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Abstract. This is the first of a planned series of investigations on the theory of
ordered spaces based upon four axioms. Two of these, the order (1.1.1) and the
local structure (II.5.1) axioms provide the structure of the theory, and the other
two [the identification (1.1.11) and cone (1.2.7) axioms] eliminate pathologies
or excessive generality. In the present paper the axioms are supplemented by
the nontriviality conditions (1.1.9) and a regularity property (II.4.2).

The starting point is a nonempty set M and a family of distinguished
subsets, called light rays, which are totally ordered. The order axiom provides
the properties of this order. Positive and negative cones at a point are defined in
terms of increasing and decreasing subsets and are used to extend the total
order on the light rays to a partial order over all of M. The first significant result
is the polygon lemma (1.2.3) which provides an essential constructive tool. A
non-topological definition is found for the interiors of the cones; it leads to a
"more homogeneous" partial order relation on M.

In Sect. II, subsets called D-sets (Def. Π.2.2), possessing certain desirable
properties, are studied. The key concept of perpendicularity of light rays is
isolated (Def. II.3.1) and used to derive the basic "separation properties,"
provided that the interiors of cones are nonempty. It is shown that, in a D-set,
"good" properties of one cone can be transported along light rays, so that the
structure of a D-set is homogeneous. In particular, if one cone has nonempty
interior, so have all others. However, the existence of even one cone with
nonempty interior does not follow from the axioms, but has to be imposed as
an additional regularity condition. The local structure axiom now states that
every point lies in a regular D-set. It is proved that the family of regular D-sets is
closed under finite intersections. The order topology is defined as the topology
which has this family as a base. This topology is Hausdorlf, and coincides with
the usual topology for Minkowski spaces.

0. Introduction

Ordered spaces play a central role in theoretical physics. The ordering of time, for
instance, induces an ordering of the space of events by the future light cone.
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Another example is the ordering of the state space of a thermodynamical system
due to the irreversibility of thermodynamic processes. Orderings, in fact, are
obtained both in the thermodynamics of equilibrium states, and in that of
irreversible processes. The latter is of particular interest from the point of view of
physics, since there appears to be a connection between the concepts of time-
ordering, irreversibility, and dissipativity which has not yet been fully exploited. As
a last example we may take the case of particle physics. Here the notion of
positivity of energy gives rise to an order in the set of states. In this example there is
also a connection between this ordering and time-ordering in the space of events
(when the space of events coincides with Minkowski space), because the space-time
ordering and the energy-momentum ordering are dual to each other. These two
orderings in particle physics are connected with the ordering in thermodynamics
via the KMS condition, that is to the ordering of the temperature scale. But one is
still in the dark as to how all these orderings fit into one convincing scheme.

From these examples it would appear to be natural to study ordered spaces in
some detail. However, the impetus to start a systematic investigation came only a
few years ago, when Donaldson and Freedman1 showed that R4 admits
inequivalent differentiate structures. Since from the point of view of experimental
physics it would hardly seem possible to distinguish between infinitely differenti-
able functions on the one hand, and continuous nowhere-differentiable functions
on the other hand, we felt that the differentiable structure of the space of events
(which one would like to have for facilitating the description) should be uniquely
determined by concepts fundamental to physics. The concept which thrusts itself
to the fore is the order structure given by the future (past) light cone.

In the standard theory of ordered spaces one usually starts with a topological
space upon which an order structure has been grafted. If one is fortunate then the
topology induced by the order structure (order topology= Alexandra v topology
[1]) coincides with the given one. This, however, is the case only when the cone
contains interior points. It seems to be clear that this case and the contrary would
require completely different techniques for their treatment. In this paper we shall
deal only with the situation in which the cone contains "interior points." Saying
this does not mean that we start with a topological space; we prefer to start with a
point-set furnished with an order structure, and define everything in terms of this
structure.

The space of events in physics is the model from which we extract the axioms. It
seems to us that it is the light rays, and not the light cones, which are the
fundamental objects. These are totally ordered sets, and hence have an order-
theoretic characterization. Using the light rays we are able to construct the light
cone and the order associated with it as secondary concepts. This is done in the first
chapter. Furthermore we are able to introduce, "purely algebraically," a set of
points associated with each cone which would be its interior points when a "good"
topology is present. In the second chapter we show how one can use the order
structure defined by the light cones to furnish a Hausdorff topology.

Our discussion in the following chapter does not use any number system,
except for a finite subset of positive integers. We have, therefore, at our disposal

1 We quote references [2, 3, 5, 7, 10] for the general reader and [4, 6, 8] for the specialist
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essentially two proof techniques: explicit construction, and proof by contradic-
tion. The result may be viewed by some as a certain "loss of transparency" in part
of our argument. We have tried to offset this, wherever possible, by breaking down
major results into smaller lemmas and propositions. The reader may find that, at
times, a two-dimensional diagram in something approximating Minkowski space
is an aid to understanding.

