
Commun. Math. Phys. 137, 175-190 (1991) Communications IΠ
Mathematical

Physics
© Springer-Verlag 1991

Quantization via Real Polarization
of the Moduli Space of Flat Connections
and Chern-Simons Gauge Theory in Genus One

Jonathan Weitsman*

Department of Mathematics, M.I.T., Cambridge, MA 02139, USA and
Department of Physics, Harvard University, Cambridge, MA 02138, USA

Received June 6, 1990; in revised form September 24, 1990

Abstract. We study the quantization of the moduli space of flat connections on a
surface of genus one, using the real polarization of this space described in [10]. The
quantum wave functions in this formalism are exponential functions supported
along the integral fibres of the polarization. The space of wave functions obtained
in this way is isomorphic to a space of theta functions. We use our construction to
construct part of what may be a topological field theory in genus one, and to
compute the associated invariants of some three manifolds. These computations
agree with those of Witten [12], but the invariants are expressed as sums of
quantities computed at a discrete set of connections with curvature concentrated
on a link in the three manifold. A similar prescription is used to produce knot
invariants.

I. Introduction

In [10] we showed that the moduli space Sg of flat SU(2) connections on a two-
manifold Σ9 of genus g possessed, in addition to the standard Kahler polarizations,
a real polarization. One motivation for this study was that the quantization of this
system in this real polarization may give some new insight into the structure of the
conformal field theory related to this system, and may be a useful method to study
Witten's quantum field theoretic interpretation of the Jones polynomial, with
which it is intimately connected.

In this paper, we continue this program by studying the quantization of this
system, where SU(2) is replaced by any compact Lie group G, on a two-manifold of
genus one. In this case the quantization may be carried out explicitly, and indeed is
almost trivial. Nonetheless it exhibits many of the expected properties of
topological quantum field theory, as axiomatized by Atiyah, and gives a number of
other results. These are briefly as follows.
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First, the quantum Hubert space «#£, where keΊL is the power of the relevant
prequantum line bundle, and G is a compact lie group, may be taken to consist of
sections of the line bundle supported on certain Lagrangian subvarieties of the
moduli space. This space is seen to have a natural linear isomorphism with the
space J^β hoi obtained by quantization of this system in a holomorphic polari-
zation. Of course, the space ^G ; h oi depends on a modular parameter τ, which
specifies the Kahler polarization of S1 used to obtain it; and so, the linear
isomorphism with J fJ is also τ-dependent. This isomorphism with a fixed linear
space exhibits the independence of the space ^G ; h oi of the choice of polarization
[3,9] in a natural way. The quantization in a holomorphic polarization may be
shown [4] to yield a Hubert space isomorphic to the space of Weyl-Kac characters
for the affine Lie algebra associated to G; in a real polarization these are replaced
by certain exponential functions supported on Lagrangian subvarieties of the
moduli space. They exhibit the well known Kac shifts for the weights of
representations of the affine lie algebras [6].

Second, the modular group SL(2,Έ) acts on J f̂  (as it does on «^;hoi)j a n d in
fact J^Q gives a natural projective representation of SL(2, Z)-isomorphic of course
to the representation given by the Weyl-Kac characters referred to above.
However in our formulation the action of the modular group has a simple
geometrical interpretation. The standard generators 5, T of SL(2,Έ) have different

behaviors on the real polarization of [10]. The generator T= I I preserves

the polarization, and acts on 34f£ as a diagonal matrix; while the generator

S = ί I does not preserve the polarization, and its action must be

constructed using the BKS pairing. This yields a priori only a projective
representation of SL(2, Z), which we verify is in fact a true representation.

Finally, we come to topological quantum field theory. We construct part of
what we expect to be a topological quantum field theory by associating to a two-
manifold of genus one the space Jf£ described above. In view of the isomorphism
described above between the quantizations obtained from the real and holo-
morphic polarization, this choice is equivalent to that of [12]. However, the close
association between elements of our quantization and Lagrangian subvarieties of
the moduli space enables us to take a step towards constructing another important
constituent of topological field theory, which is the assignment of an element
V(Y)e J^Q to a three-manifold Y with boundary dY= Σ. This is obtained roughly
as follows. Any presentation of the surface Σ1 as the boundary of a three-manifold
7 3 obtained by a Heegaard splitting of a three-manifold gives rise to a natural
Lagrangian sub variety Lγ of Sv The space Lγ is related to the Lagrangian
subvariety Lsi x D2, corresponding to the standard solid torus, by the action of an
element of the modular group SL(2, Έ). On the other hand, we shall see that
corresponding to the presentation Σ1 = d(S1 xD2) there corresponds a natural
element V(SX x D2) e J^G Hence, we may use the action of SL(2, Έ) described above
to obtain an element of &?$ corresponding to Y. In fact, we can use the action of
SL(2, Έ) to obtain such an element (up to a multiplicative constant) for any Y3 with
dY3 = Σ1, so long as the (isotropic) subvariety LγcSί is Lagrangian.

