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Abstract. We prove that in entropic K-systems of type II γ the automorphism is
strongly asymptotically abelian.

1. Introduction

In classical statistical mechanics, approach to equilibrium is a well-known
consequence of the mixing properties of the physical systems. These properties
manifest themselves in the clustering behaviour of correlation functions. The
strongest version of clustering occurs in those systems called X-systems [1]. Since
nature is governed by noncommutative laws we are led to try to formulate concepts
analogous to that of abelian ergodic theory also in a quantum frame.

It is clear that finite quantum systems cannot exhibit any mixing, because of
the spectral character of the Hamiltonian governing their evolution. But in the
thermodynamic limit of an infinite system we can have representations of the
algebra of operators such that the generator of the dynamics does not belong to
the algebra. Then we are in a good position to find an approach to equilibrium
without invoking a coupling to an external reservoir that should drive the system
to equilibrium.

Asymptotically abelian systems with ergodic or even mixing properties, as
defined in the literature, are characterized by certain typical decays of the two
point correlation functions which resemble the weak or strong mixing typical of
the abelian case. Recently the extension of the Kolmogorov-Sinai entropy to the
quantum realm [2] has been used to concretely formulate a noncommutative
version of K-systems [3] as systems with "complete memory loss." This definition
reduces to the classical one for abelian systems and there provides a certain "strong"
clustering property.

Also for quantum systems we shall prove that entropic K-systems that are of
type II1 guarantee strong asymptotic abelianness and therefore also clustering.
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(Notice that there exists another definition of algebraic K-systems that is equivalent
to that of entropic K-systems in the classical situation, but only leads to weak
asymptotic abelianness [4].) Generalization to the general case of type III is under
investigation.

2. Entropic tf-Systems [3]

We describe a quantum dynamical system in terms of a C* - or von Neumann
algebra Jί and a faithful state ω over M invariant under the automorphism σ.

Definition (2.1) [2]. The following functional is called the n-subalgebra entropy:

Hω{sfl9...9s*J = sup H{ωw)(s/l9...9s/n)9

X™1 X"1

(ϊ) k^lΊΪ fc=l ik ' Λ

where sti9 i = 1,..., n, are finite dimensional subalgebras of Jί9 (i) is a multiindex
i l 5 i 2 ίn, *?C*) = — xlogx, and with x(i)eJί such that

(i)

σω being the modular automorphism of ω,

Σ
(0,ikfixed

and, finally,

S(ωI ώtχ,t = Tr {ώtK t [In ώ^ - In ω | j / t] }

is the relative entropy of the states ώ\k and ω restricted to the finite dimensional
subalgebra s/k and thus represented by suitable density matrices.

Properties (2.2)12,3'].
1. HJsfu..., O ^ HJβu. ..,«„) if j / f s ΛfVi,

2. ίU^,. . . ,J* p ,J* p + l 9 . . . ,s/ n )ύH ω (s/ l 9 . . . ,Λ/ P ) + Hω(s/p+l9...,Λ/Π).
3. Hω(τ(s/1),...,τ(s4t)) = Hω(sfu...,stft) for τ an automorphism of ^ with

4. HJtsf^s/J-HJtst^HJis/^s/^HJtsta where

H ω (Λ/l |Λ/ 2 )= S U P

(i)

5. ί ί ω (^) > 0 for ω faithful unless s/ = Cl.

Remarks (2.3).
1. The supremum in the definition (2.1) is taken over all possible decompositions
of the state ω and the n-subalgebra entropy represents the maximal information
about the subalgebras achievable by refining the state over the whole algebra.



Entropic K-Systems 233

2. If si is abelian and ω is the tracial state then the 1-subalgebra entropy reduces to

( | J f
{Pj}i=i N^ being a set of minimal projectors.

Proo/. σ^2 = 1 due to the tracial property of ω. One has

Hω(sf) ^ ΣωixJSiωlώixt))^ = S(ω}J -

The supremum is attained for ώ(xf ) |^ a pure state, thus for xf = P f . In this case
we know the optimal decomposition exactly.
3. Observe that continuous decompositions of the reference state ω have been
excluded from the above definition of the n-subalgebra entropy.

