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Abstract. We prove a local index theorem for families of <3-operators on Riemann
surfaces of type (g, n), i.e. of genus g with n > 0 punctures. We calculate the
first Chern form of the determinant line bundle on the Teichmϋller space Tg)W

endowed with Quillen's metric (where the role of the determinant of the Laplace
operators is played by the values of the Selberg zeta function at integer points).
The result differs from the case of compact Riemann surfaces by an additional
term, which turns out to be the Kahler form of a new Kahler metric on the
moduli space of punctured Riemann surfaces. As a corollary of this result we
derive, for instance, an analog of Mumford's isomorphism in the case of the
universal curve.

Introduction

The Atiyah-Singer index theorem for families of elliptic operators, which plays
an important role in modern mathematical physics, is of particular interest for
<3-operators on complex manifolds. Consider a holomorphic family p : 3C —> B of
compact complex manifolds over a compact base B, and a holomorphic vector
bundle $ —> 9C. The family d = {db}beB oΐ 3-operators in the vector bundles
E\j —> Xb (restrictions of $ over the fibers Xb = p~ι{b), b € B) gives rise (in
the sense of iC-theory) to the index bundle indδ G K(B) on B with fibers
kerδf, — cokerδk over b e B. The Atiyah-Singer index theorem applied to this
special case states that

ch(ind d) = p* (ch β td Tυθ£). (1)

Here ch denotes the Chern character, td Tυ9£ is the Todd class of the vertical
tangent (along the fibers of p : 9C —• B) bundle on S£, and p* : H*(9C) —•
H*~άimXb(B) is the operation of "integration along the fibers" (see [1]).

In many applications the bundles δ and TV9£ are Hermitian, so that each of
them carries the (canonical) unitary connection compatible with the holomorphic
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structure. Then by the Chern-Weil formulas ch δ and td ΎV9C can be realized as
closed differential forms on SC. When indδ is also a vector bundle, it is quite
natural to ask whether there is a connection in indδ such that (1) holds as an
equality of corresponding differential forms, i.e. locally on B. More generally, the
question is how to express explicitly the Chern character form ch(ind d) on B in
terms of the data p : 3C —> B and S —> ΘC. Such a strong form of (1) is often
called a local index theorem, and it makes sense in case of a non-compact base
as well.

The situation becomes much simpler when we consider, instead of the index
bundle ind 3, its determinant bundle det ind d = Λ m a x kerδ ® (ylm a xcokerδ)~1 on
B (where Amax denotes the maximal exterior power of a vector space). As it was
observed by Quillen [2], under rather general assumptions on p : ΘC —• B and
$ —> 9£ the determinant bundle det ind d is a holomorphic line bundle on B with
a natural metric (Quillen's metric) given by

Γ1/2; (2)

here || || is the ordinary ZAnorm in det ind d induced by the metrics in S and
TΌX9 d*db is the Laplace operator acting on sections of Eb -> Xb, and det d*δ/> is
its zeta function determinant regarded as a function on B. In [2] Quillen studied
in detail the family of all Cauchy-Riemann operators (i.e. holomorphic structures
in a Hermitian vector bundle E —• X on a compact Riemann surface X). In this
case B is an infinite dimensional complex affine space, and the curvature form of
the Hermitian line bundle (det ind d; || \\Q) on B appears to be equal, up to a
constant multiple, to the natural Kahler form on B.

A similar result was obtained somewhat later by Belavin and Knizhnik [3] (we
follow [4] in exposing of their result). Denote by B = Tg the Teichmϋller space
of compact Riemann surfaces of genus g, by 2£ — ZΓg -> Tg - the Teichmϋller
universal curve, by Tv2Γg -> 2Γg - the vertical line bundle of the fibration
p : 3Γg —• Tg9 and by dk - the family of 3-operators acting on /c-differentials on
Riemann surfaces (sections of (T~k3Γg)b —• Xb). Then for the first Chern form
of the determinant line bundle det ind dk endowed with Quillen's norm (2) the
following formula holds:

d (det ind ~dk) = J (ch(Tv-
k^g) t d ( T ^ g ) ) 2 , 2 , (3)

fiber

where ( )2,2 denotes the (2,2)-component of a differential form on ^g9 and the
integration is taken over the fibers of &~g -> Tg. As one can easily see, formula
(3) is a specification of (1) on the level of (1,1)-forms. Moreover, if we consider
a metric in Tv^~g which coincides on each fiber of ZΓg —• Tg with the Poincare
metric (i.e. Hermitian metric of constant curvature —1), then by a result of
Wolpert [5] formula (3) can be rewritten as

ci (det ind dk) = ^-^ ω W p, (4)

where ωψp is the Weil-Petersson Kahler form on Tg. Such a form of local index
theorem is analogous to Quillen's original result. On the other hand, formula (4)
can be derived by the methods of Teichmϋller theory (see [6]) avoiding a difficult
heat kernel technique. The approach of [6] also allows us to prove a local index
theorem for families of 5-operators in stable bundles of rank n and degree k on
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a compact Riemann surface [7] (which provides, for instance, an analytic proof
of projectivity of the corresponding moduli spaces for coprime n and k).

Quillen's local index theorem admits various deep generalizations (see [8-10]
for details), but in all of them the fibers of p : 9C —> B are compact manifolds.
Otherwise considerable difficulties occur because of continuous spectrum of the
corresponding Laplace operators (along with purely technical difficulties there
is a problem how to define properly the determinant of the Laplace operator).
However, the methods of [6] work for families of δ-operators on non-compact
Riemann surfaces as well. The first examples of a local index theorem for
families with non-compact fibers were given in our papers [11,12]. Namely, we
have considered the case when B = Tg,n is the Teichmϋller space of Riemann
surfaces of type (g, n), i.e. of genus g with n punctures (cusps), 9C — ^~gίϊl is the
corresponding universal family (so that the fibers of the fibration p : 2Γ%^n —• Tg>n

are Riemann surfaces of type (g, n)), and $ = T~k2Γg;n is the kth power of the
vertical line bundle on ^~^n (the case k = 0,1 was treated in [11], and the case
k > 2 in [12]). In this situation the Laplace operator Δk = d*dk associated with
the Poincare metric (i.e. complete Hermitian metric of constant curvature —1) on
a Riemann surface X of type (g, ή) has n-fold continuous spectrum. To define a
regularized determinant of Δk consider the Selberg zeta function Z(s) which is
given for Re s > 1 by the absolutely convergent product

e-^^)9 (5)
{/} m=0

where ί runs over the set of all simple closed geodesies on X with respect
to the Poincare metric, and |^| is the length of /. The function Z(s) admits a
meromorphic continuation to the whole complex s-plane with a simple zero at
s = 1. For compact Riemann surfaces it was shown in [13] that the determinant
of Δk defined via its zeta function is equal, up to a constant multiplier depending
only on g and /c, to Z'(l) for k = 0,1 and Z(k) for k > 2. Similarly, for Riemann
surfaces of an arbitrary type (g, n) we define

