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Abstract. We prove the existence of stationary states for nonlinear Dirac equations
of the form

i f y»dμφ -Mψ + F(φφ)φ = 0, (E)
μ = 0

where M > 0 and F is a singular self-interaction. In particular, in the model
case where F(s)= —s~Λ, for some 0 < α < 1, and for every ω>M, there exists
a solution of (E) of the form φ(t,x) = eiωtφ(x\ where xo = t and x = (xi,x2>

x3)>
such that φ has compact support. If 0 < α < 1/3, then φ is of class C1. If
1/3 < α < 1, then φ is continuously differentiable, except on some sphere {|x| = R},
where |V<p| is infinite.

1. Introduction

In this paper, we study the existence of stationary states for nonlinear Dirac
equations of the form

i Σ y*W -Mψ + F(φφ)φ = 0. (1.1)
μ = 0

We consider here the case where F is a singular self-interaction.
The notation is the following. ^:R 4 -• C4, dμ = d/dxμ, M is a positive constant,

ΦΦ — (y°Φ> Φ\ where ( , •) is the usual scalar product in C4 and the yμ's are the 4 x 4
matrices of the Pauli-Dirac representation (see [14,15,17,18]), given by
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where

2 σ3 =

l o/ V* ° 7 \° -
Finally, F:R-*R models the nonlinear interaction.

We are interested in standing waves (or stationary states, or localized solutions)
of (1.1). In other words, we look for solutions φ of the form

where x0 = t and x = (x1,x2,x3). In addition we seek finite energy solutions; and
so we want φ to be at least integrable. The equation for φ:R3->C4 is

3

i Σ ykdkφ — Mφ + ωy°φ + F(φφ)φ = 0. (1.2)
k=l

Nonlinear spinor fields giving rise to equations of the form (1.2) with smooth
nonlinearities were considered first Ivanenko [8], Weyl [19], Heisenberg [7] and
Finkelstein, Fronsdal and Kaus [6]. Later, Soler [10] proposed the scalar fourth
order self-coupling as a model of extended fermions. A summary of such models
is found in Raήada [13]. The mathematical study of (1.2) in the non-singular case
was initiated by Vazquez [17], who gave necessary conditions for the existence of
nontrivial solutions. Then Cazenave and Vazquez [4] established the existence of
solutions under certain hypotheses on F. Later, Merle [12] generalized that result
to a wider class of nonlinearities. Then, Balabane, Cazenave. Douady and Merle
[2] established the existence of infinitely many solutions to (1.2) (see also Balabane
[1] and Cazenave [3]). These results apply to the model case F(s) = | s\p~ \ for p > 1.

In this paper, we study the case where F has a singularity at the origin. The
model example is F(s) = — |s|p~ \ for 0 < p < 1. Our motivation for this study is
the following. Mathieu and Saly [11] proposed the fractional power nonlinearity
as a model of strong interaction of particles. On the basis of numerical investigations,
they observed that the singularity of the self-interaction produces a strong
self-confining mechanism, in the sense that the solutions have compact support.
In addition, they recovered the MIT bag model (see Chodos, Jaffe, Johnson, Thorn
and Weisskopf [5] and Johnson [9]) as a limiting case. Later, Mathieu [10] clarified
the relation with the bag model in the framework of a semiclassical approximation.

Our paper is concerned with the mathematical problems related to the existence
of confined standing wave solutions to a class of nonlinear classical Dirac fields,
including the fractional power model. In this context, we provide a rigorous
mathematical solution to the confinement problem raised by Mathieu and Saly.
In particular, we prove the existence of solutions having compact support, for the
fractional power model. Furthermore, we extend the previous results to more
general nonlinearities by obtaining a necessary and sufficient condition for the
existence of confined solutions. A simple criterion is obtained, related to an integral
condition on the nonlinear term. Essentially, the nonlinearity needs to be singular
enough at the origin, in order to produce confinement. We also give a lower bound
on the radius of the confined solutions. On the other hand, the mathematical
analysis of the confined solitary waves is a basic preliminary step to study their
stability, as it happens in the Klein-Gordon field.
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Following Wakano [18] and Soler [10,11] (see also [17]), we seek solutions
that are separable in spherical coordinates, of the form

φ(x) =

\

cos0
(1.3)

Here r = \x\ and (θ,φ) are the angular parameters. Equation (1.2) then becomes a
nonautonomous planar dynamical system in the r variable, which is (compare
[18,15,17])

u' + — = v(F(v2 - u2) - (M - ω)); (1.4)

vf = u(F(v2-u2)-(M + ω)). (1.5)

In order to eliminate singularities at the origin, due to the term — in (1.4) we

impose the condition

M(0) = 0, (1.6)

and since we are interested in finite energy solutions of (1.2), we seek solutions of
(1.4)-(1.5) that verify

lim|u(r)| + |i;(r)| = 0. (1.7)
r->oo

We assume from now on that F:(0, oo)-»(— oo,0) is C 1 and satisfies the following
assumption:

!

F is integrable near the origin;
F is negative and nondecreasing; (1.8)

there exists ae(0, oo) such that F(a2) = M-ω and F'{a2)>0.
Before proceeding further, let us indicate that we will construct solutions with
compact support, if F is sufficiently singular at the origin. Therefore, we must
define precisely the type of solutions that we will consider.

Definition 1.1. (u,v) is an admissible positive solution of system (1.4)-(1J) if there
exists a real number 0 < R ^ oo such that the following holds;

(i) u^
(ii) 0 < u(r) < v(r), for all re(0, R);

(iii) w(0) = 0;
(iv)*)—0;

(v) (u,v) solves system (1.4)-(1.5) on (0,K).