We make, indeed, the following important observation [2, p. 704, Lemma VI. 1]:
Given Hω(Aί,...,An), for any ε > 0 there exists a finite decomposition {x(ί)}(i)ej,
card / = #(ε, d) < + oo, d = max dim At such that

1 ^i^

H{X(ι)}(Aί9...,An) ^ Hω{Al9...,An) - ε^ε),

where H{X{i))(Aί9..., An) is the value of the n-subalgebra functional attained at the
given decomposition {x(l )}. Moreover:

4. Remark 2.3.3 is the central point in the proof that the n-subalgebra entropy
Hω(Al9...9An) is continuous with respect to the strong topology induced on the
von Neumann algebra M by the GNS construction relative to the reference state
ω. Any finite dimensional C*-algebra At can be embedded as a subalgebra within
a full matrix algebra Md(C) with a conditional expectation ϋ ^ M ^ C ) - * ^ . If
{Bi}i=ι,...,n is another choice of finite dimensional subalgebras of M with
Ei'.M^Cj-^Bi the corresponding conditional expectations and VxeMd(C),

sup [ω((£ i(x+) — Eί(x+))(Ei(x) — jE f(x))]1/2 < ε for some ε > 0,

then

with α ( ε ) ^ > 0 [see 2, pp. 704-6].
5. If A cz M is a finite dimensional subalgebra invariant under the modular
automorphisms of ω, Vί:σ^(i4) c 4̂, then

for any maximal abelian subalgebra & in the centralizer of si [2, p. 711, VIII.6],
e.g. when ω is tracial the result holds for any subalgebra si and, if si is abelian
and generated by the set {P;};=I,...,N< + OO of minimal projectors, then:
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Definition (2.4) [2]. The quantity

hω(st9 σ) = lim-HJ*/, σ{si)9..., σ
n~ \jf))

n n

is called the dynamical entropy of the automorphism σ with respect to the finite
dimensional subalgebra si c Jί.

Let us now consider the quantum dynamical system described by the triple
(Jί, ω, σ), where Jί is a von Neumann algebra with a state ω invariant under the
dynamics represented by the automorphism σ of Jί.

Definition (2.5) [3~\. (Jί,σ,ω) is called an entropic K-system if

lim hω(si, σn) = Hω(s/) V finite dimensional subalgebras si of Jί.
n

Remarks (2.6).
1. Due to Property 2.2.1 and using the subadditivity 2.2.2 of the n-subalgebra
entropy it can be proved that for entropic K-systems the dynamical entropy is
strictly positive, hω(σ, si) > 0, for any subalgebra si φ Cl. For abelian algebras
this complete positivity is equivalent to the requirement in the above Definition,
whereas it is not proved to be the same in the quantum case [3].
2. Intuitively speaking hω(σ,si) is the long run averaged information about si
obtained by letting si evolve through unit time intervals. Definition (2.5) would
indicate that in the limit of increasing time steps the information about si is not
retained any more and the system develops a complete memory loss [3].

3 Strong Clustering for a Type IIX Entropic it-System

3.1.

Let (Jί, ω, σ) be a quantum dynamical system as specified above.

Definition (3.1.1). Set bn = σn(b) ΊbsJί\ then (Jί,ω,σ) is

1. weakly clustering if lim ω(abnc) = ω(ac)ω(b\
n

2. strongly clustering if lim ω(abncdne) = ω(ace)ω(bd)

n

V a,b,c,d,eeJί [5,6,7].

Remarks (3.1.2).
1. Besides the obvious observation that strong clustering implies weak clustering
we easily deduce that the former implies

lim ω(a\b\ cj] [cΛ, b]a) = 0 V a, b, ceJί,
n

and the latter
lim ω(α[cπ, b~]d) = 0 V α, b, c,deJί.

n

Accordingly we have that in the GNS representation based on ω, strong
(respectively weak) clustering implies strong (respectively weak) asymptotic
abelianness.
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2. If the state ω is assumed to be faithful, e.g. equilibrium states over simple
C*-algebras, then, by means of the KMS conditions we can replace:

a.beJί,
n

2 -> 2': lim ω(abncdn) = ω(ac)ω(bd)V a, b, c,deJί.
n

3. Physically one is much more used to weak-clustering which implies mixing, that
is every observable tends weakly in time to its expectation with respect to the
invariant state ω:

This in turn guarantees the ergodicity of the dynamical triple (JK9 ω, σ): that is ω
is extremal invariant. Strong clustering is more related to its consequence, namely
strong asymptotic abelianness which holds true for the free evolution of the Boson
algebra and the even Fermi algebra and which we would like to extend to a more
general class of evolutions.

We now specialize the triple (M,ω,σ) to be a type II t factor with ω its unique
trace, invariant under any automorphism σ of Jί and state the main result of this
work:

Theorem (3.1.3). // the triple (M9 ω, σ) is an entropic K-system then it is strongly
clustering and hence:

1. weakly clustering:

lim (Ωω\πω(a)πω(bn)πω(c)\Ωω} = (Ωω\πω(a)πω(c)\Ωω}(Ωω\πω(b)\Ωω).

n

2. strongly asymptotic abelίan:

lim || ίπω(c),πω(bn)-\πω(a)\Ωω)\\ = 0 Vα,ft,ce^,
n

where (|Ώω>,πω( ),^ω) *s the GNS triple associated to ω.

