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Abstract. The microlocal theory of diffraction is used to establish the conjecture of
Keller and Rubinow relating the shift of the shadow boundary in high frequency
scattering to the directional curvatures of a strictly convex obstacle.

1. Introduction and Statement of Results

In their paper on scattering by a cylinder [3], Keller and Rubinow conjecture
that the shift of the shadow cast by any object is asymptotically equal to

along each glancing ray, where λ is the frequency and α is the directional
curvature of the object at the glancing point at the direction of the glancing
ray. The constant C depends only on the boundary condition at the glancing
point and is positive for the Dirichlet problem (hard obstacle), negative for the
Neumann problem (soft obstacle), i.e. the shadow boundary is shifted outwards
or inwards respectively.

The work of Keller and Rubinow followed earlier computations of Artmann,
Rice and Logan. For scattering by a sphere in R3, the conjecture was proved by
Nussenzveig [10].

Cα-l/3λ-2/3

Fig.l

The purpose of this note is to establish the asymptotic shift of the shadow
boundary for scattering by any strictly convex obstacle in R". This is done using
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the microlocal theory of diffraction developed by Melrose and Taylor [7-9].
The analogous conjecture of Keller and Rubinow for the scattering amplitude
was established by Melrose [5]. Our analysis is also related to the study of
uniform expansions of the stationary wave diffracted by a convex obstacle [8,11],
although, rather fortunately, we can find simpler expansions sufficient for the
investigation of the size of the diffracted wave.

Let Wf(x,λ) be the free plane wave in the direction ω, and let w(x,λ) be
the corresponding diffracted stationary wave. (Precise definitions are presented
in Sect. 2.) At infinite frequency the amplitude of the diffracted wave, |w(x,/ί)|,
on the shadow boundary is equal to half the amplitude of the free wave. This
suggests a definition [3] of the "physical" shadow boundary at finite frequencies
as the locus of points x (near the shadow) where

Let s(x) denote the (Euclidean) distance to the shadow boundary, defined so that
it is negative in the shadow (see Sect. 3). As will be shown in Sect. 4, for x on the
shadow boundary, s(x) = 0, and away from the obstacle,

The theorem below provides the asymptotic correction term in agreement with
the conjecture of Keller and Rubinow:

Theorem 1. For x away from the obstacle, d(x,dK) > δ, and

s(x) =

we have

Here, ω is the direction of the plane wave, y(x) is the point on dK at which the
ray on the shadow boundary closest to x meets dK, and oc(y,ω) is the directional
curvature of dK at y in the direction ω. The constant C depends only on the
boundary condition at y(x):

(ρu + dvu)\dκ=0, (1)

and, with ρ = oo corresponding to the Dirichlet boundary condition1:

C ( 0 ) < 0 C(αo)>0.

In the case most interesting in scattering theory, and the one considered by Keller
and Rubinow, wF(x,λ) = exp(ύc ω) so that we obtain

Mx9λ)\

We conclude this section with several remarks. One could consider the surface
giving the "physical" shadow boundary:

Γλ = ίx : \w(x,λ)\ = ~\wF(x,λ)\V (2)

1 The numerical values of these constants have been computed (see [3] for references) and C(0)
-1.180589 and C(oo) » 1.360825
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and the distance function to Γχ,sχ(x). Then Theorem 1 provides the first term in
the expansion of sχ(x):

sλ(x) = s(x) - C(ρ(y(x))[φ(x),ωΓ1/3λ-2/3 + O(λ~5/6).

If instead of a plane wave one took a more general initial Lagrangian satisfying
appropriate geometric conditions (see [8, 11]) then one could generalize Theorem
1 appropriately. The shift would then depend on x but the only dependence on
the obstacle would still come from the multiple of the cubic root of the directional
curvature. Similar generalization is possible in the use of varying the metric g in
Rw and the Laplacian Δg.

We should also remark that using the methods of [11] (in particular Proposi-
tion 7.2 and Theorem 8.1 in Propositions 4 and 5 below, respectively) we could
weaken the assumption d(x,dK) > δ to d(x,dK) > λ~1^ at the expense of
changing the error term in Theorem 1 to O((λι^d(x, dK))~{). Unlike the methods
presented below this requires a rather technical approach and does not seem
physically significant.