Of course, to check that these results actually correspond to a topological
quantum field theory would require the construction to be generalized to higher
genus. This we are not able to do. We do however have the following suggestive
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application. Let M= Y+KJΣIY3 be a Heegaard splitting of a three manifold M
along Σ1. The axioms of topological field theory [1] show that the number

obtained from a topological quantum field theory is an invariant of the manifold
M. We use our explicit formula for V(Y) to compute the putative invariant for

We reproduce Witten's result [12] for the three sphere; but as V(M+), V(MJ) are,
as sections of a line bundle over Sί9 supported on transverse Lagrangian
subvarieties, we see that this invariant is simply the sum of torsions computed at a
finite number [in the case of G = SU(2\ two] points of Sv

To apply our results to produce invariants of knots in S3, we note that our
methods allow us to assign an element of #?$ not only to a three manifold Y
bounding Σ1, but also in some special cases to a pair (Y, L) consisting of a bounding
three manifold Y and an embedded circle Lc Y, labeled by a representation of the
group G. We obtain an invariant of a knot in S3 by producing a splitting of S3

along the knot torus, thus obtaining two elements of J^Q : one corresponding to the
"interior" pair (S1 xD2,K)9 and the other corresponding to its complement Yy

which in this case is guaranteed to correspond to a Lagrangian sub variety LYCS1.
The inner product of these two elements yields our knot invariant, which is again a
sum of torsions computed at a finite number of points of Sv

These results raise a number of questions. First, it would be interesting to know
whether the knot invariants defined above could be extended to links; and if so, to
determine their relation to known invariants, and in particular to those associated
with known conformal field theories. More generally, we see that the use of a real
polarization gives an interesting point of view on the conformal field theory
associated to current algebra. It would be interesting to know whether real
polarizations arise in connection with other conformal field theories, and whether
the associated moduli spaces give rise to interesting topological invariants.

II. A Classical Integrable System in Genus One

Let (N2n, ω) be a compact symplectic manifold, and let L-̂ -> N2n be a complex line
bundle, with unitary connection α, such that dα = p*ω; then c1(L) = [ω']. The
system (N, ω, L, α) is a classical integrable system if there exists a fibration π: N^B
whose fibres are Lagrangian submanifolds of N; that is, manifolds π~ι(b) of
dimension n such that ω|π-i(fc) = 0.

Now let Sx denote the space of equivalence classes of representations
ρ: π1(Σ1)->G, where Σ1 is a two-manifold_of genus one and G is a compact, simple
group. It is well-known that the space Sx is equipped with a 2-form ω which is
generically non-degenerate [2]. In [8] it was shown that the Chern-Simons 3-form

may be used to construct a complex line bundle Jίf—>Sl9 with a unitary

connection α,jo that generically dα = p*ω. Furthermore, in [10] we constructed a
fibration SF.S^Bγ whose fibres were Lagrangian subvarieties of Sv Hence we
have the basic elements described above for classical integrable systems - except
for the degeneracy of ω and the corresponding degeneracy of the fibres of &. For
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our purposes however it will be convenient to have a more concrete description of
this integrable system, which can be obtained by considering some integrable
systems associated to line bundles on complex tori. This description is self
contained; in Proposition 2.1 we show it indeed corresponds to the structure of [8]
and [10].

2.1. Line Bundles on Complex Tori

Let UcJSJ1 be a lattice, and let C/c= t/®CcR / I®C = (C'1. Let there be given a
nondegenerate, skew symmetric real form £:C"xC"-+R, which is integral on
U€xU€; we may as well take £|R»xR» = 0. Let α: l / ^ S ^ C satisfy

oc(u1+u2) = eiπEiUl'U2)φι)φ2)' (2.1)

Then, following Mumford [7], we define a line bundle Ufi, α) on the complex torus
fc as the quotient o fC"xC by the action of C/c given by

^λ). (2.2)

The metric on L(E, α) is simply

||φ(Z)||2 = |φ(z)|2, (2.3)

which is clearly invariant under the action of l/c. (Note that in [7] the metric is
given by ||φ(z)||,2 = β(π/2)ReH(z'z) | |φ(z)||, where H(z9y) = E(x9iy) = iE(x,y); this ac-
counts for the apparent discrepancy in (2.2).) This metric gives rise to a unitary
connection A on L(£, α), whose curvature is precisely the constant 2-form ώ given
by the skewsymmetric bilinear form E. To obtain a classical integrable system, we
let π:(Cn/U(C^ΊRn/U be the projection onto the real part; that is, π is the map
induced on C"/!/* by the map π:<C"->R" given by

π(z l5..., zn) = (Imz1?..., ImzJ. (2.4)

It is clear that the fibres of π are of dimension n, and since £ | R n x R n = 0, we have
ώ|π-i(b) = 0. Hence the system {fCtIUe

9EyL(E9oi)9A)9 with the fibration π, is a
classical integrable system.

