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Abstract. Invariants of three dimensional manifolds and of framed oriented la-
beled links in them are rigorously defined using any solution to the Moore-Seiberg
axioms for a Rational Conformal field theory. These invariants are generaliza-
tions of Witten's Chern-Simons path integrals. Connections are explored with
supersymmetry, four dimensional manifolds, and quantum gravity.

I. Introduction

In [1] E. Witten studied a new object which he called a Chern-Simons path
integral. By means of this formal expression, he was able to make a connection
between a family of physical systems in two dimensions, the WZW models (which
are the classical examples of rational conformal field theories), and a new set
of invariants for three dimensional configurations, such as closed manifolds or
closed manifolds containing framed links.

Unfortunately, the Chern-Simons path integral does not have a rigorous
mathematical definition. Thus Witten's work does not constitute a proof that the
expressions he produces are in fact topological invariants.

In [2], I outlined a proof of this in the simplest geometrical situation: a
compact oriented 3-manifold with no boundary and no link. My proof avoided
any consideration of three dimensional path integrals; and used the axiomatic
description of a rational conformal field theory of Moore and Seiberg [3]. Thus,
my result is mathematically rigorous, and more general than Witten's statement
since it uses any RCFT, but deals with a less general topological configuration.

The key concept which connects rational conformal field theory to topology
in three dimensions is duality. Duality is the physical principle which states
that a physical process on a surface should be independent of the choice of
decomposition for the surface. Changing decompositions of a surface is a process
which can describe surface maps and braiding on surfaces; hence it can give
information on links and three manifolds.
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Since writing [2], it has become clear that the methods of [2] could be extended
to cover more general topological situations. This is because the combinatorial
topological description of closed 3-manifolds using Heegaard splittings, has close
analogs for links and for manifolds with boundary. There is every reason to
believe that a combinatorial reformulation can rigorously reproduce everything
Witten deduces from his path integrals,, i.e., what is called a "topological quantum
field theory," from any RCFT.

There is another advantage, beside generality, to proving as much as possible
from the axioms for an RCFT. It is potentially very important, both for math-
ematical and physical purposes, to classify all RCFT's. The existence of three
dimensional invariants, including invariants of ordinary knots and links, may
prove to be a very powerful tool for attacking that problem. It has been conjec-
tured (3^) that all RCFT's are related to WZW models, and hence to quantum
groups. It may be possible to recover such a structure from a link invariant, via
the connection with statistical mechanics (3|).

The combinatoric picture sheds light in another direction as well. There is
a description of 3 manifolds, called Kirby calculus, which can also be used
to construct 4-manifolds with boundary. Thus, we are able to reinterpret our
invariants as invariants of 4-manifolds. This is potentially very significant, since
the original inspiration for Witten's work was a talk by Atiyah [4] which suggested
a connection between new developments in dimensions 2, 3 and 4. Reshetikhin
and Turaev [8] discovered some of the same invariants by a very different method,
involving quantum groups and Kirby Calculus.

Finally, there is a profoundly suggestive connection between this work and
the reformulation of general relativity in the Ashtekar variables [5] as reworked
by Smolin and Ravelli [6].

The outline of this paper is as follows: In Sect. 2, we outline the full results
of Witten's paper, and define a topological quantum field theory. In Sect. 3,
we review the Moore-Seiberg description of a rational conformal field theory.
Section 4 reviews the classification of Heegaard splittings, and restates the proof
of existence of invariants for closed oriented 3-folds. Section 5 deals with the
problem of including links. Section 6 deals with manifolds with boundary. In
Sect. 7, we discuss reinterpreting the invariant as four-dimensional; finally, in
Sect. 8, we note the connections with the problem of quantizing general relativity.

II. Chern Simons Path Integrals and Topological Quantum Field Theory

The attitude of a pure mathematician to path integrals is reminiscent of the
attitude of a religious Jew of the fifth century BC to his deity: it is imperative
to try to approach it, but to gaze upon its face is death. Accordingly, I shall
abstain from writing or formally manipulating any Chern Simons path integrals,
and state only the results.

The construction of a CSPI involves the choice of a compact semisimple lie
group G and a positive integer coupling constant k. If the topological configura-
tion to be studied includes a link, each component of the link must be labeled
with a representation of G. In CSPI it is sufficient, and in the combinatorial
RCFT picture it is necessary, to choose the representations from a certain finite
list R{... Rn. It is also necessary to frame each component of the link.
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The CSPI can be performed on a closed oriented 3-manifold or a closed
3-manifold with a framed, labeled link in it. In that case, the result is a number.
The number is slightly ambiguous, since it is only defined up to a power of the

root of unity e~^9 where c is a rational number depending on G and k.
The path integral can also be performed on a manifold with boundary. If

the manifold is to contain a labeled link, the link may contain open components
which end on the boundary. In either case, we obtain a function of the boundary
conditions. Constraints and symmetry conditions conspire to reduce the vector
space of boundary conditions to a finite dimensional one. Thus, the information
in the path integral can be summarized as producing what we call a topological,
quantum field theory, in dimension 3.

Definition. A Topological Quantum Field Theory (in dim 3) is the following data:
[1] A finite dimensional space VΣ for each oriented, closed surface or labeled
punctured surface Σ (the pictures are labeled or "colored" from a finite index set
which depends on the TQFT).
[2] A vector υm £ VΣ for each M3 an oriented manifold with boundary Σ. M3

may also be a manifold containing a colored oriented, framed link. Some of the
components of the link can be open and end on Σ, provided their ends coincide
with punctures of Σ and the colors match. The initial and terminal pictures of
an open colored link component may require different colors.

These data must satisfy the following conditions:
[A]_ If Σ denotes Σ with opposite orientation, then VΣ is canonically identified

with VΣ.
[B] If Σ = Σl U Σ2 (disjoint union) then VΣ = VΣl ® VΣ2.
[C] VΦ = C.
[D] VΣ carries a representation of MI;, the mapping class group of Σ.
[E] (gluing) If two manifolds with boundary are joined along some com-

ponents of their boundaries to form a new manifold with boundary, the vector
associated to the new manifold can be calculated from the two old vectors by
"tracing out" the components in the joined boundary components via the dual
pairing from (A). (If the two manifolds contain links with components which end
at the boundaries to be jointed, we join the open link components which meet at
punctures on the joined boundary components).

We say a TQFT is "slightly ambiguous" if the vector in (2) is only defined up

to an overall multiplication by some power of a root of unity e2^, where c is a
rational number associated to the TQFT. All TQFT's in this paper are "slightly
ambiguous," and we will suppress mentioning this.

We note that (C) implies that a TQFT assigns a numerical invariant to a
closed 3-manifold (possibly containing a link). Note also that if a manifold with
boundary has its boundary written as ΣI UΪ2, i.e. is regarded as a cobordism, then
the TQFT produces a morphism from VΣl to F^2, since Hom(A,B) = A ® B*.
Hence, we can think of a TQFT as a representation of categories; (7) i.e. as a
functor from a "cobordism category," to the category of vector spaces.

The main task of this paper is to reproduce the data of a TQFT from a
RCFT. Let us list a sequence of tasks to be performed,

[1] Assign a vector space (of finite dimension) to a closed oriented surface
Σ.
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[1 ̂ ] Assign a finite dimensional vector space to an oriented surface with
"colored" punctures.