JZ'(l), * = 0,l,

l k>2. (6)

Using this definition, we_ can calculate the first Chern form of the determinant
line bundle λk = detindδfc on Tg,n endowed with Quillen's metric (2). The result
differs from (4) by an additional term in the right-hand side:

6/c2-6/c + l 1 nΛ

— Q ω C U S p , (7)

where ωwp is the Weil-Petersson Kahler form on Tg>n and ωCUSp is the symplectic
form of a new Kahler metric (, ) c u s p on TgjW(n φ 0).

We proceed with exact definitions. Let X be a Riemann surface of type (g, ή)
equipped with the Poincare metric ρ and let Γ be a torsion-free Fuchsian group
uniformizing X, i.e. X = Γ \H, where H = {z e C | Im z > 0} is the upper half-
plane. Denote by Γ\, . . ., Γn the set of non-conjugate parabolic subgroups in Γ,
and for every i = l nf ixan element oi e PSL(2,R) such that σ^Γiσt = Γ^
where the group Γ^ is generated by the parabolic transformation z ι-> z + 1. The
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Eisenstein-Maass series Ei(z9s) corresponding to the ith cusp of the group Γ is
defined for Re s > 1 by the formula

Eι{z9s)=

(Ei(z,s) can be meromorphically continued to the whole complex s-plane; for
Res = \ the Eisenstein-Maass series 2s, (z,s), i = 1, . . ., n, form a complete set of
eigenfunctions of the continuous spectrum of the Laplace operator AQ.) Recall
also that the tangent space T[χ\T^n to the Teichmuller space Tg,n at the point
corresponding to a Riemann surface X can be naturally identified with the space
Ω " 1 ' 1 ^ ) of harmonic L2-tensors on X of type (—1,1) (the Beltrami differentials).
The Weil-Petersson metric on Tg,n is defined by the formula

(μ,v)Wp = μvρ,

where μ, v e Ω {>1(X) are considered as a tangent vectors. Denote by ωwp its
Kahler form;

ωwp(μ> v) = — T — {μ, v)Wp.

To define the metric (,)CUsp set

(μ,v)i = [μvEi( 92)Q9 μ,v € Ω~1Λ(X)9 i = 1, . . . , n. (8)

x

Each scalar product (,) f gives rise to a Kahler metric on Tg>w (see Sect. 2 below).
Their sum

1=1

is Modg>n-invariant Kahler metric on Tg^n (where Modg?n denotes the Teichmuller
modular group) with Kahler form ω c u s p .

For families of 5-operators on punctured Riemann surfaces formula (3) is not
valid. We calculate the cuspidal defect

δ{» = a(λk) - J
* fiber

(10)

which appears to be equal to — £ ω c u s p .
Formula (7) has also algebraic geometry consequences. In particular, it gives

for the relative dualizing sheaf ω on the universal curve # g = Jίg± = Tgt\/ Modg)i
the following expression:

4
ci(ω) = -ω C U S p, (11)

and provides an analytic proof of the isomorphism

(12)



Local Index Theorem for Punctured Riemann Surfaces 403

where λk is also considered as a sheaf of # g . The last formula is an analog of

Mumford's isomorphism λk = λ^k2~6k+1 on the moduli space Mg = T g /Mod g

[14].
The content of this paper is the following. In Sect. 1 we recall necessary facts

from the theory of automorphic forms and the spectral theory of the Laplace
operator on punctured Riemann surfaces. In Sect. 2 we present basic facts about
Teichmϋller spaces together with necessary variational formulas, which allow us,
in particular, to prove that the metrics (,),- are Kahlerian. In Sect. 3 we obtain
a formula for the first derivatives of the Selberg zeta function with respect to
coordinates on Γg)Π. In Sect. 4 we prove our main result - formula (7). In Sect. 5
we calculate the cuspidal defect (10) in the Atiyah-Singer index theorem and
derive from (7) some algebraic geometry consequences.

1. Laplacians on a Punctured Riemann Surface

Let X be a Riemann surface of type (g, n), i.e. X = X\{xi, ..., xn}9 where X is a
compact Riemann surface of genus g and xi, ..., xn are pair wise distinct points on
X; we will assume that 2g + n > 3. Then X can be represented as a quotient Γ\H
of the upper half-plane H = [z e C | Im z > 0} by the action of a torsion-free
finitely generated Fuchsian group Γ. The group Γ cz PSL(2,R) is generated by 2g
hyperbolic transformations A\, Bu ..., Ag9 Bg and n parabolic transformations
Si, ..., Sn satisfying the single relation AιBιAγ1B^1 ...AgBgA~lBg

lSi ...Sn = 1.
The fixed points of the parabolic elements Si, ..., Sn (cusps) will be denoted by
z\, . . ., zn respectively. The "images" of the cusps z\, . . ., Zn e 1R U {oo} under the
projection H —• Γ\H = X are the punctures xi, ..., xn e X. For each i = 1, ..., n
denote by Γj the cyclic subgroup in Γ generated by S, and choose an element

Gi e PSL(2,R) such that σ, oo = z\ and σj"1^^/ = ( Λ ~ I )•

A smooth complex valued function / on H is called an automorphic form of
weight (2*?, 2m) with respect to the group Γ if for any z e H and y € Γ,

f(yz)y'(z)'ψ(z)m=f{z)9 (ΛmeZ),

(forms of weight (2/, 2m) correspond to tensors of type (/, m) on the Riemann
surface X = Γ\H). Let ρ(z)\dz\2 denote the Poincare metric y~2(dx2 + dy2) on
the upper half-plane H. We denote by ^f ^m the Hubert space of automorphic
forms of weight (2/, 2m) with the natural scalar product

