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Abstract. We show that some compact subgroups (JfΛtm) of the p-adic Heisenberg
group act irreducibly on corresponding finite dimensional spaces of test-functions
(Smn). Under certain conditions, a compact group («fi/m+n) of linear canonical
transformations, isomorphic to SL(2, Zp), can be represented unitarily on Sm>n as
a group of automorphisms of ^M>m. The restriction to 5m π can be considered as
a discretization because an invariant subgroup G/m>w) of Anι+n is represented trivially.
It is possible to take a limit where <?mn becomes an arbitrarily small neighborhood
of the identity, while the dimension of Sm w becomes arbitrarily large. This is a
possible definition of the "continuum limit" that we relate to other projective limits
appearing naturally in the present context.

1. Introduction

In elementary quantum mechanics, the state of a system is represented by a ray
in a complex vector space [14]. In other words, states differing by a phase
(unimodular complex number) are not physically distinguishable. In ray space, the
representations of the transformation groups of Hamiltonian mechanics are only
required to be representations up to a phase, i.e. projective representations. For
instance, translations in positions and momenta commute and form an abelian
group; however, the interchange of their representatives in ray space may produce
a phase. A well-known example of such a realization is the Heisenberg group.

Let us first consider the usual situation: the positions and momenta are real
numbers and the algebra of infinitesimal transformations of the Heisenberg group
are the usual commutation relations of quantum mechanics. We now summarize
some of the results obtained by C. Itzykson [7]. One can construct a unitary
realization of the group of linear canonical transformations as a group of
automorphisms of the Heisenberg group. With an appropriate choice of phase,
this unitary realization turns out to be a representation up to a sign. In the
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following, the linear canonical transformations over an ^4-valued phase space will
be written LCT over A for brevity.

There are situations where the usual commutation relations of quantum
mechanics cannot be implemented. For instance, if the dimension of the vector
space is finite, we have Tr \_A, B~\ = 0 and a commutator cannot be proportional
to the identity. However, the unitary operators corresponding to the LCT over a
finite ring can be constructed easily [5,2]. In order to find the similarities among
various constructions of this type, it is essential to identify the role played by the
additive characters [3]. The definition of the Heisenberg group and the realization
of the LCT as a group of automorphisms of the Heisenberg group given in Sect. 2
apply to arbitrary fields. The recent results [3,8,1,13,11,9] concerning the LCT
over the p-adic numbers Qp and their quantization can be understood within this
framework.

In the case where the phase space consists in a pair of p-adic conjugated
variables, the group of LCT is SL(2,QP). In refs. 11 and 9, the additive
parametrization ("time") of some compact abelian groups of SL(2,QP) and the
eigenvalues of the corresponding unitary operators has been calculated using
standard methods of harmonic analysis. These are new examples of non-trivial
problems of quantum mechanics which are exactly solvable. In the process of these
calculations, we noticed the existence of nested, finite dimensional spaces of
test-functions (see ref. 4 for definitions), invariant under the unitary operators
corresponding to these compact abelian subgroups [9]. Note that this
approximation does not affect the eigenvalues or the eigenfunctions of these
operators but only restricts the vector space to a finite number of eigenfunctions.
The restriction to these spaces was then used to regularize some ill-defined traces
and more recently to formulate a path integral representation of those unitary
operators [10]. Similar patterns appear in the discretization of p-adic strings
[15]. The aim of this paper is to give a systematic presentation, including
elementary proofs, of the discretization of p-adic quantum mechanics used in refs. 9
and 10.

In Sect. 2, we present the p-adic Heisenberg group and its automorphisms
corresponding to the LCT. Although this section is written in the case of Qp, most
of the results apply to the general case. In Sect. 3, we define some compact
subgroups (3?n m) of the p-adic Heisenberg group and we show that they act
irreducibly on a corresponding finite dimensional space of test-functions (Smn). A
normal abelian subgroup of 2tf^m is realized trivially on Sm M and we are left with
an irreducible representation of a finite Heisenberg group. As briefly discussed in
ref. 10 this group appears in several problems with toroidal boundary conditions
[6].

