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Abstract. We compute an intrinsic rank invariant for quasitriangular Hopf algebras
in the case of general quantum groups Uq(g). As a function of q the rank has
remarkable number theoretic properties connected with modular covariance and
Galois theory. A number of examples are treated in detail, including rank (Uq(su(3)))
and rank(Uq(e8)). We briefly indicate a physical interpretation as relating Chern-
Simons theory with the theory of a quantum particle confined to an alcove of g.

1. Introduction

Quasitriangular Hopf algebras (or "quantum groups") are a close generalization
of groups. In particular, for finite-dimensional quasitriangular Hopf algebras H
there is a natural invariant, rank (H), arising out of category theory as a natural
generalization of the order, |G|, of a finite group G [19,18]. The definition is
recalled in the preliminaries below. Moreover, the rank extends in a natural way
to the infinite-dimensional quantum groups Uq(g). It was computed explicitly for
0 = *i(2)as[19],

rank (17,(511(2))) = f±— . (1)

The numerator here is a theta function θ(q~1/2) and has remarkable modular

transformation properties under τ-> — . Here q = e2mτ and explicitly, θ(e~κι/τ) =

(ιτ)1/2θ(eπιτ). Because rank is an invariant, this suggests the possibility of simple
transformation properties of the algebra Uq(su(2)) as q undergoes a modular
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transformation. Our goal in this paper is to show that these results are not peculiar
to Uq(su(2)) but hold to some extent for more general quantum groups.

We remark that quantum groups are known to be related to the chiral algebras
of certain conformal field theories. For example, one well known point of similarity
is between quantum groups at roots of unity and affine Kac-Moody Lie algebras.
For a further point of interest see [16]. Since modular transformations play an
important role in such conformal field theories, we might expect that they also
have a role for quantum groups [1]. The modular transformation properties of
mnk(Uq(su(2))) and their analogues below are nevertheless surprising. This is
because it is the parameter q itself that is transformed: q corresponds in the usual
point of view to the level of the Kac-Moody algebra and is not something to
which we would expect to apply modular transformations in physics. See however,
the discussion in the concluding section.

The results of the present paper are as follows: in Sect. 2 we formulate some
expectations regarding rank(L/^(gf)) as a function of q. These motivate the main
results of the paper. We show in Sect. 3 that for general complex simple g,
τank(Uq(g)) takes the form of a θ function associated to the weight lattice of g.
We also show that rank (Uq(g)) has an infinite product representation that vanishes
on q any rational root of unity. Finally, in Sect. 4 we look at a number of examples
in detail. Among these, we find that the functional dependence of rank(l/€(sw(3)))
on q is not evidently that of a modular function but nevertheless has interesting
number-theoretic multiplicativity properties of similar character. We conclude with
some remarks about a possible physical interpretation.

Preliminaries. N denotes natural numbers excluding 0. We denote by 2+ the
natural numbers including 0. We adopt the usual notations for Hopf algebras and
quantum groups over C or over formal power series in an indeterminate. Thus a
Hopf algebra H is an algebra equipped with a coproduct Δ, counit ε and antipode
S. It is quasitriangular (a "quantum group" in the strict sense) if there is an element
@eH ® H obeying certain axioms [5], namely, (Δ ® id)(^) = ^ 1 3 ^ 2 3 , ( i d ® Δ)(@) =
^13^12 a i K * τ°Δh = ^(Δh)^'1 for all heH. Here M is assumed invertible, τ is the
twist map and ^ 1 2 = ^?(χ) 1 etc. See [19,5] for an introduction.

