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Abstract. Using a link between Einstein-Sasakian structures and Killing spinors
we prove a general construction principle of odd-dimensional Riemannian
manifolds with real Killing spinors. In dimension n = Ί we classify all compact
Riemannian manifolds with two or three Killing spinors. Finally we classify non-
flat 7-dimensional Riemannian manifolds with parallel spinor fields.

1. Introduction

A Killing spinor on a Riemannian spin manifold (Mn, g) is a section ψ of the spin
bundle S satisfying, for any vector field X, the differential equation

Vχ\p = λXψ,

where λ + 0 is a constant and Xψ denotes the Clifford multiplication of the vector
X by the spinor \p. Solutions of this equation occur quite naturally in Differential
Geometry as well as in Mathematical Physics. For example, on a compact
Riemannian spin manifold with non-negative scalar curvature R there is a lower
bound involving R for the first eigenvalue of the Dirac operator, and eigenspinors to
this lower bound are Killing spinors (see [8,19, 30]). Furthermore, Killing spinors
are special solutions of the so-called twistor equation and in case of a compact
manifold they generate - up to a conformal change of the metric - all solutions of
the twistor equation (see [31]).

The construction of models in supergravity depends on Riemannian manifolds
with Killing spinors. There are several papers (see for example [6,32]) investigat-
ing, from this point of view, the properties of Riemannian manifolds with Killing
spinors as well as containing the construction of examples.

The existence of a Killing spinor imposes algebraic conditions on the Weyl
tensor of the space (see [9]) and on the covariant derivative of the curvature tensor;
in particular Mn must be an Einstein space (see [8]). The constant λ is given by
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Consequently there are two possibilities. In case λ is an imaginary number, Mn is a
complete, non-compact Einstein space with an imaginary Killing spinor. Recently,
Helga Baum classified all such Einstein spaces (see [2 and 3]). In case λ is a real
number, Mn is a compact Einstein space with positive scalar curvature. In the
dimensions 5, 6, and 7 we know many examples of compact Einstein spaces with
real Killing spinors (see [6, 8,11,12, 32]). Moreover, in dimension five there is a
one-to-one correspondence between real Killing spinors and Einstein-Sasakian
structures on a simply connected manifold (see [12]). This basic observation yields
classification results concerning 5-dimensional compact Riemannian manifolds
with Killing spinors (see [12]).

In this paper we first of all prove that any odd-dimensional simply-connected
Einstein-Sasakian manifold admits at least two Killing spinors. In particular,
starting with a Kahler-Einstein space X2n of positive scalar curvature and taking
into consideration a suitable S^fibre bundle M2n+1 over X2n, it is not hard to see
that M2π+1 has an Einstein-Sasakian structure. Consequently we obtain a
construction of odd-dimensional compact Einstein manifolds with two real
Killing spinors depending on a Kahler-Einstein metric. This general construction
principle includes all known examples of compact Riemannian manifolds with at
least two real Killing spinors (see [6, 8,12, 32]) and indicates many new Einstein
spaces like this, since recently Koiso, Sakane, Tian, and Yau (see [27, 35, 36])
proved the existence of Kahler-Einstein metrics on several compact manifolds
with positive first Chern class.

The second main emphasis of this paper is the classification of 7-dimensional
compact manifolds with two or three real Killing spinors. Conversely to our
general construction principle we prove that, especially in dimension seven, any
pair of real Killing spinors defines an Einstein-Sasakian structure on the
underlying space. Under some regularity assumption-this observation yields a
description of all compact Riemannian manifolds with two real Killing spinors.
Applying twistor theory and, in particular, the classification of all compact
Kahlerian twistor spaces (see [15,21]), we classify all compact Riemannian
manifolds with at least three real Killing spinors.

Finally we explain that the same techniques can also be applied in order to
classify non-flat Riemannian manifolds with parallel spinor fields.

2. Killing Spinors and Einstein-Sasakian Structures

Let (M",g) be a compact connected Riemannian spin manifold with scalar
curvature R. Denote by Q the principal S0(n)-bundle and fix a spin structure, i.e. a
principal Spin(n)-bundle P and a covering P-»β. The spinor bundle of Mn is the
associated bundle

-where χ : Spm(ri)-+GL(An) is the complex 212 -dimensional spin representation. A
real Killing spinor on Mn is a section ψ of the spin bundle satisfying the following
first order partial differential equation:

where Xψ denotes the Clifford multiplication of the vector X by the spinor φ, and
/IΦO is a real number. The inner product (ψί9ψ2) of two real Killing spinors is
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constant on Mn. A manifold with a non-trivial Killing spinor must be an Einstein
space with scalar curvature R = 4n(n — l)λ2 (see [8]). The existence of a Killing
spinor imposes an algebraic condition on the Weyl tensor W: Λ2(Mn)-+Λ2(Mn) of
the manifold, namely

for any 2-form η2eΛ2(Mn) (see [9]).
We introduce now some notations concerning contact structures. A general

reference is [5,23]. A contact metric structure on an odd-dimensional manifold
M2k+ί consists of a 1-form η, a vector field ξ, a (1, l)-tensor φ and a Riemannian
metric g such that the following conditions are satisfied:
a) ηΛ(dη)kή=Q,

c)
d)
e) dη(X,Y) = 2g(X,φ(Y)\ where we use the formula dη(X, Y) = Xη(Y)- Yη(X)
— η([X, Y]) for the exterior derivative of a 1-form η.

