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Abstract. The category of sympletic pseudospaces (analogical to the category of
pseudospaces in the sense of [2]) is introduced and used to define symplectic
pseudogroups (structures analogical to pseudogroups [3] or quantum groups [4]).
It is shown that symplectic pseudogroups are in one-to-one correspondence with
Manin groups, also introduced in this paper. The set-theoretical part of these
structures has been described in [I].

Introduction

Symplectic pseudogroups introduced in this paper (Sect. 7) are classical (sym-
plectic) counterparts of quantum (pseudo-) groups ([3,4],...). They play in clas-
sical theory the same role as quantum groups in quantum theory. They also seem
to be useful for constructing quantum groups.

Symplectic pseudogroups are symplectic manifolds with a structure similar to
Hopf (or Kac) algebra, expressed in terms of symplectic relations (multiplication,
unit, inverse, comultiplication, etc.).

If we neglect the symplectic and differential structure of the underlying man-
ifold, our symplectic pseudogroup becomes a union pseudogroup. Union pseu-
dogroups have been introduced in the first part of this paper which we refer to
as to [I], The study of union pseudogroups in [I] has to be considered as a first
step in our study of symplectic pseudogroups, in which we have separated purely
set-theoretical problems from differential- and symplectic-geometrical ones.

Our definition fits in a general scheme of enlarging the category of groups to
a self-dual category. A passage to new kind of objects consists in replacing the
usual space by a "noncommutative space." In the case of quantum (pseudo-)
groups, "noncommutative spaces" are quantum (pseudo-) spaces, i.e. objects dual
to C*-algebras. In the case of symplectic pseudogroups, "noncommutative spaces"
are symplectic pseudospaces, i.e. objects dual to S*-algebras defined in Sect.3.
With morphisms defined in Sect. 4, S*-algebras form a category which we consider
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as a classical counterpart of the category of C*-algebras with morphisms defined
in [2].

For the sake of clarity, in our presentation we separate also the differential-
geometrical part from the symplectic one. According to this we introduce also
D*-algebras and differential pseudogroups. They also serve as an important source
of S*-algebras and symplectic pseudogroups (we obtain symplectic objects by
applying the phase functor to differentiable objects).

There are interesting connections between structures introduced in this paper
and such notions as differential and symplectic groupoids [5], double Lie groups
[6], Main triples [4,6], Poisson-Lie groups [4,6] and dressing actions [6].

We show that symplectic pseudogroups are equivalent to Manin groups (in-
troduced in Sect. 8), which should be considered as global counterparts of Manin
triples. We indicate that Poisson-Lie groups on which the dressing fields are
incomplete, do not have the corresponding Manin group or symplectic pseudo-
group. In our opinion, this is the reason why some attempts to construct quantum
deformations of such noncompact groups as "ax + b" or SU(l,\) meet serious
difficulties.

Let us point out also that examples of symplectic pseudogroups are provided
by examples of Manin groups (the latter are easier to find, for instance the
quantum Sμ U(N) has the symplectic counterpart given by the Manin group Sl(N),
described in [6]). On the other hand, a symplectic pseudogroup with its structure
formulated in terms of symplectic relations (not the corresponding Manin group)
seems to wait for a (geometric) quantization.

Sections 1, 2, 3, 4, 7 and 8 form a logical sequence, appropriate for introducing
symplectic pseudospaces and symplectic pseudogroups. Remaining sections ex-
plain some important connections between the introduced symplectic objects and
similar objects formulated in terms of Poisson geometry.

Because of the lack of space, we had to push several topics, such as repre-
sentation theory of S*-algebras (with applications) and examples of quantization
of symplectic pseudogroups to separate publications.

1 Differentiable and Symplectic Relations

Throughout the paper, by a manifold we mean a smooth finite-dimensional dif-
ferential manifold having a countable basis of neighbourhoods. By a submanifold
we mean a nonempty embedded submanifold.

A differentiable relation is a triple r = (R; 7, X) such that X, Y are manifolds
and R is a submanifold of YxX. We shall use the notation introduced in [I]:

r' X-+Y , R=&(r) .

Let r = (R\ Y, X) be a differentiable relation. The tangent relation (tangent
lift) of r is a differentiable relation Tr: TX-+TY (TX is the tangent bundle of X)
such that S?(Tτ) = T%?(r). The phase relation (phase lift) of r is a differentiable
relation Pr: PX->P7(PXis the cotangent bundle of Xwith the bundle projection
πx) such that (η,ξ)e &φr) if and only if

«, «> = <!/, v) for (υ, u) e TM &{r) , x = πx{ξ) , y = π γ(η) .

The tangent-phase relation of r is a differentiable relation Sr: SX—•SF (SX is the
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Whitney sum TX@PX) such that ((v9η\(u9ξ)) e &(Sr) if and only if
(Ό9u)e&(Γr)znd(η,ξ)e&(Pr).

Let (Xl9ωι), (X2,ω2) be symplectic manifolds. A symplectic relation from
(Xl9ωι) to (X2,ω2) is a differentiable relation rm.Xι-+X2 such that S?(r) is a
lagrangian submanifold of (X2,ω2)x(Xu —ωx).

A differentiable (symplectic) reduction (cf. [7], [8]) is a differentiable (sym-
plectic) relation r: X-> Y of the form r=fiτ, where z: C-*X is the inclusion map
of a submanifold C in X and / : C-* 7 is a surjective submersion.

Differentiable (symplectic) relations do not form a category (under the com-
position of relations). In order to formulate axioms of union algebras based on
differentiable or symplectic relations, we have to impose some conditions on the
composition of relations occurring in the axioms. In this differentialgeometrical
setting, the relevant conditions are given in terms of the transverse composition
(which replaces the simple composition of binary relations, [I]) introduced in the
next section.

2. Simplicity and Transversality

Definition. Two differentiable relations a: Y-*X9 β: Z-> Y are said to be locally
transverse if Sα 1 Sβ and aβ Φ0.

Remark. Of course, Sα 1 Sβ if and only if Tα 1 Tβ and PalPβ. Smooth mappings
/ : Y-+X, g: Z-+ Y are always locally transverse. In fact, since Tg is a mapping,
we have ΎflΎg. It is easy to check that also PflPg (it follows also from the
fact that P/and Pg are morphisms of £/*-algebras, see Sect. 4).

Let A and B be two submanifolds of a manifold Z. We say that A intersects
B transversally if AnB^0 and ΎZA + ΎZB = TZZ for z e Ar\B. It is easy to see
that in this case AnB is a submanifold and Ύ(AnB) = ΎAnTB.

Proposition 2.1. Two differentiable relations a Y~^X,β Z-*Y are locally
transverse if and only if three following conditions are satisfied:

(i) αly5,
(ii) S'ioi) X &(β) intersects transver sally XxAγxZ, where A γ is the diagonal of
YxY,
(iii) the projection map from Xx Yx YxZ to XxZ, restricted to

is an immersion.

Proof. Set R- ^(μ)x &(β) <mάΔ=XxΔγxZ. We can assume that a Iβ. The
statement PαlP/? is then equivalent to each of the following statements:
1) (0, -*/)|re(«) = 0 and fa,0)|TW) = 0 implies η =0 (for η e py);
2) (0, -17,?7,0)ITΛ = 0 implies *7=0 (for η e PY),
3) A I T J = 0 and λ \ TR = 0 implies A = 0 (for A e P ( I x 7x Yx Z)).

The last condition is equivalent to (ii). Thus PαlP/? is equivalent to (i) and
(ii). If we now assume that PαlP/J, then the statement TcdT/? is equivalent to
each of the following statements:
1) (0, υ) e Ί&(a.) and (υ,0) e T&(β) implies v = 0 (for υ e TF),
2) (0, υ, v, 0) e T^ α A implies v = 0 (for υ e T7),
3) (iii). D
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Corollary. If a andβ are locally transverse, then S?(aβ) is the image of an ίnjective
immersion (namely, the immersion in condition (iii)j.

Definition. Two differentiable relations a : Y-+X9 β • Z—• Fare said to be transverse
(we shall denote it by a ά^β) if SαlS/? and aβ is a differentiable relation (i.e. if
a and β are locally transverse and &(aβ) is a submanifold, not only an immersed
submanifold). In this case a and β are said to have a transverse composition.