The representations of H as an algebra form a quasitensor category (also
known as "quasisymmetric" or "braided monoidal" [13,9]). See for example
[19, Sect. 7]. This means that there is a tensor product, commutative and associative
up to isomorphism, in a compatible way. The tensor product of modules
(x) is given via the coproduct of H, the associativity by vector space associa-
tivity and the quasisymmetry ΨVιV2'.V1®V2-*V2®V1 by ΨVι v2(

vi®v2) =
Σm{2) v2®@{1) v1. UQTQV1®V2EV^®V2 and @ = Σ@{1)®<%{2\

In quasitensor categories, as for tensor categories [4], we can ask for the
existence of an "internal horn" object for each pair of objects Vί9V2 such that

Mor(F 3 (g)F 1 ,F 2 )^Mor(F3,Hom(F 1 ,K 2 )) for all objects V3 by functorial iso-
morphisms θ (Mor denotes morphisms in the category). In this case one can show
that there are morphisms

Uom(V1,Wι)®Uom(V2iW2)-^Uom{V1®V29W1®W2), V-^>V**, (2)

where F* = Hom(F, j j and 1 is the unit object (in our case, the trivial represen-
tation). If these maps are isomorphisms then the category is said to be rigid cf.
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[4]. The finite-dimensional modules of H are rigid with Hom(F 1,K 2) =
LinίFi,^) an //-module via (h'f)(vΐ) = Σhiί) (f(Shi2yυ1)) for all hεH,
/ e H o m (Vί9 V2) and v1eV1. The notation here is Ah = Σh{1) ® ft(2). The maps ψl9ψ2

and their inverses were given explicitly in [19, Sect. 7.3.7].
In a rigid tensor or quasitensor category there is a map, Trace :Mor(K, V)->

M o r ( l , i ) coming from MorQ., ) applied to

Horn (V,V)^Horn(K, l )®Holn( l , F ) - ^ U l .

Here we identify HomQ, V)=V and ev = θ~γ(\dv*). Every object in the category
therefore has a natural intrinsic rank or "dimension" defined as Trace of idκ [4].
rank (V) has some natural properties and in the tensor case is multiplicative [4]. We
have followed here the treatment of rank via Horn analogous to that of [4].

In our case, in the category of//-modules and over <C, we identify Mor (1,1) = C
and normalize so that r a n k ( i ) = 1. Then [19],

Proposition 1.1 [79]. Let H be a quasίtrίangular Hopf algebra and V an H-module.
The intrinsic category theoretic rank of V is

In particular, H acts on itself in the left regular representation. Hence,

Definition 1.2 [79]. Let H be a finite-dimensional quasitriangular Hopf algebra. We
define rank(//) as the intrinsic rank of H as an H-module by left multiplication.

Some general results about rank(//) are in [18] along with a treatment of the
case when H is a quantum double. For the infinite-dimensional case of interest in
the present paper we adopt,

Definition 1.3 cf. [79]. Let P+ denote the set of dominant weights of g and V(Λ) the
irreducible highest weight Uq(g)-module with highest weight ΛeP+. We define

mnk(Uq(g))= £ (dim V(Λ))rank(V(Λ))
ΛeP +

as a formal power-series in q.

This is motivated by the Peter-Weyl theorem for the decomposition of the left
regular representation of a compact Lie group with Lie algebra g, as follows. In
general the ̂ -modules V(Λ) are also U q(g)-modules and in general have the same
multiplicities as their classical counterparts. In particular (with suitable completions
and for a restricted range of q) the left regular representation decomposes in the
same way as 0 (dim V(Λ))V(Λ). Hence Definition 1.3 follows formally from

ΛeP +

Definition 1.2 applied in an infinite-dimensional setting. This is the strategy adopted
for defining rank(L^(sw(2))) in [19].

The conventions for the quantum groups Uq(g) will be as follows. Let t be a
Cartan sub-algebra of g and o^eί* a system of positive simple roots. Here i runs
from 1 up to / = rank (g). It is possible to associate to this root system generators
{q±Hi/2,Xi9 X-i] generating a Hopf algebra over C[12]. We had this in mind with
a suitable topological completion in the derivation of Definition 1.3. However, for
our present purposes we can also follow [5] and define Uq(g) over formal
power-series C[[ft]] (with q = eh'2). Then the generators are {Hi9Xi9X-i}. As
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elements of a vector space we identify them with the corresponding elements of a
Cartan-Weyl basis of the g. In particular we have K(Hh h) = a^h) for all het, and
where K denotes the Killing form. The inverse of the Killing form defines a
symmetric bilinear form (,) on t* in the usual way and we let au = (&i9α,.), where
&ι = 2α, /(αf, αf). We assume that the Cartan matrix has atj < 0 for i Φ j . We do not,
however, make use of the ordinary Lie bracket structure on the vector space of g
but rather define the relations of Uq(g) as

qHi-q~Hi

lHi9X±j'] = ±(αf,cCj)X±p IXi,X-j] = δij—_ _! ,

qn-q~n

Here [n]q = —j- is used to define the ^-binomial coefficient. The coproduct is
defined by q~~q

the counit by ε(Hi) = ε(X±i) = 0 and the antipode acting on the generators by - 1
times conjugation by qβ, where

