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Abstract. The equations of ideal Magneto-Hydrodynamics are investigated
concerning initial boundary value problems with a perfectly conducting wall
condition. The local in time solution is proved to exist uniquely, provided that the
normal component of the initial magnetic field vanishes everywhere or nowhere on
the boundary.

1. Introduction

The equations of ideal Magneto-Hydrodynamics (ideal MHD) are the model
which describes the macroscopic motion of an electrically conducting fluid. Here
“ideal” means the model to be free from the effect of viscosity and electrical
resistivity. In this paper we study initial boundary value problems for the ideal
MHD with a perfectly (electrically) conducting wall condition.

Although there are several studies of these problems relevant to the plasma
confinement from physical and engineering viewpoints (cf. [6]), any mathematical
exploration into these problems, as far as we know, has not been found. Even the
boundary conditions themselves, which are not only mathematically proper but
also fully consistent with the physical situation, have not been well investigated.
Therefore we first investigate and propose such adequate boundary conditions to a
perfectly conducting wall. Then we show local in time existence of a unique
classical solution to two special cases of these conditions. Now we state our
problems more precisely. The problems we will treat are the equations of ideal

MHD,
0,0+ (u-V)p+eV-u=0, (1.1),
00, +u-V)u+Vp+uHx(V x H=0, (1.1),
OH—VxuxH)=0, in [0,T]xQ, (1.1),
(0 +(u-V)S=0, (1.1),

V-H=0, A1),
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with initial conditions
p,u, H, S)|,=0=t(p0,u0, Hy,So)=U, in Q, (1.2)

and with “perfectly conducting wall boundary conditions,” which we will
formulate in Sect. 2,

u-n=0, H-n=0 on [0,T]xI,

(1.3)
u=0 on [0,T]xI;,

where
Iy={xel|Hyx)-n(x)=0} and Iy={xel|Hy(x) n(x)+0}.

Here Qis a bounded or unbounded domain in IR? with sufficiently smooth and
compact boundary I, or a half space R3 ={x|x,>0} with the boundary
OR3 ={x|x, —0} pressure p=p(t, x) (scalar), entropy S =S(t, x) (scaler) velocity
u=u(t,x)=(u',u* u%, and magnetic field H=(H', H? H?) are unknown func-
tions of time ¢ and space variables x=(x,, x,, x3). For s1mp11c1ty, we denote the
unknown functions ‘(p,u, H,S) by U; density ¢ is determined by the equation of
state ¢ = f(p, S), where f is a given function so that >0 and 9f/dp (=¢,)>0 for
p>0and each S; magnetic permeability u is assumed to be a positive constant; we
write 0,=0/0t, 0;=0/0x; (i=1,2,3), V=(0/0x,,0/0x,,0/0x5) and use the conven-
tional notations in the vector analysis; n=n(x)=(n;,n,,n;) denotes the unit
outward normal at xe .

We will show local in time existence theorems of these problems when I’
consists only of I, or I in (1.3). In each case we can reduce (1.1)—(1.3) into initial
boundary value problems for quasilinear symmetric hyperbolic systems with
characteristic boundary. The proof of the theorems is proceeded through the
iteration scheme, and the main ingredient is to get a priori estimates of the
linearized problems subordinate to the scheme.

We first note the structure of the problem in which I' consists only of I; is very
similar to that studied in [17]. So we can show the local in time existence of the
solution by the same line of the proof as in [17] (see Remark 2.9).

We next note that the problem in which I consists only of I}, seems peculiar one
compared with initial boundary value problems appeared in other physical
problems (a typical example is the problem for the compressible Euler equations,
see [13]) by the following reasons:

(i) the condition on the boundary, H-n=0, seems to be an excess boundary
condition when we solve the linearized problem as an initial boundary problem of
symmetric hyperbolic systems (see, for example, Lemma 3.3).

(i) it seems difficult to show that the solution has full regularity, i.e., that the
solution has the same order of regularity in the direction normal to I" as in the
direction tangential to I

By virtue of the fact we may regard the condition H - n=0 as the restriction on
the initial data U, instead of on the lateral surface [0, T] x I', we can overcome the
first difficulty by adding lower order terms to the linearized equations subordinate
to the usual iteration scheme [see (3.10) and Lemma 5.2]. We owe this idea to Taira
Shirota.

Next, to evade the second difficulty we introduce a weighted Sobolev space
with respect to space variables in which the order of the partial differentiation in
the direction transversal to I is half of that in the direction tangential to I’ (as for
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the definition of function spaces, see Sect. 2). This space seems to be suitable to get
a priori estimates of solutions for our linearized problems.

In preparation of this manuscript, we heard of the results by Chen Shuxing [3].
He develops the general theory for the initial boundary value problems for a
quasilinear symmetric hyperbolic system with boundary characteristic of constant
multiplicity. Although his approach is close to ours, the theorem of [3] is too
restrictive to apply it to our problems directly. In addition, some further
considerations are needed because of the first difficulty (i) cited above. (As for the
linear problems, see [9, 11, 15].)

Finally we point out two open problems related to these initial boundary value
problems. The first problem is the initial boundary value problem (1.1)—(1.3) in
which both I and I are not empty. Any linearized problem of this problem
requires the study of the initial boundary value problem with boundary
characteristic of nonconstant multiplicity. The second problem is the question of
whether the solution of the problem in which I' consists only of Ij, has full
regularity or not (cf. [7, 10, 14]).

This paper is the full and extended version of [16]. The plan of this paper is as
follows. In Sect. 2 we present formulation of a perfectly conducting wall condition
and then give the statements of the main theorems. In Sects. 3—5 we give the proof
of the theorems for the case in which we are most interested that I' consists only of
I

2. Formulation of Perfectly Conducting Wall Condition
and Statements of Main Theorems

In this section we formulate the conditions on the lateral surface when the
boundary wall consists of a perfectly conducting wall. Since the boundary is
supposed to be rigid and fixed (independent of time variable), the same condition
as in the fluid dynamics is imposed on velocity u:

u-n=0 on [0,T]xTI. (2.1)

Since we suppose the boundary wall is perfectly conducting, ie. electric
conductivity ¢ on the boundary wall is infinite, the tangential components of the
electric field E must vanish:

Exn=0 on [0,T]xTI. 2.2)
Further, by Ohm’s law J=0(E + u x uH), we get formally
E=—uxuyH on [0,T]xTI.

Accordingly, by virtue of vector identity that (A x B)x C=(4-C)B—(B-C)4,
we get from (2.2),

wH-n)=0 on [0,T]xTI. (2.3)
Now we can summarize as perfectly conducting wall conditions
u-n=0, wH-n)=0 on [0, T]xT. (2.9

The second part of (2.4) forms nonlinear conditions. However, we can reduce them
to linear ones by the following proposition.
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Proposition 2.1. Let u and H be' a classical solution of (1.1) with initial conditions
(u, H)|,= o= (ug, Hy). Then the following conditions are equivalent to (2.4):

u-n=0 on [0,T]xI,
u=0 on [0, T]xI;,
where I, I are the same as in (1.3).