Clearly, the number R is unique, and is called the radius of the solution (u, v).

Definition 1.1 deserves some comments. Assumption (iii) eliminates singulari-
ties at the origin, and assumption (iv) means that (u,v) vanishes as r*\R. Finally,
in order that system (1.4)—(1.5) makes sense, it is necessary that (u, i>) verifies (i) and
that v2 > u2 on [0, R). That last property is equivalent to assumption (ii) (compare
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Remark 2.8) provided v(0) > 0, which we always may assume, due to the symmetries
of the problem.

Our main result is the following.

Theorem 1.2. Let 0<M <ω, and assume that F satisfies assumption (1.8). Then,
system (1.4)-(1.7) has an admissible positive solution.

Admissible solutions may have finite or infinite radius, depending on the
nonlinear interaction F. Let us define the function GeC([0, oo))nC1(0, oo) by

G(x)=-]F(s)ds, for x^O, (1.9)

and the (possibly infinite) number v by

1 ds

" l m (U0)

Then, we have the following result.

Theorem 1.3. Consider 0<M <ω, and assume that F satisfies assumption (1.8). Let
(u,v) be an admissible positive solution of system (1.4)-(1.7), and let R be its radius.
Then,

(ii) R is finite if, and only ifv is finite.

Property (ii) of Theorem 1.3 gives a necessary and sufficient condition on F
that ensures that all admissible positive solutions of (1.4)—(1.7) have compact
support. Property (i) gives a lower bound on the radius of the solutions, depending
only on the frequency ω.

So far, we have stated the existence of a solution of system (1.4)—(1.7), and a
criterion to determine whether or not that solution has compact support. We will
now specify in what sense we have solved the original equation (1.2). We begin
with the regular case when the radius of solutions is infinite.

Theorem 1.4. Consider 0<M<ω, and assume that F satisfies assumption (1.8).
Assume further that v defined by (1.10) is infinite. Let (u,v) be an admissible positive
solution of system (1.4)-(1.7) (the radius of(u,v) is infinite, by Theorem 1.3), and let
φ be defined by (1.3). Then, φeC1(R3, C4), φ solves Eq. (1.2), and φ has an exponential
fall-off as |x|->αo. Furthermore, \Vφ\ is integrable on R3.

Remark 1.5. Note that Eq. (1.2) makes sense. Indeed, v2 — u2 > 0 on [0, oo), which
implies that φφ > 0 on R3; and so, F(φφ) is well defined.

In the case when the admissible solutions have finite radius, we must extend
them for larger values for r. We proceed as follows. Given an admissible positive
solution (u,v) of (1.4)—(1.7) with the finite radius R, consider the functions
ύ,veC(\Q, oo)) defined by

Γ«(r), if Oϊr<R; ί,(r), if 0^r<
w ^ Λ if r>Λ; n ; )θ, if r>Λ.
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Let φ e C ( R 3 , C 4 ) be defined by

φ(x) =

\

(1.12)

Finally, we define the function / by

(F(φφ)φ, if φφ > 0;

[0, if φφ = 0.

Then, we have the following result.

Theorem 1.6. Consider 0<M<ω, and assume that F satisfies assumption (1.8).
Assume further that v defined by (1.10) is finite. Let (u,v) be an admissible positive
solution of system (1.4)-(1.7) (the radius of(u,v) is finite, by Theorem 1.3), and let φ
be defined by (Lll)-(1.12). Then, φeW1Λ(R3,C4)nC(R3,C4),f(φ)eL1(R3,C4), and
φ solves equation

3

i Σ ykdk<P ~Mφ + ωy°φ+f(φ) = 0, (1.13)

in L\R3,C4). Furthermore, φeC\R3,C4) if and only if 4~(G(s))3/2 ->0, as sjO.
as

Here, L\R3,C4) is the space of integrable functions R3->C4, and W1Λ(R3,C4)
is the Sobolev space of functions of L1 whose first derivatives (in the sense of
distributions) belong to L1.

Note that Eq. (1.2) makes sense (see Remark 1.5). Furthermore, note that φ is
C1 for |x| < R and \x\ > R. Therefore, the possible discontinuities of Vφ are located
on the sphere {|x| = R} (see Lemma 4.4 for more information on the nature of the
singularity).

We will now apply our results to some model nonlinearities.

Example 1. Take F(s) = — ,̂ and consider 0 < M < ω < M + l . Then, there
1 +s z

exists a solution φ e C ^ R 3 ^ 4 ) of Eq. (1.2), such that φ has an exponential fall-off
as |x|->oo. It follows from the equation that Vφ also has an exponential fall-off
as |x| -• oo. In addition, φφ > 0 on R3.

Example 2. Let F:(0, oo)->(— oo,0) be an increasing function such that F(s)->0,
as s -> oo, and such that F(s) = Log (5), for s small. Consider 0 < M < ω. Then, there
exists a solution φeC^R3, C4) of Eq. (1.2), such that φ has an exponential fall-off
as |x|->oo and VφeL^R 3^ 4). In addition, φφ>0 on R3.

Example 3. Let F(s) = — s~a, for some 0 < α < 1/3, and consider 0 < M < ω. Then,
there exists a solution φ e C ^ R 3 ^ 4 ) of Eq. (1.2), with compact support.