Examples.

1. If a and β are smooth mappings then a rh/?.

2. If /? is a differentiable reduction then α rh/? for all α (this property charac-
terizes differentiable reductions, see [8]).

If a ά\β then the projection map in (iii) is a diffeomorphism of %β and
It follows that the simplicity map

such that (x9saβ(x,z),saβ(x,z)9z) e ^aβ, is smooth.

Proposition 2.2. If a ά\β then S (aβ) = Sα S/?, Tα rh Ίβ, Pα rh Pβ αwJ Sα rh S/?.

For the proof we refer to Appendix.

Corollary. If a ά\β then Sn(aβ) = SnaSnβ for any natural number n (the tangent
and the cotangent functor can be applied as many times as we wish, like in the case
of mappings).

Let us note that it is easier to check the transversality in the case of symplectic
relations.

Proposition 2.3. If a and β are symplectic relations then
(i) SαlS/?^PαlPβ<^TαlTyS,

(ii) ifcί(\\β then aβ is symplectic.

Proof. Let us assume that α: lyff. Then Pα 1 Pβ is equivalent to each of the following
statements (for p e R n A):
l) τpR + τpA =τp(xx YX YXZ),
2) (TpRfn(TAf={Ol
3) TpRn({0}xΎCy>y)Aγx{0})={0} (herep = (x,y,y9z)).

The last statement is equivalent to TcdT/?. We have denoted by is§ the sub-
space orthogonal to E with respect to the symplectic form (and we have used
symbols R and A introduced in the proof of Proposition 2.1).

The second part of the proposition follows from a\β, Ύ(aβ) = ΎaΎβ and
the fact that linear symplectic relations form a category [9]. D

We end this section by a remark on associativity of the transversality. Let us
note first that for any binary relations α,/?, y,

a\β and (aβ)ίγ implies αl(/?y).

Applying this rule to Sα, Sβ, Sy, where a,β,γ are differentiable relations, we
obtain the following rule:

achβ, (aβ)chγ and βά\γ implies aά\(βγ).
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Of course, we have also

yffrhy, aά\(βγ) and aά\β implies {aβ)ά\γ. (1)

3. Z)*-Algebras, £*-Algebras

Definition. A D*-algebra is a U*-algebra (X,ra, e,s) such that X is a manifold,
ra, e, s are differentiate relations and

m rh (m ® / ) , (2)

mrh(/®m), (3)

m rh (e ® / ) , (4)

mά\(I®e). (5)

Note that s is a diffeomorphism since it is an involutive differentiable relation.
Projections eL and eR are smooth, because they are simplicity maps for (4) and
(5).

Proposition 3.1. If(X,m,e,s) is a D*-algebra then the projection map

is an injective immersion whose image is mτ(X).

Proof. Let (t;,0) e ^(Tra). There exists a curve t*-+(z(t),(x(t),y(t)) in &(m) such
that z(0) = υ, (x(0)9y(0)) = 0. We have

((sx(t\ z (0), (sx(tl x (0, y (0)) e ^(/® m)
and

hence (sx(t),z(t)) = smιI&m(y(t),sx(t),x(t),y(t)), where V/®/« i s t n e simplicity
map for (3). Since this map is smooth we have v = z(0) = 0. It follows that the
projection in the proposition is an immersion. Its injectivity follows from Lemma
1.3.2. (iv). G

Proposition 3.2. Let (X, m, e, s) be a D *-algebra. Two following conditions are
equivalent:

(i) eL, eR are submersions,
(ii) m is a differentiable reduction.

Proof. (i)=>(ii). mτ(X)= {(x,y) eR(x) = eL(y)} is submanifold and from Propo-
sition 3.1 it follows th&tm = m\mτ(X) is a smooth (surjective) map. We shall show
that m is a submersion. If m(x,y) = z and z{t) is a curve in X such that z(0) = z,
then there exists a curve x(t) such that x(0) = x and e jL(x(0) = ̂ ( ^ ( 0 ) (because

a submersion). If we set ̂ (/) = m(5>x(ί), z(t)), we have^ i s a submersion). If we set ̂ (/) = m(5>x(ί), z(t)), we have W(Λ:(0,> ' (0) = ^ ( 0

(ii) => (i) Since/= m | mτ(E): mτ(E)->E is a surjective submersion, also £L = / ( / ® s)d,
eR=f(s®I)d (where d-X-+XxX is the diagonal map) are surjective submer-
sions. D

Definition. A Z)*-algebra (X, m, e, Λ1) is said to be regular if m is a differentiable
reduction. By Proposition 3.2, regular Z>*-algebras are in one-to-one correspon-
dence with differential groupoids [5].
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Definition. A S*-algebra is a Z)*-algebra (X, m, e,s) such that X is a symplectic
manifold and m is a symplectic relation.

Proposition 3.3. If(X,rn,e,s) is a S*-algebra then m is a (symplectic) reduction.

Proof. Let p =Tam be the relation tangent to m at a point α e ίf(m) (see [10]).
By Proposition 3.1, /?(0) = 0. From the properties of linear symplectic relations
(p is such) it follows that p is onto, hence the map p

is a submersion. This implies that q=p\p-ι(E)

m p~ι(E)-*E is a surjective sub-
mersion. On the other hand, the projection map in Prop. 3.1 defines a diffeo-
morphism of p~[(E) and &(s), hence

Xsx^(eL(x)9(x9sx)) ep~ι(E)

is a diffeomorphism. It follows that e^is a submersion. By Proposition 3.2, m is
a symplectic reduction. D

By Proposition 3.3, S*-algebras are automatically "regular" and they coincide
with symplectic groupoids [5]. Standard considerations (see [5]) show that if
(X, m9 e, s) is a S*-algebra then e is a symplectic relation and s is an anti-sym-
plectomorphism.

Let kx: SX-+SX be a map defined by kx(u9 ξ) = (u, - ξ) for (u, ξ) e SX.

Proposition 3.4. If M=(X9m,e,s) is a regular D*-algebra then ΎM
= (TX, T/w, Ύe9 TV), PM = (PX, Pm Pe, - P.s) am/ SM = (SX, Sm, S ,̂ kxSs) are reg-
ular D*-algebras.

Proof By Proposition 2.2, TM, PM and SM are union star algebras with unit
satisfying the transversality conditions (2)-(5). We shall show that they satisfy
the strong positivity (condition (1.8)). Using the notation introduced in Appendix
we obtain, from (1.9),

(6)
hence, applying (A3), we have

= (Sm)τSe.

It follows that for each (u9ξ) e SX there exists (v, η) e Se(l) such that

(i>, η) e Sm(fu9 ξ)9 (Ss)kx(u9 ξ)) = Sm((u9 ξ\ (Γsu9 ~Psξ)).

Since Sm is simple (as a reduction), the strong positivity condition is satisfied. •

In the sequel we shall be interested in those Z)*-algebras which are regular.

4. Morphisms of Differential and Symplectic Groupoids

Definition. A morphίsm from a regular Z)*-algebra (X,m9e,s) to a regular £)*-
algebra (X\m\e\sf) is a differentiate relation h-X-+Xf such that

hrn = m'(h®h), (7)
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hs = s'h, (8)

he = e' (9)

and m' rh(h®h), hά\e.

Remark. Equalities (7), (8), (9) mean that h is a morphism of £/*-algebras. In this
case we know (I. Lemma 5.2) that all compositions in (7), (8) and (9) are simple.
In the above definition we assume additionally that they are transverse.

From the transversality in (9) it follows that the base map fo = ho- E''-* E is
smooth, because fo = sKe. Let us note also that dim &(h) = dimE' +dimJfα (a-
any point of E) does not depend on h. This is seen from the following lemma.

Lemma 4.1. If h'X-^X' is morphism of regular D*-algebras as above,then S?(h)
is a smooth section of the projection e'RxI'>X'xX-^E'xX over &(hoeR)
= {(a',x)eE'xX:fo(a') =

Proof By Lemma 1.3.3, &{h) = |J &{ha>\ where &(ha,)=&(h)

MΊ) and ha>'Xfo(aΊ-+Xά, is a mapping for all a' e E'. It follows that
G{h) can be bijectively mapped onto G(hoeR). The latter set is a submanifold in
ExX and the bijective map between S?(h) and &(hoeR) is given by eRxL It
suffices to prove that eRxI\ ^(Λ) is an immersion. We have to show that

and I (e^(x'(t)),x(t)) = O implies - = 0. We
=o '

have (eR(x'(t)l (s'x'(t), x'(t)) e &{m') and {(s'x'{t\ *'(*)),
(sx(t),x(t)))e &(h®h\ hence (s'x'(tlx'(t)) = sm,,h<Ξ>h(eR(x'(t)l(sx(t),x(t))).