Proof. Let (u, H) satisfy (2.4). Let S be any portion on I'. Since the condition (2.4)
yields nx (ux H)=0 on [0, T] x I', we find from (1.1), by integration by parts

0,{H-ndl'=0 on[0,T],
S

(2.5)

where dI' denotes surface element on I'.
Accordingly, we get

H-n=H,-n on [0,T]xTI.

Thus (u, H) satisfies (2.5). Next we prove the reversion. Let u satisfy (2.5). If we show
that

H-n=0 on [0,T]xI, (2.6)

we easily see that (u, H) satisfy (2.4). To prove (2.6), we first note the following vector
identity: —V x(ux H)=u-VH—H-Vu—uV-H. Since u-n=0 on [0, T] x I, we
get by direct calculations

(u-VH)-n=u-V(H-n)—H-(u-Vnj,
—(H-Vu)-n=—H-n)(n-Vu-n)+u-(H-Vn) on [0, T]xI.
Accordingly, we obtain from (1.1),, ’
0(H-n)+u-V(H-n)+b(Vu,u,n)H -n+c(u, H,Vn)=0 on [0,T]xTI, (2.7)

where b(Vu,u,n)=V-u—n-V(u-n) and c(u,H,Vn)=—H- -(u-Vn)+u-(H-Vn).
Since n=n(x) is expressed by — V' dist(x, I'), we see that c(u, H, Vn)=0. Thus by the
standard method of characteristic curves, we get (2.6). This completes the proof.

Remark 2.2. The above proof shows that we can regard the condition
H-n=0 on [0,T]xI,

as the restriction only on the initial data.

We use the following notations for the function spaces. Let H™(Q2) be a usual
vector-valued Sobolev space of order m, with the associated inner product denoted
by (5)m OF (,)m, o and norm denoted by |-|, or ||, o Define the function space
H7%(Q) to be the set of functions U(x) taking values in R® and satisfying the
following properties:

Let k be an integer such that 0<k=<m and let 4, (i=1,...,k) be an arbitrary
vector field tangential to I', ie. A; belongs to B®(Q;R3) and satisfies
{A{x),n(x))=0 for all xel’ and i=1,...,k. Then 4, ... A4,U(x)e HI™~P/2Q)
where [ ] denotes Gaussian bracket.

! We use here and hereafter the terms of “being a classical solution” to represent that each
component of the solution belongs to C*([0, T] x Q)
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In connection with H7(Q), we define the function space X7(Q) by
XNQ)= ﬂ L (0, T; H: Q). 2.8)

Here I¥(0, T; Hy ~%(Q)) is the space of all functions U= U(t, x) such that diU,
0<ZiZk, are essentlallly bounded and strongly measurable functions on [0, T]
takmg values in H7? ¥Q). We introduce norm | - |, r associated to the space
X(Q) (cf. Lemma 1 in [2]). At first, cover Q by a finite family of open sets {0,}}_,
such that 0,nQ, i=1,...,1, are diffecomorphic to Z, ={x,20}n{|x| <1} with F
mapping to {xl—O} and 0,CCQ. Denote these diffeomorphisms from 0;nQ,
i=1,...,4, to #, by 7, Choose a finite number of partition of unity {go Yoo

¢
subordinate to this covering {0;}{_, such that ¥ ¢?=1 in Q. Now define the
norm | - ||, 7 by =0
”u”m,T:eSS[ sup [[u(®)] >

lu®)l7= Z U@ 17—k, 5 29

)17, « =Pou(®)ln+ i; loau(t) o v M, 45

where
m/2]

[m/
|f|12n,*=z Y 10501 f16, w2

s=0 |a|]sm—2s
with 0% =(0(x,)0,)*1050% for a=(a;,a,,a3) and |o|=a,+a,+o;. The weight
o(x,) is a smooth and positive function such that o(x,): = x, for small enough x,,
:=1for x; =1 and
o'(x,)=(0/0x,)ao(x;)>0 for 0=<x;<1.

We remark that the norms arising from different choice of 0, y,, @, are equivalent.
So when Q=IR?, we can define | - ||, 4 bY I - lln, 4 =| - Im, «- Throughout this paper
¢,C,andc;, C;(i=0,1, ...) denote positive constants which may change from line to
line.

Now we state our main theorems. For the problem (1.1)—(1.3) in which I
consists only of I}, the statement is

Theorem 2.3. Let Q2 be a bounded domain in R® with sufficiently smooth boundary I
Let m=8 be an integer. Suppose that the initial data U, e H™(Q) satisfies

V-Hy=0, p,>0inQ, Hy-n=0o0nTl, (2.10)
and the compatibility conditions:
Fuy-n=0, for k=0,...m—1,0nT. (2.11)

Then there exists a constant Ty, >0 such that the initial boundary value problem
(1.1)—(1.3) has a unique solution U € X7 ().

When Q is unbounded, we get

Theorem 2.4. Let Q be an unbounded domain in R? with sufficiently smooth and
compact boundary T' or a half space R>.. Let m=8 be an integer. Suppose that
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U, —(c,0)e H™(Q) for some constant ¢ >0 and that U , satisfies the conditions given
in Theorem 2.3. Then there exists a constant T, > 0 such that the problem (1.1)—(1.3)
has a unique solution U satisfying U —*(c,0)e X7 ().

Remark 2.5. (a) Since HJ(Q)C H™*(Q) and m>8, these solutions U are classical.
(b) The term &u, in (2.11) is determined by less than or equal to k™ order
derivatives of U, by using Eqgs. (1.1) at t =0 successively. We can also determine the
terms J0*H,, and U, analogously. [As for precise definitions, see (3.5).]

(c) The compatibility conditions associated with the boundary condition H - n=0:

&H,-n=0, for k=0,1,...m—1,onT (2.12)

are automatically satisfied by the condition H, - n=0in (2.10) and J*u, - n=0, for
k=0,...,m—1, in (2.11).

For the problem (1.1)—(1.3) in which I" consists only of I3, we can show the
following theorems. This result was pointed out by Taira Shirota before us.

Theorem 2.6 (T. Shirota). Let Q be a bounded domain in R? with sufficiently smooth
boundary I'. Let m2 3 be an integer. Suppose that U, e H™(Q) and that U, satisfies

V.-Hy=0, p,>0inQ, Hy-n*0onl, (2.13)
and the compatibility conditions
Muo=0, for k=0,1,...m—1,0nT. (2.14)
Then there exists a constant T, >0 such that the problem (1.1)—(1.3) has a unique
solution U e .F]O C/(0, T,; H™9(Q)).

j=

When @ is unbounded, we get

Theorem 2.7. Let Q be an unbounded domain in R3 with sufficiently smooth and
compact boundary T (respectively a half space R3 ). Let m=3 be an integer.
Suppose that Uy,—%x,0)e H"(Q) for some constant c¢>0 (respectively
Uy,—%c,0,0,0,c',0,0,0)e H™(IR3) for some constants ¢>0, ¢'+0) and that U,
satisfies the conditions given in Theorem 2.6. Then there exists a constant T; >0 such
that the problem (1.1)—(1.3) has a unique solution

U—*c,00e () C0, Ty; H" (@)
j=0

<respectively U—"c,0,0,0,¢,0,0,0)e ) C/(0, T3; H""j(]Ri))).
j=0

Remark 2.8. The assumptions that V- Hy=0in Qand H,-n+0o0n I"in(2.13) imply
that the boundary I' consists of more than two connected components except
when Q is a half space.