The symbol denotes end of proof. The symbol Π denotes end of statement in
axioms and definitions.

I. Light Rays and Order

The ordered spaces which we shall study are those which possess a distinguished
family of totally ordered subsets, and are such that the order properties of the space
(and other properties which follow from the order) are wholly determined by the
order properties of this distinguished family. We shall call members of this family
light rays, and indeed Minkowski spaces provide the chief model from which we
abstract our axioms. However, this terminological quirk should not be allowed to
obscure the fact that our considerations apply to all situations in which cones are
generated by extremal rays. The compact self-adjoint operators on a Hubert space
provide a non-finite-dimensional example which (if one looks at the subset of trace
class operators) is closely connected to the state space of quantum mechanics.

LI. Light Rays. Thus, the fundamental objects in our scheme are:
i) A nonempty set of points M.
ii) A distinguished family of subsets of M called light rays.
iii) An order relation "<'" on every light ray.

Points of M will be denoted by lower-case Latin letters. Light rays will be
denoted by the letter /. lx will denote a light ray through the point x, lXιy a ray
through x and y, etc. Distinct rays will be distinguished by superscripts, thus /, /', /*,
/2, etc. The order relation <l will be reflexive, antisymmetric and transitive, i.e.
x<ly, y<lz=>x<lz (for definition see [11]). The statements x<ly (read: x
precedes y, or y follows x) and yl> x will be identical. The statement "x and y are
joined by a light ray" will be abbreviated "Λ,(x, y)", and its negation (no light ray
passes through both x and y) by "~λ(x,y)".

A light ray / satisfies:

1.1.1. Axiom (The order axiom).
a) If x,ye/, xφy, then either x<ly or y<lx (i.e. both x<ly and y<lx=>x = y).
b) If X,ZE/, xφz, x<*z, then 3yel such that x<ly<lz, xφy, yφz.
c) If ye I, then 3x,ze/ such that x<ly<lz9 xφy, yή=z.
d) If x, y e I1 n/2, then x <l'y <s> x <l2y. Π

Here (b) is a "density" axiom, (c) states that light rays do not have end points
(singularities are admissible if singular points are not considered as parts of the
space), and (d) is a consistency condition, not required in Minkowski space but
essential, for example, for photography.

Our first problem is to extend the order on the light rays to a partial order on all
of M. This would hardly be possible if M were to consist of disconnected nontrivial
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pieces. However, the term "disconnected" has not yet been defined in the present
context, and we proceed to fill this lacuna.

1.1.2. Definition. A subset N of M will be called l-complete if xeN, / a x => ICN.

1.1.3. Lemma. Let {Na}ΛeA be an indexed family of l-complete subsets of M. Then
a) M\Na is l-complete.
b) Π N* is l-complete.

aeA

c) (J N* is l-complete.
aeA

Proof, a) Let xeM\NΛ, /ax. ΎhenxφN*, and therefore, by the /-completeness of
JVα, /niVα = 0. Hence y e / => y e M\NΛ, and therefore lcM\Na.
b) xe P| Na=>xεNΛ Vα e A therefore /x c Nα for any / through x and any α e 4,

αeΛ

hence ίxc Π Nα.
aeA

c) Π (MV/Vα) = MVU ^α\ therefore (J jVα = M\f| (M\JVα). The result now
aeA \aeA J aeA aeA

follows from a) and b).

Construction of l-Complete Sets. Let A be any well-ordered set without largest
element. Denote the smallest member of A by 0, and the successor of α e A by α +1.
Let

Ks° Ξ S C M, S φ 0, otherwise arbitrary. (la)

K^{y;yεlz,zεKΪ}\KΪ. (Ib)

That is, y is restricted to lie on a light ray through z. Now define inductively

(Ic)

Note that xeK"s

 + ί =>xφK*. Finally, define

K A— [ I jfa /9\
s = U ^s VZJ

By construction, x eK A =>lxεKA for every / through x, i.e. KA is /-complete.
In particular, taking A = N we find that the subset Kf of M is /-complete.

Define now the intersection of all /-complete sets containing S:

Ns= Π N (3)
s C N, N is Z-complete

By Lemma 1.1.3, Ns is /-complete, and therefore

NSCK™. (4)

However, we have:

1.1.4. Theorem.
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Proof. In view of (4), it remains to prove that Ns D K™. Now K^ is defined by
formulae (la-c), with N replacing A and n replacing α. If α0 e K™, then 3n e N such
that

But bjEKn

s~
j implies that 3bj+leKn

s~
j~l such that λ(bpbj+1) but ~λ(bpbj+k),

k = 2, 3, . . ., n —j. Thus there exists a set of points {α0, α1? . . ., an} such that αf e K"'1;
Λ(αί? aί+ !), ~ λ(a^ ai+k)J = l,2,...,n — 2 and /c = 2, 3, . . ., n — ί; and απ e S. Now απ e 5,
λ(an-i, an) imply that αn_ t belongs to any /-complete set which contains K°, hence
α π _ 1 eJV s . Next, by the same argument (with X* replacing K°)
an-1eNs=>an.2ENS9 and so on, until finally a0eNs. Thus K™CNS.