Example 4. Let F(s) = — s~~α, for some 1/3 < α < 1, and consider 0 < M < ω. Then,
there exists a solution φeW1Λ(R3,C4) of Eq. (1.2), with compact support. In
addition, φ is continuously differentiable, except on some sphere {|x| = R}, where
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Vφ is infinite (see Remark 4.5). That property was observed by Mathieu and Saly
[11].

Note that these results are quite similar to those concerning the Klein-Gordon
field (see Stubbe [16]). However, the solutions of the Klein-Gordon equation have
less singularities than the solutions of Dirac's equation. For example, when
F(s) = — 5"α, for 1/3 < α < 1, the solutions of Dirac's equation have a discontinuous
derivate, while the solutions of the Klein-Gordon equation are of class C2 (see
Stubbe [16]).

The paper is organized as follows. In Sect. 2, we define the notation and we
establish preliminary results concerning the dynamical system (1.4)—(1.5). In
particular, we study the behaviour of the solutions near the diagonal {u = v} where
the system becomes singular. Section 3 is devoted to the proof of Theorem 1.2 and
Sect. 4 to the proof of Theorems 1.3, 1.4 and 1.6.

The authors wish to express their thanks to J. Stubbe for valuable discussions.

2. Notations and Preliminary Results

In all that follows, we consider 0 < M < ω, and we assume that F verifies (1.8). Let

For convenience, we set

m = M-FO0^M,

and

φ(s)=-(F(s)-Fo0% fors>0,

so that φ(s) ̂  0 for s > 0. We also set

φ(s) = \φ(σ)dσ, for s^O.

Observe that (1.4)—(1.15) is equivalent to the following system:

M' + — = v(-φ(v2-u2)-(m-ω))9 (2.1)

v' = u(-φ(v2 - u2) - (m + ω)), (2.2)

Remark 2.1. Note that by assumption (1.8), we have the following properties.

(i) 0 < m < ω ;
(ii) φ(a2) = ω-m;

(iii) φ(s) ̂  φ(s0) > ω — m, for 0 < s g s0 < α2;
(iv) φ(s) >0.

s-* + oo

We define the continuous function H on the set {v2 ^ u2} by

H(u, v) = -\Φ{v2 - u2) + \{ω - m)(v2 - u2) + ωu2,
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and for τ > 0, we define the continuous function Hτ on the set {v2 ^ u2} by

H t(W, ι;) = - iφ(ι? 2 - M2) - V m + ^ ^

= H(u9v)--v2.
τ

For convenience, we set

Note that H and Hτ are C 2 on the set {v2 > u2}. Given x φ 0, we write the system

f(2.1), (2.2)

[M(0) = 0, y(0) = x,

in the integral form

Γu(r) = 1 } s2v(s)( - φ(v2(s) - u2(s)) - (m - ω))ds9

(2.3)

> = x + j u(s)( — φ(v2(s) — u2(s)) — (m + ω))ds.

Since the integrand is a locally Lipschitz continuous function of (w, v) on the open
set {v2 > u2} where ^(t;2 — u2) is defined and C1, existence of a maximal solution
follows from the classical contraction mapping argument. It follows that there
exists a unique maximal solution (ux9υx)eCι(\Q9Rx)9 R2) of (2.3), such that
υ2

x — M2 > 0 on [0, Rx\ Moreover, for R < Rx, (ux, vx) depends continuously on
xΦO in the C1([0,R],R2) topology. In addition, if Rx< oo then u2 —1;2-+0 or
\ux\ + \vx\~*°°> a s r^Rχ We define the orbit Γx of (0,x) by

We will need the following straightforward properties of Γx.

Lemma 2.2. Let x Φ 0 αnrf re[0, ΛX). PΓ

(i) — jtfiii^r),i;x(r)) = -u2

x(-φ(v2

x - ul) - (m + ω)) ^ 0;

(ii) ^Ht(uM vx(r)) = 2ux(- φ(v2

x - u2

x) - (m + ω))(^- - j \ in particular, ifu ^ 0,

then ^-Hτ(ux,(r), vx(r)) ^ 0, if and only ifj~^ 0.

In view of Lemma 2.2, several important properties of Γx follows from the
structure of the sets {H(u9v) = C) and {Hτ{u,v) = C). We will study those sets in
the following lemmas:

Lemma 2.3. Let < τ ^ oo. Then,
ω — m

(i) there exists two constants Cτ > 0 and Aτ > 0 such that

Hτ(u,v)^Cτ(u2 + v2)-Aτ for v2^u2;
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in particular, the set {Hτ(u,v) ^ K} is bounded, for every K;
(ii) Hτ(0, v) < 0, for all ve(0, a];

(iii) there exists ητ>0 such that if Hτ{u,v)^\ for some O^u^v, then v^ητ.

Proof (i) It follows from Remark 2.1 that

limsup-Φ(s) = 0.

Therefore, for every ε > 0, there exists a constant Kε such that

Φ(s) ̂  εs + Kε, for every s ̂  0.
It follows that

1/ lλ 1/ 1\ K
Hτ(u,v)^ - - m + ε + - )(v2-u2) + -[ ω-- )(v2 + u2)--^

2\ τj 2\ τ) 2

(i) follows by choosing 0 < ε < ω — m — .

(ii) Let O^t ^ α . By Remark 2.1, we have φ^ω — m on [0,α2]; and so
Φ(v2) ^ (ω - m)v2. It follows that

Hτ(0, v)S- i(ω - m)v2 - Hm + ̂ V2 + i ( ω - ^ t ; 2 = - ^ 0.