2. Preliminaries

In this section we shall specify the assumptions on the solution to the boundary
problem and recall an expression for that solution. We shall be concerned with
the following situation. Let K be a smooth, compact and strictly convex set in
R", and let us consider the mixed problem in the exterior domain Θ = Rn\K:

(Dj-A)u = θ in R + x 0 ,

(ρ + dvu)\R+xdΘ = 0,

u\t=o =f,

where ρ e C°°(dK) with ρ = oo corresponding to the Dirichlet problem and where
/, g are compactly supported in Θ and

/ e %{O9Λ)9 g e I^(O9A)9 A = N*{x ω + a = 0},

where I™(Θ9A) denotes the space of classical Lagrangian distributions associated
to the conic Lagrangian A a T*Θ. The free nonhomogeneous and homogeneous
flow-outs of A are respectively:

ΛD = {(x9ω) : x G R " } c f ( R " ) ,

AD = {(x,x ω + a;λω,ω) : X G R " } C T * ( R n + 1 ) .

We can now define the geometric shadow, identifying AD with the free rays,
M° = {x + tω : t e R},

Γ =π({pe M° : the ray p is tangent to dK}),

where as before π : s*R" —> R", and by our assumptions on A9 Γ is a hypersurface.
We also define

s(x)=d(x9Γ)9

with d denoting the (Euclidean) distance.
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The stationary wave is the Fourier transform of the solution of the wave
equation:

κ,λ) = Ju(t9:w(x,λ) = / u(t,x)e~ιUdt,

o

and as in [8] for x in a compact set the standard results on propagation of
singularities show that one only needs to consider the above integral with a
compactly supported cut-off function in t inserted.

The usual scattering problem and the one considered by Keller and Rubinow
corresponds to

/ = δ(x- ω + a),

g = iδ'(x-ω + a),

and x ω + a > 0 on dK. This could be rephrased as

u(t9 x)=δ(x-ω + a — t) for t < 0.

The free wave is the solution of the problem

(D*-Δ)uF=0 in R + x0,

UF\t=0 = / ,

DtuF\t=o = g ,

and similarly

wF(x,λ) = ί uF(t,x)E-itλdt.

The Melrose-Taylor parametrix for the diffractive boundary problems provides
the microlocal description of the wave group, i.e. the solution u(t9 x) above - see
[1, 8, 11]. As in the case of the Dirichlet parametrix that requires a special
solution of the eikonal equation (see Sect. 3). Here, particularly important is the
expression of the free solution using the same phase function (see Lemma 3.1
and formula (7.2) in [11]).

Since the main object for us is the relation between the symplectic construction
(the phase function) and the geometry of the scatterer (the directional curvature)
we shall review the construction of the phase function in Sect. 3. However we
shall only quote [8] (formula (3.8)) and [11] (Proposition 4.2 and formula (7.2))
for the expression of w and wF away from dK and close to the geometric shadow
boundary, Γ+. For simplicity we shall restrict ourselves to the cases ρ = 0 and
ρ = oo (see Sect. 4 for comments on the general boundary condition).

Proposition 1. For d(x, dK) > δ and x close to Γ + we can find g £ Spgh(ΘxxRη R^),
compactly supported in η such that for ρ = GO,

g(x,η;λ)^-(-λ2/3η)eiλψ{x>η)dη mod (/Γ00),x,λ) = - ω

2 λ a + n / 4 f
J

x, λ) = λ«+n'4 J g(x, η λ)eiλ^)dη mod (A"00),

where ψ is a nondegenerate phase function and ω = exp(2τπ/3). For ρ = 0 we need
to replace A-jA+ by A'_/Af

+.
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3. The Geometry

In order to understand the relation between the phase function in Proposition 1
and the geometry of the obstacle, dK, we shall now outline a slightly different
construction of the phase function (compare [9]).

The general idea of such constructions is to parametrize the bicharacteristics
by the distance to boundary rather than the time, as we are solving the Dirichlet
rather than Cauchy problem. Nonuniqueness in such parametrization leads to
a singularity in the phase which takes the simplest form in the case of strictly
convex boundaries. To obtain the normal form for the singular part of the phase
on the boundary, which plays the crucial role in the diffractive parametrix and
here, we need the Melrose equivalence theorem for glancing hypersurfaces [2, 9].