1.1.5. Corollary. // yeNx, then 3neN am/ {^Co,;^, ...,xπ}cM, wzί/i X O Ξ X and
xn = y9 such that λ(xb xί+1) and ~λ(Xi-k9 xi+ x) /or i = 0, 1, . . ., n — 1 and fc = 1, 2, . . ., i.

Proo/ Specialize Theorem 1. 1 .4 to the case S = {x}, and take x, = an _ f, ί = 0, 1 , . . . , n,
X0 = χ,χn = y. m

1.1.6. Corollary.

Proof. The subset {x0,xl9 ...,*„} is equally a subset of 7Vr

1.1.7. Theorem. The relation x~y iff Nx = Ny is an equivalence relation.

Proof. Follows from the properties of the equality sign in Nx = Ny.

These equivalences classes are the "connected" pieces which we have been
looking for. They are important enough to be given a name.

1.1.8. Definition. M will be called l-connected iff M = Nx Vx e M (i.e. if M consists
of a single equivalence class). Π

From now on we shall make the following nontriviality assumptions:

1.1.9. Assumptions.
a) M is /-connected.
b) M does not consist of a single point.
c) M does not consist of a single light ray. Π

1.1.10. Definition.
/(α, b) = {x; x, α e /, α <lx <lb, a φ x, x φ b} .

l(a,b) and /[α,fc] will be called open and closed segments (not intervals!) of light
rays.

So far we cannot rule out the possibility that two light rays meet, merge and
separate again after a finite segment. However, we do not want this degree of
generality, and therefore adopt the following axiom:

1.1.11. Axiom (The Identification Axion). // / and ΐ are distinct light rays and a e S
= /n/', then there exist p,qel such that p<la<lq, pφα, aή=q, and l(p,q)nS = {a}.
Similarly for ΐ. Π



598 H.-J. Borchers and R. N. Sen

This axiom ensures that the intersection of two light rays contains no "point of
accumulation."

1.1.12. Example. Let M be the cylinder S1 x R, with base S1 placed horizontally.
Let the light cone through any point consist of two rays each making an angle of
π/4 with the vertical at that point. These two rays intersect infinitely many times.
This example fulfills the order and identification axioms.

1.1.13. Example. This example consists of the one-sheeted hyperboloid. The light
rays are the families of generators. Then two light rays do not intersect more than
once.

The cylinder and the one-sheeted hyperboloid are topologically indistinguish-
able. Clearly, their order structures are very different, and, equally clearly, this
difference appears at the global and not at the local level. These examples show
that the order structure may be able to distinguish between topologically identical
structures.

1.2. Extension of Order. In this section we shall extend the total order on the light
rays to a partial order on all of M.

1.2.1. Definition. A subset S C M will be called increasing (respectively decreasing) if

(respectively x e S, y <lx => y e S). Π

Increasing and decreasing subsets can be constructed by an inductive process
similar to the construction of /-complete sets in the previous section. We are
interested in the smallest increasing (respectively decreasing) subset containing a
given point x: from Def. 1.2.1 one sees that the property "increasing" (respectively
"decreasing") is stable under intersections.

1.2.2. Definition.

CEE Π S,
S3X

S increasing

c;= n s,
SBX

t S decreasing
and

Note that, as it is possible to construct an increasing set which excludes a given
point, the intersection of all increasing subsets is empty.

1.2.3. Theorem (The Polygon Lemma). // yeC*, there exist points
xi,x2,...,xn-ιECx' such that x ί<

/x f+1, X i Φ X f + i , and ~λ(xι,xi+k) for
ι = 0,l, ...,n— 2, fc = 2,3,...,n — i, with x0 = x and xn=y. Similarly for yeC~.

Proof. Let

SSsfx},

U Sί\, fceN.
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Finally, let

Clearly, S+ is an increasing set, and if yeS+ then there exist points
x1,x2,...,x l l_16SJJ" such that xt<

lxi+l9 Xiφx i + 1 , and ^λ(xi9xi+k) for
ί = 0, l,...,n — 2, fc = 2,3, . ..,« — /. It is therefore enough to prove that S+ = C+.
From the definition of C + , S£ D C + . The proof that a e S + => a e C + , i.e. S + C C + , is
similar to the proof of the corresponding assertion in Theorem 1.1.4.

A similar proof holds for y e C~.