Note also that for v > 0, the first inequality is strict. Hence (ii).
(iii) follows from continuity and the fact that Hτ(0,0) = 0. •

Lemma 2.4. Let — < τ < and let Gτ = {0^u^v, Hτ(u, v) = 0}. Then,
ω ω — m

(i) for [u,v)eGτ such that u>0, we have Hτ(z,v)<0,for0^z<u;
(ii) for (u, v)eGτ such that u + v > 0, we have u<v;

(iii) Gτ is a connected unbounded curve containing the origin;
(iv) Gt is tangent to {u = v} at the origin, if φ(0) = oo;

u2

 2--{ω-m)

(v) for (u,v)eGt such that u + v-*oo,we have -ψ-+ e(0,1).
v at + m

Proof. Note that
#,(0,0) = 0;

Ht(v,v) = (ω — Jv2>0, for v>0;

0, for υ>0;

d(u2)
-Ht(u, v) = U(v2 - u2) + Urn + ω).
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This implies (i), (ii) and (iii).
To prove (iv), observe that for (U,V)GGT,

v2-u2)Φ(v2-u) 1 / l
0= \ ^--m — + ω —2 2 τ w / 2

v2-u2 τ \ τjv2 —
(iv) follows, since φ is singular at the origin.

To prove (v), observe that for («,u)eGτ,

Φ ( t ; 2 - u 2 ) 2 / u2

0 = = + ω + m + (ω + m W .
v2 τ v2

Note also that

2 ^
V V t>2->oo

Hence (v). Π

We continue with two simple applications of Lemma 2.2.

Corollary 2.5. For every x ^ O w have sup {|wx(r)| + \vx(r)\,re[0,Rx)} < oo, and if
Rx< oo, then u2

x —1^->0 as r-+Rx.

Proof. By property (i) of Lemma 2.2 and the local existence argument, it is sufficient
to show that for any given C, the set {(M, ι>)eR2, v2 > u2 and H(u9 v) g C) is bounded.
This follows from Lemma 2.3 (i), applied with τ = oo. •

Corollary 2.6. Let x2 ^ a2. Then u2

x < v2

x ̂  x2 on [0, Rx).

Proof By property (i) of Lemma 2.2, we have

H(UX9ΌJ£H(0,X), on [0,Rx).

On the other hand, note that

^ H t ( n , v)=l- φ(v2 - u2) + l-{m + ω) ̂  0;

and so,

H ( 0 J g J ί ( ) ^ H ( 0 ) , on [0,ΛJ.

Since 2//(0, ι;) = (ω — m)ι;2 — Φ(v2) is a nondecreasing function of v2 on [α2, oo), it
follows that v2- ̂  x2 on [0, Rx). Inequality u2. < v2. follows from the definition of
Rx. •

Proposition 2.7. Γ/ier^ ^xisί α > 0 and δeί 0 ,—-— 1 with the following property.

For every x Φ 0, we have ^ '

(I) Rx > -
ω — o

(ii) vl-ul^oίx2 on 0, ).

L ω-δj



62 M. Balabane, T. Cazenave and L. Vazquez

Proof. Let δel 0 , m ω J fce such t h a t

ω J ω

let

\ ωj ω

and

For 0 g r ^ ρx, we have by Corollary 2.5,

jr(v2

x - u2

x) = 2{vxυ'x - uxu'x) = 4 ^ - ωuxv,

^ 4((ω - δ)u2

x - ωυ2

x) = 4ω(u* - i£) - 4δu2

x

It follows that

^r(e(vlul)) + 4δxe^0, on [0,pJ.
αr

Integrating the above equation yields

v2

x-u2

x^ocx\ on [0,px).

In particular, t;̂  - u2

x > 0 on [0, px). When Corollary 2.5 is applied, this implies
that ρx<Rx. Hence the result.

Remark 2.8. Consider x>0, and assume that vx(r)-^0, as r^Rx. Then, (ux,vx) is
an admissible positive solution, with radius Rx. Indeed, in view of Definition 1.1,
it is sufficient to verify that ux>0 on (09Rx). Note that H(ux(r%vx(r))-+0, as r]Rx.
It follows Lemma 2.2 that H(ux(r), vx(r)) > 0 on [0, Rx). Therefore, if ux(ρ) = 0 for
some pe[0, Rx), we have vx(p) >aby Lemma 2.3, and it follows from Eq. (2.1) that
ux(ρ) > 0; and so, we must have p = 0. Hence the result. Note that we must have
x>a.

3. Proof of Theorem 1.2

Consider x > a. It follows from (2.1) that ι4(0) > 0. Therefore we have ux > 0 and
vx > 0 for r small. Note that by Corollary 2.6, vx cannot vanish on [0, Rx); and so
u x > 0 o n [0,/y. Let

rx = sup{re(0,Rx\ux>0on (0,r)}.

Clearly, we have 0 < ux < vx on (0, r j . Furthermore, either rx = RX9 or else rx < Rx
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and then ux(rx) = 0 and vx(rx)>0. Note that in the latter case, we must have
u'x(rx) ^ 0, which implies in view of (2.2) that

0<vx(rx)<a. (3.1)

We define the set Io as follows:

I0 = {xe(a9co)9rx<Rx}

= {xe(α, oo),0 < ux < vx on (0, rx), vx(rx)e(0, a), ux(rx) = 0}.