In particular we have η(X) = g(X, ξ).
In case ξ is a Killing vector field, we call the given structure on M2k+1 a

X-contact structure. This is equivalent to

f) rxξ=-φ(X)9

and then

hold.
A Sasakian manifold is a K-contact structure satisfying the integrability

condition

or, equivalently,

g)

The curvature tensor 2fr and the Ricci tensor Ric of a Sasakian manifold
commute with φ and have the following properties:

2k +1

Kic(X,φ(Y))= Σ
α = l

where Xί9...,X2k+1 is an orthonormal frame with respect to the metric g. In
particular, if M2fc+1 is an Einstein-Sasakian manifold, then its scalar curvature
equals ^ = 2fc(2fe + l) and we have

2 f c + l
2g(X,φ(Y))= £ ®(X,Y,XΛ,φ(X$.

α = l

Example 1 (see [26],). Consider a Kahler-Einstein manifold (X2m, g, J) with scalar
curvature R = 4m(m -f 1 ).
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Let A be the maximal integer such that — c^(X2m)\ =c% is an integral
.ΛL

cohomology class. Then there exists a principal S1 bundle π : M2m+ 1 -+X2m defined
by cf as well as a connection form η with

where Ω denotes the Kahler form of X2m.
The manifold M2m+1 is simply connected and admits a spin structure. Using

the Kahler-Einstein metric g on X2m and the connection η we obtain a unique
Einstein metric g on M2m+1. Then M2m+1 is an Einstein-Sasakian manifold.

Proof. The Kahler-Einstein manifold X2m is simply connected (see [25]) and
therefore the exact sequence

yields that πί(M2m+ί) is trivial or a cyclic group. In particular, we conclude

π1(M2m+1) = /ί1(M2m+1;Z).

Using the Thom-Gysin sequence of the S^-bundle and the Poincare duality, we
obtain

Since cf is not a multiple of an integral cohomology class, it turns out that the
homomorphism

c?u :H2m-2(X2m;Z)-*H2m(X2m;Z)

is surjective. Finally we obtain π1(M2m+1) = 0.
The second Stiefel- Whitney classes are related by

In case X2m admits a spin structure, M2m + * has a spin structure, too. Consider now
the case

Then

and from the exactness of the Thom-Gysin sequence with Z2-coefficients we obtain

ω2(M2m + 1) = π*ω2(X2m) = π*c1(J^Γ2m) = π*cf = 0 .

By the classical Weyl theorem (see [28]) there exists a connection form η on the
principal ^-bundle π:M2m+1-+X2m such that

This connection splits the tangent bundle of M2 m + 1 into the vertical and a
horizontal part,



7-Dimensional Compact Riemannian Manifolds 547

We define a metric g on M2m+1 by pulling back the metric g to the horizontal
subspaces and by adding the r-fold of the metric of the fibre S1. Then there is
precisely one parameter r0 such that g becomes an Einstein metric. The 1-form η
gives us now a K-contact structure and the Sasakian integrability condition is
satisfied since X2m is a complex manifold (see [5]).

Theorem 1. Let (M", φ, ξ, η, g) be a simply connected Einstein-Sasakian manifold with
spin structure.
a) // n= 1 mod 4, then M" admits at least one Killing spinor for each of the values
A=±i
b) Ifn = 3 mod 4, then Mn admits at least two Killing spinor s for one of these values
λ=±i
Proof. We define two subbundles E+ of the spinor bundle S by

Furthermore, we introduce the covariant derivatives

First of all we observe that V± are connections in E±. We differentiate the equation
(±2φ(X) + ξX-Xξ)ψ = Q with respect to Y:

This equation is equivalent to

and we have to show that the first term of the last equation vanishes. A direct
calculation yields this result using the properties of the Sasakian manifold and the
equation defining the bundle E+ :

= {±2g(X, Y)ξ + 2η(X)Y+2Xφ(Y) + Yφ(X)+

The curvature R* of the connection V± is given by

R±(X, Y)ψ = @(X, Y)ψ+i(XY- YX)ψ .