A finite set of points x0,x l5 ...,xn satisfying the conditions

*i< * i + l > * tΦ*i+l5 ~/l(Xί,Xί + fc)

for
ϊ = 0, 1,2, ...,n — 2, fc = 2, 3, ...,n — i

will be called an ascending l-polygon from x0 to xπ, or a descending l-polygon from
xπ to x0. When there is no possibility of misunderstanding, the "/-" in the phrases
above will be omitted. Theorem 1.2.3 will be called the polygon lemma.

1.2.4. Corollary.

Proof. Consists of the observation that an ascending polygon from x to y is equally
a descending polygon from y to x.

The polygon lemma says that if yeC+, then y can be "reached" from x by
traversing a finite number of light-ray segments. It will turn out to be an essential
constructive tool. It should be noted that this is a consequence of our definition of
Ns [Construction of /-complete sets, Eq. (3)] as the "smallest" /-complete set
containing S. It would have been possible, at that stage, to define Ns as the
intersection of all /-complete sets which are obtained by repeating the process (of
joining with light rays) a transfinίte (corresponding to a given cardinality) number
of times. This would have led to transfinite polygons.

We are now ready to extend the definition of order.

1.2.5. Definition.
x < y iff y e C*

equivalently,

x<y iff xeC~ . Π

Observe that if λ(x, y) then x < y => x <ly.
The basic result follows quickly:

1.2.6. Theorem.

" < " defines a partial order on M.

Proof. Only transitivity needs to be proven. Let x<y, y<z. Then there is an
ascending polygon from x to y, and one from y to z. The concatenation of the two is
an ascending polygon from x to z, hence x < z.
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Even with the identification axiom, our scheme remains a little too general.
Owing to axiom 1.1.1 (c), a light ray cannot form a closed loop. But there is nothing
to prevent the existence of closed "timelike" curves and similar pathologies, as
shown by Example 1.2.8. These pathologies can be eliminated rather simply, by the
following axiom:

1.2.7. Axiom (The Cone Axiom),

C+nC;=(x) VxeM. Π

1.2.8. Example. This 2-dimensional example consists of a cylinder with cuts
parallel to its axis. The configuration is shown in Fig. 1. The upward-pointing
arrows delimit Cx and the downward-pointing arrows delimit C ~. The upper edge
of the rectangle is identified with the lower edge. The cuts are shown by thick lines,
and C*nC~ is shown by the shaded area.

This example satisfies the order axiom and the identification axiom, but
violates the cone axiom.

b c

Fig.l b c

We shall call Cx the forward (or positive) cone at x, Cx the backward (or
negative) cone at x, and Cx the cone at x.

Forward and backward cones have the following inclusion property:

1.2.9. Proposition.

£ DC+ CC~ .

Proof, i) Let zeC*. Then y<z, therefore x<y=>x<z, i.e. zeCx. Thus

ii) If C+ DC+, then yeC?, i.e. x<y.

This establishes that x<yoCx~^Cy. The equivalence x<yoC~cC~ is
established similarly.

The intersection of a light ray lx through x with the forward cone at x will be
called the forward ray through x and denoted thus:

Similarly, the backward ray through x will be defined by l~ = lxr\C~.
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1.3. Timelike Points. In a Minkowski space the boundary of the light cone through
x consists of the set of all light rays through x. An interior (future) point y may be
characterized by the fact that descending polygons from y to x meet every light ray
through x at a point "above" x. This latter property may be used to define
"interior" points in our present setting. The "boundary" will then be defined as the
residual set. All of this can be accomplished without defining a topology on M.
However, to avoid confusion we shall not use topological terminology and
notation until the topology has been defined.

It should be noted that the finiteness of the /-polygons plays an essential role in
the following (see Theorem 1.2.3 and the comments following it).

1.3.1. Definition.
a) A point zeC+ will be called a timelike point of C+ if, for any ray /9x, 3ye/,
y Φ x such that z e C+ . The set of all timelike points of C+ will be denoted by τC+ .
b) The set τC~ is defined similarly, i.e. by interchange of order. Π

1.3.2. Lemma. yeτC* and z>y=>zeτC*, and the same for reversed order.

Proof, y e τC* implies that, given any / 3 x, there exists a descending polygon from
y to some point αe/*, αφx. Next, z>y implies the existence of a descending
polygon from z to y. The first statement is established by concatenating the two
descending polygons, and the second by reversing the order.

1.3.3. Definition.

Note carefully that y e βC*, y φ x does not imply that y lies on a light ray through
x; y may be the end point of a nontrivial ascending polygon from x which lies
wholly in βC*. Consequently, many "obvious" results have to be proven from the
axioms. The remainder of this chapter is devoted to establishing those which we
shall need.

1.3.4. Proposition. Let y>x. Then the statements 1 and 2 (respectively Γ and 2' ) are
equivalent:

1.
2.
1'. xeβC~
2'.

