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Abstract. The partition functions of quantum Yang-Mills theory have an
expansion in powers of the coupling constant; the leading order term in this
expansion is called the semiclassical approximation. We study the semiclassical
approximation for Yang-Mills theory on a compact Riemannian 4-manifold using
geometric techniques, and do explicit calculations for the case when the manifold is
the 4-sphere. This involves calculating the Riemannian measure and certain
functional determinants on the moduli space of self-dual connections. The main
result is that the contribution to the semiclassical partition functions coming from
the fc = l connections on the 4-sphere is finite and calculable. We also discuss a
renormalization procedure in which the radius of the 4-sphere is allowed to tend to
infinity.

0. Introduction

In previous articles ([GP1, GP2, and Gr]) the authors have described the
Riemannian geometry of the moduli space of self-dual connections on compact
4-manifolds. In this paper we extend those results to address a question of more
direct physical interest: the geometry of the semiclassical approximation to the
partition functions for Yang-Mills theories on such manifolds. From a geometric
perspective these semiclassical approximations arise as follows.

Given a principal G-bundle P over a compact oriented Riemannian 4-manifold
(M, g), let jtfp and yP be the space of connections and the gauge group of P. Let
srf — $ί(M) be the disjoint union of the J / P over all equivalence classes of bundles
P-+M. The quantum expectation of a gauge-invariant function Φ : J / - > R is
defined formally as a quotient of two integrals over sί\
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Here S(A) = TT ί \^A\2 (where FA is the curvature 2-form of A and ξ is a parameter)
ξ M

is the Yang-Mills action and 2 si is a measure on si. The main problem of
quantum field theory is to make sense of the quantities Z(Φ) and to compute them
explicitly.

Of course, there are formidable problems in defining this measure, and without
such a definition the above expression is meaningless. However, if one assumes (as
physicists do) that Z(Φ) is well-defined and that the usual rules of calculus can be
applied, then (0.1) can be simplified in two steps. First, one can rewrite Z(Φ) as an
integral over si/9; this introduces a factor - the "Faddeev-Popov ghost
determinant" - into the integrand. Second, the action S depends on the parameter
ξ (the coupling constant) and Z(Φ) has an asymptotic expansion in powers of ξ.
The leading-order term in this expansion is called the one-loop, or semiclassical,
approximation to the expectation. By a "stationary phase" formula this leading
term reduces to an integral over the self-dual moduli space JtQ.stf/y. The
semiclassical expectation then has the form

where Z(Φ)= J Φ{A)e~sδ{A)dJί, (0.2)
M

where δ(A) is a determinantal factor and dstf is the volume form of the L2

Riemannian metric g on the moduli space.
All of this is described in detail in Sects. 1 and 2. We have paid careful attention

to the effect of singularities in Ji. This effect requires more delicate handling than it
has received in the physics literature, where our Theorem 1.1, Proposition 2.1, and
certain corollaries are implicitly assumed. In Sects. 3-5 we explicitly calculate the
factor δ(A)dJί for the fundamental example of the fc = 1 moduli space Jlγ on S4.
This involves laborious calculations of functional determinants. The basic
definitions and our method of calculation are described at tfre beginning of Sect. 3.
Our main result is that the integrals over Jίγ in the semiclassical approximation
are finite and calculable.

Theorem 1. Let Jί^^Jί^iβ^) be the moduli space of k = ί self dual connections on
the unit 4-sphere. Then for any smooth, bounded, gauge-invariant function Φ on Jίu

the semiclassical partition function

ZSC(Φ)= J Φ(A)e~sδ{A)dJt (0.3)
Mi

is finite. Moreover, one has explicit formulas giving the semiclassical measure δv
= δ{A)dJίonJί1{S%

The formulas for the semiclassical measure are given in Sect. 5. These formulas
are complicated and cannot reasonably be integrated in closed form. However,
using them it is straightforward to numerically calculate the semiclassical partition
functions (0.3).

As an application, we calculate the semiclassical expectations of the instanton
number \k\ and the scale function λ. Recall that each connection A has a scale size
λ>0, defined as the radius of the smallest ball containing half the action. This
function λ is a smooth bounded function on Ji. In Sect. 6 we show that the
semiclassical expectation of |/c| and λ can be expressed in terms of integrals over Jίγ

(there is no contribution from the moduli spaces of connections with \k\ > 1). We
carry out the computations in Sect. 7, obtaining

(0.4)
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and

α > s c « 0.03693C2Γ *e ' 8iζ2/ξ2, (0.5)

where ξ2 is a "coupling constant" (denoted g2 in the physics literature) and C2 is a
universal constant (independent of the observable and ξ) given in Eq. (6.7).

The final section of the paper describes the renormalization of this theory.
While the semiclassical partition functions (0.3) have been defined and calculated
without introducing a cutoff, the results do depend on two choices of scale: the
coupling constant ξ9 and the radius R of the sphere S4. For physical reasons one
would like to replace the sphere by R4. To this end, we examine the scaling
behavior of the semiclassical partition functions as JR-*OO. We then show how, by
choosing ξ to be an appropriate function of R, one obtains a finite limit as R-+ao.
The result is that we obtain well-defined and calculable expressions for the
semiclassical partition functions and semiclassical expectations on R4. In parti-
cular, the renormalized semiclassical expectations of \k\ and λ are

(0.6)

and

(0.7)

for a certain constant Kv

Actually there is a suppressed length scale in (0.7) and (0.5), the physical unit of
length L - e.g. 1 cm or 1 light-year - with respect to which we are calling S4 the unit
sphere; the physical radius of the sphere is RL, not R. (L is effectively the reciprocal
of the "mass scale" μ found in the physics literature; see Sect. 7.) The value of </l>
given in (0.7) is thus the numerical multiplier of L; i.e. one should re-express (0.7)
more precisely as

. (0.8)

Similarly, all distances in the theory are given in terms of L, the only remaining
arbitrary parameter. Thus, while classical instantons on R4 have no preferred scale
(because of conformal invariance of the self-duality equations), our semiclassical
theory has broken the conformal invariance by introducing the fundamental
length scale L. The importance of (0.6) and (0.8), then, is that in principle Kί and L
could be determined by measurements of the two observables <|fc|> and </l) (or
more generally any two observables of different dimensions.

We note that the above approach - first working on the sphere and then
renormalizing to obtain semiclassical expectations on R4 - avoids the infrared
divergences which have prevented physicists from completing such calculations
(cf. [C], Chap. 7, Sect. 3.6).

The semiclassical measure for instantons has been discussed in numerous
physics papers, beginning with 'tHooft's study of the 1-instanton case [H]; a
general description of the physicists' approach, as well an extensive list of
references, can be found in [O]. The physicists work on S4, using the Atiyah-
Drinfeld-Hitchin-Manin description of instantons [AHDM], for the purpose of
regularizing an ill-defined measure over the space of fields on R4. In this process
they frequently pass back and forth between S4 and R4, attempting to find the
"right" flat-space limits of different ingredients of the semiclassical measure, in
ways that are not always satisfactorily justified. Our philosophy is to renormalize
expectations obtained from S4, rather than to renormalize the measure itself. It is
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not obvious whether this approach is equivalent to that of the physicists, although
many of the calculations we present can also be found in the physics literature, and
our intermediate results, where comparable, agree with what is there. In this paper
we have attempted to place the semiclassical approach on a more methodical and
rigorous basis than we have been able to find elsewhere. In addition, we have been
able to obtain some explicit final answers.

The results of this paper concern only pure gauge fields. Any physically
interesting semiclassical theory should also involve fermions. Fermions are
incorporated as operators on vector bundles over the space of connections, and the
semiclassical partition functions (0.3) are replaced by similar integrals in which one
first integrates over the fermions, and then over the moduli space. These issues will
be described in part II of this paper.

The physical underpinnings for many of the ideas we use are described in the
papers of Coleman [C]. Certain parts of our determinant claculation can also be
found in papers of Schwarz [Sc], Romanov and Schwarz [RoSc], and Belavin and
Polyakov [BP]. Finally, we thank B. Drachman for help with some of the
numerical analysis done in Sect. 7.

1. The Moduli Space

In this section we briefly review the standard global-analytic description of the self-
dual moduli space. Details can be found in Sect. 1 of [GP1], and there are
numerous general references ([AHS, FU, and L]). Our aim here is simply to fix
notation, introduce some basic constructions that will be used later, and recall the
basic theorem concerning the L2 geometry of the k = 1 moduli space over S4.

Let (M,g) be a compact, oriented, Riemannian 4-manifold and P->M a
principal bundle whose structure group is a compact simple Lie group G with Lie
algebra g, and whose instanton number is k e Z. We can then consider the spaces
Ωp(Ad (P)) of p-forms with values in the associated adj oint bundle Ad (P) = Px A d g.
There is a one-parameter family of invariant inner products on the Lie algebra g
given by

(X,Y)ξ=-ψK(X,Y), (1.1)

where K is the Killing form. [The factor 1/4 is chosen so that when G = SU(2) and
ξ = ί, (-,')ξ is (minus) the trace form of the standard representation. This
normalization makes it easier to compare our formulas with others in the
literature.] These inner products on g induce inner products on the
ΛP(T*M)® Ad(P), and hence L2 inner products on Ωp(Ad(P)):

M

where dM is the volume form on M determined by the metric g. The "coupling
constant" ξ thus labels a 1-parameter family of inner products. (Physicists write g
for the coupling constant, but for us g is a metric.) While in classical Yang-Mills
theory the only role of ξ is to trivially rescale some norms, in the quantum theory ξ
becomes a fundamental parameter. In fact, as we will see in the next section,
varying ξ gives rise to a 1-parameter family of quantum Yang-Mills theories.
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A connection A on P determines a covariant derivative VA, an exterior
covariant derivative dA, and a fundamental elliptic sequence

0^Ω%\d(P))^ΩHAd(P))—ί2l(Ad(P))->0. (1.2)

[Here, and in other notations below, the minus signs denote composition with the
pointwise projection p_=^(l— *) onto the subspace Ω^CΩ2 of anti-self-dual
2-forms.] Using the metric, we obtain formal adjoints d\ and {dA)* to dA and dj,
and hence Laplacians

Δ°A = WA9 Δ\=dAdA + 2{d~AYd-A, ΔA=2dA{dAY (1.3)

on the spaces in the above complex. These are elliptic operators, so each space
Ω%AdP) decomposes into eigenspaces of the Laplacian. In particular, there is an
L2-orthogonal decomposition Ωq(Ad(P)) = Kq®Bq, where Kq = ker(AA% and a
Green operator GA:B

q->Bq that inverts the Laplacian on Bq.

Remark. Using d%=—*dA* one finds that

(1.4)

Thus ΔA is simply the restriction to Ωi(AdP) of the ordinary covariant Laplacian
on Ω2(AdP) (this is why we choose to have a factor of 2 in our definition of ΔA)
The factor of 2 in the definition of ΔA is inserted so that the Laplacians ΔA and ΔA

will intertwine with dA and its adjoint.
The curvature of the connection A is the AdP-valued 2-form FA = dA°dA.