The proof of the theorem requires several steps.
Lemma (3.1.4). // (Ji, ω, σ) is weakly clustering and strongly asymptotically abelίan
then it is strongly clustering.

Proof.

ω(abncdn) = ω(ac(bd)n) + ω(a[bn9 c] dn)

and

n9c-]dn)\2 ^ ω(dldnaJ)ω(lbn,cί\bH,c]).

Lemma (3.1.5). If for general projectors we have weak clustering, and if for commuting
projectors P and Q it happens that

lim ω(PQnPQn) = ω(P)ω(Ql
n

then strong clustering holds.
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Proof. Since we are dealing with a von Neumann algebra, according to Lemma
(3.1.4), strong clustering holds if lim ω([K, S J [K, S J ) = 0 for R, S general projectors
in M. Since

ω&R, S J [Λ, S J ) = 2[

the lemma is proved if lim ω(RSnRSn) = ω(R)ω(S). Now, we can write
n

ω(RSnRSn) = ω((R + S)SnRSn) - ω(SSnRSn)

= ω((R + S)(R + S)nRSn) - ω((R + S)RnRSn) - ω(SnSSnR)

= ω(Sn(R + S)n(R + S)R) - ω((R + S)R(RS)n) - ω(SnSR)

+ ω(l(R + S),(R + SURSn) - ω((R + S)[RΠ!/?]SJ - ω(S

Hence

lim ω(RSnRSn) = ω(S(R + S))ω(R(R + S))- ω((R + S)R)ω(RS) - ω(S)ω(SR)
n

Since the constant part gives ω(R)ω(S) it is sufficient to prove that

for A selfadjoint. This again holds if lim ω ( [ P , β J [ P , Q J ) = 0 for all P , β with
n-»oo

[P, β ] = 0, or, following the above strategy, if lim ω(PQnPQn) = ω(P)ω(Q) for all
n

P,Qwith[P,<2] = 0.
We wish now to elucidate how Hω(s/l9...,^n) behaves asymptotically if

{M, ω, σ) displays a complete memory loss.
We prove the following result which is actually valid for all entropic X-systems

without restrictions on the type of Jί and the invariant state ω.

Lemma (3.1.6). // {M, ω, σ) is an entropic K-system, the n-subalgebra entropy
Hω(stf, σw(j/),..., σn{k~ υ (j/)) becomes additive in the limit of large steps for any finite
dimensional subalgebra si czj(\

lim Hω{s/, σn{^\..., σM(fc- »(sί)) = kHω(^) V k ̂  2.

Proof Let stfn indicate an{^\ From Definitions (2.4,5) we get:

lim hω(st9 σn) = lim lim - Hω(s/9 Λ/Λ, . . ., Λ / ^ _ υ ) = Hω(s/). (1)
n n p p \y i

For p large enough the left-hand side of (1) can be controlled, by virtue of properties
2.2.2,3, in the following way: Fix ZceN and write p = mk + q, l^q<k; then:

-ffω(^Λ<, <p-l))

subadditivity 1

+ Hωi ̂ nmk' > ^nmk +«(«- 1))]
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covariance 1 , .

k- 1)) + ~T

Since Hω(stf,..., j / M ( f c _ υ ) ^ kHω(<srf) it eventually follows:

\ li= lim U ^ > O ^ \ lim H ω (^ , . . . , ^ B ( k _ υ ) ^

Remark (3.1.7). When /c = 2 the above result reads: lim Hω(^, stfn) = 2Hω(jtf). Let

us write down Hω(jtf, s/n) explicitly:

= sup

(2)

Note that:

1.

o>y(l) =

since ωl(ί)=Yjωij(ί),ωj{ί)=Yjωij(ί), and x(\nx—lny)^.x—y,x,y^O. The equality

holds if and only if ω/(l)ω?(ί) = ω y(l).
2.

(3)

owing to Definition (2.1) with n = \ and to the covariance of the rc-subalgebra
entropy.

If we denote by {j>ί<7 («,β)} the set of positive operators which, according to
Definition (2.1), give the optimal decomposition for Hω(jtf,stfn) within ε and
additivity holds in the limit of larger and larger steps then, from 1. above, we expect

lim lim [ωiy^n, ε)) - ω(y}(n, ε))ω(yj(n, ε))] = 0.

In order to give a precise meaning to this limit we should be able to control
the decompositions when n is large.

In the next paragraph we use inequalities (3) and Remark (2.3.5) to achieve this
control.

