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Abstract. For an irreducible representation of the g-analogue of a universal
enveloping algebra, one can find a canonical base at g =0, named crystal base
(conjectured in a general case and proven for A4,, B,,C, and D,). The crystal base
has a structure of a colored oriented graph, named crystal graph. The crystal base
of the tensor product (respectively the direct sum) is the tensor product (respectively
the union) of the crystal base. The crystal graph of the tensor product is also
explicitly described. This gives a combinatorial description of the decomposition
of the tensor product into irreducible components.

0. Introduction

The g-analogue of a universal enveloping algebra introduced by Drinfeld [2] and
Jimbo [3] is a deformation of the universal enveloping algebra at g =1. Since
q =0 corresponds to the absolute temperature zero in the lattice model defined
by the R-matrix, we can expect that the g-analogue has a simple structure in that
case. Some indications have been already observed in Date-Jimbo-Miwa [1],
where the Gelfand-Tsetlin bases become monomes in the tensor algebra of
the fundamental representation when g =0. In this note, we shall clarify this
phenomenon. For an irreducible representation of the g-analogue, we can find a
canonical base at g =0, named crystal base (conjectured in a general case and
provenin A4,, B,, C,, D,). The crystal base of the tensor product is the tensor product
of the crystal bases. Moreover the crystal base has a structure of colored oriented
graph (called crystal graph). The crystal graph of the tensor product is explicitly
described. 5
We shall state our results more precisely. We introduce operators é; and f; by
modifying the simple root vectors e; and f; of the g-analogue U, (see Sect. 3). Let
M be an integrable representation of U, defined over Q(q). We consider a pair
(L, B) of a lattice L of M defined over the ring of rational functions in g regular
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at g =0 and a base B of the Q-vector space L/qL. Such a pair (L, B) is called crystal
base if it satisfies certain axioms (see Sect. 4). Although we do not write them here,
we only note the most important axiom: &Lc< L, fiLc L,&;B=BuU{0} and
fiB<Bu {0}. Our conjecture is the existence and the uniqueness of the crystal
base and our main result is that this conjecture is true in the case of 4,, B,, C,,and D,

1. The g-Analogue of a Universal Enveloping Algebra

Let t be a finite-dimensional vector space over Q, and I a finite index set. Let
{h;etjiel} and {uet*; iel} be linearly independent sets, such that {h;,a;)>};; is
a symmetrizable generalized Cartan matrix. Let us take an inner product ( , ) of
t* such that 2(a;, 4) = («;, ;) <h;, A) and (o, o;) is a strictly positive integer for any
iel and any Aet*. Let P ct* be a lattice such that {h;, P)eZ for any i and
P> Q;ZZai. Then, we have

(P,Q)eZ/2 and (A, A)—(uuweZ if AueP and A—pueQ. (1.0)

Let P* c t denote the dual lattice of P.
Let U, be the algebra over Q(g) generated by the symbols ¢" (he P*), e,, f; (ic])
satisfying the following fundamental relations.

gt —q" g" for hWeP* and ¢°=1. (1.1)

q eiq = q<h,ai>ei and thiq'—h — q<h,a;)fi for heP* and iel. (12)
Setting ti = q(“iyli)h,-,
t;—t 1
[Ei,fj]=5ijW,T,~). (13)

We have therefore

tiej ti_l = qz(ahaj)ej
and
tfitrt=q 2 (1.4)

The comultiplication 4:U,— U, ® U, is given by
Aq)=4"®q",
A(ei) = ei® 1 + ti®e,-

Af)=f®t ' +1Q f;. (1.5)

By this, the tensor product of U,-modules becomes a U, -module
A U;module M is called mtegrable if M;= {ueM q'u=q®*»u} is finite-

d1mens1onal for any AeP, M =@M, and, for any i, M is a union of finite-
AeP

dimensional representations over the subalgebra generated by ¢; and f;. An
element of M, is called a weight vector of weight 1. An integrable U,-module M
is called with highest weights, if there is a finite set F of P such that

M= M,,
leﬁ@—)Q- A

and
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where Q_ ={) mo;; meZ,,}. It is known (Rosso [5], Lusztig [4]) that the
category of integrable U,i-modules with highest weights is semi-simple. For
AeP, = {AeP; {h;, A) 2 0}, let .#(4) denote an irreducible U,-module with highest
weight A and u; a highest weight vector of .#(4).