Since the simplicity map sm> h<§h is smooth, it follows that — x'(t) = O. π
dt f s = 0

In the proof of our next proposition we shall use the following interesting fact,
easily seen from the definition. If h is a morphism of regular D*-algebras then
T/J, P/z and Sh are morphisms of the corresponding lifts of/)*-algebras.

Proposition 4.2. Let M=(X9m,e,s), M' = (X',m',e',s') and
M" = (X\m\e\s") be regular D*-algebras. If h'X^X' {k:X'-»X") is a
morphism from M to Mf(M' to M") then kά\h and kh is a morphism from M to
M".

Proof By Lemma 4.1, &(h)={(x',x)e X'xX' x'= Ψ(a',x), ho

Γ(a') = eR(x)}
o γ\r\ cίs'ίh~\ if Ύ* " "v ^\ a Vff v y ' * "V" " cfi in ff Ύ* f\ ls~ ί/Ί ff\ o f (y ^\\ ΛX/Viί̂ TP*
dllCl ύ? \K<) — iX"^ 5 -^ / fc -Λ- λ Λ Λ — Sf \Cl , Λ. y, ΛVQ \Cl ) — CRyΛ J j , WllClC

ψ:&(hoeR)->X', Φ:&(koeR^X" are smooth maps satisfying eR(Ψ(a\x)) =
af <mde^(a",x')) = a" foτa'eE', a"eE", x e l , x'eX'. It follows that

" = Φ(a", Ψ(kT

0{a"\x)\ hτ

ok
τ

o{a") = eR{x)} .

hence S/(kh) is the image of a section of the projection eRxI over ^(kohoeR).
This shows that kh is a differentiate relation. Since Sk and S/z are morphisms
of ί/*-algebras, we have S/clS/z, hence kά\h. It remains to show that khά^e and
m"<\\(kh®kh).
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Since he = e\ we have hά\e, kά\he axίάkfah. It follows by the associativity

rule (1) that khά\e. Since m is a reduction, hά\m and khά\m. Using kά\h, this

implies kά\hm, hence (by associativity)

kά\m'(h®h).

This result implies km' (h(h®h), since kά\m' and m' ά\{h®h). It follows that

m"(k®k)ά\(h®h\ hence m" ά\(k®k)(h®h\ because m"ά\(k®k) and

Corollary. Morphίsms of regular D*-algebras form a category.

Definition. A morphism from a S*-algebra (X,m,e,s) to a S*-algebra
(X',m',e',s') is a symplectic relation h-X-+X' which is a morphism of the
underlying regular Z)*-algebras.

Proposition 4.2 and the corollary remain true for mosphisms of S^-algebras.

Remark. It is striking that using differentiate (symplectic) relations which do not
form a category (they form a WP-category in the sense of [11,12]), we have
defined (imposing some "algebraic" conditions) a class of a differentiable (sym-
plectic) relations which is already a true category. Note that T, P and S act as
true functors on this category. Functor P even acts from regular Z)*-algebras to
S*-algebras, so it produces examples of £*-algebras.

Basic examples of regular D*-algebras M—{X,m, e, s) are the following (cf.
examples of £/*-algebras in [I]):

1. Manifold algebra: M = Dχ(cf. [I]), where X is a manifold. All D*-algebras such
that mτ is a map are of this type.
2. Algebra of endomorphisms of a manifold: M=ΈnάZ, where Z is a manifold
(see 1.3).
3. Differential group algebra is a Lie group (G, m, e, s). All D*-algebras such that
m is a map are of this type.

Basic examples of S*-algebras M=(X,m, e,s) are as follows:
1. Cotangent bundle: M=F(DQ) = T*(DQ), where Q is a manifold.
2. Algebra of endomorphisms of a symplectic manifold: M = End Z=Z®Z, where
Z is a symplectic manifold. By Z we have denoted the manifold Z equipped with
the symplectic form opposite to the original symplectic form on Z.
3. Symplectic group algebra M=P(G,m,e,s). This algebra is useful for a study
of hamiltonian actions of (G, m, e, s), see Example 6.4.

If M = (X, m, e, s) is a regular D*-algebra then Mτ= (X, raΓ, eτ, sτ) is said to
be a D*-coalgebra or D*-space or differential pseudospace. Morphisms of Z>*-
spaces are relations transposed to morphisms of the corresponding regular D*-
algebras.

If M= (X, m, β, s) is a S*-algebra then M Γ = (X, mΓ, eΓ, sΓ) is said to be a S*-
coalgebra or S*-space or symplectic pseudospace. Morphisms of *S*-spaces are
relations transposed to morphisms of the corresponding S^-algebras.

Products of regular Z)*-algebras and £*-algebras as well as products of Z>*-
spaces and S*-spaces are naturally defined (cf. [I].6).



Quantum and Classical Pseudogroups. II 379

5. Symplectic groupoids and Poisson Manifolds

A Poisson manifold (cf. [13]) is a pair (P,Π), where P is a manifold and Π is a
bi-vector field on P such that the bracket

[f,g}=Π(df,dg)

defined for smooth functions on P, satisfies the Jacobi identity. In this case the
above bracket is said to be a Poisson bracket and Π is said to be a Poisson bi-
vector field on P. If (P^Πi), (P2,Π2) are two Poisson manifolds then a smooth
map φ'Pι-+P2 is a Poisson map if φ^Πι=Π2 (i.e. 0 preserves the Poisson
bracket).

Let (X, ω ) be a symplectic manifold. We denote by \> the vector bundle iso-
morphism from TX to Γ*X defined by

where w,ι; are vectors tangent to X at the same point. In another notation,
u —u\ω. The inverse isomorphism is denoted by %. Formula

defines a bi-vector field 77ω on X which corresponds to the standard Poisson
bracket on X:

if g] = Πω (df dg) = (dg9 ~ (off) = - {dffg.

Lemma 5.1. If (X,m,e,s) is a S*-algebra then foliations of X defined by the left
and right projections are symplectically orthogonal.

Proof. If t\-+a(t), t^b(t) are curves in X such that α(0) = x = 6(0), eL(a(t)) = eL(x)
and eR(b{t)) = eR(x)9 then {a{t\ sa(t)) e mτ(eL{x)) and (Z>(0> eR{x)) e mτ(X). Since
mτ(eL(x)) coincides (locally) with a characteristic submanifold of mτ(X) (because
m is a symplectic reduction), (w, Ύs(u)) is symplectically orthogonal to (v, 0), where

u —
da

dt

db
. It follows that u and v are symplectically orthogonal. D

From Lemma 5.1 it follows that the Poisson bracket [fg}=ΠOJ(dfdg) of
two functions which are constant on right fibers Xa, a e E, is locally constant on
these fibers, because in this case

(dhγ{fg) = ίίf,g},h} = {[fMgl + [/, [gM] =0

for each function h constant on left fibers. In fact [fg] is globally constant on
right fibers. In order to see this we shall use the following lemma.

Lemma 5.2. Let M=(X, ra, e, s) be a regular D *-algebra and let σ -{\}-^X be a
differentiable relation. If we set lσ = m(σ ® I) and Σ = σ (1), then

(i) mrh(σ®7), £(X) = eZιeΛ(Σ) and lσ(X) = e~L

ιeL(Σ\
(ii) if eRά\σ (i.e. Σ is the image of a local section of the right projection), then

K I e-'e/ι(2Γ) ^ a smooth map,

(iii) if eRά\σ and eLά\ σ then lσ\e-^eR{Σ) is a diffeomorphism from
eZιeR(Σ)toelιeL{Σ).
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Proof. Using

isy) = x, (10)

we obtain &(lσ) = (I®s)mτ(Σ\ hence lσ is differentiate. From (10) it follows
that m 1 (σ ® /). Since SM is a regular 7)*-algebra, we have also Sm 1 (Sσ ® /), or
Sm 1S(σ ® 7). It follows that m rh (σ ® 7).The remaining part is easy to prove. D

Now let / g be constant on right fibers Xa,ae E, as before. For each xe X
we can find a symplectic relation σ : [1]-*Xsuch that xeΣ and eRά\σ,eLά\σ.
By Lemma 5.2, /σ is a local symplectomorphism such that eRlσ(y) = eR(y) for
ye el ιeR(Σ) and /σ (eR(x)) = x, hence

(eΛ(x)) = [f g] (eR(x)) .