Projecting onto the subspaces Ω+(AdP) gives a decomposition FA = FA + FA of
FA into self-dual and anti-self-dual parts. In terms of these and the inner product
(1.1) the instanton number is

^ l (1.5)

and the Yang-Mills action is

l I μ ) . (1.6)

Note that the Sξ form a 1-parameter family of actions. Now observe that

Hence when k ̂  0, Sξ(A) achieves its absolute minimum whenever the connection A
is self-dual; i.e. whenever FA =0. Likewise, when fc^O the absolute minimum is
achieved when FA =0; i.e. A is anti-self-dual. In either case when G = SU(2) he
value of the minimum value of Sξ is Sπ2ξ~2\k\. For most of this paper we will
explicitly discuss only the self-dual case; the anti-self-dual case is entirely
analogous.

To treat the infinite-dimensional spaces derived from s/ as manifolds requires
some global analysis. Fix an s > l and let si denote the affine Hubert space
obtained by completing the space of all smooth connections on P in the Sobolev
L^-norm. Similarly, let ^ be the L2

S+1 -completion of the gauge group (the group of
automorphisms of P). Then ^ is a Hubert Lie group that acts smoothly on st\ let
$ = si 1*3 be the orbit space. The center Z of ^ is a finite group (isomorphic to the
center of G) that acts trivially on si. The quotient # = ̂ /<2? acts freely on the open
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dense set si* of irreducible connections, and J** = s/*/@ — s/*/& is a Hubert
manifold.

Moreover, these spaces si, Φ9 and 38* are Rίemannian manifolds - each has a
strong L2 metric and a weak L2 metric, obtained as follows. First, at each A e s/ we
can identify TAsi=l}s{T*M® AdP); the L2 and L2 metrics on T*M®kάP thus
induce translation-invariant Riemannian metrics on si. Similarly Tg9
= L2

+1(AdP) at each ge&> so we obtain L2

s+ί and L2 metrics on ^. The tangent
space to the ^-orbit 0[ i4] through [A\eΆ* is the image VA of ^:L 2

+ 1 (AdP)
->L2(T*M(x) AdP)) - the extension of the first map in (1.2). This is the "vertical
subspace" for the projection si*-*Λ*. Its L2-orthogonal complement gives a
horizontal space HA = kerd*|C TAsi = L2

S(T*M®AdP), so we can make the
identification

The metrics gs and g on 0$* are then given by restricting the L2 and L2 metrics on si
to this horizontal subspace HA. Specifically, using the notation C\A = 1 + AA, the
norm of XeT[A]@* = HAcL2

s(T*M®AdP)) is given by

(tiJX, X) = <X, X>L | = <X, (ΠA)SX>L2 . (1.7)

With these definitions si^0S* is a Riemannian submersion with respect to both
these metrics.

Remarks. (1) It is the L2 metric that arises naturally in physics, but the "regularized"
metric L2 must be introduced to obtain this global description and to prove many
technical analytic facts (cf. [GP2], Sect. 1).

(2) Note that the metrics on si, 0$*, and 9 depend on ξ, but ΔP

A does not.
The moduli space Jί of self-dual connections is the subset of 0$ consisting of the

gauge orbits [̂ 4] of connections with FJ =0. In general, Ji is finite-dimensional
and has singularities at those orbits [A] where either kerzl̂ =t={0} (i.e. A is a
reducible connection) or kerJ^ + {0}. For a generic metric the second type of
singularity will not occur (see [FU]), and we can eliminate the first type of
singularity by restricting attention to M* = Jlc\M*, which is then a smooth
manifold. Thus for a generic metric we have a diagram

Restricting the L2 metric on 0$* then makes M* a finite-dimensional
Riemannian manifold. (In fact, the restrictions of the L2 and L2 metrics are equal on
Jί*.) We will denote this metric on M* by g and will often use the letter A to mean
both a connection and the corresponding point [̂ 4] e Jί.

This description can be refined by introducing a space Ji that resolves the
"type-one" singularities of Jί. Fix a basepoint x0 e M, let ̂ ° be the group of gauge
transformations that are the identity at x0, and let Φ^+ ί be its completion in the
Sobolev (s+ l)-norm. It was shown in [GP 2, Sect. 1] that <&%+1 acts smoothly on
si# that ffi — sij^+i is a manifold, and that sis-+$l is a smooth Riemannian
submersion with respect to the L2 Riemannian metrics. Restricting to the self-dual
connections ίfS) C si gives a fibration £f3)-*Jί= ίf&β°. The Sobolev metrics on
si induce a family of metrics {g s |s>l} on M as described in Theorem 1.2 of
[GP2]. The corresponding theorem for the L2 metric is the 'following.'
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Theorem 1.1. Suppose that (M, g) is a Riemannian manifold with constant positive
scalar curvature. Then there exists a smooth Riemannian metric g on M such that
9?9)-*Jί=9?9)l<$Q is a Riemannian submersion with respect to the L2 metric on£f@)
and the metric g on Jί. Furthermore, ^s+1/^+1 = G/Z acts isometrically on {Jί, g).
This action is free and effective on the irreducible connections Jί* C Jί, and the orbit-
space projection (Jί*,g)-+(Jί*9g) is a Riemannian submersion.

The metric g on Jί in this theorem is obtained by analytically continuing the
metrics gs to 5 = 0. This requires a minor modification in the definition of
gs (replacing the operator Π = ̂  + l above by A+R/12). The proof is rather
involved and will be given in a separate paper.

The most basic self-dual moduli space is the space Jίγ = Jίί(S4,g0) of k = 1
SU(2) instantons on the standard unit sphere S4. In this case Jίx = Jί* is
diffeomorphic to R5 (see [AHS]). In [GP1] the authors defined a specific
diffeomorphism

and calculated the metric on Jίγ in this coordinate system (see also [DMM]). The
result was

where ρ = |x| and where \p is a rather complicated function. This metric has the
following geometric properties.

Theorem 1.2. Let Jίγ be the moduli space Jίγiβ^.g^) with its L2 Riemannian metric
Then its metric space completion Jίγ

(1) is conformally flat and rotationally symmetric,
(2) has finite radius and volume,
(3) has boundary dJίγ that is totally geodesic and is isometric to S4 with the metric
4π 2 Γ 2 g 0 .

The moduli space Jίo(SA, g0) is a single point - the trivial flat connection θ. For
k Φ 0, the antipodal map on S4 induces a pullback map j^fc-> j / _ f e that preserves the
L2 metric, and hence gives an isometry between Jίk(S4, g0) and ^_ f e (S 4 , g0). All the
singularities in these moduli spaces occur at reducible connections. In fact the
following lemma shows that there are no "type-two" singularities in a neighbor-
hood of Jίd0i.

Lemma 1.3. There exists an ε>0 such that any connection A on (S4,g0) with
kerzl^ Φ{0} and with instanton number k has

Si(4) = 8π2|fc|+β. (1.8)

Proof. Suppose fc^O and that φ eker 4J. The Weitzenbόck formula for Δ^ on S4

([FU] Eq. 6.26) shows that V^VAφ + 4φ + lF^,φ^=0. [Here

VA:Γ(AdP®Λ2T*S4)-+Γ(AdP®Λ2T*S4®T*S4)

is the tensor product of A with the Levi-Civita connection.] Taking the inner
product with φ, integrating by parts, using the pointwise inequality \d\φ\\ S\
and applying Holder's inequality gives

M
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Hence \\F^ 1|£2=^S1(^4)—4π2fc^c2, where c is the constant of the Sobolev
embedding L4c+L\ on S4. The case A;<0 is similar. •

The remaining singularities in Jik occur at the reducible connections.
However, the following lemma (which is needed in the next section) shows that the
reducible connections are a small (lower-dimensional) subset of JR. This lemma
applies to any (M, g) provided Jik contains no type-two singularities.

Lemma 1.4. For k + Othe irreducible connections [A\eJίk form an open dense set
whose complement has codimension at least two.

Proof. By Theorem 1.2 of [GP2] the action of the gauge group on Jίk factors
through a smooth action of the compact group G/Z. The principal orbits of this
action - those of maximal dimension, in this case dim(G) - include the orbits of all
irreducible connections. In fact these are the only principal orbits, since the proof
of Theorem 3.1 in [FU] shows that the stabilizer of each reducible connection A is
a Lie group of strictly positive dimension. A theorem of Montgomery, Samelson,
and Zippin ([MSZ]) on actions by compact connected Lie groups then implies
that the set of principal orbits is as stated above. •

Each instanton [/I] e Jίγ has a center point peS4 and a scale λ, defined as the
radius of the smallest ball around p containing half the action, i.e.

4 π 2 Γ 2 = ί \FA\l (1.9)
BΛ(P)

The radial geodesies in Jίγ are families of connections with a fixed center p; these
approach the boundary of Jί as /1->Ό, and dJίx consists of formal connections
whose curvature is supported at a single point p e S4.

Altogether, this gives a complete description of one component of the
configuration space of classical Yang-Mills fields on S4 - the component Jίx of
self-dual k=l fields. (The k= — 1 component Jί _x is isometric to JKV) We will
next see how further geometric aspects of the embedding M Q.S6 come into play in
the quantum theory.

2. Euclidean Quantum Field Theory

Quantum Yang-Mills theory on a compact Riemannian manifold is best
approached using path integrals. In this section we briefly review this path integral
formulation, casting it as much as possible in the geometric framework described
in Sect. 1. We then examine the semiclassical, or "one-loop", approximations to the
path integrals and show how they reduce to integrals over finite-dimensional
spaces. There is as yet no rigorous mathematical treatment of path integrals of this
type. Thus the arguments in this section are of necessity made in the spirit of
physics - heuristic, but compelling.

In physics, classical Yang-Mills theory is a field theory on a Lorentzian
spacetime 4-manifold M. The corresponding quantum theory is constructed by
considering the space stf of classical fields (connections) on M, and then defining
the quantum expectation values using path integrals. The "Euclidean" quantum
field theory that we will be studying in this paper is completely analogous, but the
spacetime manifold is replaced by a Riemannian manifold M, which we will take to
be compact. This Euclidean theory is relevant to tunneling amplitudes in the
quantum theory (cf. [C], Chap. 7, Sect. 2), and is also of interest in its own right.



Semiclassical Yang-Mills Theory I: Instantons 109

We start with a compact oriented Riemannian 4-manifold (M,g) and a
compact Lie group G. For each principal G-bundle P over M we have the setup
described in the previous section: a space s/P of connections on P, a gauge group
yP, and an orbit space J*P. Let si = s/(M) be the disjoint union of the siP over all
isomorphism classes of principal G-bundles over M. An observable in the quantum
field theory is a gauge-invariant function on si, or equivalently, a function

Examples

(1) Given A, let FA — curvature of A For any /?>0 and xeM,

Φ(A)=[\FA\* and
M

are observables.
(2) Fix a loop y: S1 ->M and choose a representation ρ of G. For each A, let Pf
denote parallel transport (or holonomy) around y with respect to the connection A.
The "Wilson loop functional" associated to γ and ρ is

This is independent of the choice of basepoint on γ and is gauge-invariant.
(3) The instanton number k and its absolute value |fe| are observables.
(4) Every connection A with k = 1 has a scale size λ(A) defined by (1.9). A simple
way of extending λ to a continuous function on si is to define λ(A), for A e sik, as
the radius of the smallest ball containing half the minimum action for configur-
ations in s/k; i.e.

λ(A)=M{for some peM, J \FA\l = 4π2ξ'2\k\\.
r>0{ Br(p) j

Then λ = 0 on j / 0 , and for connections that resemble k>\ widely separated
instantons, λ will be a large number indicating their separation.