Remark 2.9. We present a sketch of the proof of Theorem 2.6 and 2.7. We set
U="(p,u, H,S) and rewrite Egs. (1.1),_, into the symmetric form

AU)3,U + i A(U)p,U=0  (cf. [17]). (2.15)
i=1

In order to solve the problem by iteration, we consider the linearization of (2.15)
around an arbitrary function U’'=%p’,u’, H',S’) near the initial data, satisfying



Ideal Magneto-Hydrodynamics 125

u'-n=0and H' -n+0on I'. The linearized equations form a symmetric hyperbolic
system with singular boundary matrix, A, (U')= Z A{U")n;, which in fact has

constant rank 6 on I'. First, we find by direct calculatlon that the null space of
boundary conditions, i.e.

{V="(v,,...,v5)e R8|v, =05 =0,=0},

is a maximally nonnegative subspace of the boundary matrix. Next, although the
boundary is characteristic, we can estimate, by virtue of the spe01a1 structure of the
equation to divH, 6,|d1vH |21, o in terms of |U|Z o (see Eq. (5.3) in [17]). Further,
we can also estimate 0,|S|2 o in terms of |U|, ,, from the equation for S by standard
energy estimates. Then by using the nonzero part of 4,(U’) and these estimates, we
can estimate normal derivatives of U. All the rest procedure proceeds as in the
proof in [17]. So we omit it.

3. Study of a Linearized Problem

We first rewrite Egs. (1.1). We may assume p=1 without loss of generality;
otherwise it suffices to introduce new variables u!/2H instead of H. Then (1.1) can
be converted into the following symmetric system:

00, +u-V)p+oV-u=0, (3.1),

00, +u-Vu+Vp+Hx(VxH)=0, (3.1),
0,+u-VYH—H-Vu+HV -u=0, (3.1);
0, +u-1S=0. (3.1),

This equivalence of (3.1) and (1.1), under the initial and boundary conditions (1.2)
and (1.3), can be seen by noting the fact that if the solution of (3.1), satisfies V- H=0
in Q at t=0, then V-H=0 in Q is true for all ¢t>0. Next, we introduce new
unknown functions V="%q—c,u, H, S) in place of U (when Q is a bounded domain
we omit a positive constant c in the above V and hereafter we do not mention this
remark), where g =p + 1/2|H|? is the summation of (fluid dynamical) pressure and
magnetic pressure, and rewrite Eqs. (3.1) in the form

o 0 —oaH 0
0 ol; 0 0 ov
—o'H 0 I;4+oH®H 0]’
0 0 0 1
o(u-V) v —oHu- V) 0
+ v ou-MI, —(H -, 0 v
—a'Hu-V)y —(H-V)I; (3+ocH®Hu-V 0
0 0 0 u-v

EAO(V)G,V+._§ A(V)8,V=0. (3.2)
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Here we set a=g,/o, where ¢=f(q—1/2|H|?,S) and ¢,=0f/dq, and
H®H=(H'H|i-»1,2,3,j]1,2,3).

Note that ¢>0, ¢,>0 for g—1/2|H|>>0 and each S.
Then the initial boundary value problem we consider is that for Egs. (3.2) with
initial conditions

Vl=o="qo—c¢, 0, Hy, So)=V, in Q, (3.3)
and with boundary conditions
u-n=0, H-n=0 on [0,T]xTI. (3.4)

For setting an invariant set for iteration scheme we define “k-Cauchy data
dV,” for the Cauchy problem (3.2) and (3.3) as follows: Set d°V,=V, and
determine ¥V, successively by

k—1 3 —
5;‘V0=—{_zo ‘Zo<ki1>G,~,J(<'5?VO,...,5§V0)0jt§f'i‘1V0}, for k=1,2,...,
Y-

where } . . !
G, (8Vy, ..., Vo) =Y A5 A) (Y, ..., 8V) =8V, ..., OV

We also define k-Cauchy data du, and d*H, as counterparts of (3.5).

Now we set an invariant subset for iteration scheme. Let x, M,, _ ,, and M,, be
positive constants and let XHQ;x,M,_,,M,) be a set of functions
V'=Yq'—c,u',H', §') satisfying the following conditions:

V'eXpQ, Vin-1,15Mu-v,  Vnr=M,,
qd—1/2HPzx in [0,TIxQ,

w-n=H -n=0 on [0,T]xI, (3.6)
IV'(0)=3V, inQ, for 0Sk<m—1.
According to (2.10), the initial data ¥ satisfy that
V-Hy=0, qo—(1/2)|Ho|*>0 in Q, (37)
H,-n=0 onTr.
We further suppose that V}, satisfy the additional conditions
Voe H""Q), &uy-n=0, for k=0,...m, onT. (3.8)
By Remark 2.5(c), we know that the compatibility conditions
#H,-n=0, for k=0,...,m, onT (3.9

associated to the boundary condition H-n=0 are automatically satisfied.
Let V' be a given function belonging to X'}Q;x,M,,_,,M,). Then the
linearized problem we study is

3
AV V+ Y A(V)O,V+B(V,V)=0 in [0,T]xQ, (3.10)
=1

Vii=o=V, in Q, (3.11)
u-n=0 on [0,T]xTI. (3.12)
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Here B(V', V) is an 8 dimensional vector valued two form of ¥V’ and V defined by
B(V',V)=%0,0,0,0, V", V),0), (3.13)

where [(V',V)=n{(' - Vin)- H—(H' - Vin) - u} with me Z°(Q) such thatm|.=n. We
remark that B(V', V)= — B(V, V). Hence it is easy to know that k-Cauchy data for
(3.10) and (3.11) take the same value as 0¥V, defined by (3.5).

For this linearized problem we can get the following a priori estimate in
accordance with H7(€Q).

Proposition 3.1 (A priori estimate). Let m=6 be an integer and let
VeXHU2;x,M,,_,M,).

m+1

Then a solution Ve () CX0, T; H™*'~4(Q)) of the problem(3.10) and (3.12) satisfies
j=0

VOl = CM,,— 1, 1) [[VO) | exp(C(M,,)t) for 0=t<T. (3.14)

Here and hereafter C(A, B, ...) denotes a positive constant depending smoothly on
A,B,..., and m, Q.

We postpone the proof of Proposition 3.1 till Sect. 4. On the basis of this a
priori estimate, we get the main result in this section.