2. sl-Case

Let us review the sl, case. Let U,(sl,) be the algebra over Q(q) generated by t,t ™', ¢, f
with the fundamental relation: tet ™' =q2e; tft ™' =q 7 2f, [e, f1=(t—t " Yq—q ).
Then A=q 't+qt *+(q—q ef—2=qt+q 't 1 +(q—q~')*fe—2 belongs
to the center of U(sl,).

An (I + 1)-dimensional irreducible representation V, has a basis {;}, < <; With

tu, = q' " *u,,
eu, = [kJu, 4
and
Sue=[—kJu,,, (2.1)

where [n]=(q"—q "/g—q '). Then A|,,=q¢'*'=2+9 "', Hence ./qtA
operates on V, by

qthu, = g1 — ¢"* Yyu,. 2.2)
Now define & and f by
é=(qtd) "% and f=(qt"14)"3f. (2.3)
Then we have
e =(1-¢"(1-¢") '(1—g"*" ) u_y,
Jue=(1 =g ) (1 = g2 (1= g+ )ty . 24)

Since é and f operate on ¥,,& and [ operate on any integrable representation of
U, (Slz)
Let A be the ring of rational functions in g regular at =0 and L= @ Ay,.
Then we have éL < L and fL < L. Furthermore, é and f have the property:
éuy=u,_,modgqL for 0<k<l
and

fuy=u,, ,modqL for 0<k<lI (2.5)

3. Operators &, and f;

Now let us come back to the general situation in Sect. 1. For - i€, set g; = q**),
A=q; "+ qit " +(gi— a7 Veifi— 2, &=(q:,4) e and [ ~(q,t 14)712f,)
Since the subalgebra generated by e, f; and t; is isomorphic to Usl,) by g+ q;,
e—e;, fi— f;and t —t,, the operators &, f; operate on any mtegrable U,-module.
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4. Crystal Base

Set K = Q(g) and let A4 be the ring of rational functions in g without pole at ¢ = 0.
Then A is a discrete valuation ring and K is its fraction field. For a K-vector space
V, a lattice of V is, by definition, a free 4-module L such that K®L =V.

A
Let M be an integrable U,-module. A crystal base (L, B) of M is, by definition,
a pair of a lattice L of M and a base B of the Q-vector space L/qL satisfying the
following conditions (4.1)—(4.5):

L=@L,, where L,=LnM,. 4.1)
AeP
B=|B,, where B,=Bn(L,/qL,). 4.2)
A
&LcL and f,LcL forany iel 4.3)
&BcBU{0} and fBcBuU{0} forany icl 4.9
For u,veB and iel, u= &y if and only if v=fu. 4.5)

Now, we can state the conjecture.
Conjecture 1. Any integrable U;-module has a crystal base.

More precisely, the crystal base of irreducible representations is described as
follows. For AeP ., we set

Z(4) =ZAfi, "'fi,‘“zc M)
and
B) = (v=T, - Jousmod gL (A0 # 0} « L()/g L)

(see Sect. 1 for #(4) and u;). Here (iy, ..., i,)(0 < k) ranges over the set of sequences
in I.

Coniecture 2. For any AeP . the following property holds:
C(A):(£L(A), B(A) is a crystal base of M(4).

As we shall see in Lemma 2 and Proposition 4, the following conjecture is a
consequence of Conjectures 1 and 2.