3.2.
N

We recall that ω is the unique trace on the type IIX factor Jί. If {Pt}i= i,...,#, Σ Pi = h
t = l

PiPj = δijPj are the minimal projectors which generate the abelian finite dimensional

subalgebra st, then Hω(jtf)= - Σ ω(Pi)logω(Pi) (see Remark 2.3.5).

We prove the following

Theorem (3.2.1). Let srf be a finite dimensional abelian subalgebra of M, generated
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by the set {Pi} i = 1 N of minimal projectors. Correspondingly stfn = σn(s/) is
generated by the set {Pi(n)}i=UmtttN9 after setting P^n) = σn(Pi).

Since ω is the trace on M9 we consider the canonical conditional expectations
E:J(-+stf and En:Jt ^s^n. For any ε>0 there exists an integer M and some
functions δί(ε),δ2(ε) with limδi(ε) = 0 such that for any n^M we can construct a

ε->0

decomposition of ω given by the finite set of positive operators {yij(n)}Uj=it^^N + u

0 < yij{n) < 1, for which:

1.

H{yij(n)} ( ^ ^n) = Hω(<^> ^n) — δ x (ε), δ 1 (ε) — — • 0 + .

Moreover:

2.
\\E(yl(n))-Pk\\Sδ2(ε) fc=l,...,ΛΓ,

3.
\\E(y2

k(n))-Pk(n)\\^δ2(ε) fc=l JV,

N+l JV+1 ε_^Q +

yk(n)= T ykMl yk(n)= y yik(n)l δ2iε)——>0+; fc=l,...,iV.

Proof. Part I: Construction of {)fy(w)}.

i ί ω ( j / , Λ/Π) ^ 2//ω(j/) owing to subadditivity and covariance;

lim Hω(stf, <srfn) = 2Hω(s/) by assumption (complete memory loss).

Then

Vεx > 0 3 M e N : V w ̂  M 2Hω{<stf) - Hω(jtf, srfn) ^ ε1 #

Remark (2.3.3) tells us that V ε2 > 0 3 a decomposition of ω given by {xΛβ(n)}{(Xyβ)eI x j
with finite cardinality #(ε2,N\ such that:

Hω(sf, s/H) - H{Xaβin)}W, j * H ψ 2η2(ε2) = 6 ε 2 Q + log (l + ̂ \ (4)

Recalling that in our case

and

(n) ), ώ(x2

β(n)') = ω(xβΓ'Σ
βeJ

are normalized states for which

ω = Σ ωix^ώixKn)-) = Σ ω(xj(π))ώ(xj(n) ),
ael βeJ

we get:

_ J | j / J i ) ) = S(α) | j / i i)- Σ ω(xj(n))S(ώ(x2

β(ny\κ).
eJ βeJ

Together with the explicit expression of Hω{srf,stfn) given in Remark (3.1.7), we

αe/ αe/

j(n))S(ώ(x2
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eventually obtain:

ael

+ Σ ^{x2

β{n))S{ώ{x2

β(n)'\κ) < εx + η2(ε2) =:ε (5)
βeJ

for n^M.
All the summands in (5) are positive, and therefore

ΣωίxJίnHSίώίxJOOOiJgβ, (6)
ael

(ny)^n)fίε. (7)
βeJ

We now consider I = IίuI2 and J = J 1 u J2 with:

*2(n)') )< Γ

and I2, J2 the complements of/1 and J 1 in / and J, respectively. From (6), (7) and
(8) it follows that

, 2, ,, Γ ( 9 )

_ ω(x2

β(n)) = Jε.
βeJ*

Since si and j / n are abelian:
N

n) ),^)= — ^ ώίxίίnJPiJlogώίx^nJPf),
i = l

= - f Σ
Therefore:

- ώ(xί(Λ)Λ) log cδίxίWP,) ̂  v ^ ( 1 0 )

V i ^ l ^ . ^ N αe/^iSeJ1.
The function — x In x is understood to be zero at x = 0; this continuity makes

us consider the right neighbourhood of x = 0 and the left neighbourhood of x = 1
determined by η±(ε) according to:

and the corresponding two possibilities for ocel1 and βeJ1:
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N N

Since ώ(xl(n)) = ώ(x2

β(ή)) = 1 Vα,β and Σ Pt = Σ Pfy%) = 1, it turns out that, for
ΐ = l

ε2 small enough, there can be only one P^P^n)) for a given ael1 (βeJ1) such that
the second possibilities in (11) show up.

We are thus led, by making ε small enough, to the following partitions of the
sets / and J and the corresponding coarse graining of {xaβ(n)}((Xtβ)ejxj:

ocelj: ώix^rήP^l-η^εl φJWP^^fε) if rφi )

(12)
βeJJ: ώ(x2

β(n)Pj(n))^l-η(ε\ ώ(x2

β(n)Ps(n))Sη(ε) if

βeJi

If then follows:

ij\n) — L ZJ xaβ\nh h J — ±> ' ,
aeU βeJj

ael2 βeJj

n)= Σ2Σ
χ*β(n)> * = U'~>N

3̂iv + i,iv+iW= Σ Σ x«/?(4
j?eJ 2 ocel2

tf(n)== Σ };ij(w)=="\ °^1 !