Theorem 3.2. Let m>8 be an integer. Let V'e X'YQ;k,M,,_,,M,,). Then the
problem (3.10)—(3.12) has a unique solution Ve X'}(Q) with the estimate
IVl 7S CMo—15) 3 1Vollm-iexP(C(M,)0)
for 0=t<T. (3.15)

To proceed the proof of this theorem, we need the following two lemmas. We
first show

Lemma 3.3. Let V'=%q —c,u,H’,S’") be a smooth given function satisfying the

conditions w'-n=H'-n=0 on [0, T]xI. Then the null space of the boundary

condition (3.12) is maximally nonnegative subspace of the boundary matrix A, (V).
3

Here the boundary matrix A,(V') stands for Y A{(V')n{x).
j=1

Proof. Observe that the boundary matrix 4,(V’) takes the form

ou'-n n —oH'Y - n 0

A (V)= 'n o'u' -nly —H'-nl, 0

" —o"Hu'-n —H'-nly (I;+«H®H)W-n 0
0 0 0 u-n

Since u'-n=H'-n=0 on I', we can easily check the boundary space

3
{‘(Ul, ..., Ug)€RE -21 Vs 1n}:O}
I=

is nonnegative subspace of 4,(V’). Further, the maximality is followed by the fact
that eigenvalues of 4,(V’) consists of +1 (simple) and 0 (with multiplicity six).
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Next we show

Lemma 34. Let V'e X7(Q;x,M,,_,, M,,). Let 0, ¢, A, ¢’ be parameters such that 6 >¢
> A>¢'>0. Then there exists a function V{ such that

m+1

Vi e Do C'0, T; H"*17"(Q))

and
when ¢ —0, A—-0, ¢—0, 6—0 in this order,

OfVEs >V’ in Hp XQ), for 0Sk=<m, for a.e. te[0, T].
Further, there exist positive constants Co= Cy(|Vy|m+2) and cq, independent of the
parameters, such that

Vi e XQx/2,M,_ 1 +Co, M, +Cy) for 0<é<i<e<d<c,.

Proof. We construct the function V5§ by four steps as follows. (i) We first extend
Cauchydata (V,, ..., " 1¥,) to [0, T] x Q. Since V, € H™**(2) by assumption (3.8),
we see that 3V, e H™*2 %) for 0 < k< m— 1. Hence, by virtue of Theorem 2.5.7 of

[5], we can get an extension V'="q—c, 4, H,S) of the data éfVO, for0<k<m—1,
m+1

such that VeH™ %[0, T]x Q) (i.e. Ve N CO, T;H’"“"(Q))) and
r=0

V(0): =3V, for 0Lk<m—1,:=0for k=m and m+ 1, in Q, with the following
estimate

PlasntomxaSC S, 1EVohnsa o (3.16)
Next we define an operator (1 — 4); 'f, where f is a given function on I', by a
bounded solution of the Dirichlet boundary value problem
(1—Au=0 in Q,
u=f onT.
Let us put
Py=V—(1—2);'g(V), (3.17)
where the function g(¥) is defined by
(O, (yrta - mym, (y-H - nn, 0)

and y is the trace operator on I.

Obviously, this (V> =%(q—c,u, H, S) satisfies thatu-n=H -n=00n [0, T] x I.
Further, by (3.8) and (3.9) we see that 0¥ (0)=0*P(0), for 0<k<m—1, in Q.
From (3.16) we also see that there exists a positive constant C; = C,(| V|4 o) Such
that <P, =< C;.

(i) For >0, let us define the function V; by

V=T =T, o (V> =V"), (3.18)

where T;o f(t,x)=f(t —d, x) for t =6, =0 for § >t =0. Then there exists a constant
¢; >0 such that V; belongs to

X7(2;3x/4,M,,_1+C,,M,+C,) for d<cy,
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where C,=2C, +1. Further, we can see that when 6—»0
;-7 in X'UQ). (3.19)

(i) We take the mollifier of the second part of (3.18) with respect to time variable
and spatial variable tangential to the boundary. Fix 6 such that ¢, >d4>0. For
£< 0, let us define the function V§ by

V = <V> +Ja(t x’)(%_<v>)

To make the meamng of J.q, x clear, we carry over localization and flattening of
the boundary by using the covering near the boundary {0,}1-,, the diffeomor-
phisms y;, and the partition of unity ¢; appeared in the definition of (2.9). By this
procedure, we may suppose that V;— (¥ has support in &, for each te[0, T].
Then the meaning of J . is a (Friedrichs’) mollifier with respect to t and (x,, x3).

As for the function V;— (¥} localized on a covering far from the boundary, we take
the mollifier with respect to ¢ and x. Of course the integrand V;— (V') is naturally
extended to (—d, T+ ) x Q. It is easily seen that there exists a constant ¢,(<c,)
such that V3 belongs to

XMRQ;2x/3,M,,_+2C,,M,, +2C,) for e<c,.
Further, we see that when ¢—0
Vi 0kVy in HE~XQ), for 0<k<m, for a.e. te[0,T]. (3.20)

(iv) Lastly, we take the mollifier of the second part of V5 with respect to spatial
variables normal to the boundary. Fix 6 and ¢ such that ¢, > 6 >¢&>0. Let us define

V‘b
y V2= (Vo= 7).

Then we apply the same localization and flattening of the boundary as in the last
step and suppose that the function 77 localized near the boundary has support in
% .. For 2>0 and fixed te[0, T], let us define the function 7§, by

Ve At x)=1,0 Vi(t,x)= Vit x; + 4, X).
Since 0% Ve C*(0, T; HT(R3 ,)) for each o' =(a,x3) € N x N, where
RS ,={x|x;>—1}, 0%=020%, and N=NuU{0},

we can see that o
0% Vs i(t,-) e C*(0, T; H"(RY)).

Next let us take a (Frledrlchs ) mollifier of ¥ , with respect to x,. For ¢ such that
0<¢ <4, let us define V55 by
Izi’f=-]e'<§$1ﬂ7§,z-
Clearly, the function 73} belongs to C*([0, T] xR3) and when &' -0
Vs —»0iVs, in CYO, T;H"(RY)),
for each leN, o’ e Nx N (3.21)
Further, we will prove that when A—0
RV -0V in C(0, T;HYRY)),
for each leN, o’ e N x N. (3.22)
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Let us fix a,, o, 5, and [ such that a, +2s<m, leN, o’ N x N and denote
outsouolVE by V.
Then the same argument as on pp. 43—46 in [8] shows that when A—0
o(x)" 1,0 V=a(x,)*V in C°0, T;I*(R3)). (3.23)

Since 0%85(0'V;)=o(x,)" V+l.o.t., where a=(a,, ), we can easily see (3.22) from
(3.23). 5
Finally, we compensate the boundary value of V5. Let us define the function