2.2. Carton Tori of Lie Groups

Now let G be a compact, simple Lie group and let Γc G be a Cartan torus. We will
use the construction of Sect. 2.1 to produce an integrable system o n T x I

First, by exponentiation, it is clear that

where ίc is the complexifϊcation of t = Lie(Γ), and IF is the complexification of the
root lattice Uct. Now on t there exists the natural inner product <, >G appropriate
to the root system of G. This inner product is integral on U x U; if G is simply laced,
the inner product is even on U x U. We use <, >G to produce a skew symmetric real
form EG: ίc x ίc->lR by letting

EG(P + iq, p' + iqf) = <p, q'>G ~ <«, p'>G. (2.5)
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Now suppose G is simply laced; we may then choose α = 1, and obtain a line
bundle L(EG, l)-+TxT, with a unitary connection whose curvature is EG. Likewise
we have a fibration # : Γ x T-*T whose fibres are Lagrangian submanifolds of
TxT.

2.3. The Space St

Now recall that Sί was the space of equivalence classes of representations ρ: π^Σ1)
= Z@Z^>G. Any such representation is in fact a representation ρ:Z®Z-+T,
where T is a Cartan torus of G. Since all such tori are isomorphic, Sx may be
described by

where Wά{2L% is the Weyl group of G, acting diagonally on T x T. It was on this space
that were defined the symplectic form ω, the line bundle J5f, and the fibration 3F
described in [8] and [10]. On the other hand we have the following result. Let
π: T x T-+(T x T)/W, π: Γ-> T/W denote the projections.

Proposition 2.1. (i) There exists a line bundle <£^>TxT/W such that π*J&
= L(EG,1).
(ii) There exists a function ^:(TxT)/W-*T such that the following square

commutes

TxT —Ψ-+ T

-I , l
(iii) Let&-*Tx T/W denote the line bundle of [8]; then <£ = &.
(iv) Let &\ Tx T/W-+T/W denote the fibration of [10]. Then # = #\

Proof. Parts (i) and (ii) are immediate: The existence of the line bundle 2 follows
since the inner product <, >G, and hence the skew form EG, is W-invariant. Likewise
β exists since π o β(χ) = π o &(y) whenever π(x) = π(y). It remains to show (iii) and
(iv). (iii) Let <srfF denote the space of flat G connections on I"1, and ^ = MapsίΓ1, G)
the group of gauge transformations. Then jtfp/y ̂ T x T/W, and by the results of
[8], the bundle £f-+s/F/& is given by the unitary cocycle θ:^Fx &-+S1 given by

) = e x p ^ t r J ^ g - ^ g + - i _ t r J(g-Mg)3, (2.6)

where Y is any 3-manifold whose boundary is Σ, and g is an arbitrary extension of g
to Y. On the space srf% = T x T of constant gauge fields, the remnant of the gauge
group is precisely U^xW; then Ŝ  = jtfp/U^ x W. For g e U€

9 we may choose Y so
that g extends to Y as a map g: Y-» T; then the second term vanishes, and

where xeTxT corresponds to A and ueUc corresponds to g. For g e W, we may
choose g and g to be constant; then Θ(A, g) = 1. Hence the line bundle Jδf coincides
precisely with &.
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Remark. The line bundle $£ exists by [8] for any group G, and π*jS? must be of the
form UEG, α) for some α. However, if G is not simply laced, EG is not even, and α = 1
is not a solution of (2.2). It would be interesting to construct α in this case,
(iv) We recall the construction of the fϊbration P S^B^ First, Bγ was defined
quotient of G by the adjoint action of G on itself; it is clear that

Second, we had R1 c» G x G as the zero set of the function R(a, b) — aba~ιb~ι — \.

Then the fibration 3F was the map &\ St -+B1 induced by the projection onto the
first factor

and completing the diagram

Kx d GxG - ^ - G

i J i
(T x T)/W= Sλ > (G x G)/Gadj > G/Gadj =

It is then clear that the following square commutes

Γ • T/W

proving (iv).

