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Abstract. We consider a class of exactly soluble topological quantum field theories
on manifolds with a boundary that are invariant on-shell under diffeomorphisms
which preserve the boundary. After showing that the functional integral of the two-
point function with boundary conditions yields precisely the linking number, we
use it to derive topological properties of the linking number. Considering gauge
fixing, we obtain exact results of the partition function (Ray-Singer torsion of
manifolds with a boundary) and the iV-point functions in closed expressions.

1. Introduction

Topological field theories are highly interesting when quantized. On one hand,
they provide exact solutions of physical theories like 2 + 1 dimensional gravity [1].
On the other hand, they are related to a variety of topological invariants such as
the Ray-Singer torsion [2,3], Donaldson invariants [4] and Jones polynomials
[5]. More recently, Horowitz [6] considered a wider class of exactly soluble
diffeomorphism invariant theories which include 2 + 1 dimensional gravity as a
special case. The action is

S=\B*dC, (1.1)
M

where B is a p-form and C, an (n—p — l)-form on an n dimensional manifold M.
Using functional integration, the two-point function was shown to be equal to the
linking number of two submanifolds of M of dimensions p and n—p — 1 [6,7]. It
was conjectured that for manifolds with a boundary, there exist boundary
conditions such that the functional integral yields the same result [7].

In this letter, we consider the theory defined by action (1.1) on a manifold M
with boundary dM. In Sect. 2, we express the phase space as the sum of the relative
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and absolute cohomology groups of M and show that the theory is invariant under
diffeomorphisms which preserve the boundary, provided that the equations of
motion are satisfied. We also point out the relation of Dirac quantization and
Ashtekar's approach [9-11]. In Sect. 3, we incorporate the effect of boundary
conditions in the functional integral. Using the Hodge decomposition on
manifolds with a boundary [12,13] (see also [14]), we show that the functional
integral indeed yields the relative linking number of two submanifolds of M. In
Sect. 4, we derive several topological properties of the linking number [16,17]
using its path integral expression. In Sect. 5, we take into account the gauge fixing
procedure. The partition function is exactly the Ray-Singer torsion with natural
boundary conditions, which is a topological invariant of manifolds with a
boundary [13,15] (see also [3]). Furthermore, we write the JV-point functions in
closed expressions. The torsion factor cancels; this confirms the naive calculation
of Sect. 3.

2. Canonical Formalism

For theories with gauge redundancy or symmetry, there is a covariant description
of canonical formalism which manifestly preserves all relevant symmetries [18].
The classical phase space is the space of solutions of classical equations modulo the
group of gauge transformations. The choice of ps and qs is then made according to
the natural symplectic structure on the phase space.

Applying this general formalism to the theory with action (1.1), the classical
equations of motions are

dB = 0 and dC = 0; (2.1)

the solutions are closed p-forms for B and closed (n — p — l)-forms for C The action
is invariant under the following gauge transformations:

and C^C + dυ, (2.2)

where u and v are arbitrary (p — 1)- and (n — p— l)-forms respectively. Hence, the
classical phase space is the sum of de Rham cohomology groups [6,7],

& = Hp{M)®Hn-p-\M). (2.3)

If the manifold M has a boundary <3M, then boundary conditions are required
to kill the boundary term in the variation of the action. A p-form is called normal1

at the boundary if it vanishes at δM when contracted with any tangent vectors of
δM, or equivalently, it vanishes under the pullback of the inclusion map dM-+M.
The space of p-forms satisfying the normal boundary condition is denoted by
Ωζoτ(M). A natural boundary condition of the variation of action (1.1) is that either
B or C satisfies the normal boundary condition; we assume, without loss of
generality, that B does. Thus the space of classical solutions consists of closed
p-forms B with normal boundary condition and arbitrary closed (n — p — l)-forms
C. Notice also that if ueΩp~r \M), then dueΩp

or(M), that is, the restriction of d to
the forms normal at the boundary maps to those of the same type:

(2.4)

The nomenclature will become clear in the next section
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The cohomology group of this complex is isomorphic to the relative cohomology
group HP(M, dM), whereas the de Rham cohomology of d without boundary
condition is isomorphic to the absolute cohomology group HP(M). Modulo the
gauge transformations in (2.2) with ueΩp~r