Conjecture 3. For any crystal base (L, B) of any integrable U;-module with highest
weights, we have

C(L, B): for any ueB such that éu =0 for any i, there exists
u'eL such that u=u'mod gL and ey’ =0 for any i.
Note that C(L, B) is equivalent to the following condition:
C(L): for any ueL/qL such that éu =0 for any i, there exists
w'eL such that u=u'modqL and ey’ =0 for any i.

l
In the sl,-case, a crystal base of ¥, is given by L= (P Au; and B = {u;mod qL;
j=0
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j=0,...,1} under the notation in Sect. 2. Therefore, Conjectures 1 and 2 are true
in the sl,-case.
One of our main results is the following theorem.

Theorem. Conjectures 1 and 2 are true for A,,B,,C, and D,.

We shall start by the following elementary property of crystal bases:
Lemma 1. If (L;,B;) is a crystal base of M; (j=1,2,...,r), then ®(L;,B;) is a
crystal base of ®M ;. Here ®(L;, B;) = (L, B) with L= G—)L and B = L]B

In the sequel, (L, B)® --- @ (L, B) (m-times) will be denoted by (L, B)‘B"‘.

Lemma 2. Let AeP . If (£(A), B(A)) is a crystal base of # (1), then C(ZL(1), B(1))
is true.

Proof. Assume ue#(4), and &u =0 for any i. If =y, then the assertion on u in
C(Z(4), #(2)) is evident. Otherw1se there exist ve#(A) and i such that u f, v, and
hence éu=v #0.

5. Polarization

Let (L, B) be a crystal base of an integrable U,-module M. A polarization of (L, B)
is a K-valued inner product of M satisfying the following conditions (5.1), (5.2)
and (5.3):

(eiu’ U) = (u’ qitifiv)a (fiu’ U) = (u9 q: 1eiti_ lv)

and
(q"u,v) = (u,q"v) for any heP*iel and u,veM. (5.1)
Hence (M;,M,)=0if 2 # p,
(L,L)c A (5.2
Let (, ), be the Q-valued inner product on L/gL induced by ( , ).
(u,v)o=90,, forany u,veB. (5.3)
By (5.1), we have
(@u,v) = (u, f;v). (5.4)
Remark that by (5.3), we have
L= {ueM;(L,u)c A}. (5.5)

If we define (u,v) = ¢*?(u, v) for u,ve M, and extend this to the inner product
of M, then one has

Ceu,v) =Cu, fiv) and  {q"u,v) = (u,q"v)
for heP* iel and u,veM. (5.6)

Remark also that, for any AeP,, .#(4) has always an inner product satisfying
(5.1).
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Lemma 3. For AeP ., assume C(1). Then (£(A), #(A)) is polarizable.

Proof. Let us take an inner product ( , ) satisfying (5.1) and (u,,u;) = 1. We shall
show

(Z(A),, L)) < 4, (5.7
u,v)=9,, for uves(d), (5.8)

by the induction on ueP.

We may assume u # A and (5.7) and (5.8) are true for u + a; for any i. Then,
one has

([ ZDysap LD,) < (LAY tar L A)) (L Wpvap LA)y10) < A
and hence #(1), = Z f.& (A)y+ 4, implies (5.7).

Similarly, for ue.@(l),,, there is i such that éu#0. Hence u= f‘e u and
(“ v)o_(]‘ieu’v)o_(euev)O_aeu,ev 61“: QED

The following proposition asserts that any crystal base is a direct sum of
(L(2), #(2)) when Conjecture 2 is true.

Proposition 4. Let AeP ., and assume C(4). Let M be a U,-module isomorphic to
M(2)®™ and N an integrable U,-module such that N, =0. Let (L, B) be a crystal base
of MON.Set Lyy=LNM,Ly=LNN, By, =Bn(Ly/qLy) and By = Bn(Ly/qLy).
Then we have
(i) L=Ly®Ly and B= B, |By.
(i) (Ly,By) and (Ly,, By) are a crystal base of N and M, respectively.
(iii) There is an isomorphism M = #(A)®™ by which (Ly, By) = (L(A), B(A))®™.