[2] Assign a numerical invariant to a closed oriented 3-fold.
[2\] Assign a numerical invariant to a closed 3-fold containing a framed

colored link.
[3] Assign a vector vm G VΣ to any oriented compact 3-fold M with boundary

Σ.
[3^] Assign a vector vm G VΣ to any oriented compact 3-fold M with boundary

containing a framed colored link whose open components end precisely at the
punctures of Σ (with matching colors). We may require that the open components
of the links be oriented, with initial and terminal punctures colored differently.

[4] Check axioms A-E.
As we shall see, 1 and 1^ follow from the MS axioms for a RCFT, as do

axioms A-D. Problem (2) is the result of [1]. We shall recapitulate (2) in chapter
4, and treat 2\ in Sect. 5, and 3 in Sect. 6. We do not consider 3^ here, but believe
it can be handled similarly. The proof of the gluing axiom should follow from
finding a decomposition of the "big" manifold which extends the two "little"
decompositions, but we do not complete it here.

III. Rational Conformal Field Theory. The Moore-Seiberg Formulation

The MS approach to RCFT is more explicit and computational than other
approaches (8). This actually makes it much more easily applicable to topological
questions.

The connection between 2-d physics and 3-d topology is via maps of surfaces
to themselves. On the one hand, combinatorial topology tells us how to describe
3-folds and links in terms of surface maps; on the other, the MS axioms allow
us to construct projective representations of the groups of isotopy classes of
diίfeomorphisms of surfaces. A peculiarly tidy coincidence between the details of
combinatorial topology and those of conformal physics produces the invariants.

For the sake of completeness, we recapitulate the MS description. For motiva-
tion and details, see [3]. The definition which follows is not, strictly speaking, that
of an RCFT, but of a slightly simpler object called a "modular tensor category."
The fact that we can construct TQFT's from modular tensor categories may be
very important since a class of Hopf algebras, the modular quasitriangular ones,
also generate modular tensor categories. This may mean that many theorems
also include quantum groups, if "modular quasitriangular Hopf algebra" is the
right definition of quantum group. Frenkel is responsible for this observation.

The basic data for an RCFT include an algebra A and a finite set of rep-
resentations Rι...Rn. There is a distinguished member of the set R\ = 1, and

an involution £, = Rj with RI — RΪ and 1 = 1. Associated to each triple of

representations Ri, RJ9 Rk, we have a finite dimensional vector space VR Rk (which
is a space of intertwining operators of a new sort) which we endow with a fixed
choice of basis.

We assume that the space VR{R. has dimension 1 if Rt = Rj and 0 otherwise.

In particular, V^ is one dimensional with a fixed generator denoted ί
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[The distinction between a RCFT and a MTC is that in a RCFT the algebra
A, representations RI and intertwining operators V^^ must be explicitly given
and satisfy some further properties, whereas in the MTC the Rs and F's are
just formal symbols which generate finite dimensional vector spaces on which
the duality matrices (see below) act. Thus, we can easily extract an MTC from
an RCFT.

The converse problem, finding RCFT's from MTC's, is much conjectured
about, but not well understood. We should note that since the equations for
the duality matrices of an MTC include a generalization of the Yang-Baxter
equation, which is overdetermined it is surprising that they exist at all. Other
than extracting an MTC from an RCFT or a quantum group, we have no idea
how to obtain one.]

These data enable us to associate a vector space VΣ either to a closed oriented
surface or to a surface with "colored" punctures, i.e., punctures labeled by
representations. The procedure for constructing the space VΣ is as follows. Pick
any decomposition of Σ into trinions. If Σ has punctures, each puncture must
be an end of a trinion. The trinions should be thought of as having stripes to
keep track of twists when they are put together; decompositions with a different
number of twists are not equivalent. Also, it is necessary to label the three
ends of the trinion 0, 1, oo. Decompositions with the ends of trinions differently
labeled are inequivalent. Isotopic decompositions are equivalent. We then pick
any labeling of the internal circles of the decomposition from the set R\... Rn

(circles corresponding to punctures are labeled consistently with the punctures.)
We then form the vector spaces V^1^ for each trinion, tensor them together,
and take a direct sum over all possible labelings. Tensoring the bases of the V's
produces a basis for VΣ

This construction does not yet appear to have any invariance with respect
to changes in the trinion decomposition. In order to insure such invariance, we
need to produce matrices which produce the change of basis resulting from a
change in decomposition; and check that the matrices satisfy the same algebraic
identities as the changes of decomposition themselves. Another way of saying
this is that we have a representation of the "duality groupoid."

The duality groupoid is the concept which really forms the bridge between
RCFT and topology. On the one hand, it is the most general mathematical
expression of the "duality" of the antedeluvian dual model from which string
theory arose; on the other, it contains both surface maps and braiding. Thus
RCFT's, which possess "duality" produce projective representations of mapping
class groups and braid groups.

The duality groupoid of a surface Σ is the small category whose objects are
the marked trinion decompositions of Σ described above. Its morphisms are
words in a certain set of elementary changes in a decomposition or "moves."
Moore and Seiberg describe a set of 5 elementary moves, labeled F, S, Γ, ί2±,
(9; which suffice to change any decomposition to any other (see Fig. 1). Thus
the duality groupoid is connected. Next, it is necessary to find a list of identities
which F, S, Γ, Ω, Θ must satisfy, in order to obey the same algebraic relations
as the duality groupoid itself.

The list of identities which MS describe can be divided into 3 parts.
The first is the set of relations which come from the Yang-Baxter equation,

which MS call "hexagons." The point here is that the duality groupoid contains
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1 0

B(+) as a change
of trinion decom-
position

Fig. 1. The 5 duality moves

Fig. 2. Braiding B+ = F +

an operation called braiding B+ = FΩ(+)F l which must obey the ordinary
Reidemeister relations B\iB-£>B\i = B^B^B^ (Fig. 3).

The second relations, called the "pentagons" have to do with the relationship
between braiding and trivalent vertices (Fig. 4). (The pentagon relations actually
can be used to demonstrate that we have invariants of linked trivalent graphs,
not only of ordinary links.)

The third relations called the "genus 1 relations", insure that S and T generate
a (slightly projective) representation of PSL/2,Z).

In addition, MS assumes that Ω,Θ,T are diagonal matrices of phases in an
appropriate basis. The number e~^ appears in their formulae.

The main point of [3] is to prove that matrices which satisfy the identities
listed above generate slightly projective representations of the duality groupoid.
Thus, any set of solutions gives rise to a functor which assigns an invariant vector
space to any orientable surface (possibly with colored punctures.)

Let us summarize by giving the definition of a Modular Tensor Category:

Definition. A modular tensor category consists of the following data:
[1] a set of labels RI ... Rn,
[2] an involution on the set,
[3] a distinguished label in the set RI = /,
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323
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Fig. 3. The Yang Baxter equation. Note: The crossings in this diagram are shorthand for the braiding
operation in Fig. 2

Fig. 4. The pentagon. Note: Crossing are shorthand for braiding as in Fig. 2 while the triple vertex
denotes a fusion coefficient

[4] vector spaces VRRk of finite dimension,
[5] matrices

T . Ί/RI I/RI• * Ώ Ώ, ^ V n p, ,

Such that
(A) 1 = 1.
(B) The MS identities are satisfied.
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(D) V^RJ =Ciϊ Ri = R',= φ otherwise.

(E) VΣ = VΣ (reversing orientation dualizes).

We fix a choice of basis for each VχRk.
This is not a "minimal" definition, and assumes the theorem that VΣ has an

invariant definition, but it is good for our purposes.

IV. Topology of Oriented Three Manifolds and Invariants

In this section I will prove:

Theorem 1. Any MTC gives rise to an invariant of compact oriented 3-manifolds.