1(M) and veΩn~p~\M\ the classical
space is then

0> = HP(M, dM)®Hn~p- \M). (2.5)

This space is not necessarily even dimensional even if M has no boundary [6].
However, if we make the standard choice M = Σ x R in the canonical formalism,
where Σ is an n — 1 dimensional compact manifold with a boundary dΣ, then the
phase space becomes

p-\Σ). (2.6)

The even dimensionality follows from Poincare-Lefschetz duality

HP(Σ, dΣj^Hi'-v-'iΣ). (2.7)

Recall that diffeomorphisms are generated by vector fields on M. The
infinitesimal changes of fields under a vector field ξ are given by the Lie derivatives

(2.8)

and

LξC = iξdC + dίξC. (2.9)

The first terms of the two formulas vanish if the equations of motion (2.1) are
satisfied. If the infinitesimal diffeomorphism preserves the boundary, i.e., the vector
field restricted to dM is tangent to dM, then the contraction iξ: Ω

P

O~(M)-+ΩP~ 1(M).
Therefore, the second terms of (2.8) and (2.9) are gauge transformations generated
by u = ίξBeΩp-ί(M) and v = iξCeΩn~p~2{M). This shows that the theory is
invariant on shell under diffeomorphisms which preserve the boundary.

Alternatively, we can take the Dirac approach: first quantize the theory, then
impose the constraints. Let f.Σx R->R be the coordinate and τ be a vector field
on M such that Lτt = \. Then

S=]dt]ix{B*dC)

iτC. (2.10)
R Σ

So the spatial components of B and C are canonically conjugate variables, while
the time components iτB and iτC are Lagrange multiplies enforcing the constraints

C^SuΛdC for ueΩp-\M) (2.11)
Σ

and

mBΛΌ for veΩn-p-2(M). (2.12)

As in the case of manifolds without boundary [6], the wave functions ψ are defined
on the p-forms B on Σ. The constraint C2ψ = 0 implies that ψ is supported on the
closed forms normal at the boundary and C1t/) = 0 implies that ψ is gauge
invariant.
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Define the following operators on the wave functions ψ(B):

3r°(β) = Gχp(ί\βΛC) (2.13)
V Σ )

and

3T1(y) = $BΛγ (2.14)
Σ

for βeΩp

nov{M\ γeΩn~p~\M). Here C acts as a differentiation —i-^zς, hence
on

(2.15)

We have a commutation relation

(\ °(β). (2.16)

The procedure we followed is a dual version of Ashtekar's approach [9,10], where
the wave functions are complex-valued functions on homologically non-trivial
loops. The loop observables satisfy a similar commutation relation [10,11].

3. The Two-Point Function with Boundary Conditions

We now calculate the two-point function of the theory defined on a manifold M
with boundary dM. Since our major concern here is the role of the boundary
conditions, we temporarily postpone the discussion of gauge fixing. We need to
introduce a Riemannian metric on M. The natural inner product on p-forms is
then

/' RI R'\ Γ R Λ A R' ί'X λ\

M

where * is the Hodge dual satisfying ** = ( — \γ("~p\ This gives a measure of
functional integration. However the final result is independent of the measure. The
reason for this cancellation will become clear in the next section when we interpret
the choice of the metric as fixing the gauge.

Let U and V be two non-intersecting submanifolds of dimensions p and
n — p—1 that represent trivial elements in Hp(M, dM) and Hn_p_ 1(M) respectively,
that is, there exist two submanifolds W and W of dimensions p + 1 and n — p such
that

(U\dW')v(dW'\U)CdM and V=dW. (3.2)

The relative linking number of U and V is defined to be the intersection number of
I/and W

L{U,V)= Σ sign(p), (3.3)
peUnW

where sign(p) = +1 depending on whether or not the orientations of the tangent
spaces TpU®TpW and TpM agree. It follows from conditions (3.2) that L(U, V) is
independent of the choice of W. We will show that it is equal to the two-point
function

J[^£] \βC\ \B\ Cexpίi \BAdC\
U V [ M -L. (3.4)
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We need a digression on Hodge decomposition theorems on manifolds with a
boundary [12,13] (see also [14]). The adjoint of dp~r * under the inner product (3.1)
is