III. The Quantized System in Genus 1

Let (N2n, ω, L, α), along with a fibration π: N2n^B, be a classical integrable system
as described in Sect. II. Let Sπ denote the sheaf of local sections of L which are
covariantly constant along the fibres of π. The quantization of this system is then
the vector space H*(N, Sπ), which, as we shall see below, may be provided with a
natural Hubert space structure.

In [11] Sniatycki has shown that the sheaf cohomology if*(AΓ,ίS'π) may be
computed explicitly. We summarize his results in Proposition 3.1. Let b e B, and let
rb:π~1(b)-*N be the inclusion. The fibre π~ι(b) is said to satisfy the Bohr-
Sommerfeld condition if the holonomy of r$ot about any closed loop in π " 1 ^ ) is
trivial. Since the curvature of rjfα is zero, any such fibre is equipped with a global
covariant constant section sb :π~x(b)-+r$L, unique up to a constant multiple. Let
Bbs denote the set of points beB such that n~\b) satisfies the Bohr-Sommerfeld
condition; for b e Bbs, let Sb denote the one dimensional vector space generated by

Proposition 3.1 (Sniatycki) [11].
(i) H\N2n,Sπ) = 0 if iφn.

(ii) There exists a natural isomorphism Hn(N2n,Sπ)~®beBbsSb.
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Now the space Hn(N, Sπ) has a natural Hubert space structure given by the
inner product

<%V> = 0, b*b'9
(sb,sb> = \\sb(x)\\2,

where xeπ~γ(b) is arbitrary; since sb is covariant constant, the inner product is
independent of the point x. Heuristically the sections sb may be looked upon as
distributional sections of L concentrated on π " 1 ^ ) .

3.i. Quantization on Complex Tori

We may apply Sniatycki's method to the complex torus C 7 ^ c , with line bundle
L(E,α) and fibration π: <En/U(C-*WLn/U. The Bohr-Sommerfeld condition for the
fibre π"x(fc) then reads

oc(u)eiπE(z>u) = l (3.2)

for all zen~\b\ we U.
Now for u e U9 we may choose a linear functional λ e (<CΠ)*, real on R" C <C",

such that
α(w) = expίπ/l(w)

for all ueU.
In terms of λ9 (3.2) reads

λ(u) + E(b,u)e2Z (3.3)

for all ueU. Thus there will be precisely j/detE points in (R"/^L; and the global
co variant constant section on the fibre π " 1 ^ ) is simply

sb(z) = exp iπE(b, z) + πiλ(z). (3.4)

The above considerations take a particularly simple form for the complex torus
tc/t/c, and line bundle (L(EG, l))Θfc, considered in Sect. 2.2. In this case the Bohr-
Sommerfeld fibres are those located at points b e t/U satisfying

(3.5)

for ueU; that is

( t / ϋ ) t a = ~ t 7 . (3.6)

The section sb at the point - u = b is simply

-'U,Rez>. (3.7)
fV

3.2. Relation to Θ-Functions

The dimension ]/detE of the cohomology //W(C7^C, Sπ) is precisely that of the
space of ^-functions associated to the torus C/ί/^ and line bundle L(E, α), and
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obtained by quantizing this symplectic manifold in a Kahler polarization. In fact
the isomorphism between the two spaces may be given explicitly. Let us do this for
the case of the complex torus ίc/£7c.

The holomorphic sections 5(z) of the bundle (L(£G, l ) ) ® * - ^ / ^ are given by
[ 7 ' 6 ] / k 2\

0 y / f c » = e x p ( ^ ) Σ e-π«a+*k)2 + 2πi«a+*k)z (3.8)
\ 2 J aeU

for y e 17.
Now recall that these sections are defined with respect to the standard metric

on the line bundle (L(£G, 1))®*, which is

\\s(z)\\2 = e-πkW\s(z)\2 (3.9)

Thus, to compare them to our sections, we write

W z ) = e π*W 2 / 2£v/*» (3-10)

A computation establishes the following result.

Proposition 3.2. Let y, y' e U. Then

ί Sy/h,k(z)%'/k,k(z) = C'δyy'>

where C > 0. Hence the quantization of the classical system is seen to be independent
of the polarization.

3.3. Quantization on Sx

We now turn to the quantization of the integrable system constructed on
Sί = TxT/W.ln this case, due to the degeneracies of the fibres of ^, we are not
able to apply Sniatycki's theorem. This is best illustrated in the case G = SU(2) (see
Fig. 1). In this case the moduli space is a two-torus with identification of points
differing by reflection about the origin; in the figure, each point on an edge of the
triangle shown is identified with its image under reflection about the midpoint of
that edge. The Bohr-Sommerfeld subvarieties (shown here for k = 3) are located at
y = 0/2k, l/2fc, ...,fc/2fc. Most of these subvarieties are circles (because of the edge
identifications). The exceptions are the degenerate fibres at 0 and 1/2, which are
copies of the interval [0,1].