The above considerations show that there is a unique Poisson bi-vector field
ΠR on E such that eR:X ^>E is a Poisson map. There is also a unique Poisson
bi-vector field ΠL on is such that e^. X—•is is a Poisson map. We have ΠR + 77^ = 0,
since for ae E,

ΠR (a) = eRm(Πω (a)) = eLj^Πω (a)) = e^{ - 77ω (a)) = - 77L(Λ) .

In order to study the connection between ,S*-algebras and Poisson manifolds
in a more detail, we consider first the linear case.

A S *-algebra (X, m, e, s) is said to be linear if X is a symplectic vector space
and m, e are linear relations (relations with linear graphs, see [9]).

A Poisson vector space is a pair (E, 77), where E is a vector space and 77 is
a bi-vector on E (77 e E A E).

In order to relate the notions introduced above we need several lemmas
concerning linear symplectic geometry.

Lemma 5.3. Linear inυolutive antisymplectomorphisms s in a symplectic vector space
X are in one-to-one correspondence with pairs (L + ,L_) of lagrangian subspaces in
Xsuch that X=L+@L-. The correspondence is given by L± =ker(1s

 =F7).

Proof If s is a linear map such that s2 = I and ω (sx, sy)= —ω (x,y) for x,y e X
then L± are isotropic and dimX=dimL+ +dimL_.

Corollary. If(X9 m9 e, s) is a linear S*-algebra then X is canonically isomorphic (as
a symplectic space) to E®E*.

Proof We have L+=E and L_ is identified with E* using the symplectic form
ω on X:

(ξ,a) = ω(ξ9a) for ξeL^.aeE

(see also [9]). D

If C is a subspace in a vector space E then the annihilator of C is defined by

C°={ξ e£*:(£,w) = 0for ueC] .

Lemma 5.4. Let (X, ω) be a symplectic vector space. Let ψ - X-^E be a linear map
and 77 = ψ^Πω. Then for any subspace Cc^E,

ψ~ι(C) is coίsotropic^ΠΊC°aC .
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Proof. Let K=ψ~ι(C). We have

hence
K§ a K=* Π J C° - ψ (X§) (z ̂  (K) = C

and

Lemma 5.5. Let E be a vector space and let Eu E2 be its two subspaces such that
E = Ei®E2. LetΠx e Ex A EuΠ2e E2 A E2,Π = Πι -Π2 EEA EandC= &(f\
where f: E2-^Eι is a linear map. Then 77JC°=C if and only if f is a Poisson
map.

Proof. From

= {(ξ9-f*ζ):ξeEt] ,

we have 77J ^(ff=[(Π^ξ9Π2-if*ξ): f e &*)> h e n c e

ΠS?(f)°c:ϊ?(f)^Πιlξ=f(Π2lf*ξ) for ξ

Now with each linear S*-algebra (X,m,e,s) we associate a Poisson vector
space (E,ΠL)9 where E=e(l), ΠL = eL^Πω. By Corollary after Lemma 5.3 we
can always assume that X =E®E* and

s(a9ξ) = (a9-ξ) for ueE^ξeE*. (11)

Let us note that the projections e^and e^are determined by the Poisson bi-vector:

eL{ξ) = \ΠLξ = -eR{ξ) for ξ eE* . (12)

In fact, if A = eL \ E* then, by Lemma 5.1,

5?( - A) = ker eL = (ker eRf = &(A f = &(A *) ,

hence A * = — A and

\[eLSμk Aak)]lξ ,

where (ak)k=u. >n is a basis in £ and (fl*)*= i,...,« i s t n e ^ u a l basis in is*.

Lemma 5.6. Lei (X, m, e, s) be a linear S*-algebra. We identify X with E@E* and
sξ = — ξ for ξ e E*. For any subspace CcEsuch that ΠL\C aC there is exactly
one lagrangian subspace A of X such that CczΛ aK, where
K= elι (C), namely Λ = C®K§=C® C°.

Proof By Lemma 5.4, K is coisotropic. We shall find K§. We have

K={(a9ξ) e E®E*: a + Aξ e C] = (c-Aξ9ξ): ξ eE*,ceC] ,
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hence Kξ= {(b9 η): (η9 c) = (ξ,b + A*η) for ξ eE*9ce C] = [(Aη9 η)' η e C 0}. It
follows that CnKξ={0}. We have dim C + dim K* = dim C + 2 dim E - dim K=
dim C + 2 dim E — (dim C + dim £ ) = dim E, hence

Λ = C@K§={(c + Aη 9η)ι c e C9η eC°] = C®C° . D

Let M=(X9m9e9s) be a linear S*-algebra and let l -X->XxX be a relation
such that

(z;x9y)e &(m)**(z9y;x)

(it is easy to see that / is a morphism from M to End X; I is said to be the left
regular representation of M). We shall use Lemma 5.6 in order to prove that ΠL

determines / (hence also m). In fact, S?(l) is a lagrangian subspace of ( I x ί ) x l
and the latter space carries the structure of a product of two linear S*-algebras,
EndX and (X,m,e,s). The base map of / is given by AXB (X, x)\-+f(x, X) =
eL(x) e E and this is a Poisson map (on Zlxwe choose the left Poisson bi-vector).
By Lemma 5.5, C= 5?(/Γ) satisfies [(ΠEndX)L-ΠL]lC°czC. We have also

Cc= &{ΐ) czK= [(eΈndX)LxeLΓι(C) = [(z,y; x): eL(z) = eL(x)] .

From Lemma 5.6 it follows that 3?(J) = CΘ^Γ§. Using this we can calculate ^(m)
explicity:

&(m) = i(w,ξ+η;eL(w,ξ),η,eR(wfηlξ):weE,ξ,ηeE*} . (13)

It is easy to see that for arbitrary Π e E Λ E, formulae (12) and (13) (with ΠL = Π)
define a relation m satisfying the associativity and other axioms of a linear S*-
algebra. Thus we have proved the following lemma.

Lemma 5.7. For each bi-vector Π e E A E there is exactly one structure of a linear
S*-algebra on E®E* such that ΠL — Π (and s is given by (11)).

Proposition 5.8. Let M=(X,m,e,s), Mf = (X',mf,e',s') be two linear S*-alge-
bras and let (E,ΠL), (E',Π[) be the corresponding Poisson vector spaces. If
h-X-+Xf is a linear relation which is a morphism from M to M', then h^-
E' -*E is a Poisson map. The assignments

define a bijective contravariant functor from the category of (linear) morphisms of
linear S*-algebras to the category of linear Poisson maps.

Proof Since

S?(ho) = (eLxeL)¥(h)c:S?(h)cz(eίxeLrι¥(hQ) ,

hence (e'LxeL)~ι S?(h0) is coisotropic (because it contains a lagrangian subspace)
and by Lemmas 5.4 and 5.5, hζ is a Poisson map. Conversely, if / *• E'-+E is a
linear Poisson map then, by Lemma 5.6, there is exactly one linear symplectic
relation h : X-*X' such that &(fτ) a &(h) c {e'L xeL)~ι &{fτ). It is easy to see
that h is a morphism of *S*-algebras and f = hζ D

Now let (X,m,e,s) be a S*-algebra. For each point ae E the tangent space
ΎaX has a structure of a linear S*-algebra and (TaE9ΠL(a))9 where ΠL(a) =
eL^Πω (a), is the corresponding Poisson vector space. It follows immediately from
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Prop. 5.8 that the base map of a morphism of S^-algebras is a Poisson map. The
assignment h\-+]% is a contravariant functor from the category of *S*-algebras to
the category of Poisson manifolds.