The strategy for proving Theorem 1.2 is the following. We will first show that J o

is a nonempty, bounded, open subset of R. The open character of Io is a simple
consequence of the continuous dependence of the solutions on the initial data, the
nonemptyness follows essentially from a result of Cazenave and Vazquez [4], but
the boundedness requires the rather delicate construction of a trapping region.
The next step consists in showing that if we set y = sup/0, then \uy\ + \vy\ -•0 as
r-» Ry. Extending (ux, υx) by (0,0) in (Ry, oo) yields the desired solution. This result
relies also on the construction of a trapping region that prevents the solutions
with initial data in / 0 to come too close to the set {u = υ} except at the origin. The
further properties of the solution follow from standard estimates.

Lemma 3.1. / 0 is nonempty. More precisely, every x>a such that H(09 x)<0 belongs
tol0.

Proof. Consider x > a such that H(0, x) = — h< 0 (such as x exists by Lemma
2.3(ii)). By Lemma 2.2, we have H(ux, vx)<^-h on [0, Rx). Since H(v9 v) = ωv2 ̂  0,
it follows that Γx is bounded away from the set {u2 = v2} and the result is a
consequence of the following Proposition. •

Proposition 3.2. Let x>a. Assume that there exists ε>0 such that v2

x — u2

x^z on
[0,RJ. Thenxelo.

Proof. By Corollary 2.5, we have Rx = oo. Thus we only have to prove that rx < oo.
We argue by contradiction and we suppose on the contrary that rx = oo. It follows
that

0 < M J C < ϋ J c ^ x o n [0,oo),

where the last inequality follows from Corollary 2.6. Note also that by (2.2) vx is
decreasing. Therefore, there exists v such that

t;xJ,t;>0, as r->oo,

and v > 0 since H(uX9 vx) ̂ -h. Note that by (2.1)-(2.2),

Since ωvx-+ωv > 0 and — -•(), as r-> oo, it follows that v% — u\ is decreasing for r

large; and since υ\ — u\^ε>0, there exists / > 0 such that v2

x — ulj/, as r-• oo. It
follows that ux also has a limit u ̂  0, as r-+ oo. By (2.2), we have

i/Jr) — • M(~φ(l) - m - ω) ̂  - (m + ω)u.
r->ao
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Since vx has a limit, we must have u = 0. Now, by (2.1), we have

u'x(r)—>v(-φ{v2)-m

and so, we must have v( — φ(v2) — m + ω) = 0, which means v — a. Thus,

(ux, vx) -> (0, α), as r -> oo.

Let (U, V) = (MX, U, - α). By assumption (I/, K) -•(0,0) as r ̂  oo and [/, K > 0. The
equations for U and K are

/ ' = - — + (fl+K)(-0(0 2 + K2 + 2 α K - l / 2 ) - m + ω),

(3.2)
F = U(-φ{a2 + V2 + 2aV -U2)-m- ω).

We have F 2 + 2αK - ί/2 -^0, and | V2 + 2 α K - ί/2| ^ C(U + V). Therefore if we set

we have

φ{a2 + V2 + 2aV-U2) = ω-m- 2adV + o{U + K).

Equation (3.2) becomes then

V = - — + 2α2dK + o{U H- K),

(3.3)
V'=-2ωU + o(U+V).

It follows that

/ 2\
(V- U)f = ω(F- U)-lω — jί/-(ω + 2a2d)V+ o(U + F), for r large.

Therefore e~ωr(V—U) is nonincreasing for r large. Since e " ω r( V — U) -• 0, as r -* oo,
it follows that V — U ̂  0 for r large. Thus we can replace o(U + K) by o(K) and
we get from the first equation in (3.3),

I, for r large.

Thus U is increasing for r large, which is a contradiction since U > 0 and 1/ -* 0.
Hence the result. •

Lemma 3.3. /0 is an open subset ofR.

Proof. Let xo

G^o We have 0 < uXo < vXo < x0 on (0,rXo) and 0<vXo(rXo)<a on
[0, r X o ] . It follows in particular that u'xo(rXo) < 0; and so uXo becomes negative after
rxo. Therefore, it follows easily from the continuous dependence of (ux, vx) on x that
for x close enough to x 0, we have xelo. Hence the result. •

Proposition 3.4. /0 is bounded.

Before proceeding to the proof of Proposition 3.4, we will establish the following
preliminary lemma.
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Lemma 3.5. Let OL and δ be defined by Proposition 2.7 and let xelo. Then the
following holds.

(i) If ocx2 > a2, then rx > -
ω — o

(ii) if rx > ——-, then Hιl(ω.δ)(ux{r\ vx(ή) ^ 0, for every rel - , r x ) .
0) — 0 \CO — 0 J

Proof, (i) By Proposition 2.7, we have

vl > vl — u2 > OCX2 > α2 for 0 < r <
X X X — 5 cj

ω — o

In particular, we have
υx > a, for 0 ^ r ^ < Rx.

(0 — δ

(i) follows, by (3.1).

(ii) Consider reί -,rx ) . We have

J±A _ ( ω _ δ)Vχ{r) g ( ω _ δ ) ( M j c ( r ) _ ^ ( r ) ) ^ o,

since xe/ 0 . By Lemma 2.2 (ii), this implies that Hί/{ω_δ)(ux,vx) is nondecreasing

on ( j , rx I. Note also that, by Lemma 2.4 (i) and (iii), we have Hυiω_J0, v) < 0,
\ω-d J

for every v > 0. In particular, Hlί(ω_δ)(ux(rx), vx(rx)) < 0. Hence (ii). •

Proof of Proposition 3.4. Let α and <5 be defined by Proposition 2.7 and consider
2

τ > . Let xe/ 0 . It follows from (3.1) and Lemma 2.3 (ii) that Hτ{ux(rx\ vx(rx)) g 0.