Let p and q be functions on T*X\0 with independent differentials at m e
T* X\0. We denote by P and Q the hypersurfaces defined by p and q respectively.
We say that P and Q are glancing at m if

{p, q] = 0, {p, {p,q}} φ 0, [q, {q, p}} φ 0. (3)

In our case we take T*X = T*R n + 1 , q to be the defining function of dK, such
that 0 = Rn\K = {x : q(x) > 0}, and p = τ2 — \ζ\2. The nondegeneracy conditions
in (3) hold for all m with {p,q} — 0 if and only if dK is strictly convex (see [5]).

The set of m for which (3) holds is a hypersurface L inside P Π Q. The glancing
situation can be described in terms of the following diagram:

where yp,yq are the natural projections:

P/Hp, (4)

Q/Hq, (5)

in the diagram restricted to P Π Q.
The equivalence theorem gives a conic neighbourhood of (0,(1,0, ..., 0)) €

T*Rn+1\0, Γ, and a canonical transformation,

χ : Γ -> T*X\0

taking the (Friedlander) model glancing hypersurfaces:

PF = {PF = ξ2

n+i -ξlξn- Xn+lξj = 0}, QF = {qF = Xn+i = 0}

to P and Q respectively.
By introducing normal geodesic coordinates we can assume that Q = {xn+ι

— 0} with the time variable denotes by x\. Thus the principal symbol becomes

ξi-(ξ2

n+ι+r(x',xn+ί,ξ'))-
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Let # denote the usual wave relation:

% czP xP c Γ * I \ 0 x T*\0,

V = {(r9s):r9seP9γp(r)=γp(s)}.

We should note that the usual of the eikonal equation (related to the Cauchy
problem) is obtained by observing that

<€ 3 ((x, {), (x, I)) h-> (x, xu h, ..., |«+i) (6)

is a local diffeomorphism and using the appropriate parametrization of
# [2, Theorem 21.2.18]. Here, we shall consider

<?i c T*X\0 x y i f ( r n 0 c Γ*\0 x T*R"\0,

where we identify T*RW ^ 6 F / ^ F and define

VX = ί (r, m) : m G f |
I (r,s)e%,seQ

where ^o is a square root of the model billiard ball map given by (14) below.
Instead of (6) we shall consider

*i9(r,(x,ξ))h+(π(r),£), (7)

where (x9ξ) € T*Rn\0 and π : T*X\0 -• X. As a submanifold in a conic
neighbourhood of (m, (0; (1,0, ..., 0))) e Γ*X\0 x Γ*R\0, Vι is Lagrangian and
the map given by (7) is a projection into another Lagrangian, W:

W a T*X\0 x Γ*R"\0; W = iV*{π(T*Rw)}.

The map Ήγ^W defined by (7) has a simple fold along {ξn = 0}.
The local coordinates on the Lagrangian W are given by (x, ξ), x e X and ξ

in the fibers of Γ. By modifying the proof of Theorem 21.4.1 in [2] (taking W
instead of the base), we obtain a phase function φ,

with θ and ζ smooth and such that

«i = {((χ,Φ;),(^,ί))}.

We could also use a smooth, homogeneous parametrization by introducing

-τξϊ2/3ζ(x9ξ) + θ(x9ξ)9 (8)

(note that ξ is in a conic neighbourhood of (1,0, ..., 0)). In terms of φ, %>\ =
{{x,φ'x;φ

f

ξ,ξ):φτ = 0}.
As in Theorem 25.3.11 of [2] (see [7, 9]) this immdiately motivates the

presence of Airy functions. One should however remark that in studying boundary
problems one leaves the calculus of Fourier Integral Operators as one uses the
normalized non-tempered Airy functions.
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The main point in using the equivalence theorem in the definition of #1 is
that it provides the normal form for ζ restricted to the boundary,

B = dK x R ,
(9)

ζ(ξ)\ ξ;lβξ

The geometric object obtained from the bicharacteristic foliation of P and Q is
the billiard ball map defined on T*B\0,

Σ = {(z,<5±(z))} cz T*B\0 x T*5\0, T*B\0 S Q/Hq,

Σ = {(zi,z2) : Zi = yq(zϊ),Zi e P,γp(zι) = yP(z2)}

In the model case the billiard ball map takes a particularly simple form:

(|) ) (10)

Taking Γ5 = {(x9ξ) : (x,0,ξ,^+i) G Γ} we can use χ to obtain χd:

χd :Γd-+T*B\0,

conjugating ^ ± to the normal form:

χjιδ±χd=δ±. (11)

The construction above shows that the phase function θo = Θ\BXR" generates
Xd, i.e.