JV+liV+1 JV+1 JV+1

Σ Σ Λ/n) = 1, Σ y?(«) = 1, Σ
i = l 7 = 1 ί = l 7 = 1

//: Evaluation of the Estimates. We have to control the quantity:

which is smaller than (see Remark (3.1.7))

JV+1

Σ
ω(yHn))ω(y2(n)) ω(xl(n))ω(x2

β(rή)

co(xaβ(n))

ΛΓ+1

i = l

Λf+1

7 = 1

αe/

ω(y?(n))S(ω,ώ(yJ

2(n) ) ) , J , π -

(13)

(14)

, (15)

(16)

(17)
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The properties of the function x(logx — logy) imply that the second term in (15)
always decreases under a coarse graining (see [2], Lemma VI. 1).

Together with (5) we get (15) ̂  2ε.
We can rewrite

(16) =
N+l

, — Yjω(xl(n
ael

αe/

[ωiyKrήWώiyKny^-Σωixϊ

Since dim A = N and S{ω^) ^ In N for any state ω, along with (12) we get:

(Recall: ^(n)= Σ ^ίW)

Let us concentrate on for

due to (12).
If E\M-*s4 is the conditional expectation into J / which respects the trace ω,

then:

\ώ(xl(n)Pi)-ώ(PkPi)\ =

Set

(19)

As 0 < x^π) < 1 Vαe/, 0 < μ* r(n) < 1 and, for αe/i, we get:

rΦk.
(20)

Therefore: Vαε/fc

x, Vi = 1,...,N,

and, after summing over aell and setting cl(ri)= £ /*ί'*(")»

(21)
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Let ω* indicate min ω(PX then

From (19) it follows:

(22)

T A*1 •*(»)•

and thus 0£cl(n)£l.
Furthermore, using (22) in the last inequality:

JV+1

i = Σ ω(yi(«))

k=ί

N

As Σ co(Pk) — 1 a n d cl(n) ^ 1 for any k = 1,..., N it turns out:

1 - ^(n) <; ω^ ^^/ε + iVω^^fε)).

Putting together the preceding estimates (22), (23) we eventually obtain:

IIE(yl(n))-Ph\\£ ||E(yl(n))-d(n)PhI

(23)

)]=:52(ε), fe=l,...,iV. (24)

The second estimate in the statement of the theorem is therefore obtained and the
proof of the third one follows by exactly the same argument with the replacement
of s/9 E.M^sό, {Pi}i=l9m.mtN by s/w En\Jl-*s4n, {Pi(n)}/=l f... fN, respectively.

We go back now to the estimate:

and observe that

= sup \ώ{yl(n)a)-ώ(xl(n)a)\

S sup
aeA,\\a\\S

From (18) we have:

On the other hand:

ώ(yl(n)a)-
ω(Pka)

ω(Pk)
+ sup

aeA,\\a\\£l

ω{Pka)

ω(Pk)
-ώ{xl{n)a) • (25)

sup \ώ(xl(ri)a) - ώ(Pka)\ ^ NηM (26)

\ώ(yl(n)a)-db(Pka)\ί
l{n)ά) (o{yl(n)a)

ω(Pk)

1 1
ω(yl(n)) ω(Pk)

ω(E(yl(n))a)-ω(Pka)

ω(Pk)

ω(Pk)
:

1, (27)
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where (24) has been used and the fact that 0 <. y\{ή) g 1. (26) and (27) yield:

IIώ(yl{n)-)w - ώ{xl(n)')w|| ^ Nηi(ε) + 2δ2(ε)ω~1 =: 7 l (ε) . (28)

Inserting (28) in the estimate

given in [2, Lemma IV. 1], we get

(16) ^ 2^/ε In N + 3T l(ε) - + log I 1 + — I =:y2(β).

The estimate (17) ^ y2(ε) can be performed following the very same argument, so
that:

/,^n)\^2ε + 2γ2(ε).

Remembering the inequality (4) at the beginning of Part I together with the
definition ε = εx + *72(ε2)

 w e S e t :

with δ1(ε) = 4ε + 2γ2(ε) the generic ε of the statement of the theorem being obtained
by choosing ε2 small enough and M e N large enough.