(fufi) = JhT2Q-'-m+1 = Jjfi(z)]W)y2Wm-2dxdy, (1.1)
X Γ\H

associated with the Poincare metric.
For each integer f we consider the Laplace operator At = d*dj = —ρ*~λdρ~*d

in the Hubert space ^ = Mf**. Here 3, = δ = -J- = J ( - ^ + V^T^Λ is
dz 2\dx dyj

considered as an operator from tf* to Jf^1, and d* = —ρ'~1dρ~/ is the adjoint

operator to d; in the sense of the scalar product (1.1), acting from J ί^ 1 to Jf*,
where d = — = - [ Λ/—TT~ )• The operator Δ/ is self-adjoint and non-

dz 2 \dx dy J
negative in J f\ Denote by Ω* the subspace kerzl/ = kerS/ in Ji?', consisting of
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holomorphic cusp forms of weight It. Recall that a holomorphic automorphic
form / is called regular if at each cusp z, is has the following Fourier expansion:

/(σtz)σί(z)' = Σ 44° i = 1, ...,»•

If, moreover, α ^ = ... = α ^ = 0, / is called a cusp form.
Holomorphic cusp forms of weight It correspond to meromorphic (/,0)-

tensors (/-differentials) on a Riemann surface X (i.e. meromorphic sections of
a line bundle (TX)~* —• X) which have poles of order not exceeding t — 1
at the punctures xi, . . ., xn and are holomorphic o n l = -XΛ{xi, •••> xn}- The
Riemann-Roch theorem gives

0,

dime Of =

t < - 1 ,

• = 0,

' = 1,

The subspace Ω^1 = kerδ* = cokerδ/ in Jf^1 is the Kodaira-Serre dual of
Ω w = ker<3i_Λ We denote by ?^\ the orthogonal projection of J ^ ' 1 onto Ω^1.
For / < 0 w e have the formula

d*, (1.2)

where / is the identity operator in f̂̂ '1. Moreover, from the equation

zj0logρ = - - ,

which means that the Poincare metric ρ\dz\2 has a constant negative curvature
—1, it follows that

^ ^ y (1.3)
Now denote by Qf\z,z') the resolvent kernel of the Laplace operator At on

the upper half-plane H; it means that Qf\z,zf) is the kernel of the operator
(At + { (s - It) (s - I))" 1 (we assume that t < 0, Res > 1). The kernel QM(z,z')
is smooth for z φ z' and is holomorphic in s on the whole complex s-plane. It
has an important property that QW(σz9σz') = Q{P{z,zr) for any σ e PSL(2,1R)
and z,zf e H. For t = 0 the kernel Qf> is given by the explicit formula (cf. [15])

Γ(s)2

πΓ(2s)
1 - z — z

z — z'

2\ s
z-z'

z — z'
(1.4)

where F(a,b9c;z) is the hypergeometric function and Γ(s) is the gamma function.
At s = 1 one has

z—z

Without writing an
formula

x π z-z'

explicit expression for Qf* with t < — 1 we give a simple

π z-z> \z-z
(1.5)
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(see, e.g., [6, Formula (1.6)]).
We denote by G{P{z,zf), t < 0, Res > 1 the resolvent kernel of the Laplace

operator, i.e. the kernel of the operator (A; + \(s — 2/) (s — I))"1 on the Riemann
surface X = Γ\H. For Res > 1 and z φ γzf, γ G Γ, the kernel Gf* is given by
the absolutely convergent series

ef(^^), (1.6)

which admits term-by-term differentiation with respect to the variables z and z'.
The kernel Gf\z,zf) with z φ γz'9 y e Γ, admits a meromorphic continuation
in s to the entire complex s-plane and has the following Laurent expansion at
s = l:

(see [15, Theorem 2.3]). The kernel Gf\z,z') is called the Green's function of the
Laplacian A$ on the Riemann surface X = Γ\H. One has (see [15, p. 161])

-π 8^ ΦM = - t e m? Gf)M = ΩM' (L7)

where Ω(z9z
r) is the so-called Schiffer_kernel. It is defined as a symmetric bidif-

ferential of the second kind o n ϊ x ϊ with a double pole of biresidue 1 at the
diagonal z = z1 and the property

v.p. ίί Ω(z, zf) ω(z') dx1 dy' = 0

Γ\H

for every ω e Ωι. The Schiffer kernel does not depend on a marking of X (i.e.
on a choice of generators of the Fuchsian group Γ). Moreover, the following
formula holds [15, p. 160]:

g

Ω(z,z) = B(z,z') — π V (Imτ)~jlcύi(z)ωj(z'). (1.8)

The kernel B(z,z[) isthe uniquely determined symmetric bidifferential of the
second kind on X x X with a double pole of biresidue 1 at the diagonal z = z'
and zero ^4-periods with the property that

JB(z9z')dz' = 2πv / = 4ω I (z), i = 1, ..., g;

z

here ω\, ..., ωg e Ω1 is the normalized basic of abelian differentials on X, i.e.

/ COJ(Z') dzr = δίj9 i, j = 1, ..., g ,
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where δy is the Kronecker symbol. Denote by τ = (τ//),

τϋ = / ωj(z') dz> i, 7 = 1, ..., g,

the period matrix of the marked Riemann surface X. It has a symmetric positive
definite imaginary part Imτ = (Imτ i ;) (which enters in (1.8)) with the property

Imτ l 7

x

= / coiCOj, ij= 1, . . . , g .

The Green's function of the Laplacian Af with { < — 1 is defined simply as

Gf\z,zf); its derivative — G^{z9z') is given by the absolutely convergent series

γeΓ '

(see, e.g., [6, Formula (1.8)]).
Now for < < 0 set

Λ(<f)(z,z;) = - — y2ί — (G{f\z,zf) - Q{f](z,zf)). (1.10)
oz oz'

The following lemma will be used in Sect. 4 in the proof of Theorem 1.

Lemma 1. The restriction R^\D(Z) = R^(z9z) of the kernel R^ on the diagonal
D = {z = z'} in H x H is a smooth automorphic form on H of weight 4 with
respect to the group Γ whose constant term of the Fourier expansion at each cusp

z\ is equal to - , i.e.