6. Symplectization and Completeness

In the preceding section we have associated with each morphism of S*-algebras
a Poisson map — the base map of the morphism. In this section we study the
inverse problem: given a Poisson map, is it possible to construct a morphism of
5*-algebras whose base map is the original Poisson map?

We begin with the problem of uniqueness of such a symplectization.

Proposition 6.1. Let M — (X,m,e,s) andM' = (X'9m',e'9s') be two S*-algebras.
If the fibers Xa, ae E are connected, then any morphism hfrom MtoM' is uniquely
determined by its base map.

Proof By Lemmas 5.4 and 5.5, KL = (elxeL)~ιS?(hQ) is a coisotropic subman-
ifold and we have

Let z = (x\x)e S?(h), b' = e'R{x')anb = eR(x). Since (eRx eR) \ ̂ (h) has a constant
rank equal to dim ^(Ao) (by Lemma 4.1), we have

X*> x Xb) = Ίz{&{h)n(Xζ. x Xb)) = Tr

On the other hand, ΊzKL^Ίz&(h) + Ίz(a,X
f xaX), where a' = e'L(x'\

a = £/(x), hence

Counting dimensions yields

codim KL = codim ^(Ao) = dim E = dim X - dim E = dim Tz &{hb 0 .

hence ( T z ^ ) § = Tz &(hb>) is connected (as a graph of a smooth map with connected
domain), it coincides with the characteristic of KL passing through z. This char-
acteristic contains (b', b) e £?(h0). We have proved that &(h) is the union of those
characteristics of KL which pass through ^

Now we shall formulate a condition which is essential for a Poisson map to
be a base map. If (E,Π) is a Poisson manifold, then for each (smooth) function
H on E we denote by %?H the hamiltonian vector field corresponding to H\

Definition. Let (E,Π) and {E\Π') be two Poisson manifolds. A Poisson map
f:E'-*E is said to be complete if £?rHis complete whenever SfH is complete,
for any smooth function H on E.

Proposition 6.2 Ifaye raαps of morphisms of S*-algebras are complete.

The proof will be given after the following lemma.
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Lemma 6.3. Let M=(X,ra,β,s), M' = ( X ' , m ' 9 e \ s ' ) be two S*-algebras and let
f-E'-*E be a Poisson map. Then the characteristic distribution on
KL = (e'L X eL) ~ι (&(f)τ) is spanned by vector fields %?&9 where

ft=eί*f*H-eL*H (14)

and H is a smooth function on E.

Proof A covector (η,ξ)e T*Z(X' x X ) annihilates ΎZKL if and only if

) = 0 (15)

for ueTxX, veTx<X' such that eLu = f*e'Lv. Using (15) with u,v such that
eLu = 0, e'Lυ = 0 we obtain that (η, ξ) e (TZKL)° implies ξ = et(a), η = el*(β) for
some co vectors a e TfL(x)E, β e Tf'UxΊE'. It follows that (η,ξ)e (TZKL)° if and
only if

for veΊx,X\ or, equivalent^, if β=-f*a. It follows that (ΊzKLf
= ί ( ^ * / * α , -eL*a)-OL e T*Ux)E}. If we substitute a =dH(eL(x)% where H is a
function on E, we obtain (e£*/*α:? - eL*ct) = d{ef

L*f*H- eL*H\ hence (ΎzKLf
is spanned by J£#(z). •

Proof of 6.2. Let the Poisson map / in Lemma 6.3 be the base map of a morphism
h from Mto M'. Let i/be a function on E. If z = (x', x) e <̂ (/̂ >) then, by Lemma
6.3, %?ff(z) is tangent to 5?(/v), hence

where F= — eL*H, F' = e'L*f*H. Therefore the integral curve of 3?F, starting from
b' is given by x'(t) = hb*x{f)9 where t\-+x(t) is the integral curve of %?Fstarting
from b = f(b'). If j ^ y is complete then <%?eL*H is also complete ([5],
Chap. III. Sect. 1) and t\r+x'(t) is defined for all values of t. But t*-+eLx(t) is the
integral curve of ̂ ^Hstarting from b'9 since e'LJ%?e>L*κ = ^κϊov any function K
on J?'. It follows that Sfj*Hv& complete.

Proposition 6.4. Let M— (X,m, e9 s), M' — (X\m'\e\s') be two S*-algebras and
let fibers Xb be connected and simply connected for b e E. Then any complete
Poisson map f E'—*E is a base map of a (unique) morphism h from M to M'.

Proof Define h'X-+X' as a relation whose graph is the union of those
characteristics of KL = (eLxeL)~ι(§'(f)τ), which pass through &(f)τ. For
z = (x\x)eKLwe have

zLz(a,X'xaX) for a' = eL(x')9a = eL(x)
and

(ΊzKLf cΎz(Xί.XXb) for b' = e^(x'\ bR(x) ,

hence the characteristic passing through z is an immersed submanifold of
Xb'XXb. If z e S?(h), then this characteristic passes through (b\b) and is
equal &(h)r\(Xb>xXb)= &(hb>). By the completeness of f J f# is complete for
each function H on E such that 3?H\s complete (H is defined in (14)). By Lemma
6.3, the flows of vector fields Jf# preserve S?(hb>). This implies that the flows of
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vector fields 3?eι*H preserve the projection of S/(hb.) on Xb. Since subsets of Xh

invariant under these flows are open and Xb is connected it follows that the
projection of &{hb >) on Xb is equal Xb. Since dim 2?(hb >) = codim KL = dim Xh and
(v, 0) e Tz&{hh>) implies v = 0 (by Lemma 6.3), &{hb>) is a connected covering of
Xh. Since Xh is simply connected, this covering is in fact one-fold only, hence
hh>'.Xh-+Xh', is a smooth map. It follows that &(h) is the image of the map

(16)

This map is a section of the projection eRxI over S?(fτeR) (as in Lemma 4.1).
We shall show that this section is smooth. Let (b', x) e &(fτeR) (i.e. eR(x) =f(Jb ')).
Then x = Φ φ% where Φ is a product of flows of complete vector fields of the
form ^eL*H and b —f{b'). Let Hk,k=l,...,n = dim E be a collection of compactly
supported functions on E such that dHk form a basis in Ύ*E9a = eL(x). We set
Hλ — 2 Λ*//* for A e 1R" and let Φλ be the flow corresponding to eL*Hλ (at time

/ - I ) . Then

provides a local chart of &(FτeR) ((fis a suitable neighbourhood of (0, b') in
^ x ^ 7 ) - We have

where Φ/ is the flow corresponding to ei*f*Hλ and Φ' is the product of flows
corresponding to £/y*i/(with the same H's as before). Since the right-hand side
of the above equality depends smoothly on (λ, bf), it follows that the section in
(16) is smooth, hence h is a symplectic relation.

Now we shall prove (7) and (8) ((9) is rather trivial). Formula (7) is equivalent
to the following equality:

hb>m(x,y) = m\hefrb.w(x\hb>(y)) (17)

for (x,y) such that eR(y)=f(b'), eR(x) = eL(γ) and b' eE\ To prove (17) let us
fix b' and y such that eR(y)=f(b'). We have to show that (17) holds for
x e XeL{y) It holds for x = eL(y). We shall show that if it holds for x0 and t\-+x(t)
is the integral curve of 3feL*H (for some H) such that x(0) = xo? then (17) holds
for all points of the curve. Indeed, if we set l(t) = hb>m(x(t),y), we have

I l{t) = hh,m^eL«H{x(t)), 0) = hb.^eL,H{m{x{t\ y))

because SfeL.H is right-invariant [5]. It follows that

K ) M f

On the other hand, if we set r(t) = m'(heihb,{y)(x(t)),hb,(y)), then
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hence l(t) and r(t) are integral curves of the same vector field with the same
starting point. This ends the proof of (17).

Now we prove that G(h) is star-invariant (formula (8)). Substituting x = sy
in (17) we obtain

b' = hb>(eR(y))= hb,m(sy,y) = m'(he,Lhh,
hence

s'hb,{y) . (18)

Now, if {hb\y\y)e2?(h) then eR{sy) = eL(y) = f{e'Lhb\y)\ hence
(heLhύ,(γ)(sylsy)e^(h) and from (18) we obtain (s'hb.(y),sy)e &(h).