P=4Z#«> (3)
^ α>0

where Ha is the element of the vector space t defined by K(Ha, h) = oc(h) for all het.
The universal quasitriangular element 0t for Uq(g) is computed explicitly in [22].

We let p = - £ α so that p = K(ρ9 ).
2 α>0

2. Rank Formulate

This section motivates the following conjecture for τank(Uq(g)). This in turn
motivates some of the results that follow in later sections. We sketch an heuristic
or formal proof based on Hopf-algebraic considerations.

Conjecture 2.1. τank(Uq(g)) vanishes for all q a primitive root of unity with the
possible exception of q for which qM2 = 1 for all simple roots αf. For general q9

f[(\-q-n)Pn(q)

α>0

where Pn(q) are polynomials in a rational power of q.

Proof. The arguments for this are as follows. As we approach a primitive root of
unity, representations of Uq(g) become unfaithful since it can be shown that the
action of X±i to a certain power k, say, is zero. Since this happens in a uniform
way for all representations we can expect that mnk(Uq(g)) evaluated at a root of
unity coincides with mnk(Uq(g)'). Here we suppose that Uq(g)' is a finite-
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dimensional quasitriangular Hopf algebra over (C obtained from Uq(g) by including
relations of the form ^ + , = 0. This is well understood only for g = su(2\ but
something along these lines seems plausible for general g. Except for certain values
of q this finite-dimensional Hopf algebra Uq(g)' has antipode with square not equal
to one. S2 is given by conjugation by qlβ so the exceptional values are such that

q2(ca,p) = i f o r ajj i N o t e t h a t 2(ai9p)= HαJI2 as (αi9p) = 1. Hence by recent work
of Larson and Radford [15], Uq(g)r is not semisimple at the non-exceptional values
of q. However, it was shown in [18] that (in our case over <C), the rank of a
non-semisimple finite-dimensional Hopf algebra is zero: rank (1^(0)') = 0. If the
first part of the conjecture is true then the second part may also be expected for
sufficiently well behaved formal power-series rank (Uq(g)). The denominator here
is a simple expression in terms of the root system that vanishes whenever g l |αi"2 = 1
for all simple roots αt .

This was already found for g = su(2) in the form of a theta function;

rank(lL(«ι(2))) = !
\-q~2

via the Jacobi triple product identity for theta functions. This vanishes at all roots
of unity (including at the exceptional value of q, namely q2 = 1). The conjecture
will be verified for g = SM(3), SU(4) in Sect. 4.

To begin the computation of rank(L^(#)) we make use of a result of
Drinfeld:

Proposition 2.2 [6]. Let V be an irreducible Uq(g)-module generated by an element
v such that Xtv = 0 for all X{ and hv = Λ(h)vfor all het and some Λet*. Then acting
on V,

where p = - J] α.
2 α>0

Proof [6]. The element u as in Proposition 1.1 can be shown to implement the
square of the antipode by conjugation (this is a general feature of quasitriangular
Hopf algebras). Hence q~2pu is central. Hence in an irreducible representation it
is proportional to the identity, hence can be computed on any vector in V.
Computation on the vector v is particularly easy because the Xt vanish so that
only the lowest part of the series for 01 contributes. This lowest part involves only
the Ht as in [5]. Again, on v the Cartan subalgebra t acts by Λ9 immediately giving
the result.

Let V be a highest weight Uq(g)-mod\ile. The weight spaces Vλ are defined in
the usual way as

Vλ = {veV\hv = λ(h)v,Vheή.