* y—> oo

Proof Due to the Corollary 3.5 in [15]

k=-oo

Using the formula

δ z y dz'ΰl(' ]~ π {z-z>γ\z-z>

which follows from (1.5), we obtain

π
k=—oo

Recall that the Eisenstein-Maass series Ei(z,s) corresponding to the cuspz, of
the Fuchsian group Γ is defined for Re s > 1 by the absolutely convergent series

Ei(z,s)=
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It satisfies the differential equation

and has the asymptotic expansion

Ei(σjz9s) = δijy

s

y—>oo

near each cuspzy, j = 1, ..., n (see [15,16]). For any μ, v e Ω " 1 1 set / ^ =
(Jo + 5)" 1 (μv) £ ^ ° The result below will play an important role in the proof
of Theorem 1 of Sect. 4.

Lemma 2. The function fμγ has the following asymptotics near the cusp z\ of the
group Γ:

c(0
fμv (σ, z) = — + exponentially decreasing terms as y —• oo,

cμt = 3 / ̂ i(s ΐ = 1, ..., n.

Proof. Since μ, v G Ω""1'1, one has μ = y2φ, v = j; 2 φ for some cusp forms φ,
ψ e Ω2, and hence the function μv € ^f ° is exponentially decreasing at the cusps
zi, . . . , zn. Let

be the Fourier expansion of the function fμV at the cusp z, , i = 1, ..., n. Because

(Jo + 5)/μv = μv, each function

is exponentially decreasing as y -• oo. The equation

^+(4π2k2_ 2\ = 0

has a pair of linearly independent solutions - , y2 when k = 0, and

when fe ψ 0. Since / ^ € J f °, increasing solutions cannot occur in the Fourier
expansion of fμγ and we immediately obtain for fμγ the above asymptotics.

To evaluate the coefficients c^ let us use the differential equation AoEi(z,2) =

— \ Ei(z,2). Denote by F a canonical fundamental domain of the group Γ in H
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with exactly n cusps at the points z\9 • •-, zn9 and set Fγ — {z e F \ lm(σγιz) <
Y, i = 1, ..., n}. We get from Green's formula that

i(; 2)μvρ = JΊW, 2)A0fμ, - AQEi(z9 2)fμ,

Γ\H

-fμ-v (J- Ei{z,2)dx - ^ E

The last integral can be easily evaluated in terms of Fourier coefficients of the
functions fμγ and £,-(-, 2):

x J=1

which completes the proof.

2. The Teichmuller Theory and Variational Formulas

Let Tgyn be the Teichmuller space of marked Riemann surfaces of genus g with
n punctures (we identify it with the Teichmuller space of the marked Fuchsian
group Γ uniformizing the Riemann surface X). The Teichmuller space ΓgjW

admits a natural structure of a complex manifold of dimension 3g — 3 + n. For
its description consider in the Hubert space J^~1Λ(X) the subspace Ω~1Λ(X) of
harmonic Beltrami differentials; each element μ G Ω " 1 ' 1 ^ ) has a form μ = y2φ,
φ G Ω2(X), so d i m c Q ~ u P 0 = 3g - 3 + n. The space Ω~1Λ(X) is naturally
isomorphic to the tangent space T[χ\ TgjΠ of the Teichmuller space Tg>n at the
point [X] representing the (marked) Riemann surface X. In turn, the cotangent
space T*X]Tg>n can be identified with the space Ω2(X) of quadratic differentials
on X, which is dual to Ω " 1 ' 1 ^ ) with respect to the pairing

(μ, φ) = [ μφ, μ G Ω " u (X), φ G Ω2(X).

x

For every μ G Ω~ l j l(X) with

||μ||0 0 = sup|μ(z)| < 1
zeH

t h e r e ex i s t s a u n i q u e d i f f e o m o r p h i s m fμ:H-+H s a t i s f y i n g t h e B e l t r a m i e q u a t i o n

dz dz

and fixing the points 0, 1, oo.
Set Γμ = pΓ(fμ)~ι and Xμ = Γμ\H. Choose a basis μu . . ., μ3 g-3 + w in the

linear space Ω"1 '1 (X) and let μ = εiμi + . . . + ε3g_3+nμ3g_3+n. Then the correspon-
dence (εi, ..., ε3g_3+π) >—• [Xμ] defines complex coordinates in a neighbourhood
of the point [X] G Tg?π. They are called the Bers coordinates. In the overlapping



Local Index Theorem for Punctured Riemann Surfaces 409

neighbourhoods of two points [X] and [Xμ] the Bers coordinates transform com-
plex analytically. The differential of this coordinate change at the point [X] 6 Tg>M

is a linear map Dμ : Ω~1Λ(X) -> Ω~lΛ(Xμ),

where P ^ u is the orthogonal projection of J^~iΛ(Xμ) onto β " 1 ' 1 ^ ) . With the
Bers coordinates (εi,. . ., ε3g_3+w) in a neighbourhood of the point [X] e Tg,n one

can associate 3g — 3 + n vector fields — . At any other point [Xμ] e TRn in this

neighbourhood they are represent by the Beltrami differentials Dμμi e Ω~^γ{Xμ),
i = 1, ..., 3g — 3 + n. Further details can be found in [17,5].

Due to the isomorphism T[χ]Tgtn = Ω~lil(X)9 the scalar product (1.1) defines a
Hermitian metric on the Teichmϋller space Γg)Π, which is called the Weil-Petersson
metric. This metric is Kahlerian [17], and its symplectic form will be denoted by
α>wp;

(-. - ϊ =
\dεμ dεvJ

at the point [X] e Tg/ι.
In a similar manner the scalar product

, 2)μvρ, i =

in Ω {'ι(X) defines a Hermitian metric on the Teichmϋller space Tg?n, n > 0. It
turns out that for each i = 1, ..., n this metric is also Kahlerian (see Lemma 3
below).