Thus we can define the number px < rx by

px = inf {re(0, r J , Hτ{ux, υx) ^ I on [r, r J } .

Note in particular that Hτ(ux(px), vx(px))^ 1, and that Hτ(ux(ρx\ vx(px))=l iίpx>0.

Assume first that ρx ^ -. Then, we have by Proposition 2.7 and Lemma 2.3

2 ^ 2/ x 2/ ^^ 2< . 2/ X ^ T + I

αx2 ^ 2;2(/9J - w2(/9x) ^ i i ί p j + w 2(pj ^ — - — ,

which implies the desired bound on x. Therefore, we can assume that ρx >
Then Hτ(ux(px)9vx{ρx)) = 1; and so there exists σe(px,rx) such that ω~"

By Lemma 2.2 (ii), this implies that ̂ ^ ^ - ^ . Since σ < rx, we have 0 < ux(σ) < vx(σ);
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and so we must have σ < τ, which implies

px<τ. (3.4)

Let ητ be defined in Lemma 2.3 (iii) and consider the set

A = {(M, V); U > 0, v ̂  ητ, ff 1/(ω_Λ)(iι, t;) ̂  0}.

It follows from Lemma 2.3 that Λ is bounded away from the set {u = v}. Therefore,
there exists Kτ such that

φ(u, v) :g Kτ, for every (M, v)eΛ. (3.5)

Note that by definition of pχ9 Lemma 2.3 (iii) and Lemma 3.5 (ii), we have

(ux(r)9vJr))eΛ9 for every rel -9px I. Therefore, applying Lemma 2.2 (ii), (3.5)
\ω-δ )

and Lemma 2.3 (i), we obtain

yHτ{uMvJr))Z -2(φ(v2

x -u2

x) + m + ωp-
dr r

^ - (φ{v2

x - ul) + m + ω)(ω - δ)u2

x

^ -2{Kτ + m + ω)(ω - δ){u2

x + v2

x)

Z -hκτ + m + ω)(ω - δ)(Aτ + Hτ{ux, vx)).

= -βτiίτ(ux,vx)-γτ9

for some constants βτ and yτ (independent of x). It follows that

jy'Hτ(uMvx(r))) + yτe
β^0, on ( )

Integrating the above inequality and applying (3.4), we obtain

where Lτ does not depend on x. It follows from Proposition 2.7 and Lemma 2.3 (i)
that

= X 1 c I X I c I — X I c I ' XI c I =Ξ y t *

~ \ω-5/ \ω-δ/~ \ω-δj \ω-δj Cτ

Hence the result. •

Lemma 3.6. Let oc and δ be defined by Proposition 2.7, let y = sup/ 0 and let

Δ = {(u,v);OSu^v^y, min {αα2 - (v2 - u2), H1/{ω_δ)(u9 v)} ̂  0}.

Then, for every xelθ9 we have {μx(r)9vx(r))eΔ for every re[09rx].

Proof Let xe/ 0 . We have 0 ̂  ux ̂  vx ̂  x ̂  y on [0, r x ] . Furthermore, by Proposi-
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tion 2.7, we have vl — ul^. αx2 ^ cua2 on 0, min \ -, rx > . Finally, if rx > -,
|_ [ω — d J J ω — o

we have Hί/iω -^(u*, u j ^ 0 on - , rx , by Lemma 3.5 (ii). Hence the result. •

Proof of Theorem 1.2. Let y = sup/ 0 . y is finite by Proposition 3.4. We claim that

0 < Uy(r) < vy(r) < y, for every re(0, Ry); (3.6)

and

υ,(r)lθ9 as r T K r (3.7)

Indeed, by Lemma 3.3, / 0 is open; and so yφlo- Therefore, ry = Ry, and (3.6) follows.
Furthermore, since yφlo, it follows from Proposition 3.2 that there exists

(sw)π e Nc [0,Ry) such that snTΛ, and vy(sn)-uy(sn)->0, as n->oo. On the other
hand, given 0^r^Ry, it follows from the fact that yelθ9 Lemma 3.6 and the
continuous dependence of the solution on x that (uy(r), vy(r))eΔ. Note also that by
Lemma 2.4, Δn{u = v} = {(0,0)}. Therefore, we must have vy(sn)-• 0, as n->oo.
Since vy is nonincreasing on [0,Λy), it follows that t; y |0, as r"\Ry. Hence (3.7).

It follows that (uy,vy) is an admissible positive solution, with radius Ry. This
completes the proof. •

4. Further Results

Let (w, v) be an admissible positive solution of (1.4)—(1.7) of radius R, and let x = t?(0).
Since w > 0 on (0, R\ it follows in particular from Eq. (2.1) that x > a. Therefore,
with the notation of Sect. 3, we must have R = Rx = rx. Conversely, if x > a is such
that rx = Rx, it is clear that (ux,vx) is an admissible positive solution of (1.4)—(1.7)
of radius Rx. Therefore, studying the properties of admissible positive solutions is
equivalent to study the properties of (ux, vx), where x > a is such that rx = Rx.

We begin with the following simple lemma.

Lemma 4.1. Assume that φ is bounded at the origin, and let x>a be such that
rx = Rx. Then, Rx = oo.

Proof By Eq. (2.1), we have

\v'x\^Cux^Cvx, on (0,Rx),

with C = </>(0) + m + ω. It follows that

v'x + Cvx^0 on (0,/y.

Integrating the above equation, we obtain

vx{r)Zxe'c', for rφ,Rx).