The set P(V) = {λet*\ Vλ # 0} is the set of weights of V and V is a direct sum of
the Vλ with multiplicity dim Vλ. Denoting the set of weights of V as P(V), the
character of V is defined as ch(F)= £ (dim Vλ)qλ, where qλ (or more usually
eλ) is a formal exponential. Hence λeP(V)
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Corollary 2.3. Let P+ be the set of dominant weights, i.e. P+ = {Λet*\(A9at)e
Z+,Vi=l,...,rank(gf)}. Then

mnk(Uq(g)) = Σ (dimV(Λ))q-<Λ>Λ+2»ch(V(Λ))(2p).
ΛeP +

This version underlies a geometric picture of rank. Also, we can immediately
write this in terms of W, the Weyl group of g. W acts on t* as a group of isometries.

Proposition 2.4. Let W be the Weyl group of g. Then

rank(£7,(0))= £ (dimF(/i)) g _ „ „ ,

w/zm? J(μ)(v) = ( £ (det w)qwμ)(v) = Σ (detw)qiwμ>v\

\wsW ) weW

Proof Use the Weyl character formula in Corollary 2.3.

This version makes clear a general comparison with the Macdonald identities

[17],

where P(Q) = (1 - Q)ιY\(l—Qq*),M is a certain sublattice of the weight lattice
α

and #c is a constant. In the present context, \\p\\2/2gc = d/24, d = dimg and
/ = rank g. Evaluating on 2p gives an expression on the left similar to that for
v&nk(Uq(g)) in Proposition 2.4, but without the dimF(Λ) present there. On the
other hand, evaluating the identity on 1 gives [17]

λeM

where ά\m(V(λ))= Π — — \ — and η(Q) = Q1/2A Π (1"~ 6") *s the Dedekind
α>o (p,α) n =i

^/-function. This comparison with the Macdonald identities suggests that rank (Uq(g))
too should have a similar infinite product representation, as expected from
Conjecture 2.1.

We conclude with a more explicit version of Proposition 2.4, suitable for direct
computations.

qn-q~n

Proposition 2.5. Let [n]β = ^r . Then
q-q

Proof. The middle product factor here is WeyΓs formula for dim V(Λ). Continuing
from Proposition 2.4 we use the fact that the bilinear form on t* is symmetric
and invariant under the Weyl group to write J(Λ + p)(2ρ) = Σ (det w)qw

A+p)>2P) =

Σ (det w)q(w~ 1 ' 2<Λ+"» = Σ (det W ) ^ 2 ( Λ + P ) > = j(p)(2(Λ + p)) which is just
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Y[ (1 — q-2(<*>Λ+p)y Recalling that p is the half-sum of the positive roots, we have

Π (q{a>Λ+p)-q-{a'Λ+p)) as required. Similarly for the denominator J(p)(2p).
α>0

We remark that the last factor in Proposition 2.5 was found useful in [1] and
called the "^-dimension" of V(Λ) in analogy with WeyΓs formula. The intrinsic
category-theoretic rank(K(/i)) of Proposition 1.1 is different, having the further
gaussian factor which will be crucial in what follows.

3. Computation of Rank

In this section we prove the main theorem, Theorem 3.2. This asserts that
rank (Uq(g)) is a theta function associated to the weight lattice. The result precisely
generalizes the result for mnk(Uq(su(2))).

Lemma 3.1. Let d(Λ)= Π P^-for Λet*. Let
α>o (αp)

Here μeP = {μeί*|(μ, άj )e2K} is the weight lattice with basis of fundamental weights
{ωj over Z, and μt are the components of μ in this basis. \μ\ = Y4μi- Let
N = card {α|α > 0} and μ\ = ]J (μf!). Then ι

i

Σ (μlΓ1 Σ d<»(Λ)q-*Λ*2

α > 0

Proof Since W acts by isometries we have d{wΛ) = det {w)d(Λ) for weW. Also, if
Λ,μsP + 9wί9w2eW and wt(Λ + p) = w2(μ + p) then Λ = μ. From Proposition 2.4
and the proof of Proposition 2.5, we have

α > 0

-— in diμ) denotes differentiation in direction ωt in ί*. The numerator here is

therefore the same as
| Λ | | 2 = y (μiy1 y

Theorem3.2. Letfμ = {μ\)~1 Σ d(μ)(Λ)q~"ΛP as in the previous lemma. Then fμ = 0
forall\μ\<Nand ΛeP