In order to prove this theorem, I recapitulate some well known facts about
Heegaard splittings.

If HI and H2 are solid handle bodies of the same genus, and φ is a diίfeomor-
phism of dHi = Σ\ onto δf/2 = ^2, then H\ Γ\ψ #2 = M is a compact oriented
3-manifold. We call such a decomposition a Heegaard splitting of M. Without
loss of generality, we can think of Σ\ = Σ^ = some standard surface in R\,
H\ = int Σ, HI — exterior Σ U {oo}. Thus any Heegaard splitting can be described
by a self map of a standard surface of genus g.

We recite the following result.

Fact 1. Every compact oriented 3-fold admits a Heegaard splitting [9].

There are three processes by which a Heegaard splitting can be changed into
another of the same manifold. The first is isotopy of the surface map φ. This
allows us to describe 3-folds via elements of the group of isotopy classes of
diffeomorphisms of a compact oriented surface Σ to itself. This group is called
the mapping class group Mg, where g is the genus of our standard surface Σ.

The second process is ambient diffeomorphism of the manifold M. This
reduces [10] to action on the left and right of φ by the subgroups of Mg which
extend to the solid handlebodies. We denote the subgroup of Mg which extends
to a standard solid handlebody as Ng. Thus ambient diffeomorphism reduces
oriented, compact 3-manifolds to double cosets in Ng\Mg/Ng for some g.

The third process is stabilization.
Stabilization relates Heegaard splittings along surfaces of different genus. To

stabilize, we add a new handle to the surface, and extend φ by the identity on
the new handle.

It is easy to see that these processes do not change the 3-fold. The converse
is much harder. A classic result of Singer [11] implies:

Fact 2. The equivalence relation between mappings φ : Σg —» Σg (for all genuses)
which create homeomorphic 3-folds is generated by isotopy, left and right action by
copies of Ng, and stabilization.

Thus, in order to create an invariant of 3-manifolds, it suffices to find an
invariant of mapping class group elements which is preserved under stabilization
and action of Ng.

Fortunately for us, the subgroup Ng c Mg is well understood. Suzuki [12] has
written a set of generators for Ng, which we shall describe below.
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Our method for constructing an invariant is as follows. Given a compact
oriented surface Σ which bounds a handlebody H, we construct, for any MTC,
an element VH 6 VΣ, which is canonical up to the usual phase ambiguity (e~^) .
We then show that this vector is invariant under the action of Suzuki's generators
for Ng.

If we have a Heegaard splitting M = HI (Jφ #2, then H\ and U2 have as
boundaries the same surface with opposite orientations. Thus vHl and VHZ live
in dual vector spaces VΣ and V% = VΣ; and we can form their inner product
(vπi I vπ2). The in variances of the two vectors give our inner product the
invariance under double cosets of Ng. The invariance under stabilization follows
from suitable normalization.

In order to make this argument more precise and computable, we take the
point of view that our two handlebodies are the interior and exterior of a
standard surface in S3 = R3 U {oo}. Thus our construction of VH will give us two
standard vectors VH £ VΣ and v& G F^, and our invariant must involve Vh, VH,
and the isotopy class of our surface map φ in Mg.

At this point it is crucial to understand the relationship between the duality
groupoid and the mapping class group. If we take a marked trinion decomposition
and push it forward by a diffeomorphism of the surface to itself, we obtain another
marked trinion decomposition. Conversely, if, two marked trinion decompositions
have the same combinatoric structure as marked trivalent graphs (including
twists), we can piece together maps of corresponding trinions, and obtain a
surface map. Thus the duality groupoid contains copies of the mapping class
group, all conjugate to one another. This implies that the vector space VΣ admits
a slightly projective representation of Mg. (The projective representation of Mg

is historically very important in Conformal field theory) (see [13]). If we denote
this representation by ρ we are now able to write our prospective invariant as
/(M) = (υHl \Q{φ}\ vH2) for M = HI Uφ H2, H, standard.

It will be useful to normalize

_ (vHl \e{φ}\vH2)

As we shall see, this normalization assures invariance under stabilization.
Now we must define VH

Definition. If dH = Σ, a solid trinion decomposition of H is a trinion decompo-
sition of Σ all of whose cut circles bound disks in H.

Definition. If τ is a solid trinion decomposition of (H,Σ), the local vacuum
VH,I G VΣ, is the vector in VΣ produced by labeling all the cut circles of τ with 1,

choosing the basis element ί J of F^ = C for each trinion in τ and tensoring
them together. V 1 V

We now need to prove:

Lemma 1. vH,τ is independent of τ up to a phase factor (e^γ.

Corollary. VH is invariant under the copy of Ng fixing H.

Proof of Corollary. Ng takes solid trinion decompositions to solid trinion decom-
positions.

The proof of the lemma is the result of the following series of lemmas.
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Lemma 2. Of the Moore-Seiberg moves F, S, T, Ω, Θ F, T, Ω, Θ preserve vπ,τ
/ 2πιc \ n

up to (e 24 j .

Proof. In the MS axioms, Γ, Ω, Θ are diagonal matrices of phases, and the
phase for 1 is <?%f. The matrix F can only change the labeling of one cut, but
the uniqueness of the couplings of 1 precludes that.

Corollary. Braiding preserves VH,Ί.

Proof. B = FΩF~l.

Lemma 3. The Suzuki generators preserve VH,T-

To prove this, we need to describe the Suzuki generators. In the following,
it is helpful to think of a standard solid handlebody as a ball in R3 with some
number of small solid tubes attached to it at both ends to form handles. We can
make a slight reformulation of Suzuki's work as follows:

Fact. Ng is generated by the following five moves:
[1] Knob twists - twist a region containing both ends of a solid handle so that the
handle maps into itself in reverse direction.
[2] Handle twists - cut thru a handle, twist by 2π, and rejoin.
[3] Handle exchanges - move 2 solid handles into each other.
[4] Handle braidings - twist a region in the ball so that one end of one handle is
dragged around one end of another.
[5] Handle slides - drag one end of one handle up along and down another handle.

We are reminded that we are to think of these as maps of the surface to itself
which extend to its interior.

The easiest way to prove Lemma 3 is to first prove the following, which we
also need separately.

Lemma 4. It is possible to move from any orbit of Mg in the duality groupoid to
any other, while staying in the set of solid trinion decomposition of a particular
handlebody, without changing vπ,τ-

Proof. The orbits of Mg are just the marked trivalent graphs of genus g. Any
such graph can be thickened to give a solid trinion decomposition of H. Thus we
are reduced to proving that we can get from one graph to another via repeated
operations of F, T, Ω and Θ. The proof is a simple induction on the number of
external lines on each ring. (An application of F can reduce it by 1.) Moore [14]
informs me that he has written out the proof in another context.

Proof of Lemma 3. The first four moves on Suzuki's list can be written as products
of Dehn twists [9] each of which is on a loop in Σ which bounds a disk in H.
Using the technique in Lemma 4, we can rearrange the decomposition τ, so that
the Dehn twists occur along cuts of the decomposition, without changing the

state VH,τ A Dehn twist on a cut only changes vπ,τ by a factor (e~sr)".