Hence the result. •

Next, we consider the case where φ is singular at the origin. Let us introduce
the function φ as follows. Let Φ ( ~ 1 } be the inverse function of Φ. Since Φ is
increasing, positive, concave and Φ(0) = 0, it follows that Φ ( " υ is positive,
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increasing and convex, and that Φ(~υ(0) = 0. Let

ψ(s)^φ(Φ(-1\s)\ for s>0. (4.1)

It follows that ψ is positive and nonincreasing, and that φ(0) = φ(0).

Lemma 4.2. Assume that φ(0) = oo, and let x>a be such that Rx = rx. Then,

(ii) for every εe(0,1), there exists pεe(0,Rx) such that

φ(ω-^(l+φ^#^^

forallrelpε,Rx).

Proof. By Lemma 3.5, H1/iω-δ)(ux(r), υx(r)) g 0, for every reί — - , rx 1. It follows

from Lemma 2.4 (i) that (uX9vx) is between the curves G1/(ω_^ and the diagonal

{u = v}, for rel -, rx I. Therefore, (i) follows from Lemma 2.4 (iv), since
\ω-δ )

+ vx^>09 as
Let 0 < τ S r < Rx. We have

«xW

k τ r

When Lemma 2.2 is applied, it follows that Hτ(ux, vx) is nondecreasing on (τ, Rx).
Since furthermore Hτ(ux,vx)^>0, as r fβ x , it follows that Hτ{ux, vx) ̂  0, on [τ,Rx).
This implies that

r) - u2

x(r)) + (m + ω)(v2

x(r) - u2

x(r)) ̂  l(ω - ^Jv2M (4.2)

for all re — ,RX 1. Note that Φ(s)/s-+oo, as sJ,O; and so,
|_ω /

Φiplir) ~ u2

x(r)) + (m + ω)(tj(r) - u2

x(r))

φ{v2{r)_u2{r)) iU as r1Rx. (4.3)

Given εe(0,1), it follows from (4.2)-(4.3) that there exists ρεe(0,Rx) such that

Φ(v2Λr) - u2

x(r)) ̂  l[ω - - ^ ( 1 - ε)v2M for re(p ε, Rx).

The right-hand side inequality of (ii) follows by applying Φ ( ~ υ , then φ.
For proving the left-hand side inequality of (ii), we consider two cases. If Rx = oo,

we apply the inequality H(ux, vx) ̂  0, on (0, oo). This implies that

Φ(vl(r) - u2

x(r)) S -(m + ω){υ2

x{r) - u2

x{r)) + 2ωv2

x(r) ί 2ωv2M

for all re(0,Rx). The left-hand side inequality of (ii) follows by applying Φ ( " υ ,
then φ.
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If Rx < oo, consider τ > Rx. It follows from (i) that

vx(r)\ r τ ) r\vx(r) ) +r τ~^C Rx τ

It follows that there exists θe(0,Rx) such that

- ^ — — ^ 0 , for re[Θ,RX).

By Lemma 2.2, this implies that Hτ(uχ9vx) is nonincreasing on {Θ,RX). Since
furthermore Hτ(uX9 vx) -• 0, as rf/^. it follows that # t(u x, ι?J ̂  0, on [0,KX) This
means that

Φ(vl(r) -u2

x(r))ί-(m + ω)(v2

x(r) -u2

x{r))

(4.4)

for all re(θ,Rx). Given εe(0,1), one can choose τ > Rx such that

and it follows from (4.4) that there exists pεe(0,Rx) such that

Φ(vl(r) - u2

x{r)) ^l(ω- j - V + ε)^(r), for re(pε, Rx).

The left-hand side inequality of (ii) follows by applying Φ( ~ υ , then φ. This completes
the proof. •

Proof of Theorem 1.3. (i) Consider x>a such that Rx = rx. It follows from
Proposition 2.7 (i) that

ω — d ω

Hence (i).
(ii) Note that the assumption

ΪW)<O0' (4>5)

is equivalent to

i ds

ίφ(5J < 0 0

Furthermore, putting v = Φ(s), we have

f - T dv

where φ is defined by (4.1). Therefore, assumption (4.5) is equivalent to

i ds

ίi^)< 0°
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So, suppose that (4.6) holds. In particular, φ must be unbounded at the origin;
and so we can apply Lemma 4.2. Consider x > a such that Rx = rx. It follows from
(2.2), and Lemma 4.2 that there exists pe{0,Rx) such that

0 = v'x + ux(φ(vl -ul) + ω + m)^v'x + \vx(φ{υ2

x - u2

x) + ω + m)

on (p, Rx). It follows that for some A > 0,

(ω-γ

p vx(r)φ(Λvx(rr)

This means that
/fe 1 Avx(p)2

and so, Rx<co.
Conversely, assume that x is as above and that Rx is finite. In particular, φ is

singular at the origin, by Lemma 4.1; and so, we can apply Lemma 4.2. It follows
from (2.2) and Lemma 4.2 that there exists ρe(0,Rx) such that

0 = v'x + ux(φ{v2

x -ul) + ω + m)Sv'x + vx{φ(v2

x -u2

x) + ω + m)

^ v'x + vJ I ψl ω - — )vl) + ω + m ) ̂  vx + vx{φ(ωvl) + ω + m),
\\ V Rχ/ ) )

on (p,Rx). Since φ(0) = ι̂ (O) = oo, it follows that, by possibly choosing p closer to
Rx,

0^v'x + 2vxψ(ωvϊ),

on (p, Rx). Proceeding as above, we obtain

ωvx(p)2 fc

ί
and so, (4.6) holds. This completes the proof. •

Proof of Theorem 1.4. It is sufficient to show that if x > a is such that Rx = rx= oo,
then vx (hence ux) has an exponential decay as r-* oo, and v'x,v'xeI}(0, oo). Indeed,
it follows from (2.1)-(2.2) that

(ux + vJ + (ux + vx)(φ(vl -ul)-ω + m)= — — -2ωu x ^0.