P> by een T e
i Ty =Vt (1= A7 gV, (3.24)
where g is the same function as in (3.17). Note that §'0%g(¥?)=0, for each le N,

o e N x N, on [0, T] x I'. Hence, by (3.21) and (3.22), it is easily shown that when
¢ —0 and A—0 in this order,

(1= 'g(V5:5)—~0 in CY0, T; H™H(R3)),
for each IeN, o’ e Nx N. (3.25)
Further, we can show that when &' -0 and A—0 in this order
a(x,) (1 —4); 'g(V5:5)-0 in CY0, T; H™*(R3)),
for each leN, seN. (3.26)

This is shown by the following manner. First, denote the function (1 — 4); 'g(Vss
by G and fix te[0, T]. By the definition of (1—4); ! we see that

(1—4)G=0 inR3,
G=g(Vsf) on 0R}.
Operating a(x,)*¢5” ! to the above equations in R3 and taking inner product in
[A(R3) with o(x,)*d5" ' G, we find that by integration by parts
lo(x, )05~ 1 Gl3 + 0,01 Gl +|a(x )07 V' Gl
== 28(0(x,)* 1 (x1)5G, 34 G)o,
where V' =(d,, 03). Accordingly, by Young’s inequality we get
lo(x,)°03 Gl < Cla(x,)* ™07 Gl -
By using this estimate repeatedly we get
lo(x; )01 GI3 = CIGl5 -

Hence, we can see (3.26) easily by virtue of the standard estimates to (1—4); 1. So
combining (3.26) with (3.25), we find that when ¢'—>0 and 6—0 in this order

(1—4)7 g(V&:)—0 in CY(0, T; H™(Q)), for each leN. (3.27)
Now let us define Vi'f by
Vs =P+
By (3.21), (3.22), and (3.27), we can show that when ¢ —0, Z—0 in this order,
©¥ >V in CY0, T; H™(Q)), for each e N. (3.28)
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Further, we find easily that there exists a constant (< c,) such that, for c,>d>¢
>A>¢, V5 belongs to

XH2;x/2,M,,_;+3C,, M, +3C,)

m+1

and to ﬂ C¥(0, T; H™**~§(Q)). Hence, putting C, = 3C,, we can show from (3.19),

(3.20), and (3.28) that this V£ is a desired function. We complete the proof of
Lemma 3.4.
We now give

Proof of Theorem 3.2. By virtue of Proposition 3.2, we first regularize V’, the
coefficients of the differential operator in (3.10), by V5. Let us fix 6, ¢, 4, and ¢'.
Denote the differential operator with the regularized coefficients V3'f by L:

L= A(V§5)5+ZA( )0+ B(Vs5),

where B(Vy>f) is the 8 x 8 matrix such that B(Vi)V=B(Vf, V). Next we apply
noncharacteristic regularization to L. Letm be one defined in (3.13). Let us define for
a parameter 1>7y>0, o~
I'=L+ym-V).

We find that for I? with y small, I is noncharacteristic and the boundary condition
(3.12) is still maximality nonnegative. Now we consider the initial boundary value
problems I’V? = y@n- V)V in [0, T] x Q with (3.11) and (3.12). Here ¥ is the function
constructed in part (i) of the proof of Lemma 3.4. We remark that k-Cauchy data
for these problems also satisfy the compatibility conditions of second part of (3.8)
and (3.9). Hence, by virtue of the existence and regularity theorem for linear
symmetric hyperbolic systems with noncharacteristic boundary (we refer to

Theorem A.1 in [13]), we obtain a unique solution V?¢ ﬂ Ci(0, T; H™*17(Q))

for these Broblems Further, it is easy to see that when y-—»O V? converges to a
function V in C%(0, T; LZ(Q)), which depends on the parameters J, ¢, 4, and ¢'. In
addition, by retracing the derivation of the a priori estimate (3.14) of Prop-
osition 3.1, we find the following estimate holds:

V(@) = (C4(l aa,'f, lm—1,15%) ki) ”&‘Vonm—k
91+ TICLU VL o ) 012 )P . 7)
xexp [ Cy(IVe @l nde, for O<I<T. (3.29)
0

Hence, referring to the inequality |- V)V |, r<c|V|ps 2, [0, T1x0 W€ know by
(3.16) that the norm |[[V?[,, r is bounded uniformly to y. Accordingly, by the
standard argument (see, [11, 13]), we see that ¥ belongs to X™(Q) and is a solution
of the problem such that LV=0in [0, T] x Q with (3.11) and (3.12). We also find
that the solution ¥ satisfies the estimate of (3.29) in which ¥'” is replaced by ¥ and

the term
YA+ T)Co(1VEF ) - V)P [ 7

is omitted. Next, by virtue of Proposmon 3.4, we find by (3.29) that ||V||,,, ris
bounded umformly to 4, ¢, A, and ¢, and we further find that ¥ converges to a
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function V in C°(0, T; L[*(Q2)) when &' -0, A—0, e—0, and §—0 in this order. Hence,
it is easy to show that this ¥ is a desired solution, which belongs to X'}(€), of the
problem (3.10), (3.11), and (3.12). By Lebesgue’s dominated convergence theorem,
we also see that the solution V satisfies the estimate (3.15). Uniqueness readily
follows from I? estimate of (3.10) with (3.12). We complete the proof of
Theorem 3.2.

4. A Priori Estimates

First we recall some inequalities of Sobolev and Hardy type.

Lemma 4.1. (i) Let Q be an arbitrary domain in R*® having the cone property. Then

(a) [flee@=<Clf g,  0=0<1/2, for feHXQ), )
(b) |fli@SClSfly,0, for feH Q) '
hold.
(i) For fe HY(RY) such that f(0)=0, the inequality

}: fG/xdx <4 T 1 o 42)

holds.

Proof. For example, see [1,4].
As a direct consequence of Lemma 4.1 (i) we get the following estimation of a
product of functions.

Lemma 4.2. Under the same conditions as of Lemma 4.1(i), we get

[f8lo,o = Clf1;,0lglo,0, for feHX(Q), ge [X(Q),
[f8lo,o=Clfl1,0lgl1,0, for feH (Q), ge H(Q).

Let 2 be a bounded or unbounded domain in R3. We first note the invariance
of the principal part of Egs. (3.10) and the boundary condition (3.12) for 0(3) (the
orthogonal group of order 3). Then, by applying localization and flattening of the
boundary of the problems (3.10)—(3.12) localized near the boundary, we can reduce
them to the problems for a half space R3. Although in the process of localization
we must add lower order terms of ¥ and V' to (3.10), they give no essential change
in deriving a priori estimate (3.14). So we neglect them.

Hence, we begin to treat the problem (3.10)—(3.12) for =R?3 = {x|x, >0} and
suppose that V has support in #,. Note that B(V',V)=0 in this case. For
convenience, we write

P(V) Q4V)

Ai V =

m=(g0) )
where P(V), Q(V), and R(V) are 2 x 2, 2 x 6, and 6 x 6 submatrices, respectively.
We write also v="q—c,u'), w="u?,u3 H',H? H3,S). Hence V="(v,w). Notice
that

4.3)

), for i=0,1,...,3, 4.4)

P0hico= (3 o) Qom0 RVhomo=0. @9
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ifu'|,, —o=H"|,,-0=0. We find that the boundary matrix has constant rank 2 on
.