Transversality conditions hά\e,mf ά\(h®h) are proved as follows. To prove
the first condition, let us note that {x'{t), x(t)) e ^(/J), i(0) eΎE implies
x(0) = eR^x(0) = f*e'RJc' (0). &(h) is the image of a smooth section of the pro-
jection eRx/over £?(fτeR), hence &(Th) = T&(h) is the image of a smooth
section of the projection e^xl over &(fζeR^. Therefore, if (u\u)e S?(Th),
(v', v) e S?(Th) and w = Tra' (u fυ ')then eRv' = eR^w and (v', v) e ^(T/z), hence
w and v determine v'. Similarly, w and u determine u''. π

Example 6.1. Given a Poisson manifold (P,Π), one can try to find a S*-algebra
M=(X,m,e,s)$λxch that (P,Π) = (E,ΠL). By Proposition 6.4, any two such £*-
algebras with connected and simply connected fibers are canonically isomorphic
(the identity of E is complete). In particular, any S*-algebra (X, m, e, s) with
connected and simply connected fibers and such that ΠL = 0 is canonically iso-
morphic to T*DE. Any S*-algebra (X,m, e,s) with connected and simply con-
nected fibers and such that E is isomorphic (as a Poisson manifold) with the dual
of a Lie algebra $ is isomorphic to the symplectic group algebra P(G), where G
is the connected and simply connected Lie group corresponding to 9.

Example 6.2. Let M=(X, m, e, s) be a S*-algebra. Any function f: E-+JR. is a
Poisson map (the real line is considered with its unique Poisson bracket equal to
zero). This function is complete if and only if 3ff is complete. If it is complete,
it defines a morphism h from T*IR = IR x IR* to M. Images under h of bi-sections
{(ε, /) e 1R x IR* : / = const] form a one-parameter family of lagrangian bi-sections
of M (see [5] for a definition of a bi-section; from Lemma 4.1 it follows that
images of smooth bi-sections under morphisms of regular Z)*-algebras are smooth
bi-sections). If M = T*E then the bi-section corresponding to /= 1 is known as
the lagrangian submanifold of T*is generated by / (in this case each / is com-
plete).

Example 6.3. Symplectic Gelfand-Naimark duality.

To each manifold Q there corresponds a commutative S*-algebra with con-
nected and simply connected fibers, namely T*(Z)β). Conversely, each commu-
tative S*-algebra (X, m, e, s) with connected and simply connected fibers is ca-
nonically isomorphic to Ύ*(DE). If / : Q' ^>Q is a smooth map then / Γ i s a
morphism from DQ to DQ> and ( P / ) Γ = T * / is a morphism from T*(Z>β) to
T*(Z)β/). By Proposition 6.1, each morphism of contangent bundles is of this
type.

Example 6.4 A representation of a *S*-algebra M=(X,m,e,s) in a symplectic
manifold Z is a morphism h from M to End Z. The base map / : Δ Z~^E is said
to be the moment map of the representation. Under the natural identification of
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Δ z a n d Z, the moment map is a Poisson map from Z to (E,ΠL). If M = PG is
the symplectic group algebra of a connected and simply connected Lie group G,
then a Poisson map f-Z—*Έ=#* is complete (and defines a representation of
P(G) in Z) if and only if the local action wf->^yM> of g on Z gives rise to a global
action of G on Z (see also [14]).

7. Z)*-Groups and Double Lie Groups

Definition. A D*-group is a £/*-group K=(D,m) such that Z) = (X, <i, e, r) is a
Z>*-space, m and e are morphisms of Z)*-spaces and mά\(k®I)d(e and k are the
neutral element and the inverse in K).

It follows directly from the definition that the pairs ΎK=(TD, Tra),
PK=(PD,Prn) and S^=(SA Sra) obtained by applying functors T, P, S to a
£>*-group K=(D,m) are again Z)*-groups.

Definition (cf. [6]). A double Lie group is a double group (G;A,B), where G is a
Lie group and A, B are closed subgroups in G.

Proposition 7.1. Le/ K— (D, m) be a D*-group and D — (X, d, c, r). Then the cor-
responding double group (X; C, E) is a double Lie group. The U*-algebra of K,
(X, m, e,s), is a regular D*-algebra.

Proof. From m<\\(k® I) dit follows that the map ( c L x ^ ) " ' : C x E->Xis smooth,
hence cLxeL is a diffeomorphism. In particular, eR is a submersion. It follows
that (X,m,e,s) is a regular Z)*-algebra. Since m\ C x C a n d J Γ | £ x £ a r e smooth, C
and E are Lie groups and bijections cLx eR, cRx eL, cRxeR are diffeomorphisms
(cf. beginning of 1.10). It follows that the multiplication in X is smooth, hence
X is a Lie group and C, E are closed subgroups in X.

Example 7.1. Let K=(D,m) be a Z)*-group such that D = DX, where X is a
manifold. Then X with the multiplication map m : I x X-»X is a Lie group. The
corresponding double Lie group is (X; X, [e]), where e is the neutral element in
X Let us consider the tangent and the phase lift of K.

a) The tangent Z>*-group of K, TK=(TDx,Tm), is again an ordinary Lie
group, because TDX=DTX. The multiplication Ύm is a map, which in explicit
terms is given by

Ύm(u,v) = uh + gv , (19)

where u e T^X, v e ThX. The corresponding double Lie group equals (TX; TX, [e]).
We have used the following notational convention: we denote by gΩ (Ωg) the left
(right) translation by g e G of an element Ω of any tensor bundle over a Lie
group G.

b) The phase Z)*-group of K, PK= (PDX, Pm), is not an ordinary group. One
can check easily that the corresponding double Lie group is (PX; X, T*X), where
the cotangent bundle PX is viewed as a group under the following multiplication:

ξ-η =ξh+gη ,

where ξ e Tf X, η e TJX(cf. (19) and the convention).
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Proposition 7.2. Let (G;A,B) be a double Lie group. Then jtf=(G,ot,A,sA) and
33 = (G,β,B,sB) (notation as in 1.9) are regular D*-algebras and (s£τ,β) is a
D*-group.

Proof. Set β = T0G, a = Ί0A, h = Ί0B (here 0 is the neutral element of G). Since
g = αΘh, we have TgG = ga®gh = ag®hg for each g e G. We have also
TgG = ga®bg = ag@gh. This is true because if uea and gug~~ι = Adgueb then
Adaueh, where a = aR(g), hence Adau = 0 and u = 0. It follows that the smooth
bijection AxBs(a,b)*-+Φ(a,b) = ab e G is a submersion:

TΦ (TaA x T ό £ ) = [άb + ab:άe ΊaA, 6 e ΊbB] = aab + abb = ΊabG .

This implies that aLxbR is a diffeomorphism. Using the map (a,b)*-+ba we can
prove that aRxbLis a diffeomorphism. In particular, projections αL, aR, Z?Land
Z?Λ are smooth submersions. It follows that oιτ(G)={(g,h)' aR(g) = aL(h)} is a
submanifold. Since

^ ( α ) = [φιab2;bxa,ab2)' ae A9bl9b2e B] , (20)

it is easy to see that a is a differentiate reduction. Formula (6) implies that sA

is a differentiable relation. It remains to prove that a ά\ {A ® I) and β ά\ (k ® I)a Γ,
where k is the inverse in G.

To this end let us consider first the tangent group TG (Example 7.1). Since
each w e TabG has a unique decomposition

w = ά6 = άb + ab(άeTAA,6eTbB) ,

(ΎG,ΎA,ΊB) is a double Lie group. We denote the corresponding projections
by άL, etc., hence we have w — άL(w)6R(w) = 6L(w)άR(w). Since ΎaL(gh) = 0, we
have

ΊaL{w) = TaL(άb + ab) = TaL(άb) = 4
dt

d
aL(a(t)b) = -

= o

a(t) = ά ,
t = 0

where t\-+a(t) is a curve representing ά. It follows that TαjL = β L and, similarly,
ΎaR = άR. Let ά,/J -TGΘTG-^TG be the differentiable reductions associated
with the double Lie group (TG; TA, ΎB). From (20) we have

= {(b\ab2 + bιάb2 + bxab\\ 6xa + Z?^, άb2 n . .