Additional observables can be constructed using fermions; in particular given
k> 0 one can obtain operators that vanish in stfι for |/| ̂  k. These will be discussed
in part II of this paper.

Quantum field theory is a systematic way of computing the average values, or
expectations, of such functions. The expectation is defined by the usual formula

J Φ(A)9sf

f

Here Sfsί is a measure on the (infinite-dimensional) space si. The particular choice
of measure is determined by physics. Quantum mechanics leads us to think of the
field as a random variable, distributed according to a measure concentrated
around the solutions of the underlying classical field equations. The measure 2si
describes the strength and nature of these fluctuations around the classical Yang-
Mills solutions.

On a compact Riemannian manifold these classical solutions are the self-dual
instantons, which are the minima of the Yang-Mills action (1.6). Physicists take the
measure on si to be
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where Sξ(A) is the Yang-Mills action (1.6) and dsί is a putative "translation-
invariant measure on s/"9 which can be thought of as the measure associated with
the L2 Riemannian metric on si. The expectation then has the form commonly
found in the physics literature:

where Z(Φ)= f Φe'^dsi. (2.1)

The function Z is called the partition function of the quantum field theory. Note
that Z, and therefore <Φ>, depends on ξ. Therefore we obtain a 1-parameter family
of quantum field theories. (The L2 metric on si also depends on ξ, but the
dependence of dsi on ξ formally cancels in the quotient <Φ>; hence we can assume
that dsi is independent of ξ.)

We next simplify this formula in two steps. In doing this we will adopt the
physicists' pragmatic approach, ignoring the problems of defining the measure,
and evaluating the integrals Z(Φ) by analogy with the finite-dimensional case. To
start, we will also assume that 0$ and Jί are smooth manifolds.

Step 1. Rewriting the expectation as an integral over J .̂
Recall that the L2 Riemannian metric on s/ descends to give a Riemannian

metric on $ in such a way as to make si-±M a Riemannian submersion. Suppose,
for the moment, that this fibration were finite-dimensional with compact fibers.
Then for any gauge-invariant function Φ on si we would have

f Φdsi = J Φ Vol(0J)da = Vol(^) J Φ]/ά

where Vol(β^) is the volume of the gauge orbit through Aesi, Vol(#) is the
volume of the gauge group, dSϋ is the volume form of the Riemannian metric on J*,
and (ίA)% is the differential of the inclusion iA :^-^ΘAoϊ the gauge group into the
orbit through A. Applying this formula in our infinite-dimensional situation, we
have (1,4)* = ̂ , the first operator in the fundamental elliptic sequence (1.2), so

The factor of Vol(^) then cancels in the ratio <Φ>, so we can rewrite the
expectation as an integral over J Ί

where Z(Φ)= J Φ<r s*l/detzl 0^. (2.2)

Step 2. The Semiclassical Approximation.
Recall that the Yang-Mills action (1.6) depends on the coupling constant ξ. As

£-•0 the above integral has an asymptotic expansion in powers of ξ; the leading-
order term gives the semiclassical approximation to the expectation. In the finite-
dimensional case the relevant asymptotic formula is the following. Suppose that S
and Φ are smooth functions on a compact Riemannian manifold J*, that the set
JiCβft of minima of S is a non-degenerate submanifold, and that Φ > 0 on Jt. Then

J Φe~siξ2d@ = e~'s/ξ2 \ J Φdet ( - % ) *'*djλ(1 + O(ξ2)), (2.3)
Λ Ijt \2πξ J )

where S is the value of S on the manifold Jί of minima, Hs is the Hessian of S on the
normal bundle of Jl9 and dM and d$ are the measures induced by the Riemannian
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metric on JL In fact, this formula holds for any Φ e C\$) for which the right-hand
integral is non-zero. We will also make use of a cruder asymptotic formula: for any
decomposition J> = f " u f + with S<ε on J*_ and S^ε on J >

+ we have

= ( f Φ£T^2>)(1+O(£")) (2.4)

for any N. Again, this holds for any Φ for which the right-hand integral does not
vanish.

By definition, the semiclassical approximation is what is obtained by applying
these formulas to the infinite-dimensional integral Z(Φ) in (2.2) and retaining only
the leading-order term in ξ. For this we take S to be the normalized Yang-Mills
action Sx and write J* = (J J^, where SSk is the component oisrfjy with instanton
number k. The minimum of Sx on 3Sk is S = 8π2|/c|. By (2.4)

Z(Φ)= ί J ΦίΓ sη/detΛ°i*\(l +O(ξN)) ViV (2.5)

unless this integral vanishes. If it does vanish, then

(\ +O(ξN)) VAT (2.6)

unless this also vanishes, etc. We can now apply (2.3) to these integrals, noting that
the submanifold of minima of Sx on $&k is the moduli space Jίk and that for k>0
the restriction to the normal bundle of the Hessian of Sx at AeMk is

where

JV=image {dj)*

[see (1.2)]. Note that HSί is strictly positive and that the operators dj and (d^)*
intertwine it with the Laplacian 2dA~{dA~)* = ΔA~. This Laplacian therefore has the
same spectrum as HSι, and hence the same determinant [cf. (3.11)]. Thus for any
observable Φ that vanishes on $x for |/| < |fe| we arrive at the formula

provided Zk(Φ) + Z _ k(Φ) Φ 0. Here

Zk(Φ) = e-8π2W/ξ2 J φ\[ψ^=dJl, (2.8)
j(k ]/ UQlΔξ

where

4 (2 9)

if fc^O. (Note that dJί is the measure of the L2 Riemannian metric on the moduli
space.) For k<0 we have analogous expressions, but with Δ~ replaced by the
operator Δ+ obtained by replacing dj with d\~ in (1.3). For notational simplicity,
we will henceforth write only A ~ when we wish to deal with all k simultaneously, it
being understood that when k<0 the minus should be replaced by a plus.

In general, the spaces 38 and Ji have singularities, and the above approach
must consequently be modified. We will do this by reversing the order of the two
steps above. This part of the argument assumes that M is S4 with its standard
metric; we can therefore make use of the results stated in Sect. 1.
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Starting with the original integral (2.1), we first apply (2.3) on Λ/. By Lemma 1.2
and Eq. (2.4)

ίlξ2d^&. (2.10)
a y®ydetAξ

Passing to the quotient by the based gauge group

Z(Φ)= J Φ _e-
s^2Yol(&A)dJ, (2.11)

jgydtA

where SA is the orbit of ^° through A and dJί is the volume element of the
Riemannian metric g of Theorem 1.1. As before we can write Vol(^)
= Vol(#°)j/det^, where^S is an appropriate Laplacian. Thus Vol(^) is a
continuous function on M.

There are now two cases. First, when k =1=0 Theorem l.l^and Lemma 1.4 imply
that the set of reducible connections Jias measure zero in M9 so we can replace the
above integral by an integral over Jl*. This is the same as having started with an
integral over s/* instead of over $i\ this eliminates the singularities and we can
then apply Steps 1 and 2 above to obtain, for ZcφO,

(2.12)

The case fc = 0 is different. As ξ->0 the integrand in (2.10) concentrates at the
single point J^0(SA, g0) = 0, which is a singular point of 31 and Jt. However, M and
M are smooth at 0, and formula (2.11) gives

(2.13)

where the Laplacian is that of the trivial connection 0. (We can also replace &θ here
by just ΘQ since the two orbits are the same.) Understanding the volume term in this
expression requires a more detailed examination of the L2 geometry of the gauge
group.

Let # = # s + ! , s > 1, be the Sobolev gauge group on the k = 0 principal G-bundle
over (M, g). A trivialization of this bundle defines a notion of constant gauge
transformation. These transformations arejncluded in the full gauge group as a
subgroup Gc isomorphic to G/Z. Letting ^ be the homogeneous space &/Gc9 we
then have a fibration

Ge->9-*§. (2.14)

The group &s+± has a bi-invariant L2 Riemannian metric obtained by identifying
the left-invariant vector fields on ^ s + 1 with its Lie algebra L2

+1(AdP) and using
the L2 metric. There is then an induced homogeneous Riemannian metric on <&s+ x

which makes the projection π: ^ - > ^ a Riemannian submersion. To define it, note
that the vertical subspace of π at γ e & is

Vy = {yXy~1\X is a constant section in L2

+1(AdP)}.

Inside L2

+1(AdP), the L2-orthogonal complement of Vγ coincides with the
L2

+ i-orthogonal complement; both can then be identified with 7 (̂y)#,_and the L2

metric on this subspace gives the required homogeneous metric on ^.
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Proposition 2.1. (a) The action of ^s+1 on the trivial connection θ defines an
inclusion # S + 1 - > J / S which is a diffeomorphism onto the %+γ-orbit Gθ.

(b) Vol(Gc) = [Γ2Vol(M,g)]d / 2(VolG)/|Z|, where d is the dimension of G. In

particular, for G = SU(2) we haveJMi_Gc) = 16]/2π2ξ~3 (Vol(M,g))3/2.
(c) Vol(^) = (Vol^/VolGc)]/det(zl0)=Vol^ 2 " 9 3 3 / 2 π~5 ξ3}/άet(A°),

where A0 is the restriction of A0 to the L2-orthogonal complement of the constants in
L 2

+ 1(AdP).

Proof (a) For each y e & there is a unique constant gauge transformation yc e Gc

which agrees with γ a t the point x0. Define a map F:^-»^° by F(y) = γγ~1 this
descends to a map F: 0 - ^ ° . The action of y on θ, given by i(y) = y-θ = θ + γdy ~1

9

also descends to give an injective map T\§-+stf onto the gauge orbit &Θ = ΘΘ. Its
differential at y is

this is smooth and invertible, so by the inverse function theorem i is a
diffeomorphism.
(b) The L2 metric on ^ is bi-invariant, so its restriction to Gc is a multiple of the

— V
Killing form K. It is easy to check that this restricted metric is —j-K, where
V= Vol (M,g), and hence ^

ίv\dl2

Vol(G c )=ί-2) Vol(G/Z),

where Vol(G/Z) = (VolG)/|Z| is measured with respect to the Killing form. For
G = SU(2) we have \Z\ = 2, and under the usual identification of SU(2) with the unit
quaternions the Killing form is —8 times the standard metric on S3. Hence
Vol(G/Z)=4 8 3 / 2 2π2, and Vol(Gc) is as stated.

(c) From part (a) we have_Vol(^) = l/det(Z°) Vol(#), and since (2.14) is a
Riemannian submersion Vol ̂  = Vol ̂ /Vol Gc. The final formula then follows from
part (b) since Vol(S4) = 8π2/3. D

From Proposition 2.1 we obtain, at last, the semiclassical term at the trivial
connection:

We now have expressions - Eqs. (2.12) and (2.15) - for the semiclassical partition
functions which include the effects of the singularities in the moduli spaces of SU(2)
connections on the standard 4-sphere. These give a revised expression for the ratio
relevant to the semiclassical expectation:

Zk{Φ)

VVol(SF0)7

detJ0

where <&k is the gauge group of the bundle with instanton number k and C0(ξ) is the
last factor in (2.15) - the square root of the determinant ratio for the Laplacians of
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the trivial connection. This formula becomes conceptually and notationally
simpler after making three remarks.
• We will assume that the ratio Vol(^fe)/Vol(^0) is 1. This is implicit in the
"gauge-fixing" approach to path integrals usually taken by physicists (see [BV]
and Appendix II of [Sc]).
• By (2.15) the expectation of an observable on Λo is simply Z(Φ)/Z(1) = Φ(0),
independent of ξ.
• The integral in (2.16) is best thought of as the integral of Φ with respect to the
"semiclassical measure"

I Λ~4- ΛO

(2.17)

on the moduli space. This measure effectively accounts for the leading-order
quantum fluctuations around the classical solutions.