The notion of projective limit appears naturally in the definition of the p-adic
integers Zp. Let φn be the obvious homomorphism of Z/pMZ onto Z/p"~1Z. A
p-adic integer can be defined [12] as a sequence xn of elements of Z/pMZ such that
φn(xn) = xn_1 for n ̂  2. The ring of p-adic integers Zp is then the projective limit
of the system (Z/p"Z, φn). In Sect. 4, we give a definition of 5L(2, Zp) as a projective
limit. We show in Sect. 5 that under certain conditions, a compact group (<$?m+n)
of linear canonical transformations, isomorphic to SL(2, Zp), can be represented
unitarily on Sm n as a group of automorphisms of ^n>m. In addition, an invariant
subgroup «/OT n of £#m+n is realized trivially on Sm n. This leaves us with a projective
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representation of the finite group ^m+n/^mn and the restriction to 5m / J can be
considered as a discretization. The continuum limit is obtained when the invariant
subgroup «/mtΠ shrinks to an arbitrarily small neighborhood of the identity while
the dimension of Sm n becomes arbitrarily large. The proofs given here only use
elementary algebra, the non-Archimedean inequality and Schur's lemma. With a
few exceptions they do not make use of a particular basis. A few considerations
concerning the algebra generating the eigenfunctions of the unitary realization of
some orthogonal groups are given in the conclusions.

2. Presentation of the p-AAic Heisenberg Group
and some of Its Automorphisms

Let / be a continuous function from Qp to C, χp(x) an additive character of Qp

normalized as ei2πx and x, fc, z, h some elements of Qp. We define the action of
#(x,fc,z) on/as

In the following h will be considered as a constant which parametrizes the additive
character and plays a role analogous to the Planck constant in quantum mechanics.
The parametrization of z as an element of Qp is redundant since with our normal-
ization, χp(x) = 1 if I x \p ̂  1. Consequently, H(x, fc, z) = H(x, k, z'} if | z - z'\p ̂  \ h \p =
p-ordΛ ^γe can obtain a ι_ι parametrization if z is chosen among representatives
of Qp/pordhZp. Except for this restriction, the results of this section apply for an
arbitrary field.

The composition of two transformations (2.1) reads

H(x, k, z)#(x', k', z') = H(x + x', /c + k, z + z' - kxf). (2.2)

We see that H(0,0,0) is a representative of the identity and that
H( — x,—k,—z — kx) is a representative of the inverse of H(x, /c, z) and one easily
checks that

tf = [H(x9 /c, z); x, keQp and zeQp/poτdhZp} (23)

is a group for the product (2.2).
The center of ffl consists in the elements having the form H(0,0,z). The

interchange of two elements of 2tf amounts to the multiplication by a central
element, namely

H(x, k, z)H(x\ k, z'} = H(x\ k, z')H(x, fc, z)#(0,0, kx - kx'). (2.4)

This shows that (2.1) defines a projective representation of the abelian group
(Qp9 +,0)2 or alternatively a linear representation of a central extension of this
abelian group. However, since we only consider here a particular family of
representations indexed by h, we shall call ̂  the p-adic Heisenberg group, bearing
in mind the h dependence. Note that if the group parameters x, fc, z were real
numbers, the infinitesimal version of (2.4) would be the commutation relations of
quantum mechanics with h being the Planck constant.
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We are now in position to introduce some automorphisms of $? corresponding
to the linear canonical transformations of classical mechanics (with a p-adic phase

space). Let g = ( I e SL(2, Q ) and [ ] be the mapping of J^ into itself defined
by: \c d/

lH(x9 /c, z)], = πίdx + Wfc, ak + cx,z- — — — — bcxk J . (2.5)

Lemma 1. \/H,H'eJ#> and g9g'eSL(2,Qp),

(a)
(b)
(c) [fl], = H iff flf = 1, (1 is ίte identity ofSL(2, Qp).