δP = ( - i)p»+»+1 * dn~p *: ΩP{M)^ΩP~\M) (3.5)

defined on arbitrary p-forms (such that their images are square-integrable).
However, the domain of the adjoint oϊdp~1 is more restricted. A p-form is called
tangential at the boundary if any contraction with a vector field normal to the
boundary vanishes; the space of such forms is denoted by ΩP

an(M). It is easy to see
that

(3.6)

and vice versa. The adjoint of dp~ι is

% n = ( - l Γ + n + 1 *C7*:Ωf a n (M)-ί2f a ; 1 (M). (3.7)

Now we have two notions of Laplacians, the relative one

Δ ! a = d&1ά> + fi>+1d>m (3.8)

and the absolute one

^fbS = ̂ " 1 ^ a n + ̂ : 1 ^ (3-9)

They are elliptic self-adjoint operators defined on the space of forms with the
relative boundary condition

) = {ω\ωeΩp

or(M) and δωeΩp-\M)} (3.10)

and that with the absolute boundary condition

β?b.(Λί) = {ω\ωeΩP

an(M) and dωeΩ&\M)} (3.11)

respectively. Hence we have two Hodge decompositions on manifolds with a
boundary:

Ωp(M) = dnorΩ
p-1(M)®δΩp+1(M)φkQrAP

el (3.12)

and

Ωp(M) = dΩp~ \M)®δiΆnΩ
p

Λl
 1(M)0kerzίfbs. (3.13)

Furthermore, the space of harmonic forms with the relative (absolute) boundary
condition is isomorphic to the relative (absolute) cohomology group of M:

l ^ ^ HP(M, dM) (3.14)

ker Ap

bs^Hp(M). (3.15)

We can write

B = BL + BT + B° (3.16)

according to the decomposition (3.12) and

C = CL + CT + C° (3.17)

according (3.13). Here BL ednorΩ
p~ \M\ CL e dΩp~ \M) are called the longitudinal

parts, BτeδΩp+1(M), Cτeδiar)Ω
p+n\M) are called the transverse parts and
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BoekεrΔζer, C°ekerzl£bs are the harmonic parts of the fields [8]. Since only the
transverse parts contribute to J B, J C, and J B A dC, the longitudinal and the

u v M

harmonic parts cancel in (3.4). Hence we are led to calculate

[_@Cτ]Bτ{x)Cτ{y) exp (i J Bτ A dCτ

Let 5 k form an orthonormal basis of transverse eigenforms of the Laplacian
ξel such that Aξel = λϊBk (λk>0). The operators

* dp: Ω^T(M)^Ω:^-^T(M) (3.19)

and

* d*-*-ι: ̂ b 7 " ^ r(M)-,i2f/(M) (3.20)

satisfy

(*d""J'"1)(*d l>) = ( - l Γ + 1 ^ 1

Γ (3.21)

and

(*dp)(*dπ- | >-1) = ( - i r + 1^b8T, (3.22)

where the superscript T means the restriction to the transverse parts. So the forms

1 1 1 (3.23)

form a basis of normalized transverse eigenforms of the Laplacian Δ^*'1 with the
same eigenvalues.

The rest is almost the same with the calculation in [8]. Integrating over the
various modes in (3.18), we get

<BT(x)CT(y)> = i^λς ιBk(x)Ck(y). (3.24)
k

Hence

U V
I

Ύ υ w

= ίL(U,V) (3.25)

is the linking number (times i) defined in (3.3). In the last step, we have used the
completeness relation

Σ Bk(x) A * Bk(y) + longitudinal and harmonic contributions = δ(x, y), (3.26)
k

where δy(x) = δ(x, y) is the generalized rc-form such that for any open subset EcM,

if: τE:



Topological Quantum Field Theories 163

4. Properties of Linking Numbers via Path Integral

We have shown

πjj v)= - E L T \ j ί
i

The right-hand side is an alternative definition of the linking number which is
manifestly independent of the choice of W and W. This is analogous to the fact
that path integral expression of the Jones polynomial is intrinsically three
dimensional [5]. Though we have not considered gauge fixing, we will see in the
next section that (4.1) is still correct if we have done so. We now use (4.1) to derive
mathematical properties of the linking number.