We thus arrive at our final expression for the semiclassical expectation: for any
observable Φ that vanishes on SSX for |/|<|/c| we have

(2.18)
_(Φ(Θ) if fc = 0

1 5 1 2 . 3 - 3 ' V r 3 C o ( 0 - V 8 * 2 w / < 2 J Φdvξ if fc*0,

provided this number does not vanish. Notice that these semiclassical expectations
are integrals over finite-dimensional Riemannian manifolds. Hence the problem of
defining the measures and the infinite-dimensional integrals in (2.1) and (2.2)
disappears after one makes the semiclassical approximation. In fact, for any
observable that vanishes on 380 but not on &il9 the semiclassical expectation will be
completely calculable once we have an explicit formula for the semiclassical
measure (2.17).

3. Zeta Functions

The goal of the next several sections is to determine the semiclassical measure dv
explicitly on the moduli space Jί^S4). We will do this using C-function methods.
We begin below by recalling the definition of determinants and giving two basic
lemmas. We then describe our approach to computing determinants as functions
on the moduli space. In the rest of this section we concentrate on the determinant
factor

/ , (3.1)

showing how the computation reduces to finding certain heat kernel coefficients.
(These coefficients will be identified in Sect. 4.) The key observation (Lemma 3.4) is
that the families of operators {A^} can be replaced by families {Aξ} in which the
connection is fixed but the metric varies.

Let D: Γ(E)->Γ(E) be a self-adjoint, non-negative elliptic operator on a vector
bundle E over a compact Riemannian manifold Mn

9 n even. (Later in this section
we will specialize to n — A) By standard elliptic theory L2(E) has a complete
orthonormal basis of eigensections {φ^Dφ—λiφi}; the spectrum {/ίj is discrete
and non-negative and each eigenspace is finite-dimensional. We will make
frequent use of two objects associated with D: its heat family and its zeta function.
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The heat family associated with D is the unique family of operators Ht on L2(E)
satisfying the heat equation

l(Ht)=-DHt (3.2)

with Ho = identity, and hence is often written Ht = e~tD. Some basic properties of
the heat kernel are listed below; all are consequences of the standard construction
described in [P] and [RaSi], and the parabolic PDE techniques found in Chap. 9
of[F].
(a) For every t > 0 and every integer k ̂  0, Ht is a bounded operator from L2(E) to
the Sobolev space L (̂E) of sections whose first k derivatives are in L2. Viewed as an
operator from L2

k(E) to itself, Ht is trace-class.
(b) Ht is given by convolution with the heat kernel

where φ*(y) = (Φi(y\ •) and dy is the Riemannian volume form in the last variable.
The sum converges uniformly on {ε ̂  t < oo } for any ε > 0. The (smooth) density KD

is the unique section satisfying

ί (dt + Dx)KD(t, x, y) = 0, t > 0
lim J KD(t, x, y)ψ(y) = xp(x), \fψ e Γ(E). ( * }

I t-+0 M

(c) Let ρ > 0 be a smooth function o n M x M that agrees with the distance function
d in neighborhood of the diagonal. Then for each />0 we can write

KD(t, x, y) = P,(ί, x, y) + Rt(t, x, y). (3.4)

Here the parametrix Pι is a smooth double-form on R+ x M x M given by

" ^ (3.5)

for certain forms ak(x, y). The remainder Rt and its derivatives satisfy the following
bounds: for each multi-index α of order m^O on MxM there are positive
constants c and C such that

_1
2 e ' (3.6)

(d) Kp, Rz, and each of the coefficients ak(x, y) depend smoothly on the coefficients
ofZλ

In addition, there are formulae for the coefficients ak(x, y). Some of these will be
computed in Sect. 4.

Below, it will often be convenient to separate the action of Ht on ker(D) (where
it acts as the identity) from its action on the orthogonal complement ker(D)1. If
{φf} is an L2-orthonormal basis of ker(D), then Ht acts on ker(D)1 by convolution
with the kernel

Ki (ί, x, y) = KD(t, x, y) - £ φ°(x) (φt(y))*)dy. (3.7)
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Since the last term in (3.7) is independent of ί, K£ has a parametrix P/4" given by
(3.5) with coefficients ak{x,y) = ak{x, y) for k + n/2, and for k = n/2 we have

at (x, y) = «-(x, y)-Σ Φ?(*) (Φ?(y))*dy. (3.8)
2 2

Let Z>+ denote the restriction of D to ker(D)1. For seC with Re(s) sufficiently
large, (D+)~s is trace-class. For such s, we define the f-function of D by

CB(s)= Σ
A0

by the results of Seeley [S], the sum converges for Re(s) > 0 and has a meromorphic
continuation to the entire s-plane with only simple poles. Applying the Mellin
transform, we have

U s ) = 7 ^ r ί ί s - 1 T r ( e - ' β + ) ( ί ί (3.9)

Γψ^T (310)

for Re(s)^>0. [Here (i*KD(t))(x) = KD(t,x,x)dx, the restriction of KD to the
diagonal.] Motivated by the observation that — ζ'(0) is formally Xlog/l̂ , one
defines the determinant of D by

det(D)=f Π tie'™. (3.11)

Note in particular that if D has a zero eigenvalue then det(D) = 0. (In our case we
are assuming that D has no strictly negative eigenvalues, but the formula above
works equally well in the more general case of operators with a finite negative
spectrum, provided the definition of D+ is suitably modified.)

The next lemma gives some simple but important properties of the heat kernel
and the ζ-function determinant.

Lemma 3.1. (a) For any ί>0, and any zeroth-order invertίble differential operator
L: Γ(£)->Γ(£), we have Tr(L~ V ^ L ) = Tr(β"ίD). Moreover, ζL. 1DL(s) = ζD(s) for all
s, and det(L-1DL) = det(D).
(b) For anyoO, det(cD) = cζ(0)det(D).

Proof, (a) It follows immediately from the existence and uniqueness theorem for the
defining Eq. (3.2) that the heat operator oϊL~1DL is LΓ1e~tDL'9 thus by (3.9),

Commuting inside the trace (see Lemma A.2), we have

Tr(IΓ γe~tDL) = Tr(LL~ ίe~tD) = Ύr(e ~tD)

moreover, dimker(L~1DL) = dimkerD. Thus CL-^DL(S):=CD(S) f°r Rφ)^>0, and
hence for all 5 by analytic continuation. Therefore det(L~1DL) = det(D).
(b) Substituting into (3.9) and changing variables by τ = ct shows that ζcD(s)
= c-%D(s) for Re(s) > 0, and hence for all s. But then ζ'cD(0) = - (logc)C(O) + ζ'(0)9 and
the result follows from the definition (3.9). •

Note that because of (b), the number ζ(0) should be interpreted as the formal
dimension of the Hubert space on which D acts. The next lemma shows how ζ(0)
can be calculated from the heat kernel coefficients.
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Lemma 3.2. Let D be as above, and let ak be the coefficients of the parametrix (3.5).
Then

ζD(0)= [ (4π)*£tr( i% 2 )J -dimkerD. (3.12)

Proof. Let BD{s) = Γ{s)ζD(s). Since £χ) is analytic at s = 0, we have ζD(0) = Res (BD{s)).
By (3.9), BD(s) is the analytic continuation of 5 = 0

ι R trθ*κ+(ί))l dt + j ^ tro*.s:+(i))j

Lemma A.I in the appendix shows that the second of these integrals is an entire
function of s, so does not contribute to the residue. Substituting the parametrix P z

+

of Kp with l = n/2 into the first integral and explicitly integrating the terms in the
summation gives

\ w/9 ί ' V +ίt s' ί
n/2 M J o M

(T nβ
= Res Σ

s=o l\_k=o

with φ(x, t) = O(t) uniformly in x as f-^0. Again, Lemma A.1 shows that the integral
involving φ is holomorphic for Re(s) > — 1, so the only contribution to the residue
comes from the k=n/2 term. Finally, Eq. (3.8) implies

x, x)) = tφ Π / 2 (x , x))-Σ \Φ?(x)\2dx.

We thus obtain (3.12). •

Remark. Since the coefficients ak(D) are continuous functions of the coefficients of
D, it is apparent from (3.12) that if we vary D, the number ζD(0) jumps by 1 if we
cross a zero eigenvalue. This also follows quickly just from the definition of ζ(s).
But despite the discontinuity in ζD(0) at such D, the determinant det(D) is still
continuous. For if ε(D) is the smallest positive eigenvalue of D and det'(D) denotes
the determinant obtained by excluding β from the spectrum, we have det(D)
= ε(D)det'(D), and thus as ε(D)->0 so does det(D).

The operators whose ^-functions we will analyze in this section are the
Laplacians given in (1.3). As A varies, ΔP

A and Δ^ are families of elliptic operators
parametrized by the space of connections. Since their eigenvalues are gauge-
invariant, their zeta-functions and determinants descend to functions on 0H — stfj^.
The simplest such function is C(0); it is given by (3.12), where the anj2 are regarded as
functions of A. For n = 4 the value of a2(x,x) is calculated in Sect. 4, giving the
following corollary.

Corollary 3.3. (a) Let D be one of the operators Δι

A or ΔA. Then ζD(0) is constant
along the smooth part Jί* of each component of the moduli space.
(b) For any self dual connection A the ζ-functions ζ0, ζί9 and ζ- of Δ% ΔA, and ΔA

are related by ζ1 = ζ0 + ζ_.

Proof, (a) On the smooth part of Jί we have dimkerzl^ = dimkerzi^^O and
dimkerzl^ΞΞdim^. We can then apply Lemmas 3.2 and 4.1 (see Sect. 4 below),
taking A to be either self-dual or anti-self-dual. In all cases ζD(0) is a constant
(whose value depends on the Riemannian geometry of M) plus a multiple of the
Yang-Mills action (1.6). Since the action is itself constant along Jί, we conclude
that so is ζD(0).



118 D. Groisser and T. H. Parker

(b) In the elliptic complex (1.2) the operators d*A and d A intertwine the eigenspaces
of AA corresponding to positive eigenvalues with the positive eigenspaces of AA

and A J, so that

Spec+(AA) = Spec+ (J°)uSpec+(A 2).

(By Spec we mean the set of eigenvalues together with their multiplicities.) Now for
a general nonnegative self-adjoint elliptic operator D we have Ίr(e~tD+) = y£e~tλn

for £>0, where {λn} are the positive eigenvalues of D. Hence

The Mellin transform (3.9) then gives the corresponding addition formula for the
C-functions. •

We are interested in computing the determinant ratio (3.1) on the moduli space
JίC$, but for a general moduli space this seems to be a difficult problem.
Therefore we now specialize to the moduli space ^ ( S 4 ) , the space of 1-instantons
over the four-sphere. In this case we can explicitly compute the function
detzlyάQtA^ on Jί and examine its asymptotics near the boundary of Jί. Our
approach is as follows. The explicit description of Jί given below shows that there
is a "center point" \_A0~\ e Jί and a diffeomorphism M = R5 which carries \_A0~] to 0
and intertwines an isometric action of SO(5) with the usual action on R5; detzl^ is
invariant under this SO(5)-action. Hence it suffices to determine the function
άQtA°A/dQtAA along the radial line from \_A0~\. We will do this by calculating the
radial derivative (51ogdet(zl°/detzlJ) and integrating.