Now we begin to obtain the estimate of tangential derivatives of the solution V
of (3.10)—(3.12).

Lemma 4.3. We have
V()| m,tan = Cli¢, My 1) [ V(O) | m, tan + j) (CUV (@)l m) /
X (I[v@)]lm+ 1V(@llmdz, for 0<t<T, (4.6)
IV(Ollm—1 < Clic, M) |l V(O)Ilm-1+5)C(|| V(@)lm-1)
X ([o(@)]lm+ 1V(@)mdz, for 0<t<T, 4.7)
where [|V(¢)]l7, 0= Z |05 V()15 with

a:lan.:at (a(xl)al)alazlaga for a=(a0aa1>a23‘x3)

tm/2]
and |[v(t)]|7= DI Y Otan0i0(D)I5.

1 je|=m=

Proof. For a such that |a| <m, differentiate Egs. (3.10) by 0%, and take inner
product with 0%,V in L*(R%). Set V*=0%,V. Then integration by parts gives

O(A(V)V%, Vo= (divA (V) V7, V), =L, VAT (G4 Vo, (48)
where +
divA(V')=08,4(V") +j=§1 0,4,V
and
6" = [ AV + 3, O AV + A1V i 011V

Since the tangential derivatives 0%,,V of the solution (3.10)—(3.12) satisfy the same
boundary condition as in (3.12), we can get by (4.1)(a),

t
|Va(t)|(2),Ao(t) ZIVH0)l3, 400yt g V' @)V}

+|G*@)P)dz, for 0<t<T, 4.9)

where IV"(t)lo Ao)= (Ao( V@)V, Vi)o.

Since ¢’ —(1/2) |H'|* > k and (4.1)(a), we find that there exist a positive constant
c(k, M,,_,) such that c(x, M,,_ ) "' < Ao(V) < c(k, M,,_ ;). Hence, if the following
estimate is shown

1G*(@)lo = C(1V' (D) ) (w P |0nd10()lo + | V(T)Hm) , (4.10)

we obtain the desired estimate (4.6) by plugging (4.10) in (4.9) and summing them
over all o with |a| <m. In deriving (4.10), the crucial terms to be estimated are
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[0%,, A1(V')]0,V, for |«|=m, which contains the terms such as 0},,Q,(V")0%,'0,w

tans
and &',,R,(V")0%,'0,w with |l|=1. Recall Q,(V")=0, R,(V')=0 on [0, T] x dR3.
We deal with these terms by regarding 0.,,Q,(V")9%,'0, and 8},,R,(V')0%,'0, as
vector fields tangential to dR3. (Refer to Rauch [11] on this technique.) For
instance, we have

afaan(Vl)a(:a;lal = H(V,)xla:‘a;lal H

where
1
H(V)= (j; 010:a0Q1 (V") 6,40 .

Accordingly, we obtain by (4.1)(a)
10tanQ1 (V)00 Wlo < |H( Vl)le(Q)lxla?a;lalwlo
SCIHWV)|2lo(x1)0%"01wlo
SCHW )21V lm,tan - (4.11)

Further, we can get by a change of variable and (4.2)
=) 1 2
HVo=1 | (5 alazaan(V,)l(t,le,x’)d9> dx'dx,
0 R2\0

<o) 1 X3 2
= | (f <_ | a1a{anQ1(V’)|(x,e,x')d9> dx1> dx’
R2\ 0 \X;1 0
<40,0..2:(V5-

Hence, we get higher order estimates similarly
IH(V")|, < C10101anQ1(V) S CAV'I) S CUV ), (4.12)

by recalling that H™/2Y(Q)> H7(Q2) and m > 8. This is the reason why we take m > 8.
Accordingly, by (4.11) and (4.12) we can evaluate the crucial terms, and by applying
(4.3) to the other terms repeatedly we can get the estimate (4.10). The estimate (4.7)
is shown by a direct calculation. Now the proof of Lemma 4.3 is completed.
Next we shall obtain the estimates of normal derivatives of v. To this aim, we
first note by (4.4) that P,(V")is invertible on [0, T'] x {x|x, =0}. Hence, we can take
a small constant J, such that there exists a positive constant ¢ =c(d,) satisfying

detP,(V)|2c(8) for (tx)e[0,T]x {x|0<x, <80} . (4.13)

By (4.1)(a) and m=8, we see that this d, depends only on M,,_;. Next, define a
smooth cut off function y(x) supported in {x|0<x,<d,} and equal to one in
{x|0=x, <d,/2}, which satisfies the estimate

sup |(9/0x)*x(x)| = C(Jo),
xe[0,d0]
with Jo| <m, for a constant C(d,)) > 0. By using this cut off function y(x), we divide v
into the form
v=w+{A—yv=v,+v,.

For this v; and v;;, we get the following estimates.
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Lemma 4.4. We have

ILod®)]ln = C0, 1V D)l - ) WO |+ [ VO - 1
+ VOl san + 101Ollm),  for 0=t<T, (4.14)

011(6)llm < Clre, 60) ”V(O)”m+j; CUV' @I 1V (@lmde, for 0=t=T,
4.15)

where do=0y(M,,_,) is the positive constant defined in (4.13).

Proof. By the definition of y(x), we can solve Eq. (3.10) with respect to d,v and
deduce the expression of d,v such that

0vy=—Py 1(V’)F(V’, OranV, 01011) (4.16)

where
3
F(V', 00V, 01011)=Po(V')00 + Qo(V')0w + j;z (PAV")00+Q[V")0;w)
+P(V)0 011+ Q,(V')0,w.

Note that we can regard Q,(V’)0,w as a tangential derivative of w, so the right-
hand side of (4.16) contains only first order tangential derivatives of V and 0,v,,.
Letusfixte[0, T] and fix « and k such that |o| <m—2k +1 and 1 £k <[m/2]. Then
by using the expression (4.16) of 0,v, repeatedly, and by applying (4.3), we obtain

|aranali_ I(P_ I(V’)F(V” atanV; 01”11)|0
S C00s 1V lm= D) UWm+ 1V = 1 + 1V |, tan + 05 ]]) - (4.17)
Hence, we get (4.14) by these estimates and (4.16).
As for v;;, we observe that

AGVIAUA=DV)+ 5 AV RAA=DV)+ 5 ALV @)V =0.

Then, by applying the same argument as in the Cauchy Problem to these equations
with respect to (1 —y)V, we readily obtain (4.15). We complete the proof of this
lemma.

Lastly we have to show the estimates of normal derivatives of w.