The fifth move requires a more subtle argument, since if written as a product
of Dehn twists, one must use loops which do not bound in H. However, it is
possible to accomplish a handle slide by successively braiding one end of one
handle past the exterior links of another. Thus the corollary to Lemma 2 finishes
the proof.
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Proof of Lemma 1. If two solid trinion decompositions of H are in the same orbit
of Mg, then piecing together maps of solid trinions would show that the element
of Mg extends to H; hence it is in JVg. Suzuki's result, together with Lemma 3,
shows that they determine the same ι;#>τ. Lemma 4 now shows that all orbits
determine the same vH,τ

Proof of Theorem 1. Let M = H\\Jφ HI, where H\ and H^ are the interior and

exterior of a fixed Σ c= R3 c S3. Form the expression 7(M) = ,l \ρ{φ>\VH*'.
faffi I VH2)

This clearly depends only on the class of φ in Mg. If φ' = n\φn^ where n\ are
in the appropriate copies of 7Vg, then the corollary to Lemma 1 shows that 7
is unchanged. To show that 7 is topological, we now need only show that it is
invariant under stabilization. Stabilization implies tensoring VΣ with some other
vector space, on which φ acts as the identity. Thus, our normalization will cancel
it.

It has become clear from calculations made by other authors that these new
invariants are non-trivial. What they will tell us about 3-manifolds, I cannot say
at this point.

V. Links, Plats, and Physical Invariants

We now address the problem of including framed links in the 3-manifold.
The method we shall adopt uses the plat representation of links due to Birman

[15]. This representation bears a deep similarity to Heegaard splittings, of which
Birman was completely aware. This similarity allows us to imitate the argument
of Sect. 4. I regard this as an aesthetic feature of this treatment, in that it is
tempting to think of one half of a Heegaard splitting as a "subject," and the
other as an "observer." Later we shall discuss whether this picture has physical
significance.

In order to construct an invariant for links in a general 3-manifold, it is
necessary to generalize J. Birman's plat concept to links in a 3-manifold; hence I
include here a theory of "generalized plats."

I begin by recapitulating the plat description of ordinary links in S3 =
R3 U {oo}. For details, see [15].

If we picture an ordinary link before us in space, grasp it between two hands
with large numbers of (very flexible) fingers by looping one finger of the (right)
hand thru each local left (right) extremum of each little loop of the link, then
pull the two hands apart; we will have a plat representation of the link. More
specifically, we will have a braid between our two hands, with each side of
the braid closed by a set of arcs (one around each finger). This reduces links
to braids. Since braid groups are closely related to mapping class groups for
punctured surfaces, the apparatus of Sect. 4 applies.

To formalize:

Definition. A plat is a subset of R3 formed by the union of two sets of n semicircles
on the farther sides of two parallel planes (with endpoints on the planes) with
a 2n stranded geometric braid in the region between the planes, meeting the 2n
endpoints of the semicircles on each plane.

Note. A plat is a link. Without loss of generality it is possible to line up the
endpoints of the semicircles in a straight line.
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Λ Λ

Braid Same braid

Fig. 5. Stabilizing a plat

We reproduce the following results from [15].

Fact 3. Any link in S3 has a plat representation.

Fact 4. The equivalence relation of plats which give rise to isotopic links in generated
by two moves:
1) Stabilization,
2) Action on the left and right by a subgroup K2n <= B2n of the braid group.

The analogy with Heegaard splittings is now visible. We shall see that it is
deeper than it appears.

Let us describe the moves listed in Fact 4. Stabilization consists of making a
break in a strand of the braid, extending the left end to the right plane and vice
versa, attaching a new little semicircle on each side, and connecting the free ends
of the new semicircles, so that the new loop formed does not encircle any part
of the link (Fig. 5). It is sufficient to stabilize close to the left plane, i.e. past any
crossings of the braid.

In order to describe the subgroup K of the braid group which appears in
Fact 4, it is useful to remind ourselves of what the braid group B2n looks like.
It has generators σM+ι which cross the zth strand over the i + 1st. There are two
relations :

[Rl] σίϊί+ισ7j+ι = σ7 J+ι(τί>ί+ι if | i - y | > 2 ,

[R2]

[The hexagon relation tells us that the Moore-Seiberg B matrix obeys [R2],
while [Rl] is trivial for MS matrices, since the two B matrices would act on
disjoint parts of a tensor product.]

The subgroup K2n has 3 generators, σ2/-ι,2/; σ2/+2,2/+3 σ2/+ι,2./+2 σ2y+3,27 +4
σ2y+2,2./+3 and σ^+2f2j+3 σ2j^2j+2 σ2j+3,2j+4 ^27+2,27+3 (Fig- 6). This subgroup can
be characterized as the elements of the braid group which can be extended to the
complement of the set of semicircles of the plat in the half space formed by the
plane on which they terminate. Since that space is essentially a handlebody, we
see that the analogy with Heegaard splittings is growing stronger. We shall see
that in a reasonable sense K2n = B2n Π Nn.

Before tackling the general case, let us construct the invariants of classical
links. We already expect from Witten's work that each MTC will produce many
invariants of links, one for each labeling of the components of the link with
labels from the set #1 . . . Rn.
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A A

Fig. 6. The generators of Kan

Fig. 7. Trinion decomposition
of punctured plane

Thus, we need to construct, not a single invariant vector, but a family of
them, which can be permuted by elements of Mg.

The setting for applying an MTC to a link in .R3 represented as a plat is
the sphere with an even number of punctures. We think of the parallel planes
in the plat construction as copies of S2 completed at oo, with 2n punctures, and
opposite orientations. Since the braid group is exactly the mapping class group
of the punctured surface, [15] the machinery of the last two chapters gives us a
representation of B^n on the vector space VΣ^ where Σ\^ are the two punctured
planes. Fact 4 then allows us to find an invariant of classical links, provided we
can find states VL^ with suitable invariance under K2n- Specifically, we form the
expression

= (VL\Q(b)\VR} 9

where b e B2n defines the link &.
We now define a family of states VL,R. As we shall see, these states do

not only keep track of the coloring of the link, but also of the orientation of its
components, and even of a framing of it in .R3. We end up with a set of invariants
of colored, framed, oriented knots and links. All of this flows naturally from the
machinery we have described.

To describe one of the states we need, we choose a trinion decomposition of
the punctured sphere, and label the cuts.

Since the punctures of the planes of a plat are linked in pairs by the semicircles,
the states we choose need to contain the information of the pairing. Furthermore,
the state needs to have a lot of invariance, which we get in the case of 3-folds by
labeling with 1.

The solution to these problems is straightforward. We decompose the punc-
tured plane into trinions by drawing circles around the paired points, then
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drawing larger circles in whatever pattern we like. We label all the large circles
with 1, and the pairs of punctures with Rt, Rt, i.e. with pairs of dual representa-
tions. The MS axioms now assure us that each of the trinions has associated to
it a vector space of dimension 1, so we pick the fixed basis elements and tensor
them together. This gives us a state Vc,τ £ VΣ, where C is the coloring of the
punctures and τ is the rest of the trinion decomposition of the punctured plane.

Lemma 5. Vc,τ is independent of τ.

Proof, τ is a trivalent tree graph. Any two such objects can be exchanged by a
string of the operations F, Ω, Θ, T. Such a string of operations will not affect
Vc,τ since it would not act on the trinions containing the pairs of punctures,
while the other circles are all labeled 1. Thus, the lemmas in Chapter 4 apply.

Lemma 6. The subgroup K2n a B2n permutes the states Vc among themselves, the
permutation on the colors being simply the permutation which a braid induces on
the braided points.

Proof. It will be helpful to remind ourselves how B2n acts on VΣ. Each σ is just
the MS B matrix acting on the tensor factor of Σ corresponding to the trinions
being braided.