To carry out this program, we first review the parametrization oϊJί^S4) given
in [GP1]. In this case P is the bundle of orthonormal frames of A\{TS% and we
assume S4 has its standard metric g. The Levi-Civita connection on S4 induces a
self-dual connection A0 on P, whose gauge-orbit we review as the center point of
Jί. We let d0 denote the corresponding covariant derivative on A2+(TS4). The
group Conf(S4)^SO(5,1) of conformal diffeomorphisms of S4 acts on P, hence on
*$/, carrying one self-dual connection into another. This action commutes with that
of the gauge group, so there is an induced action on Jί, which is shown in [AHS,
Theorem 9.1] to be transitive. Hence ^^SO(5,l)/Stab(|>l0]). Now, if
Φ E Conf(S4) and Φ*g = y2g, the covariant derivative on A2

+(TS4) corresponding to
the image of A0 under Φ is y2(Φ*d0)γ ~2. (Up to conjugation, this is the Levi-Civita
connection of the metric Φ*g.) It follows that Stab(^4°) is precisely the isometry
group SO(5) of S4. Therefore Jί^S0{5,1)/SO(5)^R5.

= {λ = 0}
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To coordinatize Jί, we use a distinguished 5-parameter family of conformal
transformations of S4, obtained as follows. Each veR5 determines a linear
function on R5 (inner product with v\ which restricts to a function fv on S 4cR 5.
The vector field Xv= —gra,d(fv) generates a 1-parameter subgroup of Conf(S4).
Let Φv denote the unit-time flow of Xv. Then {ΦJί eR5} is a submanifold of
S0(5,1) which, one can show, projects diffeomorphically to the quotient
SO(5,1)/SO(5). The obvious coordinate system on this submanifoldtherefore pulls
back to a coordinate system on Jί. (This is the coordinate map Q introduced in
Sect. 4 of [GP1].)

Let Aves/be the connection corresponding to v eR 5 as above and let dv be the
associated covariant derivative on AdP. We will abbreviate Λv

Av as Aζ, etc. We will
also consider the Laplacians Aζ and A~ formed from d0, but with adjoints
computed with respect to the metric Φ*g instead of g.

Lemma 3.4. For p = 0,1, or —,

2). (3.13)

Proof For p = 0,1,2 let [3ζ = dvd* + d*dv be the usual covariant Laplacian on
p-forms. By definition we have dv = y2(Φ*do)y~ 2. Now d* = + * dv *, where * is the
Hodge star-operator associated to the metric g. Noting that * = Φ*(*(φ- ψg)
= Φ*(*_J by the naturality of *, we have d* = y2(Φ*{dξ~v))y~2. Hence

\Z\ζ = y2(Φ*\Z]p_v)y~2, (3-14)

where Φ*A = Φ~1oAoφ^. Lemma 3.1a now immediately implies the p = 0 case of
(3.13). We have already seen in Eqs. (1.3-4) that A~ is the restriction to Ω2_ of Π 2 ;
the same is true with tildes inserted since * acting on 2-forms is conformally
invariant. Hence the p— —case of (3.13) follows. The case p = ί is similar and we
omit the details. •

Lemma 3.4 shows that we can replace the Laplacians A by the Laplacians A
without changing the determinants or zeta functions. The value of this is that the
variations of the latter are mostly easily calculated. [Here we mean variation in the

weakest sense: (δΔ)(f) = δ(Δf). In the next several lemmas we will compute these
variations όA and relate them to the variation of the determinant ratio (3.1). The
more technical points in these arguments are given as lemmas in the appendix.

Lemma3.5. Fix veR5 and consider the 1 -parameter families D(β = A(ίβV and
d

Dβ =A_βv. Then the variations δ= — of these operators can be expressed in
dββ=1

terms of the function ψ_v = δlogy^βv by

δD0=-4ψ_vD°1+2d%'ψ-_vd0,

and

δD- = -4doΨ-v(dόΓ,

where *r denotes adjoint with respect to the metric gf = Φtvg = y2Lvg.

Proof On p-forms we have *' = yt~2p*, implying dj =7-V 6 o ^o 0 7-ϋ 2 l 7

definition we then have

D°β = yZ4

βvod$oylβvod0 and Dj =2dό °y:^°(4~)*
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Differentiating now yields the results. •

By definition the variation in the determinant ratio (3.1) is

(3.15)

For any of our families of second-order linear elliptic operators Dβ (e.g. A^v) set

Bβ(s) = Γ(s)ζDβ(s). (3.16)

Lemma A.6 proves that the variation δ =
δ

of this is given by the formula one
= 1

would expect from (3.16), namely

0 - y ) + δ(ζ'D(0))+O(s), (3.17)

where γ is Euler's constant. On the moduli space the first term vanishes by
Corollary 3.3a, so

(δB)(0) = δ(ζ'D(0))9 (3.18)

and in particular

δ log l / ^ j l = UδBA0)-δBA-(0)]. (3.19)

Henceforth we will abbreviate BΔo and BΔ- as B° and J3~~, respectively.

Lemma 3.6. For Re (5) sufficiently large,

s)-δS°{s))= - J i s^Tr(V)_K[ e-
t H"-2e- t a 9"])J i/i. (3.20)

Proo/ Lemmas 3.1a and 3.4 imply that the functions B{ do not change if we replace
A\v by D^ = ALβv. We can then use (3.9) to express Bβ(s) as an integral and take the
variation. Lemma A.5 shows that the variation can be moved inside the integral
and the trace, yielding

δB\s)= - f

Writing D* for D\ and applying Lemma 3.5, we then have

D0e-tDθ-2dtψ-vd0e-tD°]dt. (3.21)

We may apply Lemma A.2 to commute inside the trace, rewriting the first term as
Tr[-4φ_ido )*'e~tD~do ]. Now, from the definition of Dι one has D'd^ =doD\
and it follows easily that e~tD d$ —d$e~tΌX. Hence the factors can be reordered
again to obtain Tr[—4t/;_υ(rfo )* do e~tDl']. Similarly reordering the factors in the
third term inside the trace and combining with the first term, we obtain
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where we have used Lemma A.3a in the last step. The remaining term in (3.21) is
also a ί-derivative, and the result follows. •

Lemma 3.7. Let D be any of the Laplacians considered in the previous lemma. Then

Proof. Lemma A.3b shows that Ύτ(ψ_ve~tD)= J ψ-vtr(ι*KD)9 and the uniqueness
M

of the heat kernel can be used to show that KΦ*D = Φ*KD. Hence

Again, uniqueness shows that ι*KyDy-ι = ι*KD, so

tr (KΦ*D) = tr(Ky2{φ*D)y-2).

Applying this to D = 3P__V, and using Lemma A.3, we have

( ψ v ή J (
M

Now, from [GP1], p. 676, we have

0

Differentiating at β=l and replacing v by —v, we obtain

Φ*Ψ-.=f-v=-fv. (3.22)

The result now follows. Π

Combining the previous lemmas we at last obtain a formula for the variation of
the determinant ratio (3.1).

Theorem 3.8. Let {Xj be a basis of ker(zl*) which is L2-orthonormal with respect to
g. Let a\,a\ be the second-order heat kernel densities for the operators Δl,Δ®
respectively (see (3.4),). Then

1

M

Both integrals in the last equation are independent of ξ; in particular, the
^-dependence of {Xt} and the inner product cancel.

Proof. We must evaluate the right-hand side of (3.19). For Re(s)>0 the previous
two lemmas give

(δB_(s)δBM l f[jtTr(fv(e2e^dt. (3.24)

As in the proof of Lemma 3.7,

M

Therefore

J fv^-tri*Kp(t)= J fvγ
M at M at
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since Kp—Kp is independent of t (see (3.7)). Therefore the right-hand side of (3.24)
equals

Integrating by parts, we may write this as

f i/β 1

lim ί*f fMι*Kt-2ι*K0)(t)\l"-s J ί5"1 f /ytr(*^+-2K0)(ί)Λ .
s->0 (. M ε M J

(3.25)

Now as ί->0 we have \tτι*Kt(t)\ + \trι*K0(t)\^cΓ2. Hence, since \fv\^const,
ε * J / „ * ( * * ! £ + - 2 K 0 ) ( ε )

M

<cεRe(s)-2

As £-»oo then, just as in the proof of Lemma A.I,

for some Λ>0, so

M

Hence, for Re(s)>0, the first half of (3.25) vanishes, leaving

— 5

As in Lemma A.I, this expression continues analytically to a neighborhood of
zero, and

5 1 0 8

r oo Ί

= - Res \ analytic continuation of J f ~ι Γ J fυ tr i*(K: j1" - 2K 0) (ί)Ί rfί >.
s = 0 I 0 IM J J

(3.26)
The residue is evaluated by substituting the parametrix (3.5) into (3.26) and
integrating. First, as in the proof of Lemma A.1 (i), the residue is unchanged if we

oo 1

replace J by J above. Writing ι*Kf(ή = ι*Kί(ή—£ |X f |
2 we then need to compute

o o
the residue of the continuation of

" ^ U t r O * ^ - ^ ^ ^

The argument of Lemma 3.4 shows that the first integral gives a residue of

1

1

Using J ίs 1dt = l/s, the result now follows. Q
o
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4. Heat Kernel Coefficients

The analytic results of the previous sections reduce the task of computing
determinants to the more algebraic problem of finding the diagonal heat kernel
coefficients t n * # 2 for various operators. In this section we will calculate these
coefficients. Such calculations appear, in several contexts, in the physics literature
(cf. [RoSc]).

Suppose E is a hermitian vector bundle with a metric-compatible connection
V, and suppose F-»M is a vector bundle associated to the frame bundle of M 4 . Let
| p = (7Levi"Civita(g)Id£ + IdF(g)P be the induced connection on V®E, and consider
the operator

D = \V*\V + B, (4.1)

where B is an operator of order zero. The corresponding heat kernel KD has a
parametrix whose second coefficient a2(x,x) is a section of End(F(χ)E)(g)Λ4T*M.
By the general formula of Gilkey [G] its trace is

(4.2)

where Ktj is the curvature of the bundle V®E, R is the scalar curvature of M, and

ΛR R2 1 1

* > + * ^ ' + Rl ό + 72 Ϊ 8 0 * ^ + m R ^ ( 4 3 )

is a function depending only on the geometry of M. (Here Rtj are the components of
the Ricci tensor.) Our primary interest is in the case of the standard sphere M = S4,
on which h is an easily computed constant. However, in the next lemma we will
apply (4.2-3) on a general 4-manifold M. We assume that E is associated by a
representation ρ to a principal bundle P with simple structure group G and that the
connection V = VA is induced by a connection A on P, whose curvature we denote
by FA. As in Sect. 1, we take the (squared) norm on the Lie algebra g to be — (4ξ2) ~ι

times the Killing form. We use cρ to denote the Casimir constant of the
representation ρ, the ratio tr(ρ(X)2)/tr((adX)2) for any nonzero Xeg.