The other, singular, component of our phase φ restricted to the boundary
integrates the billiard ball map, as easily seen from (10) and (9):

If for (y,η)eT*B we define

t (12)

then, since χβ is a symplectomorphism, we obtain

± (13)

Thus this geometrically defined function (via its relation with the billiard ball
map) establishes the essential connection between the normal form and the
geometry of the scatterer.

Rather naturally, for both Proposition 1 ([8]) and the relation between the
variables in the integral expression for w, wF we need to understand the way ΛD,
the free flow-out of Λ, behaves under χ. Fortunately the rigidity in the equivalence
theorem comes only from intertwining the billiard ball maps and as in [7, 8, 11]
we can follow Melrose in using the slightly refined version of the equivalence
theorem which puts ΛD into normal form.
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More precisely we shall use Theorem 4.10 of [7] applied to the following
situation (just slightly different from the application in [7] - see [8]). Let us
define the following folding canonical relation2:

V" cz T*B\0 x T*Θ\0, V" = {(zuz2) : yg(exp Jϊp(zi)|β) = z 2}.

We have A c T*Θ °-> <£" intersecting the singular set of <€" transversally and
thus we can locally find

χι : Γ 0\O-> Γ Rπ,

χ2 : T*B\0 -> T*RW,

such that (χ2 x χi)(#") = #o> where ^o is the model folding canonical relation
(really the square root of the billiard ball map):

((x,ξ;y,η) : x, = yu 1 <i<n,ξ = η,(yι - x\)

= \(χn-ynΫΛχi-χi)2 = ~ Y (14)

Simultaneously A is put to normal form:

Xl(A)=N*{x1=xn = 0}.

The canonical transformation χ2 intertwines the billiard ball maps and the
equivalence function χ can be constructed (actually the construction starts with
showing the existence of xa - see Sect. 3.5-3.6 of [9]) so that xe = χ2. If we define

(ΆD)h = {ze ΆD,expHp(z) Π Q φ 0},

then from (10) and (11) we obtain

(ΆD)h = χ[V2(A0 n {ξn > 0})],

where <&2 is the model wave relation parametrized by

Φθ = X'ξ±lξT1/2(ξn + ξlXn+ύ3/2>

X = (XU . . . , Xn), ξ = ( ξ l 9 " , ξ n ) ,

i.e. c€2 = {(x,(Φoyx'ΛΦo)ξ,ξ)} Consequently

Ά {ζn>θ}). (15)

Both sides are Lagrangians with boundaries but one could actually modify χ to
obtain (15) without h and ξn > 0 on the left- and right-hand sides respectively.

We shall now study the phase in Proposition 1, and we only need to consider
WF. For that we can use Lemma 3.1 of [11], with immediate motivation from (8):

uF(t,x) - J\g(x9ξ)MQ + h(x9ξ)Af(ζ)]Jlθ>M)^

where because of translation invariance we can have

χ*ξi = ξi, θ{t9x,ξ) = θι(x9ξ) + tξl9 (16)

Where no confusion is likely to arise, we shall use the following notation exp V(M) = |JexpίF(M)
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and where / € /^+^(R",N*{xi = xn = 0}), because of (15) (compare (3.8) of
[8] and Sect.4 of [11]), g e S^h £ Scγ

1/3. With a the symbol of /, f(x) =

a(x",D)δ(xι)δ(xn), x" = (x2, ..., xn-0 we have

wF(x,λ) =J[gAi(ζ(x;λAξn))+hΛf(ζ(x;λAξn))]eίθl{x^^^ (17)

with a\ G 5c

α

i

+n/4~5/6

# Using the integral representation of the Airy function and
changing variables ξn = λη we obtain

WF(X, λ) = λ4/3 ί\g + λ~l/3τΛ]fll^[-iτ3-τC(z,l,0Λ)+βi(x,l^)]dτd|7 .

By (9) and the diffractive condition {p, {p,q}}(m) > 0,

ί = -5Γ 1 / 3 «π + ρ(x,ξ)), Q = 0, δvC|aκχR« > cξx > 0.