Proof. Since LyngL =qLy, we have Ly/qLy < L/qL. Similarly, L,;/qLy < L/qL.
Setting (L, Bo) = (£(4), #(4)®™, we may choose an isomorphism M = .#(4)®™ such
that L, = Ly, and B, = B, . By the preceding lemma, (L,, B,) admits a polarization
( , ). We shall show first that for any ueP

(Lo‘n LMu) c A (59)

the induction we may assume pu#A4 and (5.9) holds for all u+ ;. Then
( iLou+ai» L) © (Lo + ¢ € Lagu +2,) © A, and hence Lo, =3f; Ly, +,, implies (5.9).
Since L, = Ly, and that L,, o L, by (5.5), we obtain L, = L,,. Since B, < B,,, we
have B, = B,,. This shows (iii). Next, we shall show

L, = (Ly), + (Ly),- (5.10)
In order to show this, we shall prove
gL, N (L), + (Lw)w) < q(Lpg), + 9(Ly),- (5.11)

Let ue(Ly),, ve(Ly), satisfies u + veqL. Let #te L,,/qL, be umod qL,,. Then there
exist a set J of sequences o = (6(1),...,0(p)) in I and u,e(L,,); such that

a=Yy fu,,

ael

where i, is u,mod qL,, and f f,,m f,,(p, We may assume further that |J] is
mlmmal among such expressions. In particular { foa «}oes 18 linearly independent.
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Hence f “u,€#(4), where i, is u;mod ¢£(4). Hence, setting & = &, €,;), We
have & f°ii, = i1,, which implies
& fou, =a,. (5.12)
We have also
&fou,=0 for o#t. (5.13)

In fact, otherwise &*f°i, = i1, and hence f°i, = J“ii,, which implies f°ii; = f*,
Therefore, fii, + f'u, = (i, + 4,) and this contradicts the minimality condmon
on J. Thus, we have

Y feecu=Y Y feec i, —Zf"u =1.

ael oeJ teJ

Therefore )’ f?6°u=umod gL. Because u + veqL, one has
= - Y f7é°vmodqL.

Now N, =0 implies €’v =0, and we conclude ueqL and veqL. Thus we obtain
(5.11) and hence (5.10).
Now it remains to prove

B < By, UBy. (5.14)
Let us prove, for any ueP
B,  (By), Y (By),. (5.15)

We may assume that p is a weight of .#(4). By the induction, we may assume further
that (5.15) holds for all u + a;. If = 4,(5.15) is trivial, and therefore we may assume
p+# A For ueB,, if there is i such that &u#0, then u= f,éuef; ((By)y+ oV
(B)u+a)\{0} = (BM) U(By),. Otherwise we have éu=0foranyi Writtu=u, +u,
with u, €L, /gLy, and u,€Ly/qLy. Then éu, =0. The condition C(& (4), #(4)) and
p # 4 implies u; = 0. Finally we conclude ue(By),. Q.E.D.

Proposition 5. Let M; be an integrable U,-module and (L, B) a crystal base of Q—) M;
with a polarization ( , ). If (M;, M,)=0 for j #k, then L= (LN M;). !
j

Proof. Setting L; = Ln M, it is enough to show

qLN®L; =« ®qL;. (5.16)

Letu;eL;and assumeZu eqL. Then we have( Zu,,Zu > = Z(u,, u;)eqA. Hence
(u;,u;)|o = 0 because ( , )o is positive definite on L/qL Thcreforc ujeqL. QE.D.

6. Tensor Product of Crystal Bases

Let (L, B) be a crystal base of an integrable U,-module M with highest weights.
Then B has a structure of colored oriented graph. The colors are labelled by I.
For u, veB, u— v when v = f;u. We shall call this graph the crystal graph of M.
Remark that, for any i, the crystal graph with only arrows colored by i has no
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branch points and hence a disjoint union of sequences of arrows. The following
proposition describes the crystal graph of the tensor product.