First, if we reverse the orientation of V9 using j C = — j C, we have
-V V

L(U,-V)=-L(U,V). (4.2)

Consider two disjoint submanifolds V and V that do not intersect with U, using

J C=fC+JC,
VuV V V

we get

L(t/, Fu V') = L(U, V) + L(U, V). (4.3)

Similar properties hold for U.
Secondly, if we put the normal boundary condition on C instead of B, we have

f \βE\ [^Cnor] J B J C exp (ί J B A dCnoτ

L ( V U ) = - ^

Since B A dCnor = (-ί)pn+nCnor A dB up to a total derivative, by a field redefinition
£-•( — l)pn+nC, Cnoτ-+Bnor in the functional integral (4.4), we recover a well-known
formula [17]

iχU,V) = (-ί)(dimU+immV+1)L(V,U). (4.5)

It is worth noting that if we had used another definition L(U, V) of the linking
number as the intersection number of W and V, then the above formula would be
[16]

L(U, v) = (-l)dimUdimV+1L(V, U). (4.6)

This is also clear from the path integral point of view. If the action were replaced by
Sf = f dBnor A C, then we would use dBnoτ A C = ( - \)pn+ιdC A Bnor to deduce (4.6).

M

For example, let M = R 2 , U be the counterclockwise unit circle and F=(0,0)
—(2,0) be the 0 dimensional manifold of two points with opposite orientation.
Then W is the unit disk and Wis the oriented segment from (2,0) to (0,0). It is easy
to see L(U,V) = L(V,U) = 1 while L(U9 V)= -L'(K 17) = 1, which are consistent
with (4.5) and (4.6).
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Finally, we show that the linking number is a cobordism invariant: if there is a
submanifold W1 such that UnW1=0 and dWx = 7 u ( - V'\ then

L(U,V) = L(U,V). (4.7)

In particular, the linking number is a homotopy invariant, that is, if there is a
continuous deformation of submanifolds from V to V away from U, then (4.7)
holds. The idea we use here is analogous to a hydrodynamical theorem that
vorticity is conserved along vortex tubes. Consider the expectation value

J\βB~\ \βC\B{x)expίi$ BΛdC

ϊ
For any (n—p)-vector ε, the contraction iεδy is a p-form with normal boundary
condition. After a change of variable B->B + iεδy, we get

J\βE\ \βC\ [B(x) + iβ{x,y)-\ exp\i J (B + iεδy)AdC]

(B(X)\ = Lίί J
x w j \βS\ \βC\ exp (i J B A dC)

J \βB\ [_9C]B{x) exp i Γ f B A dC + ίεdC(y)~]

Differentiating with the respect to ε, we have

y). (4.10)

Now integrated over xeU,yeWl9 the delta term vanishes since UnWι=φ. Using
Stokes' theorem, we get

O=/fB JdC\ = / j B f C \ - / j f l J c \ . (4.11)
•\I7 ΪΓi / \U V / \U V I

This proves (4.7). Alternatively, if we integrate over xeU and yeW where 3 W = K
then (4.10) yields

J B J dc\ = ί - (intersection number of U and W). (4.12)
u w j

This gives a quick but naive proof of (3.25). There is no simple gauge fixing
condition such that the shift B->B + ίεδy is allowed. In the next section, we will
refine the derivation of Sect. 3 by considering gauge fixing.

5. Exact Calculation of the Partition Function and TV-Point Functions

Quantization of theories with degenerate quadratic actions was studied a long
time ago by Schwarz [2]. The general result was applied to the second order
systems of antisymmetric tensor fields [3]. Though such theories are metric
dependent, the ratio of two partition functions is the Ray-Singer torsion. We will
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show that the partition function of our theory with action (1.1) is indeed a
topological invariant of manifolds with boundary.