Proof. Owing to symmetry, it suffices to establish one of the two equivalences.

1=>2: Let yeβC?, but C+nC~ <f βCf. Then 3zeC+nC~ such that zφβCf, so
that necessarily zeτC*. Then, since y>z, Lemma 1.3.2 implies that yeτC*, a
contradiction.

2=>1: If Cx

+nC; C0CX

+, then

1.3.5. Definition.
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For the moment, sets of both kinds will be called order intervals. A more
discriminating terminology will suggest itself later.

7.3.6. Remarks.
1. /[α,α] = {α},
2. Ifα^b, αφfethen/[α,ί>] = 0.

1.3.7. Proposition. Let y>x. Then the statements 1 and 2 (respectively Γ and 2') are
equivalent:
1. yeτCx

+;
2.
1'.
2'.

Pra?/ Owing to symmetry, it suffices to establish one of the two equivalences:

1=>2: Let y e τC+ and z 6 j?C+ nC+ . Then z > y, hence z 6 τC+ by Lemma 1.3.2, a
contradiction.

2=»1: Since yeCf, βC^ n Cy

+ = 0 => 3; <£ 0C + . But y > x, therefore y e C£ , therefore
tc;.
Although yeC^ <^xeC~ (Corollary 1.2.4), it does not follow that

for it is conceivable that, for some y, τC~ may be empty. That is, statements about
τC* and τC~ are unrelated. However, we have the following:

1.3.8. Proposition. The following statements are equivalent:

2a. yeτC^" => V / a y 3ze/~, zφy,
2b. xeτC~ =>V/9j; 3ze/^, zΦx, swc/i

Proo/.
1^>2: If yeτC* =>χeτC~, then (from the definition of τC~) Way, 3ze/~ such
that z>x, i.e. 2a holds. Similarly, if xeτC~ ^yeτC*, it follows that 2b holds.

2=»1: Assume that y e τC^ , and V/ a y 3z e / ~ , z Φ y, such that z > x. Then x e τC ~ .
The same holds with the order reversed.

1.3.9. Definition. An ordered space M will be said to have the property S (from
symmetry) if

In this case M will be called an S-space, and we shall write

y>x iff yeτC^.

1.3.10. Theorem. In an S-space the relation > defines a partial order.

Proof. Transitivity is a consequence of Lemma 1.3.2.

L3.il. Remark. Note that this partial order is neither reflexive nor antisymmetric.
Also, if we define x<^y iff xeτC", then, from Proposition 1.3.8, x<^y
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II. Local Structure and Topology

ILL Preliminary Remarks. There are many procedures for defining a topology on
a space M. We select two for attention. In the first case, one may be interested in a
specific family of functions defined on M. It is then often reasonable to consider the
coarsest (weakest) topology on M which makes each of these functions continuous.
In the second case, one may wish the space M to have strong homogeneity
properties. Then M should be "glued together" from copies of the same object.

We cannot quite pursue the first of these, because we are not given a family of
functions on M. However, we may ask whether, on an ordered topological space,
there is some sense in which order is continuous. If there is, is the coarsest topology
which makes order continuous a useful one? Regarding the continuity of the order
" < " the following definition has been given for the ordered real line [9] : The order
" < " is continuous if, given x < y, x φ y, there exist neighbourhoods U of x and V of
y such that u < v whenever u e U and veV. And indeed, on R it turns out that the
order topology (which coincides with the usual topology) is the coarsest topology
which makes the order continuous.

Unfortunately, this definition fails to provide a physically acceptable topology
in higher dimensions. To see this, consider two-dimensional Minkowski space, and
two distinct point x and y on any light ray, with x <y. With the usual topology of
this space, every neighbourhood ofy contains points which are spacelike to x, and
vice versa; the requirement u<v whenever u e 17 and v e K with U and V defined as
above, cannot be met. In other words, with the usual topology, and with the above
definition of the continuity of order, order is not continuous!

We have therefore chosen to try to define the order topology in a different
manner, more reminiscent of the way in which differentiable manifolds are defined.
That is, we make a distinction between the local and the global, and demand that
the order structure satisfy a rather strong local, or homogeneity, condition. The
only way to determine a satisfactory condition is by experimentation. The choice
which we have made, and its consequences, are presented in the following.

Π.2. D-Sets. We wish to embed every point in a surrounding which has all the
desirable properties. The paradigm for this surrounding is the interior of a double
cone (IntC^nC") in Minkowski space. The definition, arrived at after some
experimentation, is given below. An important property of a D-set is that it is an
S-space (Def. 1.3.9). This, and a number of other results which may not hold
globally, hold in D-sets. The most important of these are established in this section.