τank(UJg)) =

q-\\ΛP

Π ( l - 9 " 2 ( " p>)'
α>0
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Proof. We use notations and results of [10, Chap. 3]. Let Hk(W) denote the space
of W-harmonic homogeneous polynomials of degree k on C ® P . W-harmonic
here means in particular harmonic with respect to Δ*, where Δ is the Laplace
operator corresponding to (,). Let I+(W) be the ideal of W-invariant polynomials
φ on <C®P such that 0(0) = 0, and d(I+) the corresponding ring of differential
operators. feHk(W) means that d(I+)f = O. It is known that Hk(W)nI+(W) = 0
if k > 0, see [10, Theorem 3.4]. It is also known that Hk(W) = span {diμ)}\μl = N.k,
see [10, Theorem 3.6(i)]. Hence Y diμ)(wΛ) = 0 if \μ\ < N. Now, card(W) Y d{μ)(Λ)'

weW ΛeP

^-M»2 = card(^) £ diμ){wΛ)q-^wΛ^2 = £ £ d(μ)(wΛ)4~ l |Λ|12. Hence / = 0 for
ΛeP weW ΛeP

\μ\<N. Finally, it is easy to see that £ (μ\)~ίd(β)(Λ) = d(p) = 1. The result then
follows from Lemma 3.1. \^\=N

4. Modular Properties

For computations it is useful to evaluate the above formula explicitly in terms of
the Cartan matrix for g. Proposition 2.5 is then,

Proposition 4.1. Let g be a complex simple Lie algebra with rank I, a the Cartan
matrix and αf simple roots as above. Let b be the vector given from the lengths by
b i II ||2 d l A b^ * £ bΓ *Thi = i II α, ||2 and let Au = b^ *, Pj = £ btaΓj *. Then

i

= Σ , - ' — Π
RmeR +

where d(x) = (qx — q~x)x. Here m are theΈ+-valued vectors corresponding to positive
roots Σ mi^i' We have used the usual vector notations for the Euclidean inner product

i

and for transpose, nb is given by the product {nb)ι = njoi.

Proof. P + is the half-lattice generated over Έ + by basis ω, et* such that (ωf, aίj) = δ^.

Hence ωt = Σ αjϊ * aρ giving (Λ A). For (Λ, 2p) use (ωh ρ) = Σ a]i12II aj II 2(β/> P) a n < i
j j

(άj9 p)=l for all j since p is the half-sum of positive roots. Similar computations
give the (α, p) and (α + /I, p).

We see from this expression that rank(L^(#)) is a sum of derivatives of rank
^-dimensional theta functions (completing squares and differentiating with respect
to a linear term in the exponent to bring down n{ factors). The content of
Theorem 3.2 is that these terms exhibit remarkable cancellations among theselves
to give a rank g-dimensional theta function. Theorem 3.2 is,

Proposition 4.2. Let g be a complex simple Lie algebra of rank I and A the matrix
defined from the vector of square lengths b and the inverse Cartan matrix as in
Proposition 4.1. R+ denotes the positive root vectors. Then

y c.-nτAn

rank(l/Jff)) = -
Π0-<

meR +
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Example 4.3 119~]. For g = su(2) we take a = (2) and b = (\). There is only one
positive root, α l 9 and p = 2(χi- The remarkable cancellations in τank(Uq(su(2))) can
be seen directly: rank(£/€(sw(2)))= Σ q~n(in/2) + 1)(qn + 1-q~n~1)(n+l)/(q-q~1) =

2^ ((^~H l)^f n —((ft~l~ 3) — 2)q *n ' )/(l — q ) = I 1 4-2 j ^ q n ) / (^ —Q )•

Because of this cancellation of terms the coefficients ofq~n2/2 in the numerator are
2 rather than growing as n.

A corollary of Theorem 3.2 and Proposition 4.2 is a result motivated by the
conjecture of Sect. 2,

Corollary 4.4. Let g be a complex simple Lie algebra. Then rank (Uq(g)) has an
expression as sums and products of one-dimensional theta functions θδ(q) — Σ q(n+δ)2,

neZ

where <5eQ. In this form, rank (Uq(g)) vanishes for all q a rational root of unity.