No w we prove that R * vanishes on £ ± , i.e. (£ ± , F * ) are flat bundles. Fix locally an
orthonormal frame

If ψeE±, we have
Xiφ(Xi)ψ=+ξψ

and
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Suppose X^Xp φ(Xj) and consider two spinors ψl9ψ2εE±. Then we obtain

iXjψ1,ψ2)= +(ξXiφ(Xj)ψί,ψ2)

= ±(Ψl9φ(XJ)Xiζψ2) = ±(ψί,ξφ(XJ)Xiψ2)

= (XjXiψί,ψ2) = -

Hence, in case Xt φ Xp φ(X^ the spinor XiXjψ is orthogonal to E + . Therefore the
JE+-part of

is given by

Λ=l

where the last equality results from the above mentioned properties of the
curvature tensor in an Einstein-Sasakian space. This is precisely the E±-part of
^(YX— XY)ψ for ψ eE+. It remains to calculate the dimension of the bundle E+.
This is a purely algebraic question. We consider the spin module Δn and the
subspaces

(n = 2k + l). Using a realization of the Clifford algebra one checks that

dim£+ = dim£_ = l in case n = \ mod4,

dim£+=2, dim£_=0 in case n = 3mod4.

Remark. Theorem 1 together with Example 1 yields a construction of odd-
dimensional compact Einstein spaces with at least two Killing spinors. For any
Kahler-Einstein manifold X2m with positive scalar curvature we consider the

^-bundle M2w+1 over X2m with the Chern class c? = -c1(Jf2m). Then M2m+1

A

admits an Einstein metric with two Killing spinors. Recently many new Kahler-
Einstein metrics with positive scalar curvature have been constructed (see [17, 27,
35, 36]). Let us apply this construction to the Kahler manifolds X6 = CP3, F(l, 2),
S2xS2x S2, S2 x CP2 or to the GraBmann manifold G5 j 2. Then we obtain the
7-dimensional Einstein manifolds M7 = S7, SU(3)/Sl = N(ί,l)9

β(l, 1, 1) = [St/(2) x S17(2) x St/(2)]/l/(l) x 17(1) ,

M(3, 2) = [St7(3) x S17(2) x 17(1)]/S17(2) x (7(1) x t7(l)

and an Einstein metric on the Stiefel manifold V5 >2, respectively, with two Killing
spinors. These examples of Riemannian manifolds with two Killing spinors are
well-known (see [6 and 8]). Moreover, let ̂ k (3 ̂  k ̂  8) be one of the del Pezzo-
surfaces with a Kahler-Einstein metric (see [36]). Then our construction yields for
χ4 = ̂ k and X6 = S2 x ̂ k a family of Riemannian metrics on the corresponding 5-
and 7-dimensional manifolds with two Killing spinors.
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3. Some Special Properties of the Seven-Dimensional Spin Representation

The seven-dimensional spin representation ΔΊ is a real representation since the
real Clifford algebra Cliff(7) is isomorphic to MΛ(8)0MΛ(8). In all calculations we
use the following realization of this real spin representation, which we also denote
byz l 7 :

X3= — E17 + E28+E35—E46,

where Etj is the standard basis of the Lie algebra 50(8):

10 <

0...

0
\

)... °\
-1..

o /

i.

Denote by u{ (l^i^S) the standard basis of ΔΊ&R8. Given ul9u2y...,uk we
consider the isotropy group

and its Lie algebra h(u^ ..., wk). It is well-known (see [33]) that the Lie algebras
h(u±\ ft(t/1,w2), h(u^u2,u^) are isomorphic to the Lie algebras g2, su(3), su(2\
respectively.

Precisely we have

Proposition 1. The Lie algebra h(ul) u2, u3) is isomorphic to su(2) and, represented as
a subalgebra of the Clifford algebra, given by the equations

The dimensions of the Stiefel manifolds Vk(A7)= Vk(R8) are given by

dim V1(ΔΊ) = Ί = dim Spin (7) - dim H (uj ,

dim V2(Δ 7) = 1 3 = dim Spin (7) - dim#(iί1? u2) ,

dim V3(Δ 7) = 1 8 = dim Spin (7) — dίmH(uly u2, u3) .
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Hence, Spin (7) acts transitively on V^(ΔΊ\ V2(A7) and on V3(AΊ). With respect to
^ι(Vk(Δ7))^n2(Vk(Δ7)) = 0 for fc = l,2,3 (see [22]) the isotropy groups H(u±\
ff(u1?M2), and H(u^u2,u3) are simply connected, i.e. isomorphic to

= G2,

Consider now a seven-dimensional Riemannian manifold and the real spinor
bundle S as well as the orthonormal sections ψl9...9ψk (l^k^3) in S. Then
we obtain a G2-, SE7(3)-, 5C/(2)-reduction Q(Vιλ Q(ψ\^2\ QίVuV^Va) of the
principal Spin(7)-bundle P and the frame bundle Q. For example, given three
orthogonal spinors ψί9 ψ2, φ3 as equivariant maps ψa:P-+ΔΊ (α= 1, 2, 3) we define

4. Estimates for the Maximal Number of Independent Killing Spinors
on 7-Manifolds

Since the complex spin representation in dimension seven is the complexiflcation
of the real representation described above, the space of all real Killing spinors in
the complex bundle is the complexiflcation of the space of all Killing spinors in the
real spinor bundle. Therefore we consider only real Killing spinors in the real
spinor bundle. For a compact Einstein manifold M7 with scalar curvature R > 0 we
denote by m+ the dimension of the space of all positive (negative) Killing spinors:

m±=dim<φeΓ(S):rxψ=±-— X ψ.