5 ί i
Since

Z ? ! ^ + ̂ i<3Z>2 + bxab2 = (6{a + bxά)b2 + (b{a)62 = (6{a + bιά)b2 = 6{άb2

6{a + bιά = b\ά
and

it follows that Tee = ά. In the same way we obtain Ύβ = β. It follows that
Tal(ΎA®I) and ΎβlΎ((k®I)aτ). Note that the multiplication in TG defined
by Tα and Ύβ coincides with Tra, where m is the multiplication in G.

Now let us consider the phase space PG. Since each ζ e VabG has a unique
decomposition

ζ=ξη=ξb + aη(ξe (JaA)°, η e (ΊaB)°) ,



Quantum and Classical Pseudogroups. II 389

(PG; (TA)°, (TB)°) is a double Lie group. However, as we shall see, the corre-
sponding differentiable reductions do not coincide (in general) with Pα and Pβ.
In fact, (21) implies that (ζ;ξ,η)e &(Pa) if and only iί (ζ,bιab2 + bιάb2 +
bιa62) = {ζ,b\a + bxά) + {η, άb2 + ab'2) for ά e TaA, 6X e Tb/B, 62 e Tb2B. It follows
that (ζ;ξ,η)e &(Pά) if and only if

bΓιζb2l-bΓιξeb°a , (22)

blιζb2

{-ηb2

ιecfo0 (23)
and

bι~
ιζb2

ι-bι~
ιξ-ηb2

ιea°a = aa0 . (24)

In particular, if(ζ;ξ,η)e &{Va) and ξ e (ΊA)° then bx = 0 and

ζb2

ι-ηb2~
ι eab°naa° ,

hence ζ = η and ξ is uniquely determined by

ξ-ηb2

ιeh°a and ξeaa0. (25)

It follows that Pαl(P^4®/). Note that the left projection of η associated with
Pα given by ξ in (25) is different (in general) from the left projection ξ ' of η on
(ΎAf in the double Lie group (PG; (T,4)0, (TB)°), which is given by

ξ'-ηb2

ι eab° and ξ' eaa° .

We shall show now that Pβ ά\(Pk®I)Paτ. From [I] we know that

(b;x,y) e &{β(sB®/)) and ( x , y \ a ' ) e &((sA®I)aτ)

if and only if x = y = ab = b'a' for some a e A, b' e B. In this case we have

(b;a~Ib',b'a')e &(β) and (b'~ιa,ab;a')e &(aτ) . (26)

If (0; ξ 1? 77) e 5?(P/?) and (ξ29 η 0) e ^ ( P α Γ ), where all covectors are attached to
the corresponding points in (26), then ηa'~ι eb'a0 and ηb~leah° (from (23)),
hence

i.e. // = 0. By (22) and (24) also ξj = 0 and ξ2 = 0. D

8. 5*-Groups and Manin Groups

Definition. A S*~group is a D*-group (Z),/w) such that D is a »S*-space and m, e
are symplectic relations.

The phase lift of a Z>*-group is a 5*-group.

Definition. A Manin group is a double Lie group (G;A,B), where G is equipped
with an invariant non-degenerate scalar product, vanishing on ΎA and ΎB.

The notion of a Manin group is a global version of the notion of a Manin
triple ([4,6],...). Interesting examples of Manin groups are given in [6].

Theorem. There is a one-to-one correspondence between S*-groups and Manin
groups.

The rest of this section is devoted to a proof of this theorem.
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Let (D,m) be a S*-group. By Proposition 7.1 we can assume that (D,m) is
associated with a double Lie group (G A, B), i.e. (D,m) = (stfτ,β). Let

I=P1+P29 I=Qι + Q2

be the decomposition of the identity of ΎgG on projectors, corresponding to
decompositions

for each fixed g e G (the notation here is as in the proof of Proposition 7.2). We
set

n(u,v) = ω((Pι-Q2)u,v) (27)

for u,v E TgG, where ω is the symplectic form.

Lemma 8.1. The bilinear form n is symmetric, non-degenerate and G-invariant.
Subspaces gα, αg, gb and bg are all isotropic with respect to n.

Proof. Since (gάf = ag and (gbf = bg, we have ω(Q2u,v) = ω(Q2u,Pxv + P2v)

= ω(Q2u,Pιv) = ω(u,P\v), hence

n(u9 v) = ω (P{ u,υ) + ω (Pxv9 u) (28)

and n is symmetric. We have also

n(u9v) = ω (Qι u9v) + ω (Q{ υ9u) = ω (u, P2v) + ω (v, P2u)

It follows that kerP l 5 kerP 2 5 kerg x and kerQ2 are isotropic with respect to n.
The non-degeneracy follows from the fact that (P t — Q2) is invertible: if
(Pγ — Q2)u = 0 then Pγu= Q2u, hence uegbnag and therefore u = 0.

We have n(u, v) = ω (w, υ) for uega, v e gb. This condition together with the
isotropy of ga and gb fully characterizes n. It follows that n is left-invariant if
and only if

ω (gά, gΐ>) = ω (ά9 6) for άea,6eb,geG. (29)

For each ae A, b e B and any curve a(t) in A and b(i) in i? we have

(aba(t);ab,ba(t))e&(β) , (ab,ba(t);ab9ba(t),a(t))e &(I®a)

and

(αfti(r); αfti(0, *A(0) e &(β) , (α6A(0, **(0; fl**(0, *, *(0) 6 ^(/® α)) ,

hence
(aba(t); ab9 ba(f)9 a(ή) e

and
(abb(t); abb{t\ b9 b{t)) e

This implies that vectors (abά; 0, bά, a) and (ab6; abb\ 0,6) are symplectically or-
thogonal (β(I®a) is a symplectic relation), hence ω(abά9ab6) = ω(ά,6). It fol-
lows that « is left-invariant. A similar argument shows that it is also right-
invariant. D

It is clear (by Lemma 8.1) that (G;A,B) is a Manin group, where G is con-
sidered as being equipped with the scalar product n defined in (27).
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Now we shall show that any Manin group carries the structure of a
S*-group. Let (G; A9 B) be a Manin group and let n be the scalar product on G.
Since n(PιU,v) = n(P{u,P2v) = n(u,P2v) and n(Q2u,v) = n(u,QιV), we have
Λ((Λ - Qi)u, υ) = n(u, (P2~ Qι)v) = - «(κ, (Pι - Q2)v\ hence Λ - Q2 is anti-
symmetric with respect to n. Therefore the inverse, (Pι~ Q2) \ is also anti-
symmetric. We set

Then ω is the 2-form such that

Q2)u9Ό) . (30)

If we denote again by n the symmetric map from ΎgG to T* G associated with n,
then

n = b(Pι-Q2)
(b defined by ω). We have

where R is the reflection in α parallel to b in g. It follows that

and

where jjt = \>~1. Therefore we have

where /70 is the canonical [4] bi-vector on g. By the results of [15], Πω is a Poisson
bi-vector field, hence ω is a symplectic form (i.e. it is closed).

It remains to prove that a (and β) is a symplectic relation. Since « is non-

degenerate and α, b are «-isotorpic, then dim A = dim 5 = \ dim G\ From (20) we

have

We have to show that *§{&) is isotropic with respect to the symplectic form. By
(21), we have to show that

ω(6ιab2 + b{άb2 + bιa62,6{ ab2 + b{ά'b2 + b{a62)

6 ,b{a + bιά/) + ω (άb2 + a62 ,ά'b2 + ah{)

for ά, ά' e TaA, 6l9 6{ e ΎbιB, 62, b2 e Tb2B, and this is equivalent to nine follow-
ing conditions

1° ω {Sxab2, b{ab2) = ω (6{a, b[ά),
2° ω (6Y ab2, b{ά

 fb2) = ω(6{a,bίά
/)

3° ω(6ιab2,bιa62') = 0,
4° ω (bγάb2,6{ab2) = ω {bxά, b[ά),
5°
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6° ω (bxάb2, bx aό2) = ω (άb2, ab2),
7° ω(bxa62,b'ab2) = 0,
8° ω (bxa62i bxά'b2) = ω(aό2, ά', b2),
9° ω(bxa62, bxab2 ) = ω(ab2, aύ2).

Since ga, gh, ag and bg are all isotropic with respect to n, hence by (30) we
have

This implies 3° and 4°. Conditions 1°, 2° and 4° are contained in the following
statement:

ω I bgxΎgG i s rignt ^-invariant .