Now let us recall the necessary variational formulas. Let ωε e 34f*>m(Xεμ) be
a smooth family of automorphic forms of weight (2/, 2m) (i.e. tensors of type
(/,m) on the family Xεμ = Γεμ\H of Riemann surfaces), where μ e Ω~1Λ(X)9 and
ε € C is sufficiently small. We set

(fεμ)*(ωε)=ωεofεμ(-j-\ ί-i-J

The Lie derivatives of the family ωε in holomorphic and anti-holomorphic
tangential directions μ and μ are defined as follows:

L^ω = T,

ε=0

For the density ρ(z) = y 2 of the Poincare metric, considered as a family of
(1,1)-tensors, one has

Lμρ = L-μρ = 0 (2.1)
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for any μ G Ω" 1 * 1 ^) (see [17]). For the second variation of ρ the following
formula was obtained in [5]:

d2

ε i =ε 2 =0dε\ d&2

= \ ρ(Λ0 + i ) - 1 (μv) = \Q /„„ μ, v € Ω"1-1 (X). (2.2)

The Lie derivatives of the family μεv = Dεvμ € Ω" 1- 1^ 6") representing the vector

field -— on TgjΠ in a neighbourhood of the point [X], are given by the formulas:

_ i _ i _ - _ i - ' ( 2 . 3 )

Lvμ = —dρ d(Ao + y (μv) = —dρ dfμV

(see [5, Theorem 2.9]).
The Lie derivatives of the period matrix are given by Rauch's formulas [18]:

Xij = - 2 v C T / ω/ωyμ,

Lpτy = 0, μ G Ω"1'1 (X), U j = 1, . . ., g.

This immediately yields

g

ι ( 2 . 4 )V (Imτ)^ι

In other words, the (l,0)-form

3g—3+n a , j τ

t τ xπ ^logdetlmτ 7d l o g d e t l m τ = > αε,

on Tg>n corresponds via the isomorphism T^Tg^ = Ω2(X) to the family of cusp
forms

Moreover, for the kernel B(z,zf) (see Sect. 1) we have

B(fεμ(z), fεμ(zf))^P- (z) d-Pr (z') = 0
ε=0 d z d z

for any μ G Ω " 1 ' 1 ^ ) , since LμB is a regular bidifferential o n ϊ x ϊ with zero
periods.

Formulas (2.1) and (2.2) play an important role in the calculation of the cur-
vature form Θ of the line bundle ΎυZΓgyn -> ^"g jΠ. Recall that [5] the Teichmύller
curve &~g>n is the natural fiber space with the projection p : ^~gjW -> TgjΠ the fibers
are Riemann surfaces of type (g, ή). Formally, the bundle Tv3TgiH -^ ZΓg>π is defined
as kerrfp cz T^~g>n (the vertical tangent bundle of the fibration p : &~g>n —> Tg?n).
Its restriction to a fiber of the projection p is isomorphic to the tangent bundle
of a fiber. Therefore the Poincare metric on the fibers defines a metric in the
line bundle Tυ3~gΆ —• ^~gyn> There exists a canonical lifting TΓ g j n —• T^"gn [5].
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Denoting the corresponding image of -— by τμ and the tangent vector field
d dεH

along the fibers by — we have the following expression for the curvature form
Θ (see [5, Formula (53)]):

= 0, ( 1 5 )

® (τμ, τv) = - \ (Ao + \)~X{μv) = -\fμv-

Finally, the Lie derivatives for a family Λε : ^m(XGμ) -» jefm'(Xεμ) of linear
operators are defined by the formulas

d
LμA~Tε

dε

ε=0

((fεμΫ
ε=0

and are linear operators from ^>m(X) to ^'m(X). For the families of the
operators d<? and d* one has

Lμdi = μ5*+1ρ, Lμdt = 0,

(see, e.g., [6], formulas (2.8)). From this it follows that

LμA<? = d^μd^+ιρ9

.. (2.1)

These formulas will be used in the next section. Here we prove the following

Lemma 3. The metrics (,),-, i = 1, ..., n, on Tg>n are Kάhlerian.

Proof. We must show that

— (v, λ)i = — (μ, λ)i (2.8)

for any μ, v, λ e Ω~1^1(X) at any point [X] € Tg?n. We have

^ - (v,λ>i = A ^ ^ , ^ ) , = jLμEi(-9 2)vλρ + JEit 2)v(Iμ)ρ, (2.9)
μ x x

where we used (2.1) and (2.3). Using the differential equation

and formula (2.7) with { — 0, we get

(Jo + \)LμEι( 9 2) + ρ-ιd(μdEi( 9 2)) = 0,

which leads to the formula

LμEi( 9 2) = -(Ao + ̂ Γ V ^ ί μ W , 2))).
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By means of this formula and formula (2.3) we obtain from (2.9) integrating by
parts

/ - (v,λ)i = - ί(Ao + \rι{Q-ιd{μdEit 2)))' vλρ
dεμ J

x

= -J diμdEii; 2)) fΛ - J d(vdE,(; 2)) fμi,
X

since d(ρv) = 0 for any v £ Ω~iΛ(X) and since Beltrami differentials μ and v
are rapidly decreasing at the cusps. The obtained formula is obviously symmetric
with respect to μ and v, which proves (2.8) and the lemma.

Setforμ, v€Ω-u(AΓ),

The metric (,)CUsp on Tg>w is also Kahlerian; we denote by ω c u s p its symplectic
form, where

ω V dεv)

The metric (,)CUSp is obviously invariant under the action of the Teichmϋller
modular group Modg>n.

Finally, let us observe that the scalar products (μ,v) and (μ,v), , i = 1,..., n,
for μ, v € Ω" 1 ' 1 ^) can be expressed in terms of the values of the Rankin L-series

associated with the cusp forms φ = y~2μ, ψ — y~2v e Ω2(X). Indeed, let
k}kL\9 {^}^i> i = 1, ..., n, be the Fourier coefficients of the cusp forms φ and

ψ of weight 4 at the cusps z\,..., zn (see Sect. 1). Then for Res > 1 (see [19]),

ί£i( ,
Γ\H

if V -1 Y Π — ) d x d y

JJ J7f. ' y2

oo 1

0 0

oo 1

^ J J y9+2φ(σiz)ψ(σiz)\σf

i(z)\Λdxdy
o o
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where

is the Rankin L-series for the cusp forms φ and ψ at the cusp z, , i = 1,..., π. It
is absolutely convergent for Re s > 4 and has a simple pole at s = 4. Therefore,
from (2.10) it follows that

(μ,v)i = — 5 L®(μ,v; 5); i = 1, ..., n. (2.11)

Moreover, since

Res \s=ιEi(z, s) =
2π(2g-2 + n)'

we obtain from (2.10) that

{μ'v) = (4^3 ( * - ι + ^ ) R e s

for any i — 1,..., n (here Res denotes the residue).