Now of the three generators of K, (Fig. 6) the first just braids two paired
punctures. This can equally well be achieved by applying Ω to a trinion in the
basis of Lemma 5. This simply trades the vector space V{ * for the space V\ .

RR RR
If the basis vectors have been chosen sensibly, they are carried into one another

with at worst a factor of e^, which we are tolerating as usual This is because
the R and R are coupled to 1, so that Ω2 can only pick up a twist around 1.

The other two generators braid both of a pair of punctures around another.
By the pentagon (Fig. 4), this is equivalent to braiding around 1, which is trivial.
Q.E.D.

We now need to specify the process by which the link invariants are calculated.
We first color, frame, and orient a link. We next represent it as a plat. This forces
us to pick up a particular coloring of the plane punctures of the plat as well
as a particular choice of where to put the "stripes" on the trinions. (Push all
the twists off the braid and onto the semicircles). A different plat representation
of the same colored framed oriented link would have to choose a different Vc.
It is important to note that a change of framing twists a circle labeled with R,

not 1, so that it contributes a significant phase, not merely the ubiquitous e^.
(It may be useful to remark that the phrase "oriented colored link," is slightly
misleading. The invariant is preserved if we simultaneously reverse orientation of
a component and switch R for R. Our coloring process would not detect such a
switch, so we do not, strictly speaking, specify an orientation.)

If we change a labeled plat by multiplying on the left by an element k of K2n,
we get a labeled plat with precisely the change of coloring on the left semicircles
induced by fe. Thus, if the original plat is generated by b e B2n, the expressions
for the invariant would be

( V c \ Q ( b ) \ V c ι )

and

(Vε\ρ(kb)\Vcl),
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Canceling
regions

Fig. 8. The twist in a stabilization

where (Vc\ ρ(b) = (VcΛ by our last lemma. However, by the canonical identifica-
tion of Vj = VΣ> ώe left and right actions of ρ(k) must be dual. Hence the two
conditions are equal.

In order to complete the proof of Theorem 2, in the light of Fact 4, we now
need only consider stabilization. Since stabilization relates plats with different
numbers of punctures, and since the configurations on the trinions near the
new punctures are the same for any stabilization; we could always absorb it
into a normalization. In fact, it is better not to. A simple twist (Fig. 8) turns
a stabilization into two symmetric pieces which cancel because they are matrix
elements of dual matrices. What remains is the phase from the twist itself, which
keeps track of the change of framing which a stabilization induces by putting an
extra loop into the link.

We have now proven the following theorem.

Theorem 2. The above expression 7(JS?) applied in any MTC gives an invariant of
framed labeled, oriented links. A change in the framing of one component changes
the invariant by a phase depending on the label of the component. Simultaneously
reversing one component's orientation and dualizing its label leaves /(Jδ?) unchanged.

This theorem was proven by J. Frohlich and C. King in another context, using
a different combinatorial technique [28]. Jones [29] knew that his invariant could
be calculated from the plat representation of a knot.

Now we wish to extend our result to links in arbitrary closed oriented 3-folds.
In order to do so, we need a synthesis of plats and Heegaard splittings which I
call "generalized plats." As far as I know, this work has not been done before.

A solid handlebody can be sliced into a one parameter family of copies of its
boundary Σ9 with a union of circles and intervals, called the spine, left over at
one end. [Think of dipping a piece of wire with loops into candlewax over and
over (Fig. 9).]

If we think of a closed oriented 3-fold as the union of two solid handlebodies,
i.e. pick a Heegaard splitting for it, we can think of it as Σ x (0,1), with two
spines attached at 0 and at 1.

Any link in M can be slightly deformed so that it misses both spines, and
crosses the foliation by copies of Σ transversely, except at isolated points where
the (0,1) coordinate attains a local extremum. The (0,1) function on M now
assumes a role analogous to the left-right axis in the description of classical plats.
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Solid
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Fig. 9. The spine of a handlebody

Geometric
braid in braid
group of Σ

Spine

Fig. 10. A generalized plat (a link in a 3-manifold with a heegaard splitting

We can now pull the local minima toward the spine at 0 unti they all end in
small arcs in (0,ε) x Σ, i.e. a "thin" solid handlebody. Doing similarly near 1, we
end up with a generalized plat. This motivates the following definition.

Definition. A generalized plat in M = H\ Uφ //2 is the union of a set of n small
semicircles in a smaller handlebody HCl ci HI [where HI = Σ x (0,1) U S (S is
the spine of HI) and Hει = Σ x (0,ε) U S] which all are contained in a small ball
and are not intertwined, a similar set in H^ and a 2n stranded geometric braid
in M — (Hει U H£2) = Σ x I (where / is an interval), which joins the endpoints of
the two sets of semicircles (Fig. 10).

The result of the discussion leading up to this definition is to prove:

Proposition 1. Every link in a compact oriented 3-fold admits a generalized plat
representation.

Thus we are able to describe links in 3-folds in terms of elements of braid
groups of higher genus surfaces. (For a discussion of general braid groups see

[15].)
The description of 3-folds by Heegaard splittings and of links by plats admits

a further unification. The mapping class group of a punctured surface is a sort of
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product of the braid group of the compact surface with its mapping class group.
More precisely, there is an exact sequence [15]

* -> B(g,n) -> M(g,n) -> M(g,0) -> 1,

where B(g,n) is the n-point braid group on the surface of genus g, M(g,n) and
M(g, 0) are the mapping class groups of the punctured and unpunctured surface.
The kernel * is usually trivial, and always small.

It seems tempting to construct both the 3-fold and the link at once from an
element of M(g, n) and prove the invariance all at once from a suitable synthesis
of Facts 2 and 4. We do not achieve that here. Nevertheless, the fact that links
and 3-folds are both described by surface maps (a braid can be thought of as
a map of the punctured surface to itself) is a strong hint that the most natural
object to apply MTC's to is the unified object manifold-with-link. This is not as
strongly indicated in Witten's picture, and, as we shall see, it is very suggestive
for quantum gravity.

We shall now construct the invariant for a link in a general 3-fold, and prove
its invariance in a somewhat piecemeal way. Namely, we shall first consider
isotopies of a link described plat while fixing the Heegaard splitting, then discuss
the problem of changing the Heegaard splitting. We do not present a complete
proof, but the omitted points do not seem likely to cause trouble.

We need to prove an analog of Birman's theorem on isotopies of plats for
generalized plats. The statement of Birman's theorem is stronger than our Fact 4.
It says that if two plats are isotopic then after stabilizing both sufficiently often
they are in the same double coset of K2n in B2n for some n.

Birman's proof has several stages. First, she restricts attention to piecewise
linear links and simple isotopies which exchange one leg of a triangle for the
other two legs. Next, she shows that such moves can be written as products of
only two types of moves on plats, abandoning the linear structure and working
only on isotopy classes. Finally, she checks that the algebra of these moves allows
them to be written in a special order.

One of the moves is stabilization or its inverse. The other is a move which
pulls a small loop which ends as a semicircle of the plat in some distance into the
braid, then pushes it back out on some other path. The special order in which
the moves can be written is stabilizations; loop moves on left loop moves on
right destabilizations. The loop moves are contained in the subgroup K2n, so the
theorem is proved.

A direct imitation of Birman's proof in a 3-manifold would be difficult, since
no natural linear structure is available. However, isotopies are products of local
isotopies, so we can break our manifold up into simple pieces, and apply her
result to each piece.