We begin with a review of the Ray-Singer torsion [13,15] (see also [3]). For an
n dimensional Riemannian manifold M with boundary dM, we define its Ray-
Singer torsion

^ (5.1)

n regularization of the determinant with zero
zation

det'(/lp,)=det'(δ<>+1dU def (d£ 'δη, (5.2)

we can also write

torM=det'(J?e7
1)1/2 - d e t ' ^ 2 ) - 1 det'(d?e7

3)3/2.... (5.3)

Since the * in (3.6) is an isomorphism, we have

det'(<5p+ ιάU = det'(* δ»+1dξm *) = def(<f-p~ 'δ^") = det '(Ci"d"'"- ι ). (5.4)

Hence another form of the Ray-Singer torsion is

where det' denotes the zeta-function regularization of the determinant with zero
modes excluded. Using the factorization

x d e f ( ^ 2 < f - 3 ) 1 ' 2 - ] ( ~ 1 ) " " 1 , (5.5)

= [de t '^S 1 ) 1 ' 2 det'(^ab-s

2)-! det'(Jabs

 3 ) 3 ' 2 ...]<- «""'.

(5.6)

We now calculate the partition function of the theory. We fix the gauge BL = 0
and CL=0. Assuming that the Laplacians on M have no zero modes, these gauge
conditions are equivalent to

δ"B = 0 and ^ a ; p - 1 C = 0. (5.7)

The standard Faddeev-Popov determinant factors
1 ) 1 ' 2 and άeX'{δn^n"-idn-p-ψ2

should be modified because closed (p—1)- and (n—p—2)-forms generate trivial
transformations. According to Schwarz's general formula [2,3] on degenerate
functional integration, the partition function of the action (1.1) is

Zp=det'(δ"dζ-1)1'2 • det'(δ"- 'dζ-y v2 • det'(<5*- 2dζ~ ψ2...

det'(δp+3ί/p

0

+

r

2)-1/2 def(<5p+4

ί/
p

0

+

r

3)1/2...

=(torM) ( - 1 ) n " p . (5.8)

The topological invariance of the Ray-Singer torsion shows that the partition
function is independent of the gauge fixing conditions. If the cohomology groups of
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the manifolds are non-trivial, then we should integrate over the harmonic forms as
well. The result in (5.8) is interpreted as the partition measure on the space of zero
modes of the Laplacians [3]. It follows from (5.4) that if we had put the normal
boundary condition on C instead of B, the partition function would be

Z ^KtorMΓ^^-^-^torMΓ1^1. (5.9)

As a consistency check, we notice that Zp = Z'n_p_1, since the two theories are
related by an integration by parts in the action.

To calculate correlation functions of the theory, we introduce two sources
X e ί%iT(M) and YE Ωn

a^
p " x Γ(M). Define

e x P Γ* ί B Λ dC + X A * B+ YΛ * CΊ, (5.10)

with extra factors of determinants due to gauge fixing. Using an algebraic identity

(5.11)

we deduce, by shifting the field variables in the functional integral, that

(5.12)

The correlation function of rB fields and sC fields is

. δ \ ( . δ

δX(Xl)J'"\ δX(xr)J\ δY(yi)

: = O,Y = O

δ

δX(Xι)J-\ δX(xr)J\ δY(yι)J--\ δY(ys),
(5.13)J

M

for xί9 ...,xn yl9 . . . j s e M . In particular, the two-point function is

(5-14)

= iΣKιBk{x)Ck(y). (5.15)
k

Here, we have used (3.23) to show (Bk\d~ι * \Cι} = (-l)pn+nλh~
1 in the last step.

This result is identical to formula (3.24) that was derived without considering
gauge fixing. Hence our exact calculation not only yields a closed expression of the
N-point function, but also confirms (3.25) that the two-point function is the linking
number.



Topological Quantum Field Theories 167

Finally, if we interpret (5.14) as the propagator under gauge conditions (5.7),
then (5.13) gives precisely the Feynman rule

<B(x1)...B(xr)C(y1)...C(yJ> = ̂  Σ Π K a Λ - l Γ + W ) " 1 *I)W)>>
σeSr k=l

(5.16)
where Sr is the permutation group on r letters. Integrating over submanifolds
Uu ..., Ur C M of dimension p and Vlt..., VsC M of dimension n—p — 1 such that
UinVj=Φ, we get

\B...\B\ C... J C\ = <Sr/ Σ Π Wk,Vσik)). (5.17)
t/i C/r Ki Vs I σeSr k=l

Notice that if we had chosen the B and C fields to be fermionic, the above
correlation function would be

^
(5.18)
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