This statement is in fact true. Let uehg, veTgG and b e B. Then
u = (Pι — Q2)w= — Q2w for some w e gb. We have

Since Q2 is right-invariant and wb e gbft, we have

ω(u,v) = ω(— Q2(wb),vb) = ω( — (Q2w)b,υb) = ω(ub,vb) .

Similarly, conditions 6°, 8° and 9° hold, because ω l^x-r^is left i?-invariant.
Up to now we have proved that F c ( T ? ( α ) ) § , where

V= {{bxab2 + bxab2\ 6{a, ab2): 6X e TbιB, b2 e Ύb2B] .

It remains to prove condition 5° which says that

W= {{bxάb2\ bxά9 άb2): ά e ΊaA]

is isotropic. We are not able to prove it directly. However it follows immediately
from the fact we have

) = v® W= V® WL= V® WR

and WLCZWR, where

WL=[(ubxab2; ubxa, (ubϊ)ab2) me a] ,

WR= {{bxab2v\bxa(b2v),ab2υ) -v ea]

(in order to see that WL<=.T%f{a) note that (xbxab2;xbxa, (xbι)ab2) e S?(a) for
xeA).

9. 5*-Groups and Poisson-Lie Groups

If (D,m) is a S*-group, then the base map of m, m | C x C , is both the group
multiplication in C and a Poisson map. Therefore C is a Poisson-Lie group
([4,6],...). With sensibly defined morphisms of S^-groups (cf. the definition of
a morphism of union pseudogroups in [1]), the passage from S*-groups to the
corresponding Poisson-Lie groups is a (covariant) functor. Working with S*-
groups rather than Poisson-Lie groups has the following advantages:
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- The symmetry between algebraic and space structure of a pseudogroup is
evident.

- The structure of a S *-group is well prepared for quantization which consists
in replacing certain symplectic relations by operators; we can expect that there
exist distinguished "invariant" polarizations which are necessary for the quan-
tization (in the case of ordinary groups it often happens; while passing from an
ordinary group to a pseudogroup the number of symmetries does not change).
A class of quantum deformations of the Heisenberg has been already obtained
by this method in [16]. The quantization assigns to one classical object only one
quantum object.

- A passage from (D,m) to C may cause a lost of information (the case
disconnected fibers, union pseudogroups, multiply-connected fibers).

- Some Poisson-Lie groups do not have the corresponding S *-group. If such
£*-group exists, the Manin triple corresponding to a given Poisson-Lie group is
the Lie algebra of the Manin group. But in general a Manin triple need not give
rise to a Manin group (like a double Lie algebra [6] need not give rise to a double
Lie group). Of course, a necessary condition is the completeness of the dressing
fields [6]. Another necessary condition is the completeness of the group multi-
plication in a Poisson-Lie group (cf. Proposition 6.2). These conditions seem to
be closely related each to other (and they seem to be essentially sufficient).

What really happens if a Manin triple (g; α, b) does not give rise to a Manin
group? Let G be the connected and simply connected Lie group corresponding
to & and let A9 B be the subgroups corresponding to α and b. Suppose that A, B
are closed and AnB={0}. Then the first statement of Proposition 7.2 remains
true provided we replace G by P = A - Br\B - A (cf. 1.9). Moreover, arguments
of Sect. 8 show that P is a symplectic manifold and the algebras in Proposition 7.2
are 5*-algebras. But, unless P=G9 we do not have equalities in (1.29), (1.30),
(1.31).

10. Appendix: Proof of Proposition 2.2

Let a ά\β. We shall show that S(αjβ) = S(α)S(jS). If γ{i) = {x{f)9z{f)) is a curve
in &(oιβ), then (x(t),saβ(γ(t)) is a curve in &{μ) and (saβ(γ(t)),z(t)) is a curve
in &(β). It follows that Ί(aβ)czΊaΊβ. Conversely, if (u,υ)e &(Ta),
(v, w) e &(Γβ)9 then (u,v9v, w) eΎRnΎA = Ύ(RnA). It follows that there ex-
ists a curve of the form (x(t),y(t),z(t)) representing (u9υ,w) such that
(x(t),z(t))e &(aβ), hence (u9υ)e &(Ί(aβ)). The equality V{aβ) = VoίVβ fol-
lows from Ύ{aβ) = ΎaΎβ by applying the duality functor (taking into account
that a\β9 cf. [10]).

In the proof of the first part we have used the notation introduced in the
proof of Proposition 2.1 (R and A). In the second part we shall use also the
following convention. If A is a submanifold of B, we shall denote by \A) a
differentiable relation from [1] to B whose image is A (we shall use this convention
only in such cases when it is clear what is B). We set also (A\ = \A)T. We have
the following lemmas.
Lemma A.I. a fhβ ifandonly if(I®(AY\®I)h(\ 3?(α)

Lemma A.2. If p rhA, where p is a differential reduction and the domain of λ is

[1], then SpfoSλ.
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These lemmas will be proved later in this section.

From the lemmas it follows that a ά\β implies

| | | (A.I)

We shall show that (A.I) implies

(I®(ASY\ ®/)rh(| ^(Sα)>® | &(Sβ))) . (A.2)
We have

S(AY\ =(ASY\(kγ®I) ,

where kγ S7-*S7is defined by kγ(v,η) = (υ9 ~η). We have also

S|^(α)> = (/®fcy)|3?(S(α)> ,

S|^08)) = (/®fcz)|^(S(i8)> .

It follows from (Al) that

and we have

(ϊ®I®I®kz)(I®(Δsγ\®ϊ)(I®kγ®I®kz)

rh(I®kγ®I®k

hence (A2). By Lemma A.I, (A2) implies Sα rhS/J. If we use functor T or P

instead of S, we obtain TarhTβ and Pα ά\T>β.

Proof of Lemma A.I. We set p =I®{Δ γ\ ®/, λ = | ^(α)>® | ^(yS)). It is easy to
see that a Iβ if and only if /? 1A and

α/? is differentiable«=»/?Λ is differentiate .

Assume that a\β, then Pα lP ff, is equivalent to each of the following statements:
1) (0,/ι)e 5?(Pα) and (η,O)e§>(Pβ) implies // = 0 (for 17 ePY),
2) ((0,0),(0,-η9η90))e 2?(?P) and ((0, - η , 4 , 0 ) e ^(Pλ) implies // = 0.
3) ((0,0), k) e &(Pp) and (/c, 0) e &(Vλ) implies K = 0 (for
/ c e P X x P Γ x P F x P Z ) ,
4) PplPA.

If we assume PαlP/?, then Tα lTŷ  is equivalent to each of the following
statements:
1) (0,1?) e ^(Tα) and (ϋ, 0) e &(Tβ) implies 1; = 0 (for υ e ΎY),
2) (0, u) e ^(Tp) and (M, 0) 6 J?(Tλ) implies M = 0 (for u e T(Xx 7x Yx Z)),
3) TplTA. D

Protf/ 0/ Lemma A.2. Let p = fιτ,ι- C-+X, f> C-* 7 be the canonical decom-
position of/? (by the definition of a reduction), L = Λ(1). We shall prove first
the following lemma.

Lemma A.3. p rh λ if and only if pλ is differentiable and
(i) plλ,

(ii) L intersects C transversally,
(iii) / | incWfl« immersion.
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Proof. Assume p 1 λ, then Pp 1 PA is equivalent to each of the following state-

ments:

1) (0, η) e &(Pp) and (η, 0) e ^(Pλ) implies ^ = 0,

2) /71 τ c = 0 and η \ ΎL — 0 implies η = 0,

3) (ii).

Assume P/? 1PA, then Ύp 1TA is equivalent to each of the following statements:

1) (0,1;; e &(Ύp) and (v, 0) e 5?(Tλ) implies v = 0,

2) v e ker ^ and v e TL implies v = 0,

3) (iii). •

From Lemma A.3 it follows the following local "normal form" of/? and A:

X=A®B®E®D ,

μ>® \{b})® \E)® \{d}) ,

®(D\ (Le.C=A®B®{e}®D) ,

where b,e,d - certain points of B, E, D, respectively. Since the product preserves

the transversality, it is sufficient to prove the transversality of the corresponding

factors, for instance (D\ rh | {d}), and this is easy.
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