The proofs are straightforward applications of (2.2), (2.5) and the multiplication
of 2 by 2 matrices. Π

Proposition 1. {[ ]^,^e5L(2, Qp)} is a group of automorphisms of tf.
Lemma 1 a) asserts that [ ~\g is an homomorphism of tf. But under this

homomorphism, He^f is the image of an unique element (\_H~\g-ι) of J f as a
consequence of Lemma 1 b) and c). This shows that [ ~\g is an automorphism of
Jtf and the above set of transformations inherits the group properties of SL(2, Qp)
(Lemma 1 b)). Π

3. Some Compact Subgroups of the />-Adic Heisenberg Group
and Their Invariant Subspaces of Test Functions

In this section, / will be a test function [4], i.e. a locally constant function (from
Qp to C) with compact support. As we now proceed to explain, it is important to
realize that the transformations (2.1) are exactly what we need to "probe" the local
constancy and the support of /. We can classify the test functions according to
their invariance under some compact subsets of ffl defined as

jfM i Λ = {H(xΛ*);MP^l^^ (3.1)
From (2.2) and the ultrametric inequality, we see that J f mjΠ is a subgroup of J"f .
These subgroups are nested according to the inclusion relations

From the discussion in Sect. 2, it is clear that z represents a class of equivalence
of Zn>m = pm-n+ordhZp/poτάhZp. Note that if m ̂  n, Jfm>π is abelian and (2.4) together
with the ultrametric inequality implies that ^mjΠ is included in the center of 3Ίfntm

and therefore an invariant subgroup of ^fw,m. We can determine the quotient
Jfn>m/Jfm>M. The transformations of ^fm>n of the form #(<5x,0,0) can be used to
reduce the parameter x (as in Eq. (2.1)) of a transformation of Jfw>w to some
representative of Xntm = p~nZp/p~mZp, i.e the classes of equivalence x with
representatives x such that \x\p^pn and x = y if |x — y\ ̂ pm. Similarly, we can
reduce the parameter k to some representative of Kn>m = pm+oτάhZp/pn+oτάhZp. Each
of the three quotients of additive groups has order pn~m. This makes clear the
next proposition.
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Proposition 2. // n^m, the quotient 3?n,m/3?m,n is a group with p3(n~m) elements
(finite Heisenberg group).

We now introduce the finite dimensional spaces of test functions:

Sm.n

 Ξ {/:/(*) = 0 if \x\p > Pn and f(x + δx) = f(x) iΐ\δx\p ^p+m} (3.3)

with m ̂  n assumed (otherwise we only have the identically zero function). We
have the obvious inclusion relations

SmfB-icSmtllcSm_ l f l l. (3.4)

Note also that the mapping/(x) -> f(px) is a bijection between Sm>M and Sm _ 1 1 „ _ 1 .
It is sometimes convenient to use a particular basis of Sm>M, for instance the

set of characteristic functions

rn-m/2 if I v γ I < nm

f - ( χ ) = \P *\x-x0\r£P ,3«.7 XovV J Λ ,1 9 \y ~V
(0 otherwise

where x0e^Πjm. The dimension of 5m>n is thus pn~m. In order to make contact with
quantum mechanics, it is necessary to introduce the notion of unitarity. For this
reason, we define the inner product of two functions of 5m>π in the following way:

</ι 1/2 > = ί dxf*(x)f2(x) = pm Σ /?(*)/2(*) (3.6)
Vp XGXn,m

It is clear that (3.5) is an orthonormal basis with respect to this inner product. In
the following, the notions of adjointness or unitarity will always be understood
with respect to (3.6).

Theorem 1. If m^ n:

(b) Jtifn,m acts irreducibly on Sm>M.

a) => follows from (2.1) with the restrictions (3.1) and (3.2). a) <= is obtained
by considering "maximal" elements: #(x,0,0) with \χ\p = pm which control the
local constancy and ff(0,fc,0) with \k\p = p~n~oτdh which control the support. The
entire basis of Eq. (3.5) can be generated by acting iteratively with f/(p~w,0,0) on
any /io which proves b). Π

Corollary 1. The group of transformation Jf „ m(m ̂  n) acting on 5m>π provides an
irreducible representation of the finite Heisenberg group 3?n

It is shown in the appendix that it possible to combine linearly the elements
of this finite group in order to obtain a basis of linear operators of STO>n.

4. SL(2, Zp) as a Projective Limit:
A Discretization of the Classical Evolution

A starting point for the path integral formulation of ordinary quantum mechanics
is the discretization of time. In the case of p-adic quantum mechanics, it has been
pointed out recently [10] that the restriction to some nested 5mj/ί induces a
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discretization of some compact group of evolution. Before considering the quantum
evolution, we will present a discretization of the classical evolution, namely a
definition of the compact subgroup of the LCT SL(2, Zp) as a projective limit. As
explained in the introduction, the ring of p-adic integers Zp can be defined as the
projective limit of the system (Z/p"Z, φn\ where φn is the obvious homomorphism
of Z/pnZ into Z/pn~1Z. We can also introduce a function εn from Zp into Z/pnZ
such that εn(x) = xn with the above notations. Since addition and multiplication
of p-adic integers are defined by these operations within each of the Z/pnZ, εn is
a ring homomorphism with kernel pnZp.