Theorem 2 (see [32 or 18]). // w + >0 and w_>0, then MΊ is isometric to the
sphere S7.

Proof. Given two Killing spinors tp+,φ_ satisfying the equations

we consider the function /=(φ+,φ_). An obvious calculation yields

«-\s.
In case /φO, M7 must be isometric to the sphere S1 by the Obata's theorem (see
[4]).

In case /=0, i.e. φ+ and φ_ are orthogonal, we consider the 1-form defined by

With respect to

dim {77 e S: (??, t/; _) = 0} = 7 = dim TM7
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the 1-form ω vanishes nowhere. On the other hand, ω is a parallel form:

= - s ( * > Y)(ψ+,Ψ-)= -

= 0

since we have /= 0 in the situation considered.
Now the Weitzenbόck formula for 1 -forms yields

R-ω = Q,

i.e. ω = 0, a contradiction. Π

Theorem 3. Let (M7, g) be a compact connected Riemannian spin manifold. Ifm+>3
or m_ >3, then MΊ is a space of constant sectional curvature.

Proof. We consider again the real spinor representation ΔΊ « Rs and remark that
the isotropy group H(ul9u29u3) acts trivially on u4 and coincides with the usual
Sl/(2)-action on

LinR(w5, u6, uΊ9 M5) = R4 = C2 .

Suppose now that M7 admits four Killing spinors ψί9...,ψ4 with (ψf, Vy) = fy/ In
the reduction Q(φ1? v^Va) °f the frame bundle we choose a section
X = (X1? . . ., X7) such that ψ4 = λ4u4 4- λ5u5 holds. Suppose A5 = 0 and denote by w^
the connection forms of the Levi-Civita connection with respect to this frame on an
open set t/cM7. The equations

provide the conditions

a contradiction. In case A5 φ 0 at a point m e M1, we know that the Weyl tensor W
has to satisfy the algebraic equations
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for α = l, ...,4 and any 2-form η2. Using the equations describing the Lie algebra
h(uί9u2,u3) after some obvious calculations we obtain that the Weyl tensor W
vanishes at the point p. Consequently W vanishes on an open and dense set, i.e. M7

is a conformally flat Einstein space. Π

5. 7-Manifolds with Two Independent Killing Spinors

In dimension seven we prove now the inversion of Theorem 1. Given a seven-
dimensional Einstein manifold M7 with scalar curvature R = 42 and two
independent Killing spinors ψl9 ψ2. Without loss of generality we can assume that
V>ι, ψ2 are real spinors of length one and orthogonal at any point. The dimension of
the spinor bundle S is related to the dimension of the tangent bundle T by

= dimΓ+l.

Consequently there exists a unique vector field ξ such that

ξιpί = ψ2.

Moreover, we introduce the 1-form

η(X):=(Xψl9ψ2)

as well as the endomorphism φ: T-+T

Theorem 4 (M7, φ, ξ, η, g) is an Einstein-Sasakian manifold.

Proof. First we prove that ξ is a Killing vector field, i.e.

g(rγξ,x)+g(γ,rxξ)=o. χι>
We differentiate the equation ξψ^ =ψ2 with respect to Y and multiply it by Xψ^.

Analogously we have

((pxξ)Vl, y
Adding the equations <2> and <3> and taking into account

we obtain <1>. Therefore ξ is a Killing vector field and the (l,l)-tensor
φ(X): = — Vxζ is antisymmetric. In particular we have η(ξ) = 1, φ(£) = 0 and

η(X) = (XΨl9 ιp2) = (Xψl9 ξψj = g(X9 ξ) .

Now we verify the condition φ2= — Id + η®ξ. Suppose that X is orthogonal to ξ -
the remaining case is obvious. Then we have
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and, consequently,

φ2(X)Ψl = ξφ(X)ψ1 = ξξXΨί = -Xψ, ,

i.e.

φ2(X)=-X.

Moreover, we obtain

g(φ(X), φ(Y)) = - g(φ\X), Y) = g(X - η(X)ξ, Y)

= g(X,Y)-η(X)η(Y).

Since η(X) = g(X, ξ) and taking into account that ξ is a Killing vector field, we have

dη(X9 Y)=- 2g(X, VΎξ) = 2g(X, φ(Y)) .

Using a local frame in the reduction Q(ψl9ψ2) of the frame bundle we calculate

ηΛ(dη)3=48dMΊ.