We quantize this system as follows. The sheaf S^ is defined as the sheaf of local
sections of the line bundle 5£ which are continuous everywhere, smooth (with
respect to the smooth structure obtained from the smooth structure on TxT)
away from the fixed points of W, and locally covariantly constant at the
nondegenerate fibres of # \ Such sections automatically come from W invariant
sections oϊ S^ on TxT. Hence we obtain the following result.

Proposition 3.3.
(i) Hi(TxT/W,SSF) = 0iϊi + n.

(ii) There exists a natural isomorphism Hn(Tx T/W9Sf)<χ(BbeιmϋSϊ.

Here S^ is the one dimensional vector space generated by the section

= Σ (-1)"
weW

sh = Σ i-irx
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Fig. 1. The moduli space St for G=51/(2), along with the Bohr-Sommerfeld fibers of & in the case
/c = l The fibers marked suppsj}3 and supps^ are circles, and correspond to elements of
H*(SlfS#). The other two fibers are copies of the interval [0,1]

where, for weW,

xeπ

The space Hn(Tx T/W,S^) is clearly a Hubert space, with the inner product
induced by the inner product on Hn(T x T, S&). To compute its dimension, we first
remark that some of the sections sb~ are zero; these sections correspond to
degenerate fibres of &F. Those which remain are in one to one correspondence with

the set P = < ρ + - y >, where ρ is one half the sum of the positive roots of G, and γ is
L /c J

a positive weight of G. The cardinality of P is in fact precisely the number of
integrable, level k, representations of the affine lie algebra 6. This is more than a
coincidence; the Weyl-Kac characters of these representations are related to the
^-functions by

where 0 λ + ρ, k + h = exp- (π(k + h)j)θλ+βik+h and Π{z) = θρ-h(z).

As a consequence of Proposition 3.2, we have the following

j)θλ+βik+h and
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Corollary 3.4. Let λ,λ'e-—τ'U+, where U+ is the intersection of U with the

positive Weyl chamber. Then

z2 \z\2

ί χλ+ρ,fc+Λ iJ expπ(/c + / ί ) τ expπ(/c + /z)—- 5 r + ρ > f c + Λ* = const ^ .

In conformal field theory the characters χλ+ρ> k+h appear as conformal blocks of
the current algebra of G at what is denoted as level k [4], We see here that they are
related to the quantization of the line bundle i?® <*+*>, where /c^O. The shift
k-*k + h will reappear in our computations of manifold invariants in Sect. V. It
would be interesting to know what role the sϊ+ρ play in the representation theory
of afϊine Lie algebras.

IV. Action of the Modular Group

The construction of the quantum Hubert spaces Hn(Su S&) involved the choice of a
polarization IF of Sx and this, in turn, depend upon a choice of generators for
π^Σ1). This choice cannot be fixed by diffeomorphisms of Σ1 so we must now turn
to investigating the behavior of //%Sl5S^) under the diffeomorphism group.

First, it is clear that on the symplectic vector space H^Σ1,^, the map φ%
induced by a diffeomorphism φ:Σ1->Σ1 is a linear symplectic map; in other
words, an element of SL(2,Z). As generators of this group we choose

S = ( V T= ( Λ The action of SL(2, Z) on T x T is the induced action

on H^Σ1, T). This action can be described explicitly as the action induced on
T x T by the following action of S and T on the complexified torus t€:

(4.1)
S((z1,...,zn)) = (zί/ϊ,...,zΠ/0.

As is plain from (4.1), the generator T preserves the polarization # , whereas the
generator S does not. So we must review the construction of the induced group
action in each of these cases.