Given an element g of SL(2, Zp) the action of εn and φn on the four matrix
elements defines the functions εn(g) = gn and φn(gn) = gn-ι. Note that εn is a group
homomorphism with kernel

(4.1)

and whose image is included in SL(2, Z/pnZ). As in the case of the modular group,
any element of SL(2, Z/pnZ) is the image by εn of some elements of 5L(2, Zp). To
each solution of αd — be = 1 mod pn, corresponds an element of SL(2,Z/pnZ).
Clearly, out of the pairs (α, d) and (b, c) there is at least one whose elements are
not zero mod p. Considering one of the elements of this pair as a variable, we can
lift the solution mod pn to a solution in Zp using Hansel's lemma [12]. Consequently,

SL(2,Zp)/Kn*SL(2,Z/p»Z) (4.2)

and we can define SL(2, Zp) as the projective limit of (SL(2, Z/p"Z), φn\ In the next
section, we will construct sequences of projective representations corresponding
to the odd and the even subsequences of this projective limit.

5. Some Automorphisms

In this section, we will study the subgroup of transformations (2.5) which map ^fm>M

into itself. We first define

(5.1)

Proposition 3. £#n+m is α subgroup of 5L(2,Qp) isomorphίc to SL(2,Zp).

Let λ€Qpl^/p'] such that λ2eQp and \λ2\p = pn+m\h\~1. The conjugation

0 Vα b\ίλ~l 0\ / α λ2b

o - - (5<2)

is an isomorphism between SL(2,Zp) and ̂ m+n. Π

Proposition 4. Ifpm~n ^ |2|p, {[ ]̂ , ^eja^m+n} is α group of automorphism o

From Lemma 1 and Proposition 1, we only need to prove that if gejtfm+n, [ ~\g

mapsJfm j Π into itself. This follows easily from (2.5), (3.1) and (4.1) and the
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non-Achimedean inequality. The special restriction for p — 2 comes from the factor
1/2 in (2.5). Π

Propositions. // pm n^\2\p, /e5m>w and ges/m+n, then there exists a unitary
transformation Ug such that for any HeJ^nm: UgfeSm>n and [H]gf = Uf

gHUgf.
Using the basis (3.5), we obtain Ug9 up to an overall constant, such that

Ug[H~\g — HUg for any He^fnm. The modulus of the constant can be fixed in such
a way that unitarity is satisfied. This explicit calculation is reported in the appendix
and provides us with alternative proofs of the following results. Π

We are now ready to show that the restriction to Sm>ll induces a discretization
of £#m+n in the sense that a neighborhood of the identity of ^m+n is realized
trivially with Ug. We define

a b

c d,

Ί
(5.3)

Proposition 6. «/mn is an invariant subgroup of <s/m+n. ^m+n/^mn is isomorphίc to
SL(2, Zp/p"-mZp) ifp Φ 2 and to the subgroup of elements ofSL(2, Z2/2"~mZ2) which
satisfy | fc | 2 ^2"~ m ~ 1 and \c\2^2n~m~l ifp = 2.

This follows from the fact (see (4.1)) that Kn_m is an invariant subgroup of
SL(2, Zp) and that the isomorphism (5.2) induces an isomorphism between </m>fl and
Kn_m if p^2, and between Jm^n and the above invariant subgroup of SL(2,Z2)
intermediate between Kn_m and Kn_m+19 if p = 2. Π

Theorem 2. Ifp"-"1 ^ |2|p, /eSWfJI and g, g'e^m+n, then, UβU,f = c(g,g')Vgg,f and

If He^m and gl9 g2£^m+n, then from Lemma 1 b), Ul2UlHUgιUg2 =
U'gίg2HUgίg2 (understood as an operator identity over SmjΠ). Consequently, U =

UgiUgzUg^ commutes with any such H. From the ireducibility of ^fπ>m

(Theorem 1 b)) and Schur's lemma, we conclude that U is proportional to the
identity. Since U is unitary (Proposition 5), c is unimodular. Π

In ref. 9, we have shown that with appropriate choices of phases, the unitary
realization turned out to be a representation up to a sign, generalizing the result
for the reals [7]. In ref. 11, other phase choices were considered. However, the
results presented here are independent of a particular choice.