IL2.1. Definition. A subset U of M will be called a D-set (from the German
,,Durchschnitt") iff it fulfills the following conditions:
a) x,yeU=*l[x,y]tU.
b) For every x e U and every IBX 3p, q E /n U such that p<lx<lq and pφ
c) If x,yeU, yeC+, and /9y, then

and the same for reversed order.
d) If x e U and InβC* contains two distinct points, then

and the same for reversed order.
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e) If x,ye U and λ(x,y\ then the ray lXtV is unique.
f) If x e 17, then there pass at least two distinct light rays through x. Π

Observe that the empty set 0 satisfies all of these conditions trivially, and is
therefore a D-set.

II.2.2. Lemma. Let U be a D-set, and let x9yeU with y^>x. Let ly 3 y be a light ray
through y. Then

is a singleton, and the same with order reversed.

Proof. By Proposition 1.3.7, y $> x is equivalent to βC+n Cy

+ = 0. Hence if lynβC+ is
nonempty then

Then, if l~ n/JC * contained two distinct points, it would follow from Def. Π.2.1 (d)
that

contradicting the assumption y^>x. The same argument holds with order
reversed.

IL2.3. Proposition. Every D-set has the property S.

Proof. Let x, y e U with y > x (y e τC+). Let ly B y. Then, by Lemma Π.2.2, l~ n j8C+
is a unique point, say z. If zΦx it follows that x<^y(xeτC~); if z = x then 3 a point

such that z<p<j;, pφz,

The next two results show that there are plenty of D-sets.

11.2.4. Proposition. The intersection of two D-sets is a D-set.

Proof. Let Ui9 U2 be D-sets. If UίnU2 = 0 then it is trivially a D-set. Assume now
that l/jΠl/2 =t=0. Property a), and properties c) to f) of Def. Π.2.1 are stable under
finite intersections. It remains to show that Property II.2.1 (b) continues to hold.

Let then xεU1nU2 and lx^x. Then Ξp^et/,-, ι = l,2, such that piyqtelx,
pt <

lx <lqi9 Pi Φ x, qt φ x, i = 1, 2. Since /Λ is linearly ordered it follows that for proper
choice of indices a,b,m,n(=\ or 2), pa>pb and qm<qn. Then pb<x<qn,
^ Φ x, and pb,qneU^ U2.

ΪI.2.5. Proposition. Lβί U be a D-set, x,yeU and y^>x. Then I(x, y) is a D-set.

Proof. We have to verify properties a)-f) of Def. Π.2.1.
a) Let p,qel(x,y). By Lemma 1.3.2, C+CτC+ and C~CτC~. Hence /[p,<?]
C/(x,y).
b) Take pel(x,y) and /9p. Then by Lemma Π.2.2 the sets lnβCx={r} and
lnβC~ = {s} are singletons, differing from {p}. Therefore the open segment l(r,s)
belongs to I(x,y\ and condition II.2.1 (b) is fulfilled by Axiom 1. 1.1.
c)-f) These are obviously true of order-convex subsets of a D-set.

Recall that a subset Soϊ a partially ordered set x is called order-convex ifa,ce S,
a<c=>beS whenever a<b<c.
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Π.2.6. Proposition. Let U be a D-set, a,b,ceU. Then
i) a<b<ζc=>a<ζc.
ii) a <ζ b < c => a <| c.

Proof. Ί)a<b implies that there is an ascending polygon from atob.b^c implies
that, given / 9 c, there is an ascending polygon from b to c which meets / at a point x,
x <lc, x φ c. Therefore, given 1 3 c, there is an ascending polygon from a to c which
meets / at the point x, x Φ c. Hence a<ζc.
ii) By Lemma Π.2.3, U has the property S. Hence b<ζcoc^b. Hence ii) is
equivalent toc>b>α=>c>α. The proof of this is the same as that of i) above, with
order reversed.

11.2.7. Lemma. Let Ubea D-set, yεU,pe βC~ n U. Then q $> /?, q e U => q φ C ~ n U.

Proof. There are three possibilities : (a) q φ C ~ n U (b) q e βC~ n U and (c) q e τC ~ . If
qeβC~nU then q<y. But p<ζq<y implies, by Proposition II.2.6, that p<ζy, a
contradiction. If g e τC ~ n U, then p <^ q <^ y, i.e. p <^ y, the same contradiction. The
only possibility which remains is q φ C~ n U.

II.3. Perpendicularity of Light Rays. We have now to establish that D-sets have
the required features. Chief among these is that, in a D-set, "good" properties can
be "transported" from one cone to another by means of /-polygons. A
consequence is that D-set s enjoy the required separation properties. However, in
the attempt to establish these properties we encounter technical difficulties
stemming from the fact that not all points on βC+\{x} may be connected to x by a
single light ray.

These difficulties are resolved by the careful exploitation of some of the many
natural maps between segments of light rays. One of these gives rise to a
particularly useful incidence relation - called perpendicularity in the sequel -
between pairs of light rays. In the following we shall define this relation and obtain
its most important consequences.