3. First Variation of the Selberg Zeta Function

Recall that the Selberg zeta function Z(s) of a Riemann surface X is defined for
Re 5 > 1 by the absolutely convergent product

m=0

where *f runs over the set of all simple closed geodesies on X (with respect to the
Poincare metric), and |/| is the length of £. The function Z(s) has a meromorphic
continuation to the whole s-plane with a simple zero at s = 1. For the logarithmic
derivative of Z(s) one has

ψ
Γ\H y 'x γ hyperbolic

where the sum is taken over all hyperbolic elements of the Fuchsian group Γ
uniformizing X; Res > 1. This formula can be derived from the definition of
Z(s) by means of the Selberg transform; see [16] for details.

As it follows from the Teichmϋller theory (see Sect. 2), the value of the Selberg
zeta function Z(s) at a fixed point 5 with Res > 1 is a smooth function on Tg>n.
The next lemma gives an expression for the first derivatives of Z(s) with respect
to coordinates on TgjM.

Lemma 3. For any μ e Ω~ι>ι(X) and Res > 1 the following formula holds

^ - logZ(s) = - Jμd&(Gf - Qf%, (3.2)
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- β<0))M*) = ^ - (Gf (z,z') - Qf\z,z'))\z,=z

414

where

(here and in what follows a dash on an operator means that it acts on the vari-
able zf).

Proof. First of all, ddf(Gf^ — QP)\D is a smooth automorphic form of weight
4 for the Fuchsian group Γ, and the integral in the right-hand side of (3.2) is
convergent because μ decreases rapidly near the cusps zu . . ., zn of the group Γ.
Further differentiating both sides of (3.1) and taking (2.1) into account we obtain
that for R e s > 1,

2 ^ I L " ( ^ l θ g Z ( s )

-UN ψ
Γ\H

. γ hyperbolic

Γ\H
yer,

y parabolic

,yz'))

)

where

and

δε Q?](fεμ(z)Jεμ(z'))
ε=0

LμG?\z,z') = GT(fεμ(z)Jεμ(zf))
ε=0

(Gε

s

μ stands for the resolvent of the Laplace operator Ao on the Riemann surface
X£μ = Γεμ\H). Denote by Gs4(z,zf) the resolvent kernel of the Laplace operator
on the Riemann surface Γi\H; for Res > 1,

yen

From the definition of the resolvent and formula (2.7) for LμAo it follows that

^ β ? W ) ^7 Q?)(z",z')dx"dy", z φ z',

zf) = - v.p. JJ , z") {LμΔ,)"GSj{z\ zf) ά-^

^ Gviz, z") JL GsΛz»9 z>) dx» df9 z ψ yz>,
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and

LμGV>(z,z') = -γ.j>.JJ
Γ\H

415

= JJμ(z") ̂  Gf\z,z") JL Gf\z\z')dx"dy\ z φ yz\ y e Γ,
Γ\H

where {LμA0)
/f means that the differential operator LμΔ0 acts in the variable z".

Using now the above expressions for LμQf\ LμGSj, LμGf^ and a simple formula

(GSti(σz,σz')-Q?\z,z')),
yeΓ, i=

y parabolic

we derive from (3.3) the following formula:

-Mi
Γ\H

μ(z)dxdy
d2

dzdz' z'=z
Γ\H

-Σ Σ 4

μ(z) dx dy
δ1

δzδz'
Γ\H

z'=z

x L \Gf\z,z') - Qf\z,z') - Σ Σ
US { « σer,\

_ 1 L [[ 2

~ ί-2s ds JJdzdz
Γ\H

x (Gf\z,z')~Qf\z,z')-
yer,

y parabolic

Σ

μ(z

=Z

μ(z) dx dy
z'—z

^ γ hyperbolic

(in this calculation we reversed the order of integration and applied the Hilbert
identity to the resolvent kernels). Now let us integrate the last formula over the
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interval [s, oo). Since Lμ log Z(s) -* 0 and

d2

- • o
s—>oo

y hyperbolic

uniformly in z e H, we get

μ(z) dx dy.
z'=z

y hyperbolic

Since

dz dzf

γeΓ

it remains to show that for any μ e Ω 1»1 (X)

II Σ
y parabolic

where the sum is taken over all parabolic elements of the group Γ. We have

yer,
γ parabolic

z'=z

= Σ σ Σ r ^
n oo

-Σ Σ Σ
z'—z

-Σ Σ Σ
i=l σeΓi\Γ k=-co

(0)

where

k=—oo
kφO

From formula (1.4) for the kernel Qf\z,z') it is not difficult to deduce that ψs(z)
is a bounded function on H, depending only on y = Imz. On the other hand,
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any μ G Ω~ι>{(X) is equal to y2φ, where φ e Ω2(X) is a cusp form of weight 4
for the group Γ. Since incomplete theta series (including the automorphic forms
θ®, i = 1, ..., ή) are orthogonal to cusp forms with respect to the scalar product
(1.1) (see, e.g., [16]), we have

for any μ e Ω~ι>i(X) and i = 1,..., n, which completes the proof.
Taking into account that

^ - log Z'(l) =BmL, log Z(s),

we get from (3.2) at the limit s -> 1,

^ l o g Z ' ( l ) = / Λ « W , (3.4)
dεM J

where

(see Sect. 1). The first derivatives of Z(s) on Tg?n for integer 5 = 2, 3, ... can
be expressed in a similar way in terms of the corresponding Green's functions.
Namely, we have

Lemma 4. For any integer k > 1 and μ € Ω~{^(X)

^ - ^ - ^ ' ( G H O - β H ^ .