Lemma 2. IfHeJ4?n,m and geSntΛ9 then R-l[_H\ε^m,n.

This is a straightforward application of (2.2), (2.5) and the non-Archimedean
inequality. Π

Theorem 3. Ifp"1-" ^ |2|p, geSmtn and /eSMfll, then Ugf = λ(g)f and \λ(g)\c = 1.

From Lemma 2 and Proposition 5, we find that if He^nm and geJ^mn then
(UgH — HUg)f = Q for any feSmn. Using Schur's lemma as in Theorem 2, we
obtain the desired result. Π
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Corollary 2. Ug acting on Sm>n is a projectίve representation of

The quotient group is clearly a finite group. A simple calculation shows that

if p = 2. The restriction to Sm>π is thus a discretization of ̂ m+π.

We are now ready to define the continuum limit. If we increase n — m with
n + m kept fixed, $#m+n is unchanged while Jm^n shrinks to smaller neighborhood
of the identity. This defines a projective limit of <$tfm+n similar to the definition of
SL(2, Zp) given in Sect. 4, except that since m + n is kept fixed, m — n tends to
infinity through odd or even values. Since 5L(2, Zp) is a continuous group for the
natural (p-adic) topology, we call the corresponding sequence of representations
a continuum limit.

6. Conclusions

We have shown that the restriction to some appropriate finite dimensional spaces
of test-functions provides a consistent discretization of the quantum evolution
corresponding to groups of LCT isomorphic to SL(2,Zp). We proposed a
continuum limit obtained as a sequence of unitary realizations related to the
sequences of finite groups appearing in the definition of 5L(2, Zp) as a projective
limit. The applications of this result can be found in refs. 9 and 10 and possibly
in the context of refs. 6. In ordinary quantum mechanics, we can construct all the
eigenfunctions of an harmonic oscillator by acting with the creation operator on
the vacuum. This operator and its hermitian conjugate close in a very simple algebra
(Heisenberg algebra). In p-adic quantum mechanics, we can also construct "creation
operators" which map some Sm>n into some larger Sm, n>. However, the study of the
spectra [11,9] and the non-Archimedean inequality show that if an operator A is
an eigenstate of U^AUg for g in some compact orthogonal group, then there is
an upper limit on the spaces Sm,χ which can be obtained by acting with A on the
smallest possible of these spaces. The idea of getting the full spectrum with a single
creator is clearly Archimedean! In the non-Archimedean case, the building blocks
are finite dimensional spaces and the algebra generating the eigenstates is a finite
dimensional representation of Lie algebra.

Appendix A

This appendix is devoted to the explicit results obtained in the basis (3.5). We first
introduce the notations |x> for the ket corresponding tof- in (3.5). Obviously,

Through this appendix, we assume n^m and we use the notations
Xn,m==p-nZp/p-mZp and Knfm = pm+orάhZp\pn+orάhZp as in the text. An unbarred
variable x should be understood as a representative of the equivalence class x.
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The Fourier transform of a function feSmn reads

1 Σ
(A2)

JO; otherwise

We see that f(k) is a function defined over Kn>m. The delta function can also be
expressed as

^="n~\Σ

The matrix elements of He^fn m are given by

( y ι \ H \ y 2 y = χp{ ~}δ- (^4)

The operators

form a basis of linear operators over Sm>π since a short calculation shows that

As announced in Proposition 5, the conditions Vg[H~\g = HUg for any
g£jtfm+n and pm~" ̂  \2\p fixes a unitary transformation Ug up to a phase ξ. The
explicit expression of Ug in the basis (3.5) reads

a)

if \dχ- y\p^

; otherwise. (A7 l)

b)

if |dx- y|2 = 2W + 1

(A7.2)
1 0; otherwise.

c) If|6h|,<p2»:

; otherwise.

The check of unitarity does not involve quadratic sums and is easy.
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