Remarks (3.2.2).
1. In the first part of the proof of the theorem the main point was selecting those
decomposing states whose weight was not too small in comparison with ε. Indeed
we required the corresponding entropies to be smaller than y/ε: in other words
we have eliminated, via the coarse graining, "the points with too small measure." As

Σω(xί(π))=Σω(x^)) = l,
αeJ βeJ

we see that for any ε there will be α and β for which 5(ώ(x^(n) )|^)

S(ώ(Xβ(n)')lsfJ ^ λ/ε^ otherwise the above two sums would result smaller than
2. We have indicated by {xap(ri)}M)eIXJ the decomposition of cardinality N(ε2,N)
which gives Hω(s/,s/n) within the infinitesimal function, η(ε2), of ε 2. As the coarse
graining has been performed using the operators xα/?(n) which should carry another
cumbersome parameter ε2, also the resulting ί̂<7 (n)'s depend on ε 2. By the very
construction of the coarse grained decomposition we see that the result is stable
with respect to ε2. If we let ε2 go to zero the corresponding ε = εx + fh(ε2) turns
into ε = εx and all the estimates hold with this new ε. On the other hand, ε2 = 0
means that {^(n)} is, in this case, a coarse graining of an optimal decomposition.
This coarse graining depends now only on εx = ε and we are thus in the position
of performing the limit n-^oo, with respect to the selected sequence of decomposi-
tions {yijin)}ij^ltmmmtN+1.

This is the content of:

Corollary (3.2.3). There exists a sequence of decompositions {Jfy (w)} f,_,•=!,...,#+ I s u c n

that
1.

lim ίH{yij(n)](^, sΐn) - Hω(s/9 O ] = 0,
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2.
lim| |£(yH«))- P ill=O, i=ί,...,N,

n

3.
lim | |E n(yj(n)-Pj(n) | | = 0, j=l,...,N,

n

4.
lim ω ( ^ + !(n)) = lim ω(y%+1(n)) = 0,

n nE, £„, y}(n), yj(ή) have been introduced and explained during the proof of Theorem
(3.2.1).

4. The Clustering Properties

We now apply the results of Sect. 3.2 to prove Theorem (3.1.3). We recall that,
according to Lemma (3.1.5), we should show:
1.

2.
limω(PβnPβπ) = ω(P)ω(0 if [P,β] = O.

n

(Q, ΛQ))
We start from Corollary (3.2.3) and prove:

Lemma (4.1).

lim II £|>y(ιi)] - PiEaPjUPi || = lim || £ B [ ^ (n)] - (PJ^E^P^PJ),, || = 0.
n n

Proof. From lim|| E(yl(ή)) - Pk \\ = 0 together with 0 < y\{n) < 1 we get
n

\imω{lyi{ή) - P J 2 ) S l imω^y^")) - 2PkE(yl(ri)) + Pk) = 0.
n n

In complete analogy, limω([yl(ή) — (Pk)n]
2) = 09 so that y^n) tends strongly to

n

both refinements of P ; and {P})n, respectively:

s-lim lyij(n) - PMjirήPJ = s-lim [y(J.(n) - {P^MWjU = 0. (29)
n n

This is a consequence of the following observations: We write

and use

st-lim
n

so that

0 = st-linφy(n) -
n

= st-lim J(ytJ{n) -



Entropic X-Systems 245

= st-lim(j>y(n) - /^Uj/^i
n

= st-lim (yy (fi) -

We now consider

for ϊ(Ίimω(>;i;(n)Pfc)

) lim ω{E{yij{n))Pi - P££[(Pj)J ^ = Hmcφ,7(n) - P^P,) for i = *,

where £:M -> A is the canonical conditional expectation already used. From above
we know:

Λv+i \

s-lim lyliri) - (PkU = s-lim £ yΛ(n) - (Pfe)π = 0, fe = 1,..., N, (30)

s-lim lylin) - P J = s-lim ί £ Λ l(n) - P k J = 0, fc = 1,...,N. (31)

When z φ k then we can use the first equality in (29) and thus arrive at:

lim ω(yij(n)Pk) = lim ω(Piyij(rίjPiPki = 0.
n n

If i = k then (30) can be exploited first to show:

r N Ί
im X ω(PiykJn)Pi) = )im\ Σ coiPty^rήPd + ωiP^^rήPd .

n k=ι n [_k=i J

Again the first equality in (29) serves to get:

and thus

The first limit on the right-hand side of the above equality is equal to li
n

owing to (29), whereas the second one is zero according to (3.2.3, 4).
Hence

limω([£[ J l V (n)] - ^ [ ( P ^ J P J P J = OViJ,k = l,...,N.
n

Owing to the finite dimensionality of the subalgebra J / , from the above it follows
that

n

On considering the canonical conditional expectation En:M->s/n9 the very same
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argument, now using (29) and (31), leads to

In Property (2.2.4) we have introduced the quantity Hω(s#1\stf2) which is
analogous to the classical conditional entropy [3] and can be fruitfully used at
this point.