Finally it remains to prove the Sasakian integrability condition g) of Sect. 2. In
the following calculations we apply the formula

2φ(Z)ψί=(ξZ-Zξ)ιp1

several times. We start with

and

Now we obtain:

= (g(X,Y)ξ-η(Y)X)Ψl.

This calculation yields

i.e. (M7, φ, ξ, η, g) is an Einstein-Sasakian manifold.
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Theorem 1 and Theorem 4 yield the following

Corollary. Let MΊ be a simply connected 1 -dimensional spin manifold. Then there is a
one-to-one correspondence between pairs of Killing spinors and Einstein-Sasakian
structures on M7.

Suppose now that the constructed Sasakian structure (φ,ζ,η,g) on M7 is
regular, i.e. all integral curves of ξ are closed and have the same length L (see [5]).
Then we have an S1 -action on M7 and the orbit space is a 6-dimensional manifold
X6. Let us denote the projection from M7 onto X6 by π. We obtain a principal
S^bundle π:MΊ-+X6 with the connection.

*Ri = Si. Since & = Q and

X6 admits a Riemannian metric and an almost complex structure which is
integrable (see [5]). Denote by Ω the Kahler form of X6. Then

π*Ω(X, Y) = g(X,φY)=±dη(X, Y)

and we conclude dΩ — 0, i.e. X6 is a Kahler manifold. As g is an Einstein metric on
M7, the O'Neill formulas yield that X6 is a Kahler-Einstein manifold with the
scalar curvature R =ff R = 48. Next we study the topological type of the S1 -bundle

π : M7 -» X6. The curvature form of the connection -— η is -— dη. Consequently the
JLj -L>

is a

Kahler-Einstein manifold, its Chern class is given by the Ricci form

-

Chern class cf e H2(X, R) is given by cf = — dη . On the other hand, since X6 is

2L
and we obtain the relation cv = — cj between the Chern class c^ of X6 and the

π
Chern class cf of the S1-bundle π:MΊ-+X6. X6 is simply connected by the
Kobayashi theorem (see [25]). We conclude from the Thom-Gysin sequence of the
fibration M7->X6 that

Hl(M7ιZ) = H6(M7 Z) = H6(X6 Z)/c? vH4(X6 Z) .

Since the Killing spinors ψ^ and ψ2 on M7 define a SL/(3)-reduction Q(φ^ψ2) °f
the frame bundle, we have an isomorphism

of 3-dimensional complex vector bundles. Consequently we have

because the first Chern class of any 5Ί/(3)-bundle vanishes. Then the Thom-Gysin
sequence yields

Finally, from the exact homotopy sequence of the fibration S1-^7-^6 we
obtain that π^M7) is a cyclic group.
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This shows that in dimension 7 our general construction principle of
Riemannian manifolds with two Killing spinors (Theorem 1 and Example 1)
covers all solutions under the regularity assumption mentioned above, i.e.

Theorem 5. Let (M7, g) be a compact Riemannian spin manifold with two Killing
spinors such that the induced contact structure is regular. Then MΊ is an Sλ-bundle
over a Kάhler-Einstein manifold X6 with positive scalar curvature and c1(N6)/cf is an
integral cohomology class.

6. The Classification of 7-Dimensional Manifolds
with Three Independent Killing Spinors

We consider a compact 7-dimensional Einstein manifold (M7,g) of scalar
curvature R=42 admitting three orthogonal real Killing spinors ψι»V2»V>3 of
length one, i.e.

Solving the algebraic equations

we obtain obviously three orthogonal Killing vector fields Xl9X2,X3 of length
one with

So Xί9 X2, X$ induce a locally free isometric action of the group Spin(3) on M7. We
prove for example [Jfl5 X2~\ = 2X3. Since the Xa (1 ̂  α ̂  3) are Killing vector fields
of length one, we have g([X1,X2],X1) = 0. We differentiate the equations
= ψ29 X2Ψι = ̂ 3 with respect to X2 and -X^:

Using the formula [X1,X2'] = ̂ XlX2 — ^x2^ι we obtain

lX1,X2]Ψl = 2Xlψ3.

Now we multiply the last equation by Xί and apply the orthogonality of X± to

Let us recall the notion of a Sasakian 3-structure. Three Sasakian structures

α, £α, ηa) on a Riemannian manifold (Mw, g) related by the conditions

constitute a Sasakian 3-structure.
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We remark that a Riemannian manifold with a Sasakian 3-structure is
automatically an Einstein space of scalar curvature R = n(n — 1) (see [23]).
Furthermore, let two Sasakian structures (φΛ9ξΛ,ηΛ), α = l,2, be given on a
Riemannian manifold (M2fc+1,g) with orthogonal vector fields ξl9ξ2 Then we
have