Thus if |^n | < c ^ 6 and d(x,dK) > δ, then C < -c"ξ2^. That allows us to apply
the stationary phase method in the τ variable in (18), which amounts to replacing
Ai and Aϊ in (17) by their asymptotic expansions. Since near the shadow Γ+ only
the outgoing term in Ai, A+ contributes, the phase we obtain is

ψ(x,η) = - | ( - C ( x , l,0,>/))3/2 + θi(x, 1,0,17)

An application of the Morse lemma gives

ψ(x,η{x,σ)) = ψ(x) + - h{x)(σ - σ(x))2, ψ(x) = x ω + α,

where σ(x) = —ή(x) is the critical value of ψ,

η(x,σ) = -σ + 0((σ-σ(x))2). (19)

The function h is smooth for d(x,dK) > δ and (see (6.13) of [11]) it takes the
form h = d/2t, where dj are smooth with Ϊ\QK defining Φ Π dK, the shadow
boundary on dK. Also, ί(x) > 0 and d(x) < 0 for x close to Γ+ in d(x,dK) > δ.
Thus

xeΓ+=>h(x) >0. (20)

Since by (15)

i?M = χ*iξϊιξn){x,ω)9 AD = {(χ,ω)}. (21)

fy simply vanishes on Γ and thus

i/(x) = c(x)j(x), c ^ 0 . (22)

As we shall see from the expansions in Sect. 4 the value of c on Γ determines the
size of the shift. The relation of c to the geometry of dK is given by the following
proposition, closely related to Lemma 5.12 of [5].

Proposition 2. The value of c defined by (22) on the shadow boundary is

c(x)|Γ = [2α(y(x),ω)]1/3,

where y(x) = Lx Π dK, with Lx = {x + tω : t € R}, ί/ze glancing ray through x,
and where a is the directional curvature of dK at y(x) in the direction ω.
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Proof. Let us first observe that c(x)\r is constant on the rays in Γ. Indeed, we
can consider c\Γ as a limit lim ή(y)/s(y)9 y £ Γ. But η is constant on rays in

ΛD by construction and for ΛD = {(x,ω)}, the rays stay equidistant to Γ 3 . As

X*ζi = ζi we obtain from (12) and (21),

x e dK => η = -λ-2/3ζ$(γq(x, a + x ω,λω,Xj). (23)

Let y G dK be a glancing point for ΛD and L the glancing ray through y. Let us
consider L, a ray in the direction ω coplanar with L and the normal to dK at y,'
vy

Let x e LΠ dK be the second point of intersection of L and dK (see Fig. 2)
and

If oc(y, ω) is the directional curvature of dK at y in the direction ω, when the
distance, s, between L and L can be considered a function of |ξ | :

- \ξ\) + o « i - \ξ\)2).

Fig. 2

Comparing with (23) and rescaling in τ we obtain

Φ ) = Φ,Q>) lim(τ - l ) " 1 ^ ^ ^ , ^ ω + α ω/τ, 1)).

Thus we need to evaluate the limit (except for the factors of 2 this is essentially
done in Lemma 5.12 of [5]). For this we observe that

lim(τ - l)-%(γq(x9x' ω + a ω/τ, 1)) = ω dξζ{y,t9ω, 1), (y,ξ) e T*dK. (24)

The billiard ball map gives a point j ; at which the ray from y in the direction
ω/τ + (1 - T~2)1/2vy hits the boundary dK:

y= ^ ( - C

On the other hand (see Fig. 3)

= I [ T + (1 - τ ~ 2 ) 1 / 2 v Ί ( 1 - τ"2)1/2+0((τ -
3 This is where we use the plane wave assumption. Otherwise we would get a variable factor in c
depending only on A or, in a more general setting on a variable metric
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Fig. 3

Using (24) this easily leads to

lim(τ - lΓ%(γq(x9x- ω + α ω/τ, 1))
τjl

concluding the proof. D

4. Asymptotic Expansions

For the expansions of the free wave we only need to use the stationary phase
method. If we define

PF (X, λ) = λ~a~n/4e~ιλx'ωWF (x, λ),

and go(x9s) = g(x,s,λ) + 0(λ~ι), then

2πO 1 / 2

)]. (25)

Of course, as in the case considered by Keller and Rubinow, wF might be
given explicitly (exp(Ux ω)), but the main point here is the comparison of
the coefficients in the expansions of w and w?. Let us now consider p(x, λ)9

w(x,λ) = +/4iλM

9λ) = -ω2 fg(x,η9λ) ±
J A+

p(x

with η = η(x,σ) given by the Morse lemma.
The behaviour of the Airy quotient is of course crucial (cf. Lemma 4.2 of

[11]):