Proof. A has rational coefficients. We can complete the square in nΊAn for nl9

writing nTAn = βx(nγ + / I ( H 2 , . . . , W , ) ) 2 + g(n2,...,nt). Here fx is linear and g
quadratic in the n2 to nh both with rational coefficients, and βx is rational. Iterating
this we have nτAn = β1(n1 -^ fι{n2,...,nt))2 + j?2(n2 + /2(rc3> >fy))2 + ••• + βtnf.
Now split the values of n2 nt into various modulo classes, in such a way that in
each class the value of the fractional part of f1 is a constant, say δ1. In each class,
the nx sum then gives a θδι(q~βl). However, the sum over n2,...,nx within each
class is itself expressible as a sum over all integers nf

2,...,n[, say. Hence in each
class we can repeat the above for ri2. The result then follows by iteration.

I 2 - 1 \Example 4.5. For g = su(3) we have a = l I and b = (l,l). We have in

Proposition 4.2, rank(C/4(sw(3)))= Σ ^ " ( 2 / 3 ) ( m 2 + / l 2 + m π ) / ( l - ^ " 2 ) 2 ( l - ^ " 4 ) . Fol-

lowing the method of Corollary 4.4 the numerator is £ -̂(2/3)«m+(i/2)π)2+(3/4)n2) _

Σ <Γ 2 * 2 Σ q-{2l3)m2+ Σ q~2ik+ω2))2 Σ 4-(2'3><m+'<"/e2>>2. With θ = θowe have,
keZ meZ keZ meΈ

rank(I/,(5M(3))) = -

Similarly,

rank(l/,(su(4))) =

Corollary 4.6. Conjecture 2.1 holds for g = su(3),su(4).

Proof. Note that θδ(q) = qδ2 f[ (1 -q2n)(l +<?2(π+5)"1)(l-f-(3f2(/I"δ)"1) (a form of

Jacobi's triple product identity). Hence every term in the numerators in Example 4.5
00

contains the factor Y\ (1 —q~n). Similar results apply for all the rank (Uq(su(l + 1))).

As another corollary of Theorem 3.2 and Proposition 4.2 it follows that the
numerators in rank{Uq(g)) are modular forms with respect to a suitable subgroup
of SL(2,Z) [14, Corollary 13.6]. We have for example,
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Proposition 4.7. Let es denote the exceptional Lie algebra of the corresponding
Dynkin diagram. Then the numerator of mnk(Uq(e8)) is a modular form of
weight 4. Explicitly, mnk(Uq(es)) has as numerator the modular form E2(q~2) =

1+240 ]Γ rnq~2n, where rn = £ d3. The sum in rn is over positive divisors d.
neZ din

Proof. e8 has all roots of square length 2, so A in Proposition 4.2 is the inverse
of the Cartan matrix a for e8. As is well known [21, V.l.4.3], this Cartan matrix has
determinant 1 and hence defines a unimodular lattice JΓ. Hence θΓ(z) = £ e

mznTan

is a modular form, which turns out to be E2(z) [21, VII.6.6]. Hence θΓ(z) =

I = θΓ'{z\ the last equality being the Jacobi inversion formula. Hence

E2(z) = £ e™
nTA» a i S o. Regarding this as a function of q = e2πιz and using its known

ΠifZ

q expansion [21, VII.4.1], gives the result stated.
The remaining result of this section is motivated by the properties of the

coefficients of the Dedekind η function and other modular forms. Write

where the coefficients τn are Ramanujan's τ function on N. This has the property
[21, VII.4.5],

d\(m,n)

Here the sum is over common divisors d of m, n. In particular, τ is said to be
multiplicative in the following sense: if m and n are coprime then τmτn = τmn. If a
modular form f(q) = /(0) + £ fnQn *s °f positive weight and a simultaneous

eigenfunction of the Hecke operators Tn then its coefficients fn are multiplicative
[21, VII.5.4]. (Here we assume normalization such that fί = 1.) E2 in Proposition
4.7 is an example. Thus this property of the coefficients when m, n are coprime is
associated with modular functions in some generality and provides an alternative
to summing up the expression for r&nk(Uq(g)).