Proo/ First we will prove that for / = — k< — 1, Res> 1,

| f l = JμdQ+WlG&V - Q^l% . (3.5)

We observe that δ'G^ (respectively d'Qf*) is the kernel of the operator
(Aj + \(s — 2/) (s — l))~ !δ* on the Riemann surface X (respectively on the
upper half-plane H). Further, it follows from (1.3) that

in other words, it means that
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We have

X

= Jμ(dQ-<&(G? - ρW) + Sρ-'ρ'δρ-'ίGf - Q?))\D

X

= Jμ((Qd' + f!d^d(Γ<(Gf - β f ))\D

X

- Q<f> ) | D ) = 0 ,

because for any μ e Ω~lfl(X) one has d(μρ) = 0; this proves (3.5). Now starting
from Lemma 3 with s = k + 1 and applying formula (3.5) k times we arrive at
the assertion of the lemma.

4. Quillen's Local Index Theorem

Recall that the determinant line bundle of the family of operators d<? by definition
is

λt = det ind 5, = Λm a x ker 3, ® (^m a x coker 3/)"1,

where / e Z and ylmax denotes the maximal exteriour power of a vector space.
There is a canonical metric || || (I?-metric) in the holomorphic line bundle λj
on Tg^n associated with the scalar product (1.1). In the next lemma we calculate
the curvature form Θ^ of the canonical (unitary) connection in the Hermitian
holomorphic line bundle (Λ/, || ||). (Because of canonical isomorphism between
λf and λs-ι it is sufficient to consider £ — k > 0).

Lemma 5. For any μ, v e Ω"1 '1 (X) we have

where τ is the period matrix of a marked Riemann surface X. For k > 2,

μ

9 dεv

= - Tr (((-μv + (1 - k) (LμVρ)ρ-ι)I + (Lμd^k)Δγlk (L-v~dlk))P^kΛ) ,

Pi_/c,i : Jtf1^1 (X) -• Ω 1 " ^ 1 ^ ) w ίAβ orthogonal projection, I is the identity
operator in ^ι~~k^(X), and Tr denotes the trace of an operator.

Proof A normalized basis of abelian differentials ω\9 . . ., ω g determines g global
holomorphic sections of the bundle kerδi over Tg>π. Therefore, the L2-norm of
the canonical section ωi Λ Λ ω g of the line bundle λ\ is equal to (detlmτ) 1 / 2

which leads to formula (4.1). The proof of (4.2) consists of simple linear algebraic
calculations and can be found in [6, Lemma 1].
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Recall that Quillen's metric || ||ρ in the determinant line bundle λk is defined
as follows

= f (Z(k))-V2\\ ||, /c>2,
I β \(Zf(l))-^\\Ί k=L

In the next theorem we compute the first Chern form c\(λk, || \\Q) of the Hermitian
holomorphic line bundle (λk, \\ ' \\Q) on Tg,n.

Theorem 1. For k > 1,

ci(λk, || | |ρ) = ^ 2 ω w p - ^ ωC U Sp, (4.3)

where ωwp *s the Weil-Peter sson Kάhler form and ω c u s p is the Kάhler form of the
metric (,)CUsP.

Proof Since

{ \ g l /c>2,
2̂

(where 5 and 3 denote the components of the exterior derivative operator
d = d + d on Γg>π) it is sufficient to prove that for every integer m > 0 and

dsμ dεv

6m2 + 6m+ 1 , . π , . /A Λ,I I I Λ ; \ III y\ (A Λ \
n \hι'>λ> I n \A*>v/cuspj v+ v
12π 9

where for m = 0 Z(m + 1) should be replaced by Z ; (l). In the main, the proof of
this formula follows the proofs of Theorem 2 in [6] and Theorem 2 in [11]. By
Lemma 4,

where

and D denotes the diagonal z' = z in X x X. Therefore

ί(R{-m)Γ\Dμεv

U (R(-m) \D)μ + R{~m) \DL~vμ). (4.5)

d2 d
—-logZ(m+l) = -

Because the kernel R( m ) is regular on the diagonal D in H x # , we have
Lv(#(~~m)|z)) = (LvK(~m))|z). Let us calculate the contribution to (4.5) of the
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variations of the kernels dρmdfQ<fm) and dρmdfG(fm) separately. From (1.5) we
derive that for z'' φ z

v O ( z Λ (

δzy dz'Ql ( Z ' Z ) ~ π (z-zV\z-z>

As it is shown in [6, Sect. 4.4],

therefore

(4.7)

Because the variation of the kernel dρmd'Q{\~n{) contributes a finite amount
to (4.5) the same is true for the kernel dρmd'G^m\ which allows us to vary it
outside the diagonal D, and then we can pass to the limit as z' —• z. The kernel
dρmdfG{

]~
m) for m > 0 is the kernel of the operator -ρmd*_mAzld!m from Jf""1'1

to JtT1/n. As it is shown in [6, Sect. 4.5],

J : = - Tr((-μv J

x

For m — 0 we have

uu CJΛ
 == — — ί2,

π
where ί2 is the Schiffer kernel (see (1.7)). Therefore using (1.8) we obtain

U{dd'Gf)\Dμ
x

L-J\B(Z,Z')- μ(z)dxdy
z'—zπ

= — - — — log det Im τ — / / (Im τ^ωiCύjLγμ,

where we have also used (2.4) and the fact that LVB = 0 (see Sect. 2). By formula
(2.3) the last integral vanishes identically and we obtain that

J (dd'Gf]) \Dμ = - -^r- log det Im τ. (4.9)

x μ

Now we turn to the term R^~m^\oLγμ in the integrand of (4.5). Let F be a
canonical fundamental domain of the group Γ in H such that its cusps are
exactly z i , . . . , z B € R u {oo}. We set

Fγ = {z eF\lmσ-{z< 7, i = l , . . . ,n}

and
C y = F n { z e H 1
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With the help of (2.3) we obtain that

)\D~dρ-l~d(Λo + \rι{μv)dxdy

A d-zy
dz y dz

where fμV = (zlo + \)~ι(μv) (see Lemma 1). For the integral I\ we have, due to
Γ-invariance of the integrand, that

„ lim Y
2 Y - w

z = x + v^ϊy.