Proposition 6. Let (L;, B;) be a crystal base of an integrable U,-module M; (j = 1,2).
(a) Then(L,,B,)®(L,, B,) = (L®L,,B, x By) is a crystal base of V,® V,. Here

By x B = Ly ® L,/q(Ly @ Ly)=(L,/qL1) ® (L2/qL,) is given by (u,v)—u@v.
(b) For ueB,,veB,, we have

fu®v if there exists n=1 such that f?u#0 and &v =0,

. _ 0 6.1

fi(u®v) {u ® f;v otherwise. Y

Eu®v) = {'f ®&uv if there exists n2 1 such that &v+#0 and f1u=0, (6.2)
éu®uv otherwise.

() If (, ); is a polarization of (L;, B;), then (u; ®u,, v, ® v3) = (uy,vy);. (uy,05),
gives a polarization of (L,,B;)®(L,, B,).

This can be visualized as follows.

B,| e—>—e—>—¢—>—e
B,

7. Proof of Proposition 6

Since (c) follows easily from (a), we shall prove (a) and (b). Since it is enough to
check for each i, we can reduce to the sl,-case. Then we can reduce to the irreducible
case by Proposition 4. Note that Conjecture 2 is true in the sl,-case. Set M, =V,

and M, =V, (see Sect. 2). Let u,,...,u, and vo, .,v; be the base of M, and

M, given in Sect. 2. Then L, = (—BAu,, L,= @Avk and B, = {u;modqL,},

B, ={p,modgqL,}. Set L=1L, ®L2 and M=M, ®M2
(i) Firstletusprove thecase when m=1.ThenM = N, ® N,, where N, is generated
by w=u,®v, and N, is generated by z =u,® v, — qu; ® v,y. Setting

Wy = [l+1]([l k+1Juo®v+ ¢ '[kJu, ® v, y)
| — g2t-2k+2 1 — g2
=quu0®vk+qﬂ——2‘ul®vk‘l

for 0<k <1+ 1 (with v,,, =0), we have
W0=W
Swie=[+1-klwe,,.
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1+1

Hence L, = P Aw,and B, = {w,mod gL;;0 < k <1+ 1} form a crystal base of N, .
Setting e
Z=Up @V — 4 U, @,
for 0<k<1—1, we have
Z9=2,
Jae=[—1—klz4,.

-1
Hence L, = @) Az, and B, = {z,mod qL,;0 < k < I — 1} from a crystal base. Since
k=0
Wo = U ® U9, Wy = Uy @0, - and z, = uy ® v, ; modulo gL, we obtain the desired
result. A
(ii) The general case. Assuming that the statement is proven for V,,_, ® V,, we
shall prove the statement for V,,® V, for m = 2. Let (L,, B;) be a crystal base of M,.
By the hypothesis, (L, —,, B,-1)®(L;, B;) is a crystal base of V,,_; ® V;. Then by
(@), (L1, By)®(Ly— 1, B,- 1) ®(Ly, B) is a crystal base of V,® V,,_; ® V,. By (i) and
Proposition 4, we have (L, B;)®(L,,- 1, Bp-1) = (Ly, Bw) ® (L~ 5, B, ). There-
for, (Ly, Bn)®(Ly, B)®(Ly-3,B,-,)®(L;,B) is a crystal base of V,@V,®
Vu—2® V). Hence, its direct summand (L,,, B,,) ® (L, B)) is a crystal base of V,,® V.
This shows (i). Since we know the actions of & and f on B,,_, x B, and hence
those on B; x B, _, x B, and those on B,, x B, B; x B,,_; x B,. Then explicit
calculations show (ii).

8. Proof of Theorem

In order to prove Theorem, we shall prepare

Lemma 7. Let 4,,4,€P .. We assume

C(Ay) and C(1y) hold. 8.1
dim A (Ay), =1 for any weight A of M(A), (8.2)
M) ® M(Ao) = Zs My + 1), (8.3)

where S is the set of weights u of M(Ao) such that ueB(l,), satisfies &* " u=0
for any i.
Then C(4, + p) is true for any pes.

Remark. (i) (8.3) is a consequence of Conjecture even without (8.2) (cf. the proof
below).

(i) We have A, + S = P, by the observation below.

(iii) Let (L, B) be a crystal base of an integrable U,-module M,. Then, for any
iel,peP and n=1,efM, =0 if and only if é/B, = 0. This can be easily checked
by reducing it to the irreducible representations of U (sl,).