2)Z)= -g(Fzξ2,^)=g(ί2, Fz^)= -g(Z, f^),

and consequently

F<A =

Define now the vector field

& = ?{&= -r

as well as the 1-form η3 and the (1, l)-tensor φ3 by the formula

It seems to be well known and is not hard to prove that, in this situation, (φβ, ξβ, ηβ\
β = 1, 2, 3, is a Sasakian 3-structure, i.e. two Sasakian structures on (M2k+ 1, g) with
orthogonal Killing fields define a Sasakian 3-structure in a unique way. Finally we
remark that for a given Sasakian 3-structure (φβ, ξβ, ηβ)9 β = 1, 2, 3, the correspond-
ing volume forms ηβ Λ (ίî )* induce the same orientation of M2k+ 1. Theorem 1 and
Theorem 4 yield now

Theorem 6. Let (M7,g) be a compact Riemannian spin manifold with three
independent Killing spinors. Then (M7, g) admits a Sasakian ^-structure. Conversely,
every simply-connected spin manifold with Sasakian 3-structure admits at least three
independent Killing spinors.

Proof. Three Killing spinors define Killing vector fields Xi9X2,X3 and, hence,
three Sasakian structures ηΛ(X) = g(X, XJ, φΛ= — VXΛ (Theorem 4). One can
prove the formula relating φα o φβ with φy in the same way as we derived the
commutator relations between the vector fields XΛ above. Conversely, given at
least two Sasakian structures (φα, £a,fya), a = 1,2, on a Riemannian manifold
(M7,g) such that ξ^ and ξ2 are orthogonal, we consider the bundles

Then Ef as well as E29 or EΪ as well as E2 have the dimension 2. Assume for
example the first case. If Ef r\E2 = {0}, then there exist at least four Killing spinors
on M according to Theorem 1, and consequently M7 is isometric to the sphere S7

(Theorem 3). Suppose EfnE2 =t={0} and fix a spinor φΦO in Ef r^E2. Then, by
the definition of E* the spinors ζ^ψ and ξ2ψ are elements of Ef and E2,
respectively, i.e. φ, ^φ, and ξ2ψ are elements of Ef +E2 . However, because of
({ιV)?^21P) = g(^ι?^2)ltPl2==0, these three spinors are orthogonal. Hence Ef ^E2

and consequently M7 admits at least 3 Killing spinors (Theorem 1). Π

Now we want to classify all 7-dimensional compact Riemannian manifolds
with three Killing spinors under a certain regularity assumption about the Spin (3)-
action on M 7. We use the technique and notation of twistor theory, associating to a
conformal 4-dimensional manifold X4 an (almost)-complex 3-dimensional mani-
fold Z~(X4) as well as a fϊbration q :Z~(X4)-+X4. General references for this are
the papers [1, 16, 34]. In particular we use the classification of all compact Kahler
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twistor spaces obtained in [15, 21] in our classification. We suppose that M7 is a
simply-connected compact spin manifold with three Killing spinors and
M 7/Spin(3)= : X4 is a smooth closed manifold. In this case M7 is an S1-fίbration
over the twistor space Z~ of X4. Indeed, let p:M7-+X4 be the projection and
identify the tangent space Tp(m)X

4 with the orthogonal complement of
X2,X3) in TmM7. We define the projection π:M7->Z~ by the formula

π(m) = dpφ^rrήdp ~ 1 .

Then the kernel of the differential dπ: TmMΊ -*Tπ(nί)Z~ is generated by Xl and
consequently π:M7->Z~ is an S^-fibration. This projection coincides with the
corresponding projection for two Killing spinors ψί9ψ2 considered in Sect. 5.
Theorem 5 provides now.

Lemma 1. π:M7->Z~ is an S^-fibration and Z~ is a compact Kάhler-Einstein
manifold of scalar curvature K = 48. The canonical complex structure of Z~ is given
by φ^

Since the only Kahlerian twistor spaces are P3((C) and the flag manifold F(l, 2)
(see [15,21]), Z~ is analytically equivalent to one of these spaces. Moreover, on
P3(C) and F(l,2) there exists only one Kahler-Einstein structure (see [24]) and
consequently Z~ is analytically isometric to P3(C) or F(l,2). Now we carefully
investigate the action of Spin(3) on M7. For a given point weM 7 we denote by

H(m) = {γ e Spin (3) : ym = m}

the isotropy group of this point.

Lemma 2. For any point mεM1 the isotropy group H(m) is trivial or is isomorphic
to Z2.

Proof. Denote by H the subgroup of Spin (3) given by the vector field Xv Consider
a point weM 7 as well as x = p(m)e X4 and the fibres M7 = p-1(x), Z~ =q~l(x).
Then the diagram

8

H\Spίn(3) > (H\Spin(3))/H(w)

commutes and therefore the map H\Spin(3)^(fί\Spin(3))/H(w) is a covering.
With respect to (H\Spin(3))/H(w) = Z ~ = S2 the mentioned map is one-to-one, i.e.
H(m) acts trivially on #\Spin(3). Now we identify #\Spin(3) with S2 = Cu{oo}
and see that the corresponding action of Spin(3)^Sί/(2) is given by

Z~*Cz + D \C Dj

Since H(m)cSU(2) acts trivially on Cu{oo}, we obtain H(m) = {e} or Z2.