Using Lemma 1 and 2 we obtain that

c ^ = _ ^ ( μ , v ) c u s p . (4.10)
* " i = l

Let us now proceed with the integral h First of all, for m = 0 we have h = 0
since R^\D is holomorphic. In this case combining formulas (4.5), (4.7), (4.9), and
(4.10), we obtain that

d2 . _ d2 , . . , . 1
_ ( // v ) —— logZ'(l) = τ r ^ Γ logdet Im τ + — (μ, v) - - (μ, v)c u s p,

which proves (4.4) for m = 0. For m > 1 we observe first that

s *-w> - Π
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(see [6], Sect. 4.6). It follows from this that

F

2 2 y-α

ΐ IJ h
The boundary integral h can be calculated in the same way as I\. We have

2 2 Y-

z —= x •

n 1

lim V / (Im σ ^ - ^ δ ' ί G ^ - Q^m))\D(<V) fμv(σiz)σ'i(z) dx,

Note that y~2md'(G[ m) — Q[ m))\D is a smooth automorphic form of weight 2 with
respect to the group Γ. According to [15, Corollary 3.5], we have

(I

= Σ y-2m/7β
(Γ

k=—co
kφ

where we used (1.5), the formula

1 1 Γ'(z) C 1
+ - + -T,^ (z + fc)fc z Γ(z) z z 2

and the Stirling formula. Taking now Lemma 2 into account we conclude that
/ 3 = 0 .

In order to calculate the integral U we observe that

d

The kernel ; Gj~m) is the kernel of the operator d-mAzι

mdlm = I — P-m\ (see
C7ώ OZ

formula (1.2)) in the space f̂""1'1, where / is the identity operator, and P_m,i is
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the orthogonal projection of Jίf~mΛ(X) onto Ω~mΛ(X). Moreover, from (1.5) it
follows that for z' Φ z,

;-2m & Q(-m){z z , } = 2 m + l β ^ _

Therefore

= U = \ JJ (-y-
2mP-mΛz,Z)

π x (2m+l)m

P) +

+

where we used formula (2.2) and the formula

(4.11)

which follows from the equality Ao(Ao + \)~ι = / — \ (Δo + j)'1. Combining the
results of computations (formulas (4.7), (4.8), (4.10), (4.11)) we obtain that

8 2 - logZ(m + 1) = Tr((-μv/ + (L^_ w )Jli(L,3! w ) - mQ-ι{L
dεμ dεv

6m2 + 6m + 1 7 x π . x

W v) - - (μ, v) c u s p .

Finally setting m = fc — 1 and taking Lemma 5 into account we arrive at the
assertion of the theorem, i.e. formula (4.3).

5. Concluding Remarks

Here we will calculate the cuspidal defect

δ? = cx(λk9 || ||β) - J (ch(T-k^g,n)
fiber

where integration is taken over the fibers of ^ΓgyYl —> Tg>n.

Theorem 2. We have
δ{k]=-^ωcusp. (5.1)

Moreover,

KίΛ)άir
for any μ, v £ Ω~1'ι(X), where L® is the Rankίn L-series for the cusp z\ (see
Sect. 2).
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Proof. By definition,

krg<n) • td(Tv<Γg,n)

where Θ is the curvature form of the Poincare metric in the line bundle
3~gn (see Sect. 2). Using (2.5) we have

fiber X

/

/ A p

μVQ - -7ΓT / Aθifμv)Q2 π z J
2π2

x

%v), (5.3)
ΔΊί~

where we also used Lemma 2 and Green's formula to make sure that the last
integral in (5.3) vanishes identically. Rewriting (5.3) in the form

2 1

J \
fib

2π "J " π 2

fiber x

(cf. Corollary 5.11 in [5]) and taking (4.3) into account we obtain (5.1). Formula
(5.2) follows now from (5.1) and (2.11).

Note that the cuspidal defect

40 ) = dimindδ, - J (ch(T-krg/ι) td(TυΓg/ι))1Λ

fiber

in the Atiyah-Singer index theorem is equal to —-. Indeed,

Jθ

Finally we present some algebraic geometry consequences of Theorem 1. First
of all, because all bundles and metrics on Γg?n considered here are invariant under
the action of the Teichmϋller modular group Modg s n, formula (4.3) holds also on
the moduli space Jί^n = T g j n/ Modg>n (in the sense of orbifolds). Consider the
universal curve ^ g = Jίgi\ and denote by ω the relative dualizing sheaf on ̂ g ?

i.e. the line bundle dual to the vertical tangent bundle (along fibers of projection
p : ̂ g -> Jfg) on # g . Further, let us denote by [ωWp], [ωc u s p] e # 2 (^ g , IR) = 1R2

the cohomology classes of the closed (1, l)-forms ωwp and ω c u s p on # g . Theorem
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1 means that for the first Chern class c\(λk) of the line bundle λk on (€g the
following formula holds:

C\{λk) = γ^2 [^WP] - <̂  tωcusp] (5.3)

From the exact sequence of sheafs

0 -> p*(Ωx(Jlg)) -> Ωι(%g) -> ω - 0,

(where Ωι denotes the sheaf of holomorphic 1-forms and p*(Ω1(Jίg)) is the
inverse image of the sheaf Ωι(Jίg)) it follows that

λι = p* (fa) Θ ω

on ^ g (here fa denotes the determinant line bundle detind§2 on Jig). This

formula together with Mumford's isomorphism fa = λ\3 on Mg [14] and with

the fact that λ\ = p*(fa) yields the isomorphism

λ2=λ\3®ω. (5.4)

Combining (5.3) for k = 1,2 and (5.4) we get

-=• [ωW P] = 12ci(λi) + ci(ω),

4 (5-5)
2 [ωCusP] = c i ( ω ) ,

1 4
i.e. ~2 [COWP], T [ωc u s p] G H2(^g9 Έ) are integral cohomology classes. In particular,
it follows from (5.5) that for any compact Riemann surface X of genus g > 2,
imbedded into ^g as a fiber a projection p : (€g —• ̂ g , we have

4 /• 1 /• . Λ

2 / ω c u s p = ^2 / ω wp = 2g - 2.

Substituting (5.5) into (5.3), we obtain the formula

Cι{λk) = (6k2 - 6/c + l)ci(Ai) + ^ ^ Ά Cl(ω),

which leads to the isomorphism

f ^ ^ (5.6)

on ^ g , because according to Harer's result for g > 3 the Picard group Pic(^g) =
2

g 9 Έ) is isomorphic t o Z θ Z [20]. The isomorphism (5.6) is analogous to

Mumford's isomorphism λk = λ\h2~βk+{ on Jig (see [14]).
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