4.1. Group Actions and Quantization

Let (N2n, ω, L, α), along with a fibration π, be a classical integrable system, and let
Hn(N,Sπ) be its quantization. Suppose we are given a transformation G:N-*N
such that G*L = L as line bundles with unitary connections. Let us first consider
the case where G preserves the polarization π; that is, suppose

π(G(x)) = π(x)

for all xeN.
Let us choose a basis {sb}beBbs for Hn(N,Sπ), as provided for by Sniatycki's

theorem (Proposition 3.1). We define the induced action of G on Hn(N,Sπ) by

(4.2)

It is then clear that, given a group of such transformations, the induced action
on Hn(N, Sπ) results in a representation of this group.
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On the other hand, suppose G:N-+N is a symplectomorphism, preserving L
and α as before, but not preserving π. Suppose instead that the fibres of the map
πG = πoG:N^B (which are of necessity Lagrangian submanifolds) are transverse
to those of π. It is then clear that a fibre π-1(&) satisfies the Bohr-Sommerfeld
condition if and only if π^ 1{b) does. Thus we may identify the cohomology spaces
Hn(N,Sπ) and Hn(N,SπG), via a map G#:Hn(N,Sπ)^Hn(N9SπG) defined by

G#(sb)(x) = sb(G(x))

for XEUQ 1(b).
We use this map to produce an action of G on Hn(N, Sπ) by using the BKS

pairing [13], defining

(G*sp)(x) = Σ Σ <sMG*Φ)>'sAχ)> ( 4 3 )
qeBbs yeπ-i(q)nπG

ί(p)

where the sums in question are finite since the fibres of πG intersected those of π
transversely.

If we are given a group of transformations of this type, there is no assurance
that this pairing will indeed produce a representation. This is however the case in
many examples; as we shall see, the action of SL(2,Z) on the complex tori (and on
Sx) fit into this category.

4.2. The SU2,Έ) Action on the Torus

It is now straightforward to compute the induced actions on S, T on Hn(T x T,
We have the following result.

Proposition 4.1. The induced actions of the symplectomorphisms S, T on
*, Sβ) are given by

(fyi φ = δ«v exp(iπ<w, v}/2k),

(S*)LU,LV = exp(m<M

for u,veU. The matrices S^, T^ induce a representation of the group SL(2, Έ) on
Hn(TxT,S&).

To compute the induced action on Hn(SuS&\ we use the description in
Proposition 3.3 of the elements of Hn{Su S&) as W-invariant elements of
Hn(Tx T,S&). We then have the following result:

Proposition 4.2. The induced action of the symplectomorphisms S, T on the space Sί

are given by

)i i = Σ (-lΓexp(/π<W,ι;>/fc)
k k w e W

for-u,-ve<ρ+ -U>. The matrices (T^), —= —— S^. = S% induce a representation
k k I k ) yk \W\
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Remark. Let G = SU(2). Then, for fc^2, we have

(S*)p/h,q/k= -TF

yk
These are the results of [6]. In general the representations described here are

(not surprisingly) simply the representations of the modular group appearing in
the theory of level-fe 0-functions.

The proofs of Propositions 4.1 and 4.2 are simple computations; to verify that
the relevant matrices induce representations of SL(2, Έ) it suffices to check that
Sl= - 1 , (SJ|ίTJ3 = l. This follows immediately from the formulas.

V. Topological Quantum Field Theory

5.1. Axioms for Topological Field Theory

We now wish to try to use our construction to obtain a topological quantum field
theory in dimension 3 - or as much of it as we can. Let us recall the axioms for
topological field theory [1]. A topological quantum field theory is an assignment Z
of smooth oriented 2-manifolds to finite dimensional Hubert spaces and
diffeomorphisms to linear isomorphisms satisfying the following axioms:
1. If Σ* denotes the smooth manifold Σ with orientation reversed, there exists a
canonical isomorphism

where (Z(Σ))* denotes the dual vector space.
2. If ΣίuΣ2 is a disjoint union, then

3. Let Y3 be a smooth, oriented 3-manifold with boundary dY3 = Σ. Then there is
an element V(Y)eZ(Σ); if Φ: Y3-»Γ3' is a diffeomorphism of pairs,

3) = Z(Φ\dγ3)(V(Y3))eZ(dY3).

4. Let dY3 = Σ1vΣ29 dY3' = Σ^Σ3. We may consider

V(Y3) e HomCZ^)*, Z{Σ2)), V(Y3) e Hom(Z(Σ2), Z(Σ3)),

and

V{Y3KJΣJ
3') E HomίZ^)*, Z(Σ3))

then, as linear maps,

V{Y3\JY3')=V{Y3')OV{Y3).

5. Let 73* denote Y3 with opposite orientation. Then F(Y3*) = <F(Y3), >, where
<, > is the inner product on Z(Σ = dY3).
6. The set {V(Y3)\dY3 = Σ} spans Z{Σ).

As a consequence of these axioms, we have the assignment of an invariant
V(M3)e<D to a three manifold M 3 with empty boundary. And if we write
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M3=Y3uΣY
3', where Y3 and Y3 are three manifolds with boundary Σ, then

F(M3) = <F(Y3), V(Y3')). It remains to produce an example of the assignments Z
and V.