Since υ2

x — u\ -+0, as r-^ oo, it follows from Remark 2.1 (iii) that there exists δ > 0
such that

("* + vJ + δ(ux -f vx) ^ 0, for r large.

The exponential decay follows easily. Note also that by (2.1)-(2.2) and Remark 2.1
(iii), there exists r0 such that

u'x<0 an ι 4 < 0 , for r^r0.
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Since both ux and vx converge to 0, as r-» oo, it follows that v'x9 ifxeϋ(rθ9 oo). Since
ux and v'x are bounded on [0, r 0 ], the result follows.

Finally, it remains to prove Theorem 1.6. It will be a consequence of the
following two lemmas.

Lemma 4.3. Let x>a be such that Rx = rx< oo. Define the functions ύ, ύ, h, k by

.(r), if 0 ^ r < Rx; A jvx(r), if 0 ^ r < Rx;

[0, if r>Rx; jθ, if r>Rx;

and

-2^-vx(r){φ(v2

x-u2

x)-ω + m\ if 0 ^

|0, if r>Rx;

-ux{r){φ(v2

x-u2

x) + ω + m\ if 0^r<

0, if r>Rx.

Then, ύ,ΰeW1Λ{09 oo),Λ,fceL^O, oo), and we have

in 3)'(0, oo).

Proof. Note that ύJeCHΆRΛkkeCHO RJ), and that by (2.1)-(2.2),

on [0,Rx). Evidently, we also have ιi,ίS6C1(RJC,oo),ft,fceC(Λx, oo) and

on (Rx, oo). Note also that ύ, ϋ are continuous on [0, oo). Therefore, the result
follows if we show that h, k are integrable near Rx. In other words, we have to
show that

t K | + |ι/x|)dr<oo. (4.7)

Since ux and vx converge to 0, as rf Rχ9 it follows from (2.1)-(2.2) and Remark 2.1
(iii) that there exists pe(0, Rx) such that vίx < 0 and vx < 0, on (p, Rx). It follows that

f (\u'x\ + |ι4l)dr = - )\u'x + v'x)dr = ux(p) + vx(p) < oo.
P P

Since u'x and vx are bounded on (0, p), (4.7) follows. Hence the result. •

Lemma 4.4. Let x>a be such that Rx = rx<oo. Define the function λ by

^Γ(Φ{s))2, for 5>0.
as
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Then,

lim inf u'x(r) = lim inf vx(r) = — c lim sup λ(s), (4.9)
r]Rx r]Rx s[0

and

lim sup u'Jr) = lim sup vf

x(r) = — c lim inf A(s), (4.9)

2 / 1 \
where c = —-== and α = 21 ω — —- 1. In particular, λ has the (finite or infinite) limit

?J \ RJJ
I as s 10, if and only if both u'x and vx have the limit — cl, as

Proof Note first that

Given a > 0, and putting ax2 = Φ(s), it follows that

λ(s) =

and so,

lim inf xφ(ax2) = — γ = lim inf λ(s),

3 (4.10)
lim sup xψ(ax2) = — • = lim sup λ(s).

2/

Note also that by Lemma 4.1, φ is singular at the origin. Therefore, it follows from
Lemma 4.2 that, given εe(0,1), we have

vxφ(v2

x-u2

x)ίvxψ((l-ε)*v2

x),

on (ρε,Rx); and so, by (2.1) and (4.10),

lim sup (— ux) ^ lim sup xψ((l— ε)ocx2) = — lim sup λ(s).

rϊRx xio 2^/(1—ε)α 40

Making εJ,O, we obtain

lim sup (— u'x) ̂  c lim sup λ(s).
rlRx sJO

Furthermore, applying again Lemma 4.2, we obtain

vxφ(v2

x-u2

x)^vxψ((l+ε)*v2

x),

on (pε,Rx); and so, by (2.1) and (4.10),

lim sup (— ux) ^ lim sup xψ((l + ε)αx2) = — - = = = lim sup λ(s).

r^Rx χ|o 2^/(14- ε)α sjo

Making εJ,O, we obtain

lim sup (— ux) ^ c lim sup λ(s).
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It follows that

lim sup (— u'x) = c lim sup λ(s).

Clearly, the same holds for the lim inf, and working with Eq. (2.2), one obtains the

same identities for v'x. Hence the result. •

Remark 4.5. Note that φ(s) = s~p, for 0 < p < 1, verifies the assumptions of Theorem

1.2. In addition, we have

ds
< oo.Φ(s)

Therefore, all admissible solutions have compact support. Furthermore, it follows

from Lemma 4.4 that if (u9υ) is an admissible solution of radius R, then for

0 < p < 1/3,1u'\ + \υ'\ ->0, as r\R. In particular, w, veC\[_fy oo)). For p = 1/3, both

u' and υ' converge to the same finite negative limit, as r\R. For p > 1/3, both u'

and v' converge to — oo, as r\R.

Proof of Theorem 1.6. The first part of the statement follows easily from

Lemma 4.3 and formulas (1.11) and (1.12), and the second part follows from

Lemma 4.4. •
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