Proof. Let M = M (A,)® M(Ao), L= L(A)® L(A,) and B = B(4,) x B(4,). Since
(ZL(4,), #(4,)) is a polarizable crystal base of #(4,) (v =0, 1), (L, B) is a polarizable
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crystal base of M. Let M = @ M; be an irreducible decomposition of M. Set
L;j=LnM;and B;= Bn(L;/qL;). Then, by Proposition 5 we have L= ® L;. We
shall show

B=|) B, (8.4)
j
In order to prove this it is enough to show that for ueP,
if ueB, satisfies &u =0 for any i, then ueB; for some j. (8.5)
Write u = u,; ® u, with u,e%(4,). Then, by Proposition 6, we have éu, =0 for any
i and &;*%*’y,=0. Hence u, = u,,, where #, =u; modq#(4,). We have
therefore

{ueB;éu=0 for any i} = {u, } x S. (8.6)
This implies that for any ueP,
{ve(L/qL),;&v =0 for any i} c #(4,)® L(Ao),-1,>
and hence it is one-dimensional. Since we have
{ve(L/qL),;év =0 for any i} = P {ve(L;/qL;),; &v =0 for any i},
{ve(L;/qL;),;év =0 for any i} =10
except one j. Thus we obtain ueB; for some j. This shows (8.5) and hence (8.4).

This implies that (L;, B;) is a crystal base of M.

it
Since )’ #{ueBj;éu =0 for any i} = #S and that this coincides with the number

J
of irreducible components, we can conclude that, for each j, there exists only one
ueB; such that &u =0 for any i. Q.E.D.

Lemma 8. Let 1y,A,€P . and assume (8.2) and

e M(hy)=0 for any i. 8.7
Let us set

S = {ueP;u is a weight of #(A,) such that e;*"**’ #(Ay), = 0}.
Then, (8.3) holds.

Proof. By Weyl’s character formula, it is enough to show

(Z e‘5>< Y sgn e‘"“‘*”’) =) Y sgn(w)ertrtato), (8.8)
& weW u weW
Here, ¢ ranges over the set P, of weights of .#(4,) and u ranges over S. Since the
left-hand side of (8.8) equals Y > sgn(w)e***#*9 it is enough to show that
EePo weW
Y, sgn(wjet 150 =0 (8.9)
weW

for any £eP,\S. For such a &, there exists i such that e'*"*1y 0 where u is the

weight vector with weight & Then (h;,4,>=0 and <{h;,¢) = — 1. They imply
5{(4; + & + p) =0 and hence we obtain (8.9). Here s; denotes the simple reflection
s,'(ll) = A - <hi! A)ai. Q.E.D.
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Let us finish the proof of the theorem. One can check easily the conjecture for
the fundamental representation or the spin representations. In fact, the usual base
of the fundamental representation or the base of the spin representation in
Reshetikhin [6] gives a crystal base. Now, we can apply successively Lemma 7
with the fundamental representation or spin representations as .#(4,). Note that
the fundamental representation or the spin representations satisfy (8.2) and (8.7)
and hence (8.3) follows from Lemma 8 and Remark (iii) after Lemma 7.

9. Decomposition

Assume that Conjectures 1 and 2 are true. Let M be an integrable U, ,-module
with highest weights. Then M is irreducible if its crystal graph (forgetting colors
and directions) is connected. Since the crystal graph of the tensor product is
described by Proposition 6, we can describe combinatorially the decomposition
of the tensor products. The following figures describe (J® O =[1J® H and
) B = B:] @ ¢ in the sl;-case.

12 1.2
—>—>0 *—>0—>0
1.2

1 L2 |y 2 2 2

10. Final Remark

Let (L, B) be a crystal base of an integrable U,-module M. Then one has
Proposition 9. Assume that AcP, icl satisfy | = <h;, A > 0. Then f*:L 12— L,y and
&L, _,,— L, are isomorphisms.

This is proven by reducing it to the sl,-case.
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