Lemma 3. The orbit type of the Spin(3)-action on M7 is constant, i.e. there are two
possible cases: either H(m) = {e} or H(m) = Z2 for all points weM7.

Proof. Consider y = ( —l)eSpin(3) and the corresponding isometric involution
y = (— 1): M7 ->M7. The fixed point set of y is the union of closed totally geodesic
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submanifolds NΛ. The manifolds Na are Spin(3)-invariant and S0(3)
= Spin(3)/{±l} acts freely on it.

Furthermore, the dimension of each Na equals 3, 5 or 7. If at least one of the
submanifolds Na has dimension?, it follows that NΛ = MΊ and, consequently,
H(m) = Z2 for all points weM7. Next we show that the case dimNΛ = 5 is
impossible. Indeed, if the fixed point set of y has a component NΛ of dimension 5,
we consider the images of Na in X4 and Z~. Then Σ2 = p(NΛ)cX4 is a surface and
π(JVα)cZ~ is a complex submanifold of the twistor space Z~. In fact, the tangent
space of NΛ contains all vectors t invariant under the differential dy of the isometry
y. Then

i.e. TNa is ̂  -invariant. Now we regard the twistor projection q : Z~ -+X4. Then

Since π(JVα) is a complex submanifold, the last equation means, by definition of
the twistor space, that TXΣ

2 is invariant under all algebraic complex structures of
TXX

4

9 a contradiction.
Finally we prove that the fixed point set of y cannot contain a component of

dimension 3. Suppose dim]Vα = 3 and take a tubular neighbourhood
17 = Spin (3) x Z2D

4. Then we have

π1(C7) = π1(]Vα) = π1(Spin(3)/{±l}) = Z2 and πι(l7\Λϋ = 0,

since U\Na is diffeomorphic to Spin(3) x (D4\{0}). The van Kampen theorem
implies now that πx(M7) contains a subgroup of order two, a contradiction to the
assumption π^M7) = 0. Π

We explain now the classification of simply-connected Riemannian manifolds
with three Killing spinors. First of all we remark that one knows two such spaces,
namely the 7-dimensional sphere SΊ and the space SU(3)/S{tl = N(l9 1) described
in [6]. We prove that, under the regularity assumption on the Spin(3)-action, these
are the only possible spaces with three Killing spinors.

Theorem 7. Let MΊ be a compact simply connected Riemannian spin manifold with
three Killing spinors such that M7/Spin(3) becomes a smooth closed manifold for the
induced Spin(3)-αcίion. Then MΊ is isometric to the sphere SΊ or the space Sl/(3)/S j 1

Proof. We consider the map π:M7->Z~. Since the isotropy group H(m) is
constant, this map is the projection of a principal S1 -fibre bundle. On the other
hand, Z~ is a Kahler-Einstein twistor space and therefore isometric to the complex
projective space P3(C) or to the flag manifold F(l,2) ([15, 21, 24]). In case
Z" = P3(C), we have cί(P3((D)) = 4^ where αe#2(P3(C);Z) is the generator of the
second cohomology group. Since π^M7) = 0, the Chern class of the fibration π : M7

2L
-»P3((C) must be equal to cf = α, and with respect to the relation c{ = — c^ we

π
obtain L = 2π for the length L of the circles of this fibration (see Sect. 5). These data
determine M7 up to an isometry and it turns out that M7 is isometric to the
sphere S7.

We handle the second case similarly. Then we have Z~ =F(1,2). The group
H2(F(1, 2); Z) has two generators α, y and the first Chern class is given by c^Fίl, 2))
= 2y. Therefore the Chern class cf of the fibration π : M7-»F(1, 2) and the length L
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are given by cf = y and L = π. Again, these data describe M7 uniquely and it
becomes isometric to SU(3)/S\t l = N(l, 1). Π

Corollary. Every compact simply connected Ί-dimensional spin manifold with regular
Sasakian ^-structure is isometric to S7 or SU(5)/S{tl=N(ί9ί).

7. Parallel Spinors on 7-Dimensional Manifolds

The method used in the classification of 7-dimensional manifolds with Killing
spinors can be applied to manifolds with parallel spinors, too. In particular we
show

Theorem 8. Let M7 be a non-flat compact Ί -dimensional spin manifold admitting at
least three parallel spinors. Then there exist a K3-surface F with an anti-selfdual
Ricci-flat Riemannian metric, a lattice ΓcR3 and a representation ρ : F-» AutΛz(F) of
Γ in the group of all automorphisms of the K3 surface F preserving the unique
holomorphic two-form h2 such that MΊ is isometric to

where Γ acts on R3 xF by y (x9f) = (x + y9Q(y)f). Conversely, any Ί -dimensional
Riemannian manifold of this type admits at least four parallel spinors.