Let us first consider only isotopies of generalized plats which avoid the spines
of the two handlebodies. Thus, we are considering isotopies of plats in Σ x (0,1).
(When we remove the spines, the surface map of a Heegaard splitting becomes
irrelevant.) Let us further choose a set of cuts in Σ which reduces it to a disk.
Now, if we consider any isotopy which avoids the cuts, Birman's theorem tells
us that it is a product of her two types of moves. If we wish to consider an
isotopy which crosses a cut, we can arrange to have it live in another disk in Σ.
Since stabilizations can be moved around freely by products of the other move,
it is not necessary to add stabilizations belonging to the region around a cut.
Thus we find that in order to include all isotopies which miss the spines, we
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need add to K^n only a move which drags a semicircle around a cut (i.e. around
a non-trivial cycle in Σ). There remains to consider isometries which cross the
spines. There can be described by small triangles which intersect the spine at a
single interior point. In the generalized plat picture, this translates into dragging
a single puncture around a non-trivial cycle in Σ which bounds a disk in HΣ
[half of Hl(Σ) does].

It is easy to see that Birman's arguments getting these moves in the right
order go over.

We have shown the following:

Proposition 2. The equivalence relation between elements of the braid group E^n

of Σ which generate isotopic links is generated by stabilization, and double cosets
of the subgroup K^n generated by Birman's 3 moves and the two moves described
above: dragging one puncture around a loop in Σ which bounds in HΣ or two paired
punctures around any loop.

In order to construct the invariant for a link in a 3-fold, it is necessary to
describe a set of states Vc G VΣ for Σ a higher genus surface with 2n punctures
and C a coloring of the punctures with the label of a MTC. We then need
to check that they are permuted appropriately by k^n and the generators of
Ng c=Mg <=M(g,2n).

The formula for the invariant of a colored framed oriented link in a 3 fold
would then be as follows: construct the element of M(g,2n) corresponding to the
surface map of a Heegaard splitting for the manifold and the braid group elements
of a plat description of the link under the exact sequence mentioned above. Then
sandwich the representation matrix of this element of M(g,2π) between the
appropriate FC'S, and normalize as we would just for the unpunctured surface
map.

The definition of the Fc's is not difficult. We pick trinions for each pair
of punctures as before, label the outside circles with 1, then extend to any
decomposition of Σ, using only circles which bound discs in Hε, and label all
the cuts 1. Tensoring together the basis vectors for the F '̂s and F^'s yields the
states FC

We now need to check several things. The generators of k must permute the
FC'S. It is easy to see that this is so, since the generators of K^n c: K^n have
already been studied, while the two new generators both amount to braiding
two states, one of which is labeled 1. In one case, the outer circle around two
paired pictures is labeled 1. (The pentagon allows us to braid the outer circle
instead of both punctures.) In the other case, we drag a puncture around a circle
which bounds, and is therefore labeled 1. (The proof that all bounding circles are
labeled 1 is as in Sect. 4.)

The action of the generators of Λ^2g on the colored vacuua is as in Sect. 4,
provided we are sensible enough to situate the outer circles around the punctures
away from the cuts.

To complete the proof of invariance, we need to examine the action of Ng on
generalized plats, which boils down to studying the algebra of M(g,2n). Since I
have not yet done that, my proof is not ήuite complete. The algebra of M(g,2n)
is fairly straightforward, so I expect no surprises.

Let us therefore state:

Almost Proved Theorem I. Any MTC gives rise to an invariant of framed oriented,
colored links in a closed oriented 3-manifold.
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The analogy between 3-folds and links goes farther yet. Consider a 3-ball
with some simple arcs removed. Call such a space a preplat. A link represented
as a plat is two preplats glues by a surface map. A branched cover of a preplat
over the removed arcs gives rise to a handlebody. Thus Heegaard splittings for 3
folds can be constructed as covering spaces of plats.

If we had an MTC with two colors, one of which was related to the other
on a branched cover over the puncture, then we would have a symmetry relating
invariants of links in 3-folds to invariants of branched covers of the 3-folds over
components of the links.

Such an MTC seems very plausible. If we started with a super symmetric
RCFT, the fermionic states look very like the bosonic states on branched covers.
I conjecture that the symmetry described above can be realized as topological
super symmetry.

An example of topological supersymmetry may already be known. The Alex-
ander polynomial [9] can either be calculated from the Reidemeister torsion of
a link, or from the cohomology of an infinite cyclic cover. (Since parastatistics
exist in 2 — D, we are not bound to use only double covers.) Further evidence
that the Alexander polynomial is related to supersymmetry has been discovered
by Reshetikhin (personal conversation) who can calculate it from the quantum
version of the supergroup SU(1 1). This observation has also been made by
L.Kauffman [16].

Finally, we wish to observe that everything we have said about links is still
true if links are generalized to knotted trivalent graphs. L. Kauίfman has assigned
invariants to knotted trivalent graphs in a slightly different context [17] see also
[8]. In doing so, he used a combinatoric description for knotted graphs completely
analogous to one for links. The description is slightly different from the plat one,
but it would be very surprising if it did not translate. The only new move needed
is to slide a braiding past a vertex, but that is just the pentagon.

Let us state.

Almost Proved Theorem II. Any MTC gives rise to an invariant of oriented labeled
framed trivalent knotted graphs in an oriented closed 3-manifold.

We should remark that in labeling a graph edges receive labels from
and vertices are labeled by vectors in V^.R^ where the Rt are the labels of the
edges at the vertex.

(Proofs of the gaps in this chapter will be completed elsewhere.)

VI. Manifolds with Boundary

Witten applied his path integral also to manifolds with boundary, in which case
it gave him a state in VΣ, for Σ the boundary. We are actually able to prove a
slightly stronger result.

Theorem 3. Let (M3, d) be a compact oriented 3-fold with boundary. Let the
boundary d be separated into two disjoint sets of components in any way d = ΣιUΣ2

Then an MTC gives rise in a natural way to a homomorphism VΣI —> Vz2 (Note
that the orientation of Σ2 is reversed.)

Note that a homomorphism VΣI —» Vz2 *s the same as an element of V^ Θ
Vz2 = Vd Thus, we are producing the same object as Witten.
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As usual, the map is ambiguous by an overall (eir)n. It is really a stroke of
luck which allows us to prove this theorem. Michael Motto's thesis (1988) [18]
developed a combinatorial description of 3-folds with boundary which parallels
Heegaard splittings and interfaces nicely with conformal field theory.

To explain Motto's work, we begin by describing a space called a compression
body. A compression body is a handlebody with part of a neighborhood of the
spine removed. Another way to describe it is to take a thickened neighborhood
of an oriented surface in R3, and add in some thickened neighborhoods of some
disks in the interior which bound some circles on the surface. (The circles then
become "compressible," whence the name.)

A compression body is a 3-fold with boundary. The boundary comes in
two parts: the outer boundary, which is just the original surface; and the inner
boundary, which is a union of disjoint surfaces of lower genus. [We arrange the
contracted disks to be non-intersecting.]

The structure which Motto develops for 3-folds with boundary is called a
generalized Heegaard splitting.

Definition. If a 3-fold with boundary (M, d) is written as a union of two compres-
sion bodies with their outer boundaries identified, then we have a generalized
Heegaard splitting for (M,d).

Motto proves

Fact 5. Every 3 fold with boundary (M, d), with an arbitrary division of its boundary
components into two disjoint sets d = Σ\ U Σ^ admits, a generalized Heegaard
splitting, where ΣI is the inner boundary of compression body ///.

As usual, we may choose Σ standard, so that (M, <3) is essentially specified
by an element of Mg for some g. Once again we need to know the equivalence
relation.