Now let Σ9 be a Riemann surface of genus g. Then the space Sg of
representations ρiπ^Σ^-^G contains a large open cell Sg which is a Kahler
manifold; and the line bundle if ->Sg is a holomorphic line bundle. Then Witten
has proposed [12] that the assignment Σ9^H^ol(Sg,^) induces a topological
quantum field theory. For this it is necessary to show that this assignment is
independent of choice of holomorphic structure; this was done in [3,9]. What has
not however been provided is a geometric prescription for the assignment
V(Y) e Z(Σ) for Y such that dY= Σ. We propose here a different construction of the
space Z(Σ) which will enable us to make some progress towards constructing the
element V(Y).

Specifically, we suggest that the vector space Z(Σ) be taken to be

where $F is the foliation of [10], and S# is the sheaf of local sections of £?^>Sg

which are covariantly constant along the nondegenerate fibres of #", smooth on Sg,
and continuous everywhere. We now turn to see how this works in genus 1.

5.2. Topological Quantum Field Theory in Genus i

In this case the space if*(S l5 S&) has been shown to be isomorphic to Hξol(Sl9 5£\
and hence our construction coincides with Witten's proposal.

However, the specific use of the polarization 2F allows us to make a guess
concerning the assignment Y^V(Y). Given a presentation dY=Σ, we obtain a
natural isotropic subvariety Lγ oΐSg, given by those representations ρ: π1(Γflf)->G
which extend to representations ρiπ^Y^G. We will from now on concentrate on
the case where this isotropic space is maximal, and therefore Lagrangian. In the
case g = l, the space Lγ is the image of S1 of a Lagrangian vector subspace of
i f ^ I ^ R ) . Any such Lagrangian vector subspace is related, via an SL(2,Z)
transformation ψγ, to the "standard" Lagrangian vector subspace associated with
the presentation of Σ as the boundary of the solid torus S1 x D2. Hence if we can
produce an element Vfi1 x D2) e Z(Σ), we will have an element V(Y) e Z(Σ\ defined
by

V{Y) y{S1D2). (5.1)

We note that there will be more than one possible choice of element ψγ;
different choices will differ by right multiplication by Tm for some integer m, where
T is the element of the modular group described in the beginning of Sect. IV. We
shall see that different choices of element ψγ will correspond to different
normalizations of the element V(Y).

So let us consider the case where Σ1 is presented as the boundary of the solid
torus S1 x D2 in the standard way. It would be natural to try to assign to this three
manifold an element of Z(Σ) corresponding to the Lagrangian subvariety Lsί x D2

= ^r~ί(0) oϊSv Unfortunately there is no nonzero element of Z(Σ) corresponding
to this Lagrangian subvariety, which is degenerate; in other words, OφP. Hence
this first guess cannot be right.

Let us however, try instead the assignment

xD2) = 5ρ;fc, (5.2)
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where, as in Sect. 3.3, ρ is half the sum of the positive roots of G. This is a nonzero
element of Z(Σ). We use this element and (5.1) to define the element V(Y) for any
three manifold bounding Σ (and with Lγ Lagrangian) by Eq. (5.1) above. We note
that the ambiguity in the choice of ψγ gives rise to a multiplicative constant in the
definition of V(Y\ with different choices related by powers of exp(iπ/k\ as a
consequence of the formula for the action of T on Z(Σ) given in Proposition 4.2.

We can use this guess for the assignment V(Y) to compute V(S3) and obtain a
check of our results with those of Witten. To do so we form a three-sphere by
gluing two solid tori via the diffeomorphism of Γ = 5 1 xS 1 = 5(S1 xD2) which
exchanges the S1 factors. This diffeomorphism clearly induces on Z(Σ) the action of
the element of SU2,Έ) denoted in Sect. IV above by S. Therefore, V(S3) is given,
using axiom (4) for topological field theory and the assignment (5.2), by

= <s^, S^/k) = (SJρ / M / i k. (5.3)

In the case G = 5(7(2), this is equal to

This agrees with the results of [12]; note that one must make the substitution
fc->fc + 2 as in Sect. Ill, where we saw that the expressions corresponding to what is
usually called current algebra at level k arise from quantization of the line bundle
<g%k+2^ Using (5.1) and (5.2) we can now compute the putative invariants V(M) for
a wide class of three manifolds M. The computation of these invariants is
particularly simple when M is given by a Heegaard splitting along a torus. In this
case, there is no ambiguity in the choice of element of SL(2,Έ), since the manifold
M is defined in terms of such an element ψeSL(2,Έ). Using (5.1) and (5.2), we
obtain immediately the formula V(M) = (ψJ)ρfkρίk, which is in agreement with the
results of [12].