Π.3.1. Definition. Let U be a D-set, x, j e 17, y>x, IXBX and Iy3y. Set

lxnβC~ = {p} and lynβC: = {q}.

Let
x<r<p,

q<s<y,

Define the maps

Q t*Lx,P)-+

and

σ Λ(4, )>]->

by

Q(r) = lynβC

and
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respectively. These maps are well-defined, since the right-hand sides of the above
are unique points. Π

II.3.2. Proposition. The maps ρ and σ of Def. II.3.1 are order-preserving.

Proof. Consider ρ. The relation r<r' implies Crt CCr

+, and therefore

which implies ρ(r) < ρ(r'). Similarly for σ.

II.3.3. Theorem, α) The maps ρ and σ of Def. 113.2 are either constant, with

ρ(r) = q and σ(s) = p,

or:
β) They are both one-to-one. In this case ρ extends uniquely to ίx[x,p], σ extends
uniquely to ly[q, y], and the extended maps are inverses of each other.

Proof, a) Let r, r' elx[x,p\ rΦr', r<r'. Assume that

ϋ)
Then r, r' e j8C~, and since x e /,,,, it follows from Def. Π.2.1 (d) that x e βC~. Since
U is an S-space, it follows that teβCx. But lyr\βCx is a unique point, therefore
t = q, a contradiction. Hence, either
i) Q(r) = <l Vr €/,[*,£) (in which case t = q), or
ii) ρ(r)Φρ(r') for rΦr', i.e. ρ is one-to-one.
b) Similarly, either σ(s) = p Vse/y(g,y], or else σ is one-to-one.
c) Letρ(r) = 4VreU>,p). Then ]8Cr

+n/,Φ{s} Vs eljq,y], i.e.

therefore βC~nlx = {p}, i.e.
d) The above proves that ρ(r) = q=>σ(s) = p. By reversing the order of the
argument we obtain σ(s)=p=>ρ(r) = g. Hence, if ρ is one-to-one, so is ρ, and
conversely. The required extensions are ρ(p) — y9 σ(q) = x, and the extended maps
are clearly inverses of each other.

II.3.4. Definition. The light rays lx and ly will be said to be perpendicular to each
other, written lxλ-ly or /yJ-/x, if the maps ρ and σ of Def. II.3.1 are constant
maps. Π

Note that the symmetry of the perpendicularity relation is established in
Theorem Π.3.3.

II. 3. 5. Remark. Perpendicularity is a property of pairs of light rays, and not of
pairs of points x, y on them. This may be seen as follows. Let lx λly as defined above.
Let x' e lxr\ U, x' < x9 x' Φ x. Then ρ(x') = Cx.r\ly = {q} (same argument as in proof of
Theorem Π.3.3). Now let y' e /,n U, y' > y, y' Φ y. Then σ(y') = C~, nlx= {p}. Thus ρ
maps the entire segment (/p~\{p})πl7 into {q}, and σ maps (/*\{#})nL7 into

{p} π
The following theorem is fundamental to the succeeding considerations.
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Π.3.6. Theorem. Let U be a D-set, x,yeU,y$>x and IXBX. Then there exists Iy3y
with ly£lx (read: ly not perpendicular to lx).

Proof. Let {p} = βC~ n/x. For any ray ly through y such that /y-L/x, and any / on ly

such that γely(q,y], where q = lynCx, we have

If this were true for every ly 93;, then it would follow (from the definition of τC~)
that p e τC~ , which would contradict p ε βCy .

We are now in a position to prove that, if there exists a pair of timelike points
(in an /-connected D-set), then there exist enough of them. This is accomplished in
steps in the remainder of this section.

Π.3.6. Lemma. Let U be a D-set, x,yeU and y^>x. Let ly^y. Choose lx£ly and
define {q}=βCxr\ly. Then for we/J\{x} we have

Proof. According to Def. 1.3.1 we have to establish that, for any /w 9 w, 3u e C\{w}
such that qeCf.
a) Let /wl/r Then, setting

we have

b) Let /wi/r If lw = lx then obviously qeCx. If lwή=lx then define v and r by

{v} = βC:nly and {r} = βCynlw.

Now there is a (1, 1) map
ρ:/[w,r]-»/|>,y].

Choose s e l(υ, q~] and set u = ρ " 1(s). Then u e /^ , u Φ w, and qeCf.

II.3.7. Theorem. Let (7, V be D-sets, where U is l-connected and Vc U.
i) Let xeV and yeU with y^>x. Then 3 w e V with x > w.
ii) The same, with order reversed.

Proof. It suffices to prove part i). Since y $> x and U is /-connected, there exists a
decreasing /-polygon in U

y = z0>z1>z2>...>zn = x,

with

λ(zbzi+l], i = 0,l,...,n — 1.