A ( - exp(2τπ/3) + O(ί-°°) t -> +oo
j - (t) - \ eil(-t)^ Σ βjt-y/2 t-+-oo-

{ ;>0

As in [8, 11] this suggests a partition of p according to the behaviour of A-/A+,
which physically corresponds to partition into direct, reflected and diffracted
waves and has also a microlocal characterization (see [11, 6]). Unlike there
however we are not interested in the precise uniform expansions of the diffracted
wave, in particular the nature of the cancellation in the shadow, but only in
the size of the leading term of p compared to pF. Both the expansions and the
computation of the leading term are much easier if the integral representing p
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is partitioned in a way allowing a certain overlap between the terms. Thus we
define:

uφ) = -ω2Y+(s) (^- (s) + ω ) = ω7+(s) j - (s),

= -ω2Y+(s) — (s) = Φ(s) + wb,

where Φ = Φ#χ with χ 6 C0 0 supported on the positive half axis and identically
1 for 5 > 1. Here Y+ denotes the Heavy side function on the positive half axis.

Thus we define pz for i = 1,2,3,4, p = ]Γ pi::

00

P \X, A) — / gyX^rj, A)6Z uu , V^*-v

0

oo

p (x, A) = / w#(A f^)g(x, f/,A)e5 *• d(τ, (27)

o

p 3(x, A) = / Φ(-2 2 / 3f/)g(x, ij, A ) ^ ^ W ( σ ^ W ) 2 r f σ , (28)

p (x,Λ) = I u^( λ i])g\X">tf>λ)e^ do. (29)

As remarked above there is an overlap in supports between the terms p1 and
p 2 and in the singularity at 0 for p 2 and p 4. In effect the integrals do not
vanish rapidly (0(Λr°°)) in the shadow as λ tends to inifinity, but have rather
straightforward expansions in A~1/2 with terms cancelling in the shadow. This
however suffices for the investigation of the size of p.

The integrals of the form p 1 go back to Fresnel and have made frequent
appearance in the nonrigorous study of diffraction based on the Kirchhoff
approximation (assuming that the field is essentially zero in the shadow). For
the convenience of the reader we shall present the expansion of a more general
integral which was provided by Melin [4] (compare [2], Theorem 7.7.17). Let

Λ(w) = / eitG{s>y>w)h(s, y9 w)dsdy, t > 0, w e R " , (30)

s>0,yeRn

where G, h e C°°(R+ x R2n) and

<95G(0) = dyG(O) = 0, G£(0) φ 0, det G^ φ 0. (31)

Let us also define the "Fresnel integral":
r

Λ+(r) = (2πΓ1/2e-'ϊ ίe'^dz, (32)

and Λ-(r) = Λ+(r). We should also note that

ί l + OO"-1) r -
Λ+{r) = \ O r 1 ) r - -oc

and Λ±(0) = \. Now we have [4]:
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Lemma 1. For Jt defined by (30) and G satisfying (31) let (s(w), y(w),w) be the
unique critical point near the origin for (s,y) \-> G(s,y,w). Set

Λ+ ifa;s>o

Λ_ ifG»s<0-

Then

\Jt(w) - (2π)^r^^^^ ( w ) ^

where G(w) = G(s(w),y(w),w), 0' = G"(s(w),y(w),w), the second derivative with

respect to y and s, σ = sign &', and

s(w) = sign(s(w))|2(G(0,)>(0, w), w) - G(s(w),j;(w), w))|1 / 2. D

To understand the behaviour of p1 we only need the simplest version of this
lemma, and we just need to recall that the sign of h is negative, (20).

Proposition 3. For pι given by (26) we have

The properties of the p2 and p4 terms are similar and are described in the
following

Proposition 4. Let q be given by

q(x,λ) = f Y±u(λ2/3η)a(x,η)ek2iλh{x){σ-dix))2dσ,

with u G ̂ ( R ) and a e Q°(R2). Then

q(x,λ) = eL2iλh{xmx)2λ-2/3a(x,0)F(λι/3h(x)τ(x)) + 0{λ~ι) + O(Γ 2 / 3 σ(x) 2 ) ,

where τ(x) = σ(x)(l + C2(x)σ(x)) and

F(τ) = Jγ±(-t)u(-t)eitτdt.