Lemma 4.5. We have

[m/2]

[m/2] 1/2 1/2
(Z > kla."’ana’iW(t)lé) §C(K,Mm-1)< XX 2klf’ii‘a.ﬁ’EW(O)lé)

k=1 |a|<m—2 k=1 la|Sm—
t
+ (I) CUV' @l (L@l + 1Vl m)de, for O0<t<T. (4.18)
Proof. We observe that w satisfies
3 3
Ro(V)ow+ '21 R{VYw=— <‘Q0( VYo, + .Zl 'Q{V")o jv> . 4.19)
J= J=

For « and k such that |¢|<m—2k and 1 <k=<[m/2], differentiate the equations
(4.19) by 8%,0% and take inner product with 0%,0%w in L2(R3). Set w**=02%_d%w.
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Then in view of R,(V')=0 on [0, T] x dR3, we get by integration by parts

W0, S 94O, m0+ ] OOV ) 03
+G=H)2)de for 0<t<T, (4.20)
where
IWHOR, ot = R ()0 W40,

and
G*¥(t)=[0%.0%, Ro(V'(t))]0,w(t) + Z (004, RAV'())]0;w(0)

+0a0i(Qo(V'(0)0,0(t) + Z ‘QAV (©)0;p(1))
+ R (V'(1) [03n05, 0 1]W(t) :

Since R,(V’')=0and 'Q,(V')=00n [0, T] x dR3, we can apply similar estimates of
(4.11) and (4.12) to the counterpart of |G**(t)|,. Hence, by the same argument as in
deriving (4.10), we get

1G* B)lo = CUIV'@)lln) (LE)]ln+ 1 VOl)-

Accordingly, since Ry(V") is positive definite, we can obtain the estimate (4.18). We
complete the proof of Lemma 4.5.
As for the problem localized on the region far from the boundary, we can get

IlcooV(t)IlméII(PoV(O)IIm+jJ CUV' @I 1V(@)lmdz, for 0=t<T. (4.21)

Hence, by combining (4.6), (4.7), (4.14), (4.15), and (4.18) for each localized
problems, with (4.21), and by applying Gronwall’s inequality, we obtain the
estimate (3.14).

5. Proof of Theorem 2.3 and 2.4

We first show

Lemma 5.1. Let m=8 be an integer. Let ik and M be positive constants such that
do— (1/2) |H0|2>K in Q, and |V,,,< M. Then there exists a function V°=V"(t,x)

=%q°—c,u% H® S° and positive constants T= T(rc M), M,,, =M, _ (K, M),
M, =M,(x, M) such that V° belongs to X%Q;%/2,M,,_, M,,).

Proof. We construct the function ¥° as the solution of the following problem:
3
AVed VO + T A(Vo)oVO+B(Vo, V=G in [0,TIxQ,
i=1

Vo%=0o=V, inQ, (5.1)
u®-n=0 on [0,T]xT.
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Here G=G(t, x) is the function which belongs to H™([0, T] x Q) and satisfies the
following conditions:

Ng-G(t,x)=0 on [0,T]xT, (5.2)
3
0 G(0, x)= —[0F, Ao(V°)10,V =0 — X [0F, A{V)10;V =0
=
— [0k, B{VO1V,=, for 0<k=<m—1,in Q, (5.3)

Glm, 0, 11x 2= C(1Volm) - (4

Here N =%0,0,n,0) and 0*V°|,_, = V,, k=0, ...,m—1, where &'V, is defined by
(3.5).

Once we get such a function G(z, x), by virtue of the version of Theorem 3.2 we
obtain the solution ¥° € X’H€) of the problem (5.1). Since V°|,_ , = V,, it follows, by
inductions, from the equalities (5.3) that this V° satisfies that

3
OV == —Ao(Vp) ™" < A[Vo)o,0¢ VO + B(Vo)or ™' VO —3;~ 1G>
i=1

t=0
=&V,, for 0Lk<m—1, inQ. (5.5)
Next take inner product of Ny and the equations of (5.1) on [0, T] x I' and retrace

the same calculations as in deriving Eq.(2.7). Since u®-n=0 on [0,T]xT,
H,-n=0 on I" and (5.2), we obtain

O(H® - n)+uy-V(H° n)=0 on [0, T]xT.

We note that the lower order terms of ¥, and V° corresponding to c(u, H, Vn) of
(2.7) are canceled by the term Ny, - B(V,, V°). It is easily seen that this equation
with the assumption H,-n=0 on I yields

H° n=0, on [0,T]xT. (5.6)
On the other hand, the estimate of ye such as (3.14) and (5.4) show that we can take
positive constants T=T(k,M), M,,_,=M,,_ (&, M), M,,=M, (i, M) such that
®—1/2H*>%/2 in Q,
WVolm-1,25Mp—1s  Vlm 1S M,

By (5.5), (5.6), and (5.7), we see that this function V° is a desired one.

To complete the proof, we have only to construct Ge H™([0, T] x Q) satisfying
(5.2), (5.3), and (5.4). Since the right-hand side of (5.3) belongs to H™ ~¥(£2), we can
get a function

(5.7)

G(t, x)e H"*Y4([0, T] x Q)

satisfying
0*G(0, x) =the right-hand side of (5.3),
for 0Zk=m—1, inQ, (5.8)
|Gl o 12,10, 11x2=C(Volm)  (cf. Theorem 2.5.7 of [5]). (5.9)

Here we note that, from the assumptions (3.8) and (3.9),
Ny 7A0*G(0,x))=0, for 0<k<m—1, onT. (5.10)
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Next we take a trace of G(t,x) on [0, TIxT, ¥ 1x AG), which belongs to
H™([0, T] x I') and satsifies the estimate

h’[o T]xl‘(é)lm [o, T]xr—C|G|m+1/2 [0, T1XRQ* (5.11)

Then we can easily construct an extension of Ny -y, T]x,-(G) to [0, T]xQ,
S(Ny - Y10, 1% HG)), which is independent of ¢ and satisfies the following:

S(Ng- Yro, 1% r(G)) eH™([0,T] x Q),

~ (5.12)
IS(Ng - Yo, 11 x F(G))Im, 0, T1x@=CNg- Yo, 1% (G, [0, TI1xT

Note that by (5.10) we obtain
*S(Ng-v0,mxr(G)=0, for 0<k<m—1, on ({t|t=0}xT. (5.13)

Now let us define a function G(t, x) by
G=G- NyS(Ng - Pro, T1x r(G)) s

where N =0, 0,m,0). By (5.8), (5.9), (5.11), (5.12), and (5.13), we find that this G is
a desired function. So the proof is completed.
We next show

Lemma 5.2. Let m= 8 be an integer. Let i and M be the same constants as defined in
Lemma51 Then there exist positive constants T(ZT), M,._(=M,,_,), and

M, (=M,) _depending only on Kk and M such that, if V' belongs to
X%Q;%/3,M,,_,,M,), then the problem (3.10), (3. 11), and (3.12) with additional
conditions (3.8) has a unique solution Ve XQ;%/3,M,,_,, M,,). Further, this V
satisfies the estimate (3.14) in which T, , M,,_ ,, M, are replaced by T, %, M ,,_;, M ,,,
respectively.