We shall construct in V a decreasing /-polygon

X = W0 > Wί >W2 > . . > Wn ,

with
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and

The construction is by induction. For z = 0 we have z0>w0 by assumption.
Suppose that we have constructed wf, i=l,2, ...,fc, as required. Since z fc>w fc, the
intersection

is a unique point qk+ ^. Since zfc+ ^ > x and, by the induction hypothesis, x > wk, it
follows that

Now choose a light ray lWkUZktZk+l, and then w fc+1e(/~k\{w fc})nK Then
Lemma Π.3.6 gives

Finally, set vvπ = w. Then w e V and x > w.

After this preparation, we are able to establish the main result of this section:

Π.3.8. Theorem. Let U, V be D-sets, where U is l-connected and Vc U. Let xeV and
yεU with y^>x. Then we can find points u, v, w with u^veV, well such that

Proof, a) Apply Theorem Π.3.7(i) to y^>x to obtain a point w e V such that
b) Let V= U. Apply Theorem II.3.7(ii) (order reversed!) to y$> x to obtain a point
w e U with w > y.
c) By Proposition Π.2.5 and Π.2.4, I(u,y) and I(u,y)nV==W are D-sets. Since
x e W, we may apply Theorem Π.3.7(ii), with V— U = W, to the pair u <^ x to obtain
a point v e W— V, v$>x.

In the next section we shall see how the above property can be transported outside
Cx.

IL4. Separation Properties. The main result of this section is Theorem II.4.5,
which states that distinct points in a D-set can, under certain circumstances, be
separated by disjoint D-subsets. The required circumstances are that the original
D-set be /-connected, and that there should exist a pair of timelike points in it. The
latter does not follow from our axioms, and has to be imposed as a regularity
condition. The proofs utilize a method for transporting "good" properties of one
cone to other cones.

II.4.1. Proposition. Let U be an l-connected D-set, x,y,zeU and y^>x. Then there
exist p,qεU with p^z^q.

Proof. Since 17 is /-connected and x, z e [7, 3 an /-polygon
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in U connecting x with z. That is, /l(zf,zί+1), i = 0, 1, ...,n — 1. By Theorem II.3.7
there exist p0,g0et/ with p0 ̂

 zo = * ̂  <?o Assume that we have constructed,
successively, the points pί9qί9 ...,pfc, ^^(7, fc<n, with Pt^z^q^ i=l,2, ...,fc.
Since Λ,(zfc, zk + 1), either zfc + x > zfc or zfc + ^ < zk. In the first case we have pk<zk+i. We
may then choose pk+ι=Pk and construct qk+1 by Theorem Π.3.7. In the second
case we have qk^>zk>zk+1. We may therefore choose qk+1=qk and construct
Pk + i^zk+i by Theorem Π.3.7. This establishes the inductive step, and therefore
the result.

In words, if there exists a pair of timelike points in an /-connected D-set C7, then
every point in U has a timelike predecessor and a timelike successor in U.

However, our axioms so far do not guarantee the existence of a pair of timelike
points in a D-set. Hence we make the following definition:

II.4.2. Definition. A D-set U will be called regular iff it satisfies the following
conditions:
a) U is /-connected.
b) There exist x.yeU with x<ζy. Π

The property of /-connectedness is not hereditary; property (b) is, for D-sets; more
precisely:

IL4.3. Corollary. Every l-connected nonempty D-subset V of a regular D-set U is
regular.

Proof. Let x e K Then x e (7, so that by Proposition II.4.1, 3z e U with z > x. Then
by Theorem Π.3.8 3p,qeV such that p<ζx<ζq. Hence V is regular.

The key result of this section is the following theorem separating points by
positive and negative cones:

Π.4.4. Theorem. Let U be a regular D-set, x,yeU such that y^>x, and beU\C~.
Then 3aeU\C~ such that b$>a.

Proof. There are three possibilities, according to the location of b. They are:

2.
3.
We establish the existence of the point a case-by-case.

1 . By Theorem Π.3.8, 3 a point a such that b^>a$>y. The second condition means
that aeU\C~.
2. Let beβCf. Then either (a) λ(y,b) or (b) ~λ(y,b).

a) Suppose that λ(y,b). By Theorem II.3.6, 3/x9x such that lx^lytb. Since
yt

,lχ intersects βC~ at a unique point r and βC^ at a unique point s. If r = s then
/XJ_ /y b, hence r Φ s, and moreover s > r. Take a e /(r, s). Then by Lemma II.3.6, a <ζ b,
and by construction ae U\C~.
b) Suppose now that ~ λ(y, b). There exists an ascending /-polygon from y to b
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Now there exists a ray IXBX such that lxJLlbθtbί. Let

Then r<s, rφs. Choose ael(r,s). Then α<^i? by Lemma H.3.6, and aεU\C~ by
construction.
3. Finally, let bφCy. As fe£C