Proof We shall first introduce a new variable τ = τ(x,σ), σ = σ(x,τ), such that
η(x,σ(x,0)) = 0 and σ(x,τ) — σ(x) = τ — τ(x). This is obtained easily from the
implicit function theorem which, using (19), also yields τ(x) = σ(x)(l +C2(x)σ(x)).
Indeed, we can introduce new coordinates in R", x ι-» y so that σ(x) = y\. Then
η(x,s) = ή(y,s) and we are solving ή(y,yι — τ(y)) = 0, where τ(x) = τ(^(x)).
Vanishing of y\ implies vanishing of τ(y) so that (dyιή)(y9 — τ(y))\yι=o = 0 and by
the implicit function theorem dyιτ\yί=o = 1.

With the new variable and ρ(x,τ) = η(x,σ(x,τ)) the integral becomes:

J , τ))ax(x, ρ(x, τ))β**<**-*dτ,

where «i(x,0) = α(x,0). Now, we expand

ρ( x ? τ) = τρo(x, τ), ρ(x, τ) = - τ + τ2ρi (x, τ),
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and introduce t = λ2^τ which gives:

γ+(σ(x,λ-2/3t))u(-t + λ-2/3t2

ρi(x,λ-2/3t))[

If we take the support of g in Proposition 1 sufficiently close to 0 (which we may
as we are interested if x close to Γ+) we can assume that | — τ + τ2ρi(x,τ)| > c\τ\.
Thus we can expand u and a\ in Taylor series around — t and 0 respectively,
absorbing the powers of t into the Schwartz term u. This gives:

ί

Now we can expand Qx^{\iλ~ι^h{x)t2) into Taylor series, again using the rapid
decay of u. Finally we observe that | suppτ(Y+(σ(;c,τ)) — ϊ±(τ))| = 0(σ(x)2), since
σ(x,τ) = τ + 0(σ(x)2). This gives the desired expansion of q D.

We are left with p 3 given by (28) - here the analysis is the same as in [8, 11].
By Lemma 4.2 or [11],

Φ(t) = e~-2ιt Ψ(t)9 Ψ e S^(R),
L 0(ί-°°) t -> -oo

Using this p 3 becomes

1 Γ

2π J g X'
The stationary phase method is applicable to this integral. Let us denote the
phase by ψι and the critical values of (x,σ,t) \-> ψi(x,η(x9σ),t) by σ+(x) and
ί+(x). With ψi and t/)7/ the critical values of the phase and the Hessian we obtain:

p3(x,λ) = λ~2/3\ detφi(x)Γ 1 / 2 ^ l ( x ) [g(x,σ+(x))y(λ 1 / 3 ί+(x)) + O(λ~1/3)]. (33)

We need to understand the behaviour of σ+, ί+ and t/) near Γ + . For this we have
(compare Sect. 4 of [11]) the following straightforward

Lemma 2. For x close to Γ+ we have:

t+(x) = σ(x) + 0(σ(x)2), σ+(x) = ~ σ(x)2 + O(σ(x)3),

x) = - 1 + 0(σ(x)). D

Using this in (33) we obtain:

Proposition 5.

p3(x,λ) = λ~2/3[g(x90)!P(0) + O(A-1/3) + 0(λι/3σ(x)) + θμσ(x) 3 )] . D

We can now give

Proof of Theorem 1. We need to add all the terms p{ and compare the result to
pp. We can assume here that

μ2 / 3σ(x)|<C, (34)
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for that where x in the theorem is. Let us also recall that

Thus in (34) we have

/ 2π \ 1 / 2

Using Propositions 4 and 5 and comparing with (25) we obtain for x in (34):

Γl fλ\h(x)\\ι/z , 1
p(x9 λ) = PF(χ, λ)\-+l - y - ^ 1 J e 4 (σ(x) - A" 2 / 3(F#(O) + F b (0) + Ψ(0)))

L \ / J

where

F$(0) = j Y+ut(t)dt, Fb(0) = J Y-ηi-ήdt.

Going back to the definitions of M# and u^ we obtain:

0 oo

d = F% + Fb + Ψ(0) = e-* J ^- (t)dt + e-ϊ J ^- (t)dt.
-oo 0

If we now use Proposition 2 we obtain Theorem 1 in the case ρ = oo with

The modification in the ρ = 0 follows by replacing the Airy functions by their
derivatives as in Proposition 1. For the general boundary condition (1) one
needs to consider a quotient of linear combinations of the Airy function and its
derivative. It is clear from the above that only the value of ρ at the glancing
point is going to contribute to the shift of the shadow boundary. D
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