We may perform further computations by noting that the topological
quantum field theory we are considering admits the following generalization of
axiom (3):

(3') Let 7 3 be a smooth, oriented 3-manifold, with boundary dY3 = Σ. Let L be
a (framed) link in Y3, and let λ be a weight of a level-fc integrable representation of
6. Then there is an element Vλ(Y3,L)eZ(Σ); if Φ:(Y3

SL)->(Y3',L') is a dif-
feomorphism of pairs,

So let us generalize our guess for the assignment V above by assigning to the
solid torus S1 x D2, with an unlinked circle in marked by a representation λ along
its meridian, the element s(~+λ)/fce #*(#!, S^). We may form a three-manifold S3

with embedded links by giving two solid tori as before, and then the resulting
element V(M) e C is given by

(S(ρ + λ)/k> S*S(ρ + λ')/k) = (S*)(ρ + λ)/k,(ρ + λ')/k '

In particular, for G = SU(2) we reproduce the entire table (4.39) in [12]:

for the invariants associated to S3 with two unknotted, linked circles labeled by
integers
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Fig. 2. The moduli space 5Ί for G = SU(2), with the support of the sections s1/3 and -S#52/3. The
invariant V(S3, L\ where L is an unknotted circle, may be computed as the sum of the inner
products of the values of the two sections at the points where their supports meet

The computation of V(M9 L) for M given by a Heegaard splitting along a torus
gives rise to an interesting interpretation of these objects. The sections_s(~+λ)/k and
S#5(ρ+λ')/fc are supported on transverse Lagrangian subvarieties of Sv We take
their inner product by formula (4.3), so that the invariant V(M, L) is obtained by
taking the inner product (in Jέf) of the values of the sections s(~+Λ)/fc and S#s[ρ+λΊ/k

at each point where their supports intersect, and summing over intersection points
(see Fig. 2). Thu^the invariant is the sum of quantities computed at a discrete set of
connections in 5V In the case of M = S3 and G = SU(2) there are precisely two
connections which contribute to this sum. In this way the invariant would seem to
be analogous to the invariants of Casson and Johnson. However, the connections
in question, rather than extending flatly to M, extend to M as connections with
singular curvature along two linked, unknotted circles. This behaviour and the
analogy with the Casson invariants are obscured in the holomorphic formulation.
However, while the set of flat connections on a three manifold M, which appears in
the computation of the Casson invariant, can certainly be characterized without
resorting to a Heegaard splitting, I do not know of any way of producing a similar
invariant characterization of the connections appearing in the expression for
V(M). It is therefore not at all clear from this formulation that the V(M) are
independent of the Heegaard splitting.

We can however use our construction to produce true invariants of knots in S3.
For convenience we restrict our attention to the groups SU{n\ though this is by no
means essential. We label the knot by an integral element λ of the root lattice of
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SU(n), corresponding to a choice of a representation. Let K c S3 be a knot, and let
XcS3 be a neighbourhood of X diffeomorphic to S1 x D2. Let Y=S3\X; we will
write S3

 = X\JΣY, noting that when K is a nontrivial knot this will be a Heegaard
splitting. Let ΨγcSL{2,I) be the set of elements of SL(2,Z) carrying the
Lagrangian vector subspace of H1(Σ1 = dY,*R) corresponding to LyCSi to the
standard Lagrangian sub variety corresponding to Lsi x D2. Any two elements of Ψγ

differ by multiplication by Tm for some integer m. Given an integer fc, we have
defined in Sect. IV a representation of SL(2, Έ)\ so given a choice of element tp e fy,
we define

^ ψ W = (\ψγS)*)ρlk, (ρ + λ)/fc '

A different choice of ψ' e Ψγ will yield an invariant Pψ>(k) differing from Pψ(k) by a
factor of qm, where q = q(k) = Qxp(iπ/2k), and m is an integer. To make a precise
statement, we will use the following definition. Let /:Z->(C be a function. The
balance class of / is defined as the set of functions / :Z-*C satisfying ?{k)
= q(k)mf(k) for some integer m. By the previous remarks we see then that the
elements of ΨYCSL(2,Έ) define functions lying in a single balance class; let us
denote this class by PΨγ. We may summarize this construction in the following
proposition.

Proposition 5.1. The balance class PΨγ is an ambient isotopy invariant of the knot K.

We note that in this case the splitting of S3 into two three-manifolds with
boundary is given directly by the knot, and that therefore the issue of independence
of choice of such splitting does not arise.

It would be interesting to understand the relation between these invariants and
standard knot polynomials. A first step would be to generalize the invariants
defined above to links.
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