Lemma 4.1. Let Λ\, A\, and AJ be the Laplacians defined in (1.3) (with AdP
replaced by E), and let a%, a\, and a^ denote the corresponding second heat kernel
coefficients. Then we have the following pointwise formulas:

(a) tr(i*fl§) = [(dimρ)Λ-f ξ2cβ\FA\
2

ξ-]dM,

(b) tr(i*α|) = [(dim

(Note that the ^-dependence cancels in these expressions.)
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Proof, (a) Apply (4.2) with V= trivial line bundle, and D = AA. In this case, \V- V,
B = 0, and Ktj=ρ(Fy), where F=FA. Since

tr(QiFjQiF*)) = cβ tr(ad(Ffj) ad(F')) = - Sξ2cρ\FA\
2, (4.4)

the result follows.
(b) It is convenient here to introduce "raising" and "lowering" operators on the
exterior algebra Λ*(T*M) at a point. Let {ej be a local orthonormal basis of TM
and let {01} be the dual basis of T*M. We can then define operators άf ( ) = θι A ( ),
which raise degree by 1, and αf( ) = e{ J( ), which lower degree by 1, If we restrict the
operator afa^ to 1-forms, we have

trx (άtap\x(άtaj(Λl)=Σ (afajθ\ θk) = δtJ. (4.5)

Now apply (4.2) with V=T*M and D = AA = dAd% + 2(dA)*dA. By the
Weitzenbock formula ([FU] Eq. 6.25) we have (4.1) with

B = Rijdfdj® 1 - 2afcij®ρ{Fϊ).

Moreover Kij=(Rkm)ij®ί +1 (χ)ρ(F^), where (Riem)ι7 is the endomorphism with
matrix RUJ. The lemma then follows directly from (4.2) and the following
observations:

(i) Since Ftj= -F^, (4.5) gives tr(jB) = ,Rdimρ.
(ii) For each ij, (Riem)^ is traceless, and tr^Riem)?-) = 1 ^ 1 ^ . Hence

tr(KijK
iJ)=-RiJklR

iJk\dimρ)-32ξ2cβ\F+\2

ξ

using (4.4).

(iii) Using trί(afaja%aι)=Σ(θm>afajakaιθm) = <>jk<>ib together with (4.4), we have
m

We now specialize these results to self-dual connections over S4.

Corollary 4.2. // we take A self-dual, ρ the adjoint representation of SU(2), and
M = S4 with its standard metric, then
(a) tr(z*α°) = ( f -U2\FA\

2)dM,
(b) tr(ι*aϊ) = (-±+ψξ2\F\2)d

Proof The sphere has constant curvature 1 (Rijkι = gikgji — giigjk\ implying R = 12,
£ ^ ' = 3 6 , and

RiMRijkl ΞΞ 24 == 2RϊklR
 + ijkl ΞΞ 2RrjklR ~ W.

Hence we find h(x) = 29/15 and l(x)== —4/15. We also have dimρ = 3, cρ = ί, and
FA =0. The results now follow from Lemma 4.1. •

We can use this result to compute the value of ζ(0) on the self-dual moduli
spaces Jί^β*) of SU(2) connections on the standard 4-sphere. (This refines
Corollary 3.3.)
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Corollary 4.3. The functions ζΔ o(0) and ζΔχ{ϋ) are constant on Jfj*(S4). Specifically,
we have the following:

ί if k>o.

C « ( 0 ) - « - * V*. (4.8)

Proof. When fc = 0 the moduli space consists of a single point, the trivial connection
θ. For the 0-Laplacians, the dimension of the kernel of Aξ is simply the dimension
of su(2) times the dimension of the kernel of the Laplacian on scalar-valued p-forms
on S4, and hence dimkerJ0 = 3 and dimkerzj^=θ. For a connection A in the
smooth part of Jΐk(S4) with k> 0 we have dim ker A°A = 0 and, by the index theorem
(cf. [AHS]), dimkerzli = 8/c —3. The above results then follow by substituting
these dimensions into (3.12), applying Corollary 4.2, and noting that Vol(S4)
= 8π2/3. •

Remarks, (i) The corresponding conclusion holds for k < 0; one need only replace k
with \k\, Δ~A with Δt and Δ\ with dAdW{ά\r{ά\\
(ii) The values of ζ(0) in Corollary 4.3 are independent of ξ, and are invariant under
constant rescalings of the metric on S4.

Finally, we apply Corollary 4.3 to describe how the semiclassical measure
(2.17) and the determinant ratio Co in (2.18) depend on ξ.

Corollary 4.4. The constant C0(ξ) in (2.18) satisfies

C0(ξ) = (2πξψ C0(l), (4.9)

and the semiclassical measure on Jίk(S% fcΦO, satisfies

19_Jfe[

dvξ = (2πξ2)20 2dv1. (4.10)

Proof The Laplacian Δξ is related to AJ by (2.9). Applying Lemma 3.1b to the
definition (2.17), we have

The result then follows from Corollary 4.3. •

5. The Semiclassical Measure

Having calculated the values for the heat kernel coefficients α2 we can now
evaluate the right-hand side of (3.23). This leads to the first main result of this
paper: the semi classical measure of Jίγ is finite.

To start, we will take the coefficient ξ introduced in Sect. 1 to have its standard
value 1. This simplifies the calculations and maintains consistency with [GP1],
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whose results we will use. In the end we can recover the ξ-dependence from
Lemma 3.1b (cf. Corollaries 4.4 and 7.2).

Lemma 3.2b of [GP1] asserts that \FV\
2 = 3y4. Combining this with the result

of Corollary 4.2, we have t n * α | — 2 tri*a% = 44y% +constant. Since j fv = 0, it
follows that s4

JΛ(tri αi-2tri α2) = 44fΛyί. (5.1)
s 4 s4

We will evaluate this integral shortly, expressing it in terms of integrals

lp{υ)=-^\βyt, where ύ=v/\v\. (5.2)

To obtain a final answer we will therefore need the following lemma

Lemma 5.1. Let r = \v\, α = coshr, j3 = sinhr. Then

(a) 71(t ))=|αjS-1-α iβ-3 + riS-4= f/1(r)) (5.3)

and

(b) IM^aβ-'-iaβ-' ^

Proof. One computes as in the appendix of [GP 1]. We leave the details to the
reader. •

For the rest of this section we use the letters α, /?, and r have the same meaning
as in Lemma 5.1. We will also make use of the functions

A(r) = β-
and

The importance of these functions lies in the fact, shown in [GP 1, Sect. 6], that
the metric on M± takes the form

g = Sπ2Λ(r)dr2φ2π2B(r)g, (5.4)

where g is, in Sect. 3, is the standard metric on S4.
5

We now turn to the evaluation of //„ £ \Xt\
2. From Proposition 4.3 of [GP 1]

we know that ker(z^) = {ιYyvF
v\weR5}, where yw = grad(/J. The proposition

below follows from the results of [GP 1, Sect. 6].

Proposition 5.2. Let vή=0 and let {wt }f be an orthonormal basis of R 5 with

/I l d e f Λ

w1=v/\v\=v.
Write Yi=Yw.. Then
(a) Pointwise, | ι y v / Ί 2 = M | w | 2 - / w

2 ) .
(b) {iγtF

υ} is an (un-normalized) orthogonal basis of ker(zl^).
(c) l|ίy>ΊI2 = 8 d V
(d) | | i r ί F l 2 = 2

These facts quickly lead to the following corollary.
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Corollary 5.3. At each AυeJ(l9

| /1)j. (5.5)

Proof. Parts (b), (c), and (d) of Proposition 5.2 imply that

ί = 1 i = 2

5

But, using part (a) and the identity £ /j2 = l, we find

We also have

so we obtain

Substituting (5.1) and (5.6) into (3.23), the result follows. •

To proceed further, it is useful to re-express the volume forms (classical and
semiclassical) in terms of the scale function λ on Jίγ defined by (1.7). On S4 the
function |F i l o | is constant, so /l(yl0)=^diam(S4)=§. Since the Yang-Mills density is
conforίnally invariant and the flows Φv used to parametrize Jίγ are conformal (see
Sect. 3), λ(Av) is simply the spherical distance from the Φ -̂image of the equator
perpendicular (in R5) to υ to the closer of the poles + ϋ. For a point x on the equator
one has Φv(x)= — (tanhr)#+(sechr)x, and hence λ(Aυ) = tan" 1(sechr/tanhr). Thus
we obtain the following relations.

A = tan~1(cschr), (5.7)

r=log cot (A/2). (5.8)

Asymptotically we therefore have

λ~2e~r as r-κx), (5.9)

r--logA as λ^O. (5.10)

We can now compute the asymptotic behavior of (3.1) near the boundary of the
moduli space. From Lemma 5.1 one finds that as r->oo, A(r) = 4e~2r(l + 0{re~2%

! 2

Comparing with (5.2), this implies

When we re-express this relation in terms of λ we obtain the fϊniteness statement of
Theorem 0.1 of the introduction.
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Corollary 5.4. The semiclassical measure of Jίγ is finite. In fact, as λ->0, we have

for some constant C.

Proof In the usual coordinates on R 5 , the variation vector field δ we have

introduced is simply r—. Thus (5.5) implies that
or

and hence

Using (5.10), (5.12) follows, and we see that the ratio of the semiclassical volume
form to the classical one is bounded. Since the volume of Jίγ is finite ([GP1,
Corollary B]) the semiclassical measure is therefore finite as well. •

In principle Corollary 5.3 allows us to compute the determinant ratio (3.1)
i /detzPΓ

everywhere on M\ exactly, up to the multiplicative factor C\ = / -——r which we
V detzlV ^

will compute in the next section. Because of the complexity of the right-hand side of
(5.5), however, one should not expect the determinant ratio to be an elementary
function of r or λ. For now we will simply lay out the formulas needed for this
computation, deferring the actual calculations until Sect. 6. It is simpler to work in
terms of λ then in terms of r, so we write

where the function w(λ) is determined by integrating (5.5) with the normalization
w(π/2) = l. Specifically, using d/dλ= —cscλd/dr, ocβ~ί=SGcλ, and
(5.5) becomes

(5.13)
where

I1(λ)=%secλ — sec A tan2/I + r(λ) tan4 λ,

A(λ) = tan2 λ(l + 3 tan2 λ - 3r(λ) sec A tan2 λ),

and where r(λ) is given by (5.8). To compute expectations using these formulas we
will also need to have the volume form dJίγ expressed in terms of λ. If we rewrite
the metric (5.4) in terms of λ we find

g = 4π2(2f(λ)dλ2@h(λ)g), (5.14)
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where g is the standard metric on S4,

f(λ) = esc2 λ A{λ) = sec2Λ(l 4- 3 tan2A - 3r(λ) sec/l tan2 λ) (5.15)
and

(5.16)

(cf. [DMM, Sect. 3] and [GP2, Theorem II]). In terms of these functions, the
Riemannian volume form on Jίγ is then given by

dJKx =(2π)5]/2f(λjh(λ)2dλ A dM, (5.17)

and the semiclassical volume form by

(5.18)

Equations (5.13)—(5.18) give an explicit, albeit complicated, formula for the
semiclassical measure on the moduli space Jίv With this formula in hand we can
now return to the original problem of calculating semiclassical expectations.