This multiplicativity property clearly holds for coefficients of the numerator of
the rank of quantum su(2) in the form

If n,m are coprime then the coefficients obey rmn = rmrn. This is because these
coefficients are non-zero only on perfect squares, where they have value 1: if m
and n have no non-trivial common factor and are perfect squares, mn is also
a perfect square, while if n or m is not a perfect square then since there are no
non-trivial common factors, neither is mn.

Proposition 4.8. Let r be the numerator function in

l+6r(q)
rank(l/g-3,2(«ι(3))) = :
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// m, n are coprime then rmn = rmrn, i.e. the coefficients are multiplicative. The value

on prime powers is

•1 p = 3

P=l(3)

"" ϊ 0 n odd, p = 2(3)

1 n even, p = 2(3)

for all primes p and n e N . Here (3) means modulo 3.

Proof. The function 1 + 6r(q) = 1 + 6 £ rnq" = £ q'i+-l+«ι«2t So 6rn is the

number of integers {nun2) such that the quadratic form A{nun2) = n\ + n^ + n x n 2

has value n. This is a well studied subject in number theory and it is known that

βrn = 6 y ( ). Here ( ) is the Legendre symbol extended to include m = 2

tin\m J \m J
and non-primes. See e.g. [3, Chap. 6] (where the formula is given for general binary
quadratic forms). In the present case

if x2 + 3 = 0(p) has a solution

if not

p = 3

P=l(3)

for all primes p, extended multiplicatively. The first equality is the definition for

p > 2. The second is Gauss' law of quadratic reciprocity, ( — I = I - I and provides
\ P J W

the definition when p = 2. This then immediately gives the result for r stated.

Multiplicativity of rn follows from multiplicativity of ί J. The result was first

obtained by computer. ^ ^
From this proposition it is easy to recognize the numerator in rank(ί/4_(3/2)(sw(3)))

as follows. For every multiplicative function f(q) = £ fnq
n, the Mellin transform

neN

_ / oo _ \

takes the form f(s) =YJfnn
 S = Π M + Σ fpnP "s )' w ^ e r e the product is over

neN P \ n=ί J

primes. For example, the Mellin transform of a theta function is ζ(2s), where
ζ is a Riemann ζ function, ζ(s) = Y[(l—p~s)~1. In the present case we have
immediately p

r(5) = ( l - 3 " s ) - 1 Π (\-P~T2 Π {l-p'-larι = ζiβ)Us,x\ (4)

oo

where L(s9χ)= Σ χ(n)n~s = Y\(l-χ(p)p~s)~1 is the L-function associated to the
w = 1 p

non-trivial character of the Galois group for the field extension Q[e 2 π l / 3] of Q by
a cube root of unity. The Galois group is defined as automorphisms of the extended
field that fix the base field. In the present case it has two elements, σγ the identity
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and σ2\e2mβ\-+(e2πιβ)2. The non-trivial character sends σx\-*l9 σ2\-+ — 1. This can
be viewed as a function χ on natural numbers that are prime to 3 (extended to

have value zero otherwise), giving in the present case χ(p) = ( ^ ) [21, VI.1.3].

This yields the same Euler product for ζ(s)L(s9χ) as that obtained for r. The
Euler product (4) for r was also obtained independently by very different
means in [11, Appendix]. In our case it follows easily from multiplicativity in
Proposition 4.8.

Note that the trivial character χ = 1 also defines an L-function, L(s91) =
(l-3~ s)C(s), so the numerator function r in rank(l/4-3/2(5tj(3))) has Mellin
transform (1 - 3~s)~1f]L(s,χ). For comparison, mnk(Uq-2(su(2))) has numerator

function r = £ q"2 with Mellin transform ζ(2s) while the associated field extension

is trivial, so"ethat the only character is trivial, with L(s, 1) = (1 - 2 ~s)ζ(s). The
numerator functions for higher τank{Uq{su(l + 1))) have also been investi-
gated. They have interesting but more complicated number theoretic pro-
perties.