Lemma (4.2).
1. If (M,ω,σ) is an entropic X-system and sύ is a finite dimensional subalgebra
of M, then:

lim Hω(stf I Λ/J = HJsί) «
n

2. If M is in addition a type IIx factor and ω the trace, then:

if 3$ is a maximal abelian subalgebra of si.

Proof. From covariance (Property (2.2.3)) we know: Hω(sin) = Hω(s/) Vn, and from
the complete memory loss assumption (Definition (2.4)) we have: 2Hω(stf) =
limHω(s/,sfn). Using Property (2.2.4), we have:

n

= lim {HJs/, O - HJs/Λ) + Hω(*/n)
n

g lim HJrf I s/u) + HJs*) ύ 2Hω(s/).
n

From covariance and Remark (2.3.5) we get:

HJst) = HJβ) = HJA) = HJ&).

$<^stf and monotonicity (Property (2.2.1)) imply

Together with lim Hω(Λ, ΛΛ) = 2HJβ) we obtain:
n

HJβ) = lim [i/JΛ, $,) -

Lemma (4.3). Assume that (M,ω,σ) is the dynamical system of Theorem (3.1.3) and
that the projectors P,QeM generate a finite dimensional subalgebra i = (Pv Q)"
of M (such operator pairs are dense in M). Then

limω(PβB) = ω(P)ω(0.
n

Proof. Let us consider a maximal abelian subalgebra J* of s/ to which P belongs
and let {Pji=!,...,# be the generating set of minimal projectors. From Remark
(2.3.2) we know: '

Hωm= ~ Σ
i= 1
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From Lemma (4.2) and the definition of HJs/^s/2) i*1 Property (2.2.4):

lim sup
n

As HJβ\s/n) S HJβ) we have that Vε1 > OΞMeN:

Vn^M HJβ)-HJβ\s*n)ύ*i. (32)

Introducing in (32) the expression for Km{sίy\sί^) given in (2.2.4) we get:

HJβ)- sup {Σω(xl)[S(ω,ώ(xί )) |Λ-S(ω,ώ(x l )), j / ( |]j^β 1 . (33)

To the second term of the left-hand side of (33) we can apply the same argument
of [2, Lemma VI. 1] to construct Vε>0 a finite decomposition {xa(ή)} whose
cardinality depends on ε2 such that:

Hω&\sfH) S Σ ω(xβ(n))[S(ω, ώ(xa(n)'))\® - S(ω, ώ(xβ(n) ) ) κ ] + ίίfeλ
α

i i2(82) e ^ + 0 + . (34)

Using (34), (33) turns into

HJβ) - Σω(xx(n))lS(ω, ώ(xα(n) )) | ί9 - S(ω, ώ(xα(n) ) ) κ ] ύ «i + »72(ε2) =:ε.
α

Since

and

S(ω,Λ) = # ω ( ^ ) (Λ is abelian)

we obtain:

ΣΦa(n))ίS(ώ(xΛ{n)')\Λ + S(ω,ώ(xβ(π) ))μ<ι] S e. (35)
α

We can thus follow the proof of Theorem (3.2.1), Part I, and Corollary (3.2.3) to
construct, via the coarse graining, a sequence of decompositions {yi(n)}i=ί N+ί

such that:

tim\\E(yi(n))-Pi\\=0, i = l , . . . , N , (36)
n

)) = O, (37)

κ = 0 , i=l,...,N. (38)

Using the proof of Lemma (4.1) we have from (36),
2) = 0, i=l,...,ΛΓ. (39)
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Since the relative entropy S{ω9ώ(yi(ny))^n is strictly positive unless ώ(yi(n) )jJ/ιi =
ωWn, using (39) we obtain:

lim ώ(yi(n)Qn) = l i m ^ ^ = ω(Qn) = ω(β), i = 1,..., N;

n n ω(Pi)

therefore

limω(PQn) = ω(P)ω(Q)
n

when Pe08.

