5]) now
1 = 2

shows the above expression for the correlation function is asymptotic to εneβn/nd/2,
where ρ is a constant that depends on ε. (One factor of n~1/2 arises from the integral
over fc, and each integral over one of the qt

9s gives a factor of n~1/2.)

3. Examples with Anomalous Decay

Classical spin systems in which the truncated two-point function decays exponent-
ially do not always have a (d —1)/2 power law correction to this exponential decay.
A well known example is the two dimensional Ising model at low temperatures for
which the power law correction is \i—j\ ~ 2 rather than \i—j\"1/2 [11]. Even at high
temperatures there are examples which do not have Ornstein-Zernike decay [22].
In this section we review some examples of quantum spin models where the power
law correction is not d/2.

In one dimension several quantum spin systems are exactly solvable. In two of
these models the asymptotic behavior of the correlation functions in the ground
state is understood well enough that the power law correction to the exponential
decay is known. One of these models is the model studied in this paper as we
discussed following the statement of the main theorem. The other model is the
anisotropic XY model whose Hamiltonian is

with 0 < α < 1. Lieb et al. [16] found exact expressions for the two point functions
in this model. McCoy [19] determined their asymptotic behavior. The correlation
function (σz

oσ
z

n} vanishes when n is even. For odd n its decay is given by

In the j -direction he found

In the x-direction there is long range order.

The decay of the truncated correlation function <σg; σ£> = <σgσ;f> — (1— α2) 1 / 2

depends on whether n is even or odd,
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Note that none of these correlation functions have a power law correction oΐn~d/2

to their exponential decay.
There are many quantum spin systems in which the ground state has an exact

description in terms of valence bonds, i.e., spin singlets. (References may be found
in [3].) Most of these models have correlation functions that vanish when the
distance is more than a few lattice spacings. We restrict our attention here to those
models with non-vanishing correlation functions [2-4]. The simplest example of

this type is the spin-1 chain with Hamiltonian H=^Sr Si+1 + j(Sf Si+ί)
2. The

i

ground state of this Hamiltonian is known and the two-point function has been
computed [2, 3]. It equals a constant times 3~'ι~ j |. This is the decay one would
expect in a classical one dimensional model. For the usual Heisenberg spin 1 chain,

H=ΣSi Si+1, there is numerical evidence that the two point function decays as

exp(-m|/-;|)/|/-7|1/2 [15, 20].
Arovas et al. [4] showed that for a family of models, which includes the above

spin 1 chain as well as models in any number of dimensions, there is a
representation of the ground state in terms of a classical model in the same number
of dimensions. In dimensions greater than one the two point function has not been
computed exactly. For some models it has been shown to decay exponentially
[3,12], but there are no rigorous results on the power law correction to this
exponential decay. It is expected that the power law correction will not be d/2 [4].

Using a clever idea of Kirkwood and Thomas [13], Matsui [17] showed that
given any finite range translationally invariant classical Hamiltonian for Ising
spins and an inverse temperature /?, there is a finite range translationally invariant
quantum mechanical Hamiltonian in the same number of dimensions such that the
σz correlation functions in the ground state of the quantum model equal the
correlation functions of the classical system at inverse temperature β. The simplest
example of this construction is to construct a quantum mechanical spin chain
whose ground state correlations equal those of the classical one dimensional Ising
model at inverse temperature β [17]. Let

H= Σ - [<t+ |<τ?-1<J?+ ̂ σU^vσ'^σU^. (4.1)

We let

A little calculation shows that ψ(σ) is the ground state of H if ε = 2 cosh(2/J) sinh(2/?)
and α= — sinh2(2/?). A little algebra shows that we can find a β such that these
equations hold if and only if ε and α are related by

( l - 2 α ) 2 - ε 2 = l , α^O. (4.2)

The correlation functions for the classical one dimensional Ising model, in
particular the two point function, have pure exponential decay, so there is no
power law correction to the decay of the two point function in the ground state of
this quantum spin chain.

If α = 0, then the Hamiltonian (4.1) is unitarily equivalent to the Hamiltonian
we studied in Sect. 2. The unitary operator is U= Π(l +iσf)/|/2. We see that
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UHU~ι equals the Hamiltonian of Sect. 2, while Uσ^U'1 = σfcή. In Sect. 2 we
showed that <σfσ*> has a \i—j\~1/2 correction. If α is nonzero but small and ε is
small, then we can develop a convergent expansion for the expectation of this two
point function in the ground state. If α and ε are related by (4.2) then from the
preceding paragraph we know the two point function will not have a power law
correction. Where does the argument of Sect. 2. break down? When α and ε are
both small, (4.2) implies that α goes as — ε2. The next nearest neighbor term σ\σ\ + 2

becomes σfσf+2 under the unitary transformation. Note that the action of this
term in the Trotter product expansion is the same as that of σfσf+ x followed by
σf+ 1σf+ 2- Both of these possibilities carry factors of ε2 but they have opposite signs.
Thus there will be cancellation and the analysis of Sect. 2 breaks down. It would be
interesting to use the expansion method of Sect. 2 to show explicitly that there is
pure exponential decay when (4.2) holds.
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