6. Semiclassical Expectations on //γ

Let Φ be any observable that vanishes on 0$o. From (2.18) and Corollary 4.4, its
semiclassical expectation is given by

<Φ>sc = 2 1 7/ 23- 3/ 2π 9/ 2Γ 4Co 1e- 8 π 2 /^ 2 J Φdv, (6.1)

where the determinant ratios defining Co and dv are taken with ξ = 1 (and provided
the integral is not 0). When M = S4 we have Jt% x = Jί± l9 and the antipodal map on
S4 induces an isometry oί\Jί1<r+Jί_1 that preserves the semiclassical measure.
We can then write Φ as the sum Φev + Φodd of functions that are even and odd
with respect to α. The integral (6.1) of Φo d d vanishes, and the integrals of Φev over
the fe= +1 moduli spaces are equal. As in Sect. 5, on Jίγ we can write

] (6.2)

for some constant Cv We then have

^ Φ"w(λ)dJί. (6.3)

From the previous section we know dJt and the logarithmic derivative of w, so
in principle we can compute the measure w(λ)dJί. The remaining unknown
quantity in (6.3) is therefore CJC0. This quotient of determinant ratios is not
expressible in terms of local data, but there is sufficient cancellation among the
ζ-functions and enough symmetry that we can still calculate it. To get started, let us
write Dg = Aξ and D\ — Ap

Ao, where we let p stand for 0,1, or —. (Here θ is the trivial
flat fc=0 connection and Ao is the standard fe = 1 instanton; see Sect. 3.) We will
abbreviate ζDP(s) as ζPtk(s). Since ζ'(0)= — logdet, we can use the ^-function
combination

to compute CJC0. By Corollary 3.3 this can be rewritten as

i(s)-Co.o(s)]-KifiW-Ci.o(s)]}. (6.4)
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Using representation theory one can determine all of the eigenvalues of the
operators Dζ above; see [BP]. The number logC 1/C 0= — z'(0) can then be
computed exactly in terms of the ordinary Riemann zeta function ζR{s), as has been
done by several physicists ([H], [CVDN]). The result is

«1.042. (6.5)

When the constant (6.5) is put into (6.3), we obtain a complete and explicit
formula for the semiclassical expectation of observables Φ that vanish on <srf0. This
is the formula referred to in Theorem (0.1). We can now apply this formula to
calculate the expectations of the observables \k\ and λ defined in Sect. 2, provided
M is the standard 4-sphere and G = SU(2).

In the coordinate system discussed at the end of Sect. 5 Jίγ is identified with the
ball of radius π/2 in R5, where λ is the radial parameter and where the measure
w(λ)dJί is rotationally symmetric. The observable |fe| is identically 1 as a function
on Jίu so both \k\ and λ are rotationally symmetric functions; they are in fact the
functions λp for p = 0,1. Substituting (5.18) and (5.17) into (6.3) and integrating over
S 4 gives

<^> s c = C2 ̂ ξ-*e-
8π2/ξ2 ] λpfll2(λ)h2(λ)w(λ)dλ, (6.6)

where

C 2 = 2 1 8 3" 5 / 2 π 2 3 / 2 . (6.7)

These integrals can be evaluated numerically. This computation is not entirely
straightforward, but the difficulties in the numerical analysis are not relevant to
our purposes here. Hence we will simply record the results, which are

] fίf2(λ)h2(λ)w(λ)dλn0.05m (6.8)
o

and
Ά

ί λfί/2(λ)h2(λ)w(λ)dλ& 0.03 544. (6.9)
o

Combining (7.1)—(7.3) and using (6.5) gives the semiclassical expectations
-*e~8π2/ξ2 (6.10)

and
4 ^" 8 π 2 / ξ 2 . (6.11)

Remark, Both of these expectations are exponentially small in ξ as ξ^>0. However,
the ratio

\ f λ d v

/8c _ Jtγ ~ 0 61 Oftτ
is independent of ξ. This ratio can be interpreted as a conditional (semiclassical)
expectation: the expected scale of a connection given that the connection has
instanton number k=±ί. For the sake of comparison, if we replace the
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semiclassical measure dv by the classical measure dJίγ, we obtain the "classical"
conditional expectation

j λdJK1

7. Reseating and Renormalization

The semiclassical expectations we have been discussing depend on two choices of
scale: the choice of coupling constant ξ used to define the norm on AdP [cf. (1.1)],
and the choice of the radius R of the base manifold S4 (equivalently, the scale of the
metric on S4). Thus far we have taken R = 1 (relative to the length scale L described
in the introduction), but it is now easy to make the dependence on R explicit.

Replacing the unit sphere S4 with the sphere S% of radius R has the effect of
replacing the standard metric g 0 with R2g0. We begin by describing how this
constant rescaling of the metric affects the semiclassical expectations (2.18) for
general k.

First note that observables generally depend on the metric. For example, the
scale function λ (Example 4 of Sect. 2) is obtained by finding the ball that contains
energy 4π2|/c| and measuring its radius with respect to some metric. Thus when we
consider the 1-parameter family of metrics g = R2g0 each observable must be
regarded as a function Φ = Φ(A, R2g0) oϊR. Certain observables rescale as a simple
power of R, i.e.

o) (7-1)

for some d; this number d is the physical dimension of the observable. (Note here
that R is a dimensionless parameter, a ratio of radii.) In particular, the instanton
number \k\ is independent of R {d = 0), and the scale function λ rescales as λR = Rλ
(d = l).

Proposition 7.1. The semiclassical expectation (2.18) of an observable Φ that has
dimension d and that vanishes of 3#ι for \l\<\k\ rescales under constant conformal
changes of metric by

9 9 o (7-2)

assuming, as usual, that the integrals in (2.18) don't vanish.

Proof. The Yang-Mills action S(Λ) is conformally invariant, but the change of
metric affects the other terms in (2.18) as follows:
1. The observable Φ rescales according to (7.1).
2. The volume form on S 4 becomes R4'dvgo and the L2 norm of BeΩϊ(AdP)
becomes

\\B\\2

R2go=R2\\B\\l. (7.3)

Hence the L2 metric g on Mk becomes R2g, and the volume form becomes RmdJt,
where d(k) is the dimension of Jίk (which is 0 for fe = 0 and 8|fe| —3 for fcφO).
3. The Laplacian Ap becomes R~2AP, and hence by Lemma 3.1b we have
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4. From Proposition 2.1, the volume of the group Gc of constant gauge
transformations rescales by a factor of R6. (Note also that the ratio of the volumes
of the components @k of the gauge group - which we assumed was equal to 1 in
remark at the end of Sect. 2 - is formally independent of R.)

Combining (2) and (3) and applying Corollary 4.3, we find that the semiclas-

sical measure dv = -zzdJifr fcφO, becomes

(7.4)

Similarly, from (2), (3), (4), and Corollary 4.3, we find that the effective semiclassical

measure dv = (VolGc)"1j/ e on Jί0 [cf. (2.13) and Proposition2.1c]

becomes
dvR=R~3ίfl5dv. (7.5)

Incorporating (1), we conclude that the ratio (Zfc(Φ) + Z_fc(Φ))/Z0(l) rescales as in
(7.2). •

Making these changes in (2.18) and including the ̂ -dependence using
Corollary 4.4 gives an expression for the semiclassical expectation which makes
the dependence on the scale parameters ξ and R manifest.

Corollary 7.2. The semiclassical expectation on S% of an observable Φ that has
dimension d and that vanishes identically on 3Sι for |/|^|fc| is

(RdΦ(θ) if fc = 0

l(const)Cί 1(2π)"w / 2ί" ( W + 3 )Λ3 ' ' V8*2™*2 f Φ"dv if Jfc+0,

(7.6)
where the constant is 32 3 " 3 / 2 (2π)5. •

In particular, the observables \k\ and λR (the instanton number and scale size on
SR) vanish on ό#0 and, from (7.4) and (7.5), have semiclassical expectations

a n c | \|'V|/sc~v/ v '^-' u v '2 v» xv c {/./)

\ /v/SC * 2S 5 \ * υ /

where C2 is the constant of (7.1).
We conclude with some speculative comments relating the above rescaling

formulas to renormalization. While these comments are motivated by physical
considerations, they are intended only as an example of a renormalization process.
We will not directly compare them with the renormalizations described in the
physics literature; such a comparison would require an examination of the Green
functions and of quantum corrections beyond the semiclassical level-topics
beyond the scope of this paper.

The need for renormalization can be seen physically as follows. We start with
the semiclassical quantum field theory on the compact "spacetime" S& a theory
which has well-defined semiclassical expectations. We then let R-+oo, obtaining
expectations on spacetimes that more and more closely resemble R4. As we do this,
the expectations rescale according to (7.2). On the other hand, λR is a local
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observable - it measures the expected size of an instanton and instantons are very
localized in spacetime. Thus physical intuition suggests that the semiclassical
expectation <1Λ>SC should be independent of R, at least for large R (the expected
size of a quantum particle should not depend on the radius of the spacetime).
Renormalization provides a way of achieving this that is compatible with (7.2).

The basic idea is to make the coupling constant ξ a function of JR. We then let
JR-> oo, simultaneously rescaling the observables [according to (7.1)] and ξ in such
a way that the expectations remain constant. This is accomplished by requiring that
(J-4 j R22/3β-8π^2 = c o n s t a n t ; ^

(7.9)

for some Ko. Comparing this with (7.7), we see that the renprmalized expectation of
\k\ (and of any observable of dimension d=ϋ) is constant. Next, because the right-
hand side of (7.6) depends on the dimension of the observable we also rescale the
expectations of observables of dimension d by the formula

(7.10)

this cancels the dependence (7.1) on R. With these definitions, Corollary (7.2)
implies that the renormalized semiclassical expectation of an observable Φ that
vanishes on Άx for |/|<|fc| is

Thus Eqs. (7.7) and (7.8) become

(7.12)

where Kt = C2K0. Note that Kx is dimensionless; a length scale L must be put in by
hand as described in the introduction.

There are several striking aspects of formula (7.11). First, the renormalized
semiclassical expectations for k=0 and k = 1 are independent of R. Thus the limit
as JR-»OO exists and can in fact be calculated using any value of R. Second, the
expectation of any observable that vanishes identically on J^o can explicitly be
calculated. Third, the exponential dependence on ξ of the semiclassical expecta-
tions that has been with us since Eq. (2.18) has disappeared; after renormalization
the moduli spaces Jίk for |fc| ̂  1 contribute terms proportional simply to powers
oft

There is another striking feature of (7.11). Differentiating (7.9), one finds that

1 1 -Λ1 • ' " (7.13)

in particular for ξ is sufficiently small R is a decreasing function of ξ.
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This means that as JR gets larger our semiclassical approximation becomes
better and better. This phenomenon - that the coupling constant ξ decreases at
large scales - is called asymptotic freedom.

Remarks. (1) The physicists' renormalization philosophy is somewhat different
from ours. Our approach is to hold the unit length scale L constant while sending JR
to infinity (and hence also the physical radius RL), simultaneously changing the
coupling constant ξ so that the dimensionless combination

£ 2 2 / 3 Γ 4 exp(-8π 2 /£ 2 )

remains fixed, equalling the dimensionless constant we have named Ko. We
regard Ko as an absolute "constant of nature" and not something to be
renormalized further. This view entails an implicit relation between what
physicists would consider our ultraviolet and infrared cutoffs, and which they
prefer to keep separate. In the physicists' approach two "mass scales," μ and A,
are introduced. The scale μ is effectively the reciprocal of our L, while A is related
to Ko, JR, and L; the table below provides a dictionary to pass between our
notation and what is common in the physics literature.