Proof. Let V' be a given function belonging to X7(€2; /3, M,,_,,M,) for some
positive constants M,,_,, M,, and T. Existence of the solution, ¥, of the problem
(3.10)—(3.12) with the conditions (3.8), which satisfies the estimate corresponding to
(3.14), is proven in Theorem 3.2. Hence, combined with mean value theorem, we
see that this V satisfies

”V(t)”mécl(Ma’EaMm—l)exp(CZ(Mm)t)s for OétéT

and

~

IVOlm-1SCs(M)+t[|V ]z, for 0sts

Here, we choose M, _, so large that (1+C; (M))vM,,, 1=M,,_,. Next, we
choose M,, so large that 2C,(M,&, M,,,_ )VM, =< <M,, Lastly, we choose T so
small that exp(CZ(Mm))T<2 ™, <1, T<T and q—(1/2)|H*>=#/3 in [0,7T]
x €; the last condition is ensured by the inequality

sup  V=Vo|ZTV]m,r-
t.x)e[0, 71X 2
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Further, by the same argument as in the proof of Lemma 5.1 we see that H-n=0
on [0,T] xI'. Now we can easily see that if we take the function V' in
2Q;%/3,M,,_, M,,) then the solution V of (3.10)—(3.12) belongs to the same
space again. So we complete the proof.
To remove the additional conditions (3.8) from initial data we show

Lemma 5.3. Let V, be a function such that Voe H"(Q) and Fuy-n=0, for
k=0,1,...,m—1, on I'. Then there exists a sequence, {V{}:>,, such that

Vie H"*%(Q),
Fui-n=0, for k=0,1,...m, onT, (5.14)
Vi-V, in H™Q) as j—ooo.
Here “8%u))” is defined by the same manner as in “0%u,” but using V§ instead of V.
Proof. Recall Ny=(0,n,0,0). If we get the relations
Range Ny(A4,(V,))*=RangeN, onT,for k=1,2,....m,

by the same arguments as on pp. 52-53 in [13] we can translate the proof of
Lemma 3.3 in [12] to our case and construct the desired sequence. Since 4,(V;) is
symmetric, we find that Range(4,(V,))=Range (4,(V,)) for k=1, ...,m. So it is
sufficient to show that

RangeNy(A,(V,))=RangeNg; on . (5.15)

Since Ker N is maximally nonnegative subspace of 4,(V;), we see that Ker 4,(V)
CKerNy, so that by the symmetry of 4,(Vp), (Ker Ng)* CRangeA4,(V,), which
implies (5.15).

Now we give the proof of Theorems 2.3 and 2.4. Let us define the iteration
scheme associated with the linearized problem (3.10)—(3.12) by

3
AVINVi+ Y AVITNo,V I+ BV, V=0 in [0,T]xQ,
j=1
Vio=V, inQ,
w-n=0 on [0,T]xI, for i=1,2,....

Here V°is the function constructed in Lemma 5.1. By virtue of Lemma 5.2, we find
that the space X}(®Q; /3, M,,_,, M) is an invariant subset of this iteration scheme.
Further, it is easy to see that, when j— oo, ¥’ converges to a function V in
C°0, T; I*(Q)) by taking T smaller if it is needed. Hence, combined with the
uniform boundedness of || V7||,, 7, we can show by interpolation argument that a
subsequence of {V7} converges to the function V in

CO0, T; H™2=4Q)nCY(0, T; H™~1-%Q)), for 0<e<1.

Further we know that this V belongs to X%(€2) and satisfies the estimate
corresponding to (3.14). So, by recalling m = 8, we find that this is a solution of (3.1),
(3.3), and (3.4) with additional conditions (3.8). However, by virtue of the estimate
of V corresponding to (3.14) and Lemma 5.3, we can remove the condition (3.8)
from the initial data. Uniqueness of the solution of the problem (3.1), (3.3), and (3.4)
is a direct consequence of L? estimate such as (5.20) in [17]. Now the proof is
completed.



140 T. Yanagisawa and A. Matsumura

References

1. Adams, R.: Sobolev space. New York: Academic Press 1975

2. Bardos, C., Rauch, J.: Maximally positive boundary value problems as limits of singular
perturbation problems. Trans. Am. Math. Soc. 270, 377408 (1982)

3. Chen Shuxing: On the initial-boundary value problems for quasilinear symmetric hyperbolic
systems with characteristic boundary (in chinese). Chinese Ann. Math. 3, 223-232 (1982)

4. Hardy, G.H,, Littlewood, J.E., Polya, G.: Inequalities. Cambridge: Cambridge University
Press 1934

5. Hormander, L.: Linear partial differential operator. Berlin, Heidelberg, New York: Springer
1963

6. Imai, I: General principles of magneto-fluid dynamics, “Magneto-Fluid Dynamics.”
Yukawa, H. (ed.), Chap. I. Progr. Theoret. Phys. [Suppl.] 24, 1-34 (1962)

7. Kawashima, S., Yanagisawa, T., Shizuta, Y.: Mixed problems for quasi-linear symmetric
hyperbolic systems. Proc. Jpn. Acad. 63A, 243-246 (1987)

8. Kufner, A.: Weighted Sobolev spaces. New York: Wiley 1985

9. Majda, A., Osher, S.: Initial-boundary value problems for hyperbolic equations with
uniformly characteristic boundary. Commun. Pure Appl. Math. 28, 607-675 (1975)

10. Ohkubo, T.: Well posedness for quasi-linear hyperbolic mixed problems with characteristic
boundary. Hokkaido Math. J. 18, 79-123 (1989)

11. Rauch, J.: Symmetric positive systems with boundary characteristic of constant multiplicity.
Trans. Am. Math. Soc. 291, 167-187 (1985)

12. Rauch, J., Massey, F.: Differentiability of solutions to hyperbolic initial-boundary value
problems. Trans. Am. Math. Soc. 189, 303-318 (1974)

13. Schochet, S.: The compressible Euler equations in a bounded domain: existence of solutions
and the incompressible limit. Commun. Math. Phys. 104, 49-75 (1986)

14. Schochet, S.: Singular limits in bounded domains for quasilinear symmetric hyperbolic
systems having s vorticity equation. J. Differential Equations 68, 400-428 (1987)

15. Tsuji, M.: Regularity of solution of hyperbolic mixed problems with characteristic boundary.
Proc. Jpn. Acad. 48A, 719-724 (1972)

16. Yanagisawa, T., Matsumara, A.: Initial boundary value problem for the ideal magneto-
hydro-dynamics with perfectly conducting wall condition. Proc. Jpn. Acad. 64A, 191-194
(1988)

17. Yanagisawa, T.: The initial boundary value problem for the equations of ideal magneto-
hydrodynamics, Hokkaido Math. J. 16, 295-314 (1987)

Communicated by S.-T. Yau