5. Concluding Remarks

We conclude with some remarks about directions for further work. Firstly, a
possible physical interpretation of the main theorem, Theorem 3.2, is as follows. It
will be discussed in more detail elsewhere. The left-hand side of the theorem is the
rank, which is Tr u in the left regular representation. This u is well known in the
construction of link invariants from quantum groups, e.g. [20]. Previously, only
finite-dimensional representations have been considered. It is also well-known since
[23] that these invariants can apparently be interpreted as the expectation value
of Wilson loops in a quantum field theory with Chern-Simons Lagrangian
k 2

— f TrAdA + -A3 (k an integer). The quantum theory here has to be suitably
4π 53 3
interpreted, for example by using point-splitting or by working with ribbons. In
particular we have for the vacuum expectation value of a Wilson loop of a trivial
knot K with framing one,

<oiθ)
Here Pp denotes path-ordered integration in representation p of the Lie algebra
g. On the right p is the canonical deformation of this to a representation of Uq(g)
and q has to be specialized to q = e(2πi')/(fc+<?c)? w h e r e gc is the dual Coxeter number
oϊ g. Thus in particular, τa.nk(Uq(g)) is basically the vacuum expectation value of
the unknot in p the left regular representation in the Chern-Simons theory. This
is an interpretation of the left-hand side of Theorem 3.2.

On the other hand we can interpret the numerator on the right-hand
side of Theorem 3.2 for mήk(Uq(g)) basically as the partition function for
a quantum particle confined to a certain bounded domain in Euclidean
space, namely an alcove of g [2]. For example, the numerator for
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rank(Uβ(su(3))) is

y q-(2/3)(m2 + n2 + mn) __ j _j_ g y -(2/3)(m2 + n2 + mn)

m,neZ m^0,n>0

while the energy spectrum for a quantum particle of mass M confined to an
equilateral triangle of side a (with wave function vanishing on the boundary) is

~—I ZΓ-) (n2 + m2 + nm) for n, m > 0. This is a classic problem, but see for example
2M\3aJ
[11]. Thus the numerator function of rank(ί/4(su(3))) is basically the partition
function for this system with

where Tis the temperature and k is now Boltzmann's constant. Thus just as \G\
counts the points in a classical set G, the quantum group rank counts the "points"
in Uq(g) in a quantum mechanical sense.

Accordingly, Theorem 3.2 relates these two very different physical systems.
Note that the rank invariant studied in this paper is only the simplest in a family
of quasitriangular Hopf algebra invariants indexed by knots and links K. Let ΛGP+

be a dominant weight and IΛ{κ, Uq{g)) be the link invariant obtained by standard
quantum group methods (or the Chern-Simons theory) for the representation
V(Λ). Then we are led to consider

I(κ9Uq(g))= Σ (dim V(Λ))IΛ(κ,Uq(g))

for any knot or link K. The rank is the invariant corresponding to the unknot. It
seems reasonable to expect that the higher members of the family would like-wise
have interesting number-theoretic properties as functions of q and an interpretation
in terms of quantum mechanics in an alcove of g.

Finally, we note that the rank theory for quasitriangular Hopf algebras extends
easily to quasitriangular quasi-Hopf algebras along the lines of Sect. 1. Let g be
a simple Lie algebra and let A be a quasitriangular quasi-Hopf algebra [7] over
£ [ M ] quantizing the universal enveloping algebra U{g\ i.e. such that A is a
topologically free C[[ft]]-module and A/hA ^ U(g). Then rank(X) = mnk(Uq(g))
(where q = eh/2). The proof of this depends on the fact that the rank of a
quasitriangular quasi-Hopf algebra is invariant under the "twisting" or "gauge
transformation" introduced in [7]. It is already known (as a case of [7, Theorem 1])
that every quantization is obtained by a twisting of Uq(g).

In this context we also observe that there is another independent connection
between braid invariants and Galois theory, and this was recently connected with
quasitriangular quasi-Hopf algebras in [8]. It may be very interesting to try to
relate this with our results above. The preprint arrived some time after the present
manuscript was completed: we mention it as an interesting possibility for further
work.
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