P and Q are in general not commuting, and therefore (P v Q)" =:s/ might be
infinite dimensional. In order to exploit the behaviour of the entropic functionals
we need finite dimensionality, but we can assume this without loss of generality
due to the following Lemma (4.4):

Lemma (4.4). Let P and Q be two projectors, then there exists a sequence of projectors
Qr such that lim || Qr - Q \\ = 0 and (P v Qr)" is finite dimensional.

r-+oo

Proof. Restricting P and Q to the range of

we can assume that the partial isometry u obtained by the polar decomposition
of PQ(1 - P) satisfies urf = P, tΛ* = 1 - P. Since R = 1 - (P - Q)2 commutes with
P and g, it follows (e.g. [9]) that the von Neumann algebra built by P and Q is
isomorphic to I2 ® {R}" when restricted to the range of E, and is abelian with at
most minimal projections when restricted to the range of 1-E. In the former, P
and Q can be written as:

0

0

R can be approximated by step functions Rτ so {Rτ}" is finite dimensional and Qr

(with R replaced by Rτ) satisfies the condition of Lemma (4.5).
Now we estimate

lim I ω(PQn) - ω(P)ω(Q) | g lim Γ lim | ω(PQJ) - ω(P)ω(Qn,) \ + 21| Q - Qτ || ] = 0.
n-+ao τ-+oo I «-»oo

(41)

Hence the weak clustering can be extended beyond the restrictions needed in
the proof of Lemma (4.3).

Lemma (4.5). Let P and Q be two commuting projectors in J( and denote by stf the
four dimensional abelian subalgebra they generate, {P/}i=i,...,4 being the set of
minimal projectors constructed with P and Q. Let En:Jί-*jrfn:=σn(srf) be the
conditional expectation from Jί onto σn(^); then

l i m | | £ l l ( P i ) - ω ( P j ) | | = 0 , 7 = 1 , . . . , 4 .
n

Proof From Lemma (4.3), results (36) and (38) we draw the same conclusions as
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before:

^ W ^ ^ L ^ ψ ^ = co(Pj)n ω(Pi)

for ij = 1,..., 4 and Pj(ή) = σn(Pj), and exploit the finite dimensionality of J / .

Lemma (4.6). With the same hypothesis as in Lemma (4.5), let {yij(n)}iJ=1^^f5 be
the sequence of decompositions for Hω(s/,jtfn) which behave according to Theorem
(3.2.2) and Corollary (3.2.3); then:

limll En(yij(n)) - ω(Pi)Pj(n) \\ = 0, ij = 1,..., 4.

n

Proof. From Lemma (4.1) we get:

lim || En(yij(n)) - Pj^E^P^M \\ = 0, ij = 1,..., 4,
and the result thus follows from Lemma (4.5).

Now we can conclude with:

Lemma (4.7). With the hypothesis of Lemma (4.6):

limω(PQnPQn) = ω(P)ω(Q).
n

Proof Let Pγ:=PQ, P 2 : = P β c : = P ( l - β), P3:=PCQ:=(1 -P)Q and P4:=PCQC

be the four minimal projectors which generate the abelian subalgebra si of the
lemma.

Let again Pt(n) indicate σn(Pi)eσn(stf\ i = l , . . . , 4 . We want to control
limω(PiPj(n)PkPι(n)). From Lemma (4.1) we have, using the tracial property of ω,

n

jirήP^in)) = lim ω(y?(n)PtP;(π)P,.) = £ limω(yΓi/(fi)PtPI(n)Pί).

From Corollary (3.2.3), result (4), and Lemma (4.1), formula (29), we get:

1imω(PtPJ(n)PkPt(n))= Σ limω(P^.(n)P rP kP ί(n)P ί)
« ι =i "

= δiklimω(Piyij(n)PiPι(n)).

n

Again Lemma (4.1), formula (29), yields:

lim ωiPtPj(n)PtP,(n)) = 5 t t lim ω(3;l7(n)P((«)) = δik lim ©(jB.Oy (n)]P,(n)).
n n n

The last step uses Lemma (4.6):
limω(P(Pj(n)PtP,(B)) = <Sit<S,,ω(P>(P,.).

Since P = P1+P2 and β = P 3 + P 4 , this result can be applied to obtain:

lim ω(PQnPQn) = ft)(P>(P3) + ωiPiMPd + ω(P2)ω(P3) + ω(P2)ω(P4)
n

= ω(P)ω(β).
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5. Conclusion

In abelian ergodic theory X-systems are clustering where no distinction between
weak and strong clustering has to be made. As a consequence si and σnsi from
approximately a tensor product and also the state has tensor product structure.
In the nonabelian situation weak clustering is sufficient to guarantee convergence
to equilibrium. It holds if the system is an algebraic iC-system [4], but such a
system still allows nontrivial relations between si and σnsi as we know from the
odd elements of the Fermi algebra. For entropic K-systems si and σnsi become
completely independent from one another in the sense that they form approximately
a tensor product. Therefore, the n-subalgebra entropy is the relevant quantity to
measure to which extent different subalgebras are independent from one another.
Furthermore, strong asymptotic abelianness is usually expected to hold for the
time evolution of the observable algebra (the even part of the Fermi algebra), and
is used, for example, to show that dynamically stable states are KMS states [8].
But it suffices that chaotic properties are satisfied by the observable algebra, whereas
it does not matter if they are violated for the field algebra.
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