Proof Let ψι,ψ2,Ψ3 be three orthogonal parallel spinors of length 1. In the same
way as in Sect. 6, ψί9 ψ29 tp3 define the vector fields Xί9 X29 X3. These vector fields
as well as the 1 -forms ηΛ = g(XΛ, •) are parallel. So we have, by the Frobenius
theorem, a foliation M 7 = (J F* of M7 into totally geodesic, connected, complete
manifolds F*. Furthermore, the leaves F* are antiselfdual and Ricci-flat. This
follows immediately from the structure of the Lie algebra h(ul9 u2, w3) described in
Proposition 1. We have b^M7)^ (see [7]). On the other hand, the 1 -forms
^19^2^3 are linearly independent, and consequently bl(M7) = 3. We fix a basis
α1?α2,α3 in the torsion-free part oί H^(MΊ;Z) and consider the homomorphism
L. π^M7)--^3 given by

The vectors L^), L(α2), L(a3) are linearly independent in #3 because

implies J *?i = 0 (i = l,2, 3), and therefore Aiai+A2a2 + A3a3 = Q in
A\V.ι +A2Λ2+A3/X3

H^M7;!?). Let Γ be a lattice generated by Uμ^ L(α2), L(α3). Then we obtain a
submersion f:MΊ-+R3/Γ defined by

f(m)= (Sηi9$η2,lη3\modΓ9
\c c c J

where c is a curve from a fixed point m0 to m.
Since TXF* = {te TXM

Ί : df(t) = 0}, the leaves of the foliation (J F4

a are contained
in the fibres of the submersion / In case the fibres /" 1(x) are not connected, there
exist a covering of the torus Γ3 = R3/Γ and a lift of / into this space. Therefore we
may assume that the fibres of / are connected and coincide with the leaves F*.
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Since the normal bundle of any fibre is trivial, any fibre is a compact connected
anti-self-dual Ricci-flat Riemannian spin manifold, i.e. either a flat space or a
K3-surface (see [20]). If at least one fibre is flat, then all fibres are flat and,
consequently, M7 is a flat Riemannian manifold. Therefore we may assume that
M7 is a fibration over T3 = R3/Γ with totally geodesic fibres isometric to a
X3-surface F. Consider the covering R3-+R3/Γ as well as the induced fibration
M7-»jR3 over jR3. Then M7 is isometric to M7/Γ. On the other hand, since the
parallel transport in a Riemannian submersion with totally geodesic fibres maps
any fibre isometrically on any other fibre, it turns out that M7 is isometric to
R3 x F. The action of Γ on F preserves the holomorphic structure as well as the
unique holomorphic 2-form h2. Indeed, the holomorphic structure of any
K3-surface is given by the parallel spinors on it and h2 is one of the two parallel
spinors under the isomorphism S = Λ0t °Θ Λ°' 2 of the spin bundle S. We restrict the
parallel spinors φ l5 φ2> ̂ 3 on M1 to the fibre F. Since the restriction of the seven-
dimensional spin representation to the subgroup Spin(4) is equivalent to A4®Δ4,
each ψi\F (i = 1,2,3) corresponds to a pair of parallel spinors on F. The Γ-action on
Γ preserves ipt\F since the ψt are parallel on M7. Consequently Γ acts on F
holomorphically and preserves h2.

Theorem 9. Let M7 be a compact non-flat Riemannian manifold with two parallel
spinors. Then either MΊ admits at least four parallel spinors and is isometric to
R3 x F/Γ for a certain K3-surface F or there exists a Ricci-flat compact Kάhler
manifold N6 and a holomorphic isometry Φ:N6-+N6 such that M7 is isometric to
M7 = N6 x [0,l]/~ with the identification (x,Q)~(φ(x), 1).

Proof. Consider two parallel spinors ψ1,ψ2as well as the parallel 1-form η defined
by ηψι=ψ2. M

Ί is a compact Ricci-flat Riemannian manifold (see [10]) and the
first Betti number b^M1) is at least one. In case b^M7) = 1, we can prove (see [13])
that the leaves of the foliation given by η are fibres of a Riemannian submersion
f:MΊ-+S1 with totally geodesic Ricci-flat and Kahlerian fibres N6. Using the
parallel transport defined by the vector field corresponding to η, M7 becomes
isometric to JV6x[0, l]/~ for some Φ:JV6->JV6. Φ preserves ψι\Nβ and ψ2\Nβ.
Consequently Φ is holomorphic. If fe1(M7)^2, there exists a harmonic 1-form ηi

orthogonal to η in L2. The Weitzenbόck formula 0 = Aηi = V*Vη± H-Ric^) yields
that ηί is a parallel 1-form orthogonal to η at any point of M. Then φ1? ηψι = ψ2>
and ηl ψl: =ψ3 are orthogonal and parallel spinors on M7.
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