Fact 6. The equivalence relation between elements of mapping class groups which
give homeomorphic 3-manifolds with boundary is generated by stabilization, and
by left and right multiplication by the subgroups which extend to the two solid
handlebodies.

(We slightly restate Motto's result.)
Now we need homomorphisms, rather than elements of vector spaces.

Lemma 7. If H is a compression body with inner boundary ΣI and outer boundary
ΣQ, then for any MTC there is a natural homomorphism h : VΣ{ —> VΣO- This map
is invariant under the subgroup Nβ c: Mg of surface maps of ΣQ which extend to

H.

We construct the map as follows. On the outer boundary ΣQ draw copies of
the circles which are compressed in H. Contract each circle down to a point.
We are now left with a copy of ΣI with some extra punctures glued together in
pairs. If we label all the punctures with 1, it follows from the MS axioms that
the vector space associated to this new surface ΣM is isomorphic to VΣr This is
because adding a puncture labeled with 1 to a surface can be done by inserting
a trinion with labels j^, and K* A = C.

,-tV-tv ΛK

Taking any state in our new vector space VΣM and pulling it back to VΣQ gives
a map VSfΛ -> VΣo.
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We now have two worries: the identification of Σm and Z/, and the in variance
under Nβ. Fortunately, these problems cancel one another.

The reason for this is that the extension of self-maps of ΣQ to H is a very
rigid business. If we first think only of a self map of a thickened shell Σ x [0,1],
we would find that any self map of such a shell would give a homotopy between
two self maps of Σ. However, for surfaces, homotopy implies isotopy [19]. Thus
the two end maps on the thickened shell give the same element of Mg.

Now let us suppose we have a homeomorphism φ : ΣQ —* ΣQ which extends
to ίf. It must permute the circles on ΣQ which contract in H among themselves
(up to an isotopy). A small rearrangement of the extension of φ allows us to
assume that it permutes the disks. Cutting the space HΣ along the disks cuts it
into thickened shells on lower genus surfaces. The extension of φ must be the
same, up to isotopy, on the inside and outside of each. Since the machinery of
an MTC only depends on isotopy classes of trinion decompositions, we are left
with an invariant map VΣI —» VΣO as we wished.

In order to prove Theorem 3, we note that reversing orientation gives a map

Λ : ̂  - Vt,
If we have a generalized Heegaard splitting for a 3 fold with boundary

(M, d) = HI \Jφ HI then the two outer boundaries have reversed orientation.

Thus φ is naturally a surface map from ΣO,I to IΌ,2 We write h\ o ρ(ρ) o h2 as our
map.

Proof of Theorem 3. The double coset invariance follows from the invariances of
hi. The invariance under stabilization is trivial. Hence Theorem 3 follows from
Fact 6.

The invariance of these maps tells us that components of the boundary of a
3-fold have some sort of "intertwinedness" which we can now measure.

In order to complete our reconstruction of Witten's topological conformal
field theory, we need to prove an extension of all our theorems up to this point
which would study a 3-fold with boundary containing a knotted labeled framed
oriented trivalent graph, with some open components which end on the boundary.
This seems straightforward, but tedious. Perhaps the existing results would cover
the most general case with a little manipulation.

The other omission in completing our construction of a TQFT is a proof of
the gluing axiom. That could be accomplished by finding a generalized Heegaard
splitting for the "big" space which included the 2 "little" splittings and not much
else. I will attack this elsewhere, but it appears straightforward.

VII. Extensions to Four Dimensions

The contact we have developed between 3 — d topology and 2 — d physics is
strong and elegant, but there is one irritating point; namely, the ubiquitous phase
ambiguity. One would like to remove this in a geometrical way. Witten [20]
suggests including a framing of the 3-fold, but this has the unappealing feature
that we are constrained in the end to resort to "weak framings." In any case,
regularizing the Chern Simons path integral seems very challenging.

I wish to propose another solution: regarding the 3-dimensional objects as
boundaries of 4-folds with boundary. As I shall argue, the relationship between
the combinatorial topology of 3-folds and 4-folds strongly suggests that this
approach should be fruitful.
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We shall first consider the case of a 3-fold, then briefly speculate on including
links. Every oriented 3-fold is the boundary of a simply connected 4-fold. This
simple fact can be proved many ways. The combinatoric proof, which we recite
here, actually shows us how to construct many inequivalent simply connected 4-
folds with a given 3-fold as boundary. It is easy to assign these 4-folds invariants
from a MTC, The invariants of the 4-folds do not share the ambiguity of the
3-fold.

In order to construct our 4-folds, we must convert our Heegaard splitting
description of a 3-fold into another type of combinatoric description, called a
Dehn surgery [9]. A Dehn surgery is a construction of an oriented 3-fold which
begins with a link in S3, each component of which is labeled by a rational number.
Small tubular neighborhoods of each component are removed, then reattached
by some non-trivial maps of the tori which are their boundaries. The rational
numbers specify the surface maps. It is a classical result that every oriented 3-fold
M has a Dehn surgery presentation.

A standard proof of that fact can be obtained, beginning with a Heegaard
splitting for the 3-fold. The Heegaard splitting can be described by the isotopy
class of a surface map φ : Σ —» Σ. The class of φ in Mg can be written as a
product of simple surface maps called Dehn twists [21]. A Dehn twist is a map of
Σ to itself which is the identity outside of a small neighborhood of a circle in Σ.
Near the circle, the map can be described by cutting Σ at the circle, twisting one
side by 2π, and regluing. The theorem of [21] actually shows that any element of
Mg is a product of Dehn twists around a fixed set of circles on Σ, which can be
taken as the cuts for a trinion decomposition of Σ, plus others.

Given a factorization of {φ} = D\... Dn, where the DI are Dehn twists, we can
produce a Dehn surgery as follows. The first D can be thought of as changing the
manifold only in a small tubular neighborhood around the cut. The effect of this
change is a Dehn surgery around the cut with index +1. We can pull this small
solid torus away from Σ without changing the manifold. If we continue in this
way, we end up with a Dehn surgery, and change φ so the {φ} — 1. However, a
Heegaard splitting with {φ} = 1 produces S3, so we have a Dehn surgery which
changes S3 to our M. This proof actually proves more. The Dehn surgery we
have constructed has only integer coefficients, hence it belongs to the class of
"honest surgeries."

Honest surgeries are so called because they give instructions for attaching
2-handles to the 4-ball so that the 3-fold produced is the boundary of a 4-
dimensional 2-handlebody. Thus a particular decomposition of φ into a product
of a certain fixed set of generators gives rise to a particular simply connected
4-fold with M as boundary.

Now remember that the phase ambiguity of /(M) comes from the fact that
different products of MS matrices which produce the same element of Mg can
fail to be equal by a phase factor. Thus, choosing a particular factorization of φ
removes the ambiguity. We have proven the following:

Proposition 3. Any oriented closed 3-fold M is the boundary of a family of simply
connected 4 folds. Any MTC assigns invariants to these 4-folds which are unambi-

guous, and equal to I(M) up to a power of e^.

We are naturally led to the following:
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Conjecture. Any MTC gives an invariant of simply connected 4-folds with boundary.
This invariant is an invariant of relative cobordism wrt the boundary.

Plausibility argument. The relative cobordism group of 4-folds with boundary
M is Z. This Z can be taken as giving the Z in the universal central extension M,
of Mg [22], if M is taken as coming from a Heegaard splitting. Thus, we are now

using elements of Mg, which is represented, rather than projectively represented,
in conformal field theory [13].