Our notation

ξ
R
L
Ko
RL
KoiRLy1

Physicists' notation

g
μR
μ-1

(RΛ)33'3

R
A

The physicists then hold RL/K0 constant while sending L to zero (hence sending
R/Ko to infinity), again changing ξ simultaneously so that the same combination
of R and ξ remains fixed. (Here we are using our notation.) The only difference is
that Ko is not regarded as a constant, but rather as a parameter that tends to
infinity as R does.

(2) Equation (7.13) is related to the "renormalization group equation" as
follows. When we vary parameters, the expectations <Φ> become functions
(Φ}(R,ξ). In the physics literature it is assumed that the renormalized and
unrenormalized expectations of Green functions Φ are related, to all orders in
perturbation theory, by

d (7.14)

for some function Z(R). With the requirement that <Φ>re be independent of ξ and
jR, (7.14) determines a relation between ξ and R. Differentiating (7.14) with respect
to R then gives

where β = R-^- and γ = RZ~ί—-. In general, β has an expansion
dR uK

β = βίξ* + β2ξ
6 + ... (7.16)

whose first coefficient can be computed using the semiclassical approximation (the
higher terms involve perturbation theory beyond the semiclassical level). In fact,
by (7.13) we have
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0! = - — . (7.17)

This factor appears prominently in the physics literature whenever scaling
behavior is discussed, although it is computed by entirely different methods. (It
should be noted that the expression on the right-hand side of (7.13) differs from the
β-function of the physicists at order ξ6.) The fact that β<0 is interpreted to mean
that Yang-Mills theory is asymptotically free (see [C], Chap. 5, Sect. 6, and
Chap. 7, Sect. 3.6).

8. Appendix

This appendix contains the proof of several technical facts about C-functions that
were used in Sect. 3. These ensures that certain formal statements about ζ(s) are
valid for large s, and remain valid for the analytic continuation. The proofs are
based on heat kernel estimates.

First, suppose D:Γ(E)-+Γ(E) is an operator as in the second paragraph of
Sect. 3. Let KD be its heat kernel and set k+(t)= J tπ*X£(f).

M
oo

Lemma A.l. (a) I(s)= J f~1k+(t)dt is an entire function of s.

(b) // φ(t) = O(tL) as ί-»0 then jf~ίφ(t)dt is holomorphic on the half-plane
Rφ)>-L. °

Proof Since the sum Σe~λit converges to k+(t) we have, for all ί>0,
i

where λί>0 is the first non-zero eigenvalue of D. It follows that the improper
integral I(s) is uniformly absolutely convergent, locally uniformly in s, for every
s e C. Hence it represents an entire function of s. Similarly, the integral in (b)
converges absolutely, locally uniformly in s, for Re(s)>— L, and hence is
holomorphic in that region. •

Lemma A.2. Let D be as above, and let T: Γ(E)-+Γ(F) and T: Γ(F)-^Γ(E) be linear
differential operators of order ̂ fe. Then Te~tDT, e~tDTT, and TTe~tD are all trace-
class, and

Proof Extend T, % and e~tD by zero to endomorphisms of Γ(E)φΓ(F). Write

? ^D)\e ^DT) and Te Ί •-

Since T:L2

k{E®F)->L2(E®F) and
_ ί

e 4 \LΓ—*1\
are bounded, so is
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Since e * is trace-class, so is its product with the bounded operator Te * , so

Te 2 is trace-class. The same applies for e 2 % and hence the product Te~tDT is
trace-class. Since Tτ(AB) = Tτ(BA) for trace-class operators A,B, we have

--D ~-D

Similar arguments show that TTe 2 is bounded from L2 to L2, and e 2 is trace-
class, so we may reverse the order of these two factors in the trace, obtaining
Ύr(TTe~tD). The second equality in (A.1) follows similarly. •
Lemma A.3. Let f be a continuous function on M, and let D be as above. Then for
£>0, fe~tD and fDe~tD are trace-class, and

(a) Ίr{fDe-tD)=-jΊr{fe-">),

(b) J
M

Proof. The previous lemma implies that fe~tD and fDe~tD are trace-class. Let {φj}
be an orthonormal eigenbasis of L2 with respect to D. The final summation in the
bound

Σ KfDe-'Dφp φj>\=ΣKfλje-^φj, φj}\ £ 11/11

converges absolutely and uniformly for ί ^ e > 0 to J dtι*KD(t)9 so the sum

Σ
converges locally uniformly in ί. Since this sum is the term-by-term derivative of
-Σe~aKfΦj,Φ]>= -Ίt(fe~tD), statement (a) follows. For (b), we have

Ύr(fe-tD)=Σe-^ J f\φj\2= J / I * " W f f(x)trι*KD(t). Π (A.2)
j M M j M

In the remaining lemmas Da will be one of the families A\av or 3^a, where α e R

and veR5. As in (3.17) we let Ba(s) = Γ(s)ζDa(s) and write δ for —. Note that
dimkerDα is constant for these families.

Lemma A.4. Let (δDa)z denote the action of δD on the z-variable. Then

δKa(t, x, y) = - J dτ R Ka(t - τ, x, z) (δDa)zKa(τ, z, y)~].

Proof. Fix ε>0 and consider the integral

Differentiating (3.3) with respect to α and substituting gives

Iε=']''dτΠ KJίt-τ,x,z)((dt+DJ(δKJ(τ,z,y)\.
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If we regard the heat kernel as a function (rather than a density) we can rewrite the
term involving DaδKa as

^dτ\] KJ,t-τ,x,

Now use self-adjointness of Da and the fact that Ka satisfies the heat equation (3.1).
Replacing dτKΛ{t—τ, , •) with —dτKa{t—τ, , •) the above then becomes

''{ dτ\\{dtKa){t-τ9x9z)(δKa){τ9z9y)dz\

Hence Iε is a total time derivative, which simplifies to

I f i= f Ka(ε,x,z)δKa(t-ε,z,y)dz- f KΛ(t-ε9x9z)δKa(ε9z9y)dz.
M M

As ε->0, the first of these integrals approaches δKa{t9x9y). Furthermore, (i)
Ka(t — ε9 x, z) is bounded, locally uniformly in α, as ε->0, and (ii) since each KΛ has
the same leading term in its parametrix (3.5) we have δKa(ε9z9y)-+0 when
dist(z,y)><50 and

when dist(z,j/):g(50. It follows that the second integral above vanishes as
ε->0. •

Lemma A.5. For ί > 0, (δDa)e " t D a is trace-class, and if dim ker Da is independent of α,
then for Re(s)>0,

δBΛ{s)=-]f{Ίr(δDΛ)e-tD«)dt. (A.3)
o

Proof The proof of Lemma A.2 shows that (δDa)e~τD* is trace-class. To obtain a
specific bound, write Tr° = Tr£ for the trace on the subspace ker(Dα), Tr+ for the
trace on the positive eigenspace, and let π = πα be the orthogonal projection onto
ker (Dα). Then π o Da=Da o π=0, and therefore

for each α. Consequently,

T r ( ^ α ^ - ί D α ) = Tr+((5jDαβ- ί / 2 ί ) α)β- ί / 2 1 )«)^Cβ- ί ; i l ( α ) / 2, (A.4)

where Ax(α) is the first positive eigenvalue of Dα. Moreover, since λ1 depends
continuously on α this exponential decay rate is locally uniform in α. The existence
of a parametrix for the heat kernel implies that Tΐ(δDae~tD*) = O(t~N) for some N
as f-»0. Hence for Re(s) sufficiently large, the integral on the right-hand side of
(A.2) converges absolutely, locally uniformly in s and α.

Now, if we set y = x in Lemma A.4 and integrate over M, the integrals converge
uniformly in α. Hence f δι*KDβ) = δ J t*KDJt). Applying Lemmas A.3b and A.2,

M M

we therefore obtain

δ(Ύτ(e-tD))= -}τφ-(t )
o
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where e~τDe~(t~τ)D = e~tD is independent of τ. Since

and dimkerDα is constant this reduces to

δ(Ύτ+(e-tD)) = δ(Ύr(e-tD)) = -1 ττ(δDae~tD«). (A.5)

From the definition of Ba and the integral expression (3.9) for the ζ-function we
have

δBa(s) = δ f ί5"1 Ύr+(e-tD«)dt. (A.6)

But we now know that ί ^ T r V f l ) ) and r^aCTr"*" (*-**)) = -f(Ύrδ(e-tD)) are
differentiable as functions of α and integrable as functions of ί, locally uniformly in
α. Hence we can move the δ inside the integral and use (A.4) to obtain (A.2). •

Lemma A.6. Write BJis) = ζDJβ)(^ -y) + fl>.(0) + O(s) as in (3.17). Then

(O), and near s = 0,

(^ - y ) +δ(ζ'D(0)) + O(s).

Proof. The arguments used in the proof of Lemma A.5 show that for Re(s)>0 the
integral

- j ^ J f(Ύr(δDa)e-tD*)dt= - J flogt(Ύv(δDa)e-tD*)dt (A.7)

is absolutely convergent, locally uniformly in s. By (A.2) it is equal to —-(δBa)(s).
ds

On the other hand, using (A.4) and differentiating under the integral sign as in
(A.5), it is also equal to

δ 7 ί*"1 logtΊr(e-tD)dt = δ 7 ^-{f1 Ύv(e-tD))dt.
o o ds

This last integral is also locally uniformly absolutely convergent in 5, so we can pull

the — outside the integral. We conclude that
ds

ίδBM (A 8)

for Re(s)>0. In particular, -τ-δBa exists, so δBa is analytic in this region.
ds

To describe the analytic continuation of δAa to C, we write (A.2) as

-δBJίs) = i fΎr(δDe-tD)dt + J fΊτ(δDe'tD)it. (A.9)
0 1

As in the proof of Lemma A. 1, the exponential decay (A.4) implies that the second
of these integrals is an entire function. We can rewrite the first integral by
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substituting in (A.4), using Lemma A.3b, and then substituting in the parametrix

(3.5); it becomes

ΣoWk)tk~

where άk±=(4π) 2 J tτι*ak and φ(t) = O\t 2). By Lemma A.I the φ integral is
M

holomorphic for Re(s)>0. Integrating the terms in the summation, we find that

£ (54

where Φ(s) is holomorphic in the half-plane HL = < s| Re(s) > - — 1 — L >. Thus the

right-hand side is equal to the analytic continuation of — δBa on HL. Furthermore,

the arguments of the first paragraph of this proof apply to the two integrals that

comprise the Φ term above, so (A.7) holds on HL. Since L is arbitrary, we see that

— δBa extends meromorphically to C with only simple poles, and that the locations

of the poles form a subset of the set of integers P = - J - — 1 , - — 2, - — 3, ...>. This

set P is independent of α and (A.7) holds for all sφP.

The same derivation works when Ba(s) is replaced by sBa(s) or by Ba(s)/Γ(s)

= ζDoc(s\ which have no pole at s = 0. In particular, δζDa is analytic,

and

) = Γ(s)(δζD)(s)= 0 -
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