Second Plausibility Argument. The Witten path integral uses the Chern Simons
form integrated on a 3-fold. The Chern Simons form is the boundary contribution
to the integral of the first Pontrjagin form. Thus it is awfully tempting to rewrite
the Witten integral as a 4-d path integral over some M4 which bounds M3.

It is provocative to speculate on the 4-d significance of links in M3. The abelian
version of Wίtten's integral can be interpreted as a sum of linking numbers [23].
The linking number of two loops in S3 is the same as the intersection number of
2 disks in B4 for which they are the boudaries.

It is tempting to think of a link invariant as an invariant of surfaces bounding
the link components.

The picture here is reminiscent of Donaldson's invariant polynomials, but
extended to 4-folds with boundary. Those polynomials are also "non-abelian
intersection numbers," in a different sense.

There is actually a combinatoric way to relate choice of surfaces, bounding a
link to factorizations in M(g,n). The choice of factorization would tell us when
to pull a link thru a 2-handle in M4. This approach will be investigated further.

VIII. RCFT and Quantum Gravity. Spin Networks

The most general geometric setting for the invariants we have been discussing
is a 3-fold with boundary which contains a link or trivalent graph. My interest
in finding invariants for such a configuration antedates Witten's paper by six
months, and derives from a completely separate source: the quantization of
general relativity, as attempted in the Ashtekhar variables [5].

Although there has been a great deal of work recently studying 2 + 1 dimen-
sional gravity as a topological QFT, [24] there has been a perception that in 3 +1
dimensions, this approach would be impossible. This is because 3 + 1 — D gravity
has local excitations which propagate from place to place; which surely does not
have a "topological" feel.

Nevertheless, I want to argue that 3 + 1 — D gravity can be approached by
the methods of MTC's and TQFT. The price one has to pay for the propagating
modes is precisely the one we can afford to pay: inclusion of links or graphs in
the 3-fold.

Let us recapitulate the line of development which led from general relativity
to link invariants. Ashtekhar showed that the constraint equations for general
relativity became more tractable if a certain connection, A, on a 2-plane complex
bundle over a 3-fold was substituted for the 3-metric as configuration space
variable. (The definition of A uses a half spin bundle, so it is chiral.) Thus the
states of our quantum theory are to be functions ψ(A) which must be both gauge
and diffeomorphism invariant.

The next step in our development is the loop space formulation of Smolin and
Ravelli [6]. They proposed substituting traced holonomies around closed loops as
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variables, since these are automatically gauge invariant and suffice to distinguish
gauge classes of A's. The change from states ψ(A) to states Ψ(L) involved a
dualization, which enormously simplified the constraint algebra. Thus, we are led
to consider "measures" μ(A), [they are not measures in the precise mathematical
sense, but elements in the dual of some restricted class of functions ψ(A)]
which could give rise to diffeomorphism invariant states Ψ(L). A diffeomorphism
invariant state Ψ (L) is an invariant of link classes. (Link classes are equivalence
classes of embeddings under ambient diffeomorphism.) Thus Smolin, Ravelli and
I were led to the following problem: Do diffeomorphism invariant "measures" exist
on the space of connections over a 3-fold, which, when integrated against the traced
holonomy of a set of curves, give a non-trivial link invariant? This could be taken,
in one interpretation, as the problem of finding states for quantum gravity.

Witten's paper came barely a month after we asked this question. Formally,
his path integral provided precisely what we were trying to find.

Further work by Smolin [25] showed that it was in fact necessary to include
trivalent graphs as well.

In all this development there was a gaping hole in this theory; namely, how
to make a physical interpretation of it. I took the point of view that in order to
have physical observables, it is necessary to divide the universe into two parts,
system and observer. Hence a physical Hubert space could only be assigned to a
part of a universe, which I wanted to interpret as a manifold with boundary.

Thus the problem arose to find vectors associated to manifolds with boundary
containing links or graphs.

By now the parallels between this approach to quantizing gravity and the
TQFT's constructed from conformal field theory should be evident. It is tempting
to regard the gluing axiom of a TQFT as a consistency relation between different
observers. To sum up, we could say that 3 + 1 gravity is a theory whose states
correspond to TQFT's. (An arbitrary state is just a functional of link classes, which
is much flabbier than a TQFT, but only states corresponding to TQFT's would
admit a physical interpretation, by "factorizing" over subdomains corresponding
to experimental systems.) The TQFT would give the "state of the universe," while
subsystems would have state vectors in the vector spaces provided by TQFT.

We are thus led to try to explain physics as we know it by choosing the right
conformal field theory. This is intriguing, especially when we remember that CFT
was invented to describe ground states for string theory, which, it was hoped,
would explain the physics we see. Is it too much to hope that choosing a WZW
model as RCFT would even couple gravity to gauge theory?

It is still very hard to see how to interpret a TQFT as a physical theory. There
is some hope of achieving this by means of the relationship with a third field of
mathematical physics-namely, spin networks.

If we state the problem we face in its simplest terms it is this: given an
evaluation machine which assigns numbers to trivalent graphs which are closed
and vectors to ones with loose ends, how do we achieve a picture of a physical
space-time with some sort of matter in it?

Incredibly enough, this is exactly the problem which Penrose [26] attacked
in his work on spin networks. A spin network is a labeled trivalent graph. In
the original case, the labels are representations of 5C/(2); there is a fairly direct
generalization to other lie groups. The evaluation of trivalent graphs is very close
to the invariant for the WZW models. In the language of Moore and Seiberg,
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it is the "classical" conformal field theory which they approach in the classical
limit.

Penrose gives a line of argument in which certain combinations of evaluations
are interpreted as angles between macroscopic physical vectors. He finds that for
"macroscopic" objects the ordinary laws of flat geometry emerge. Subsequently
[27] this was interpreted as a path integral approach to euclidean signature
quantum general relativity in dimension 3. The equations of motion in that
dimension imply flatness.

When larger groups than SU(2) are used, the matter is less well understood,
but we seem to get a picture of a 3-fold mapped into some higher dimensional
symmetric space.

The most striking difference between the evaluation for spin networks and
the one for RCFT is that in spin networks the holonomy of one edge around
another is trivial. In spin networks, it is not necessary to distinguish over from
under crossings when a diagram is projected on a plane. Otherwise, the rules for
evaluating spin notworks closely parallel the skein rules for the Jones polyno-
mial (which is the invariant from the SU(2) level k WZW models). I owe this
observation to L. Kauffman.

It is very appealing now to translate Penrose's interpretation to invariants
derived from RCFT's. The addition of holonomies into the situation looks
optimistic for producing a curved space-time picture. This direction will be
further investigated.

The picture which seems to be possible here is that the universe initially
chooses a state, which selects a RCFT, which tells us what sort of matter fields
we must include. Anyone familiar with string theory must find this picture
familiar.

We are left with the problem of picking the right RCFT (or perhaps only the
right MTC). In string theory, the potential solutions to this involved numerical
coincidences around c = 24. In our current setting, RCFT's with c = 24 are
special, in that they give rise to invariants without ambiguity in d = 3. J. Lepowsky
informs me that he may be able to produce MTCs of c = 24 from constructions
on the Leech lattice.

In the 3-dimensional setting, the numerical coincidences around 24 pick up
another aspect, since framed cobordism of 3-folds is Z^. (R. Kirby pointed this
out to me.) Thus, any RCFT with integer c, such as a free boson, would produce
an unambiguous framed cobordism invariant of framed 3-folds. This is another
suggestion that thinking of 3-folds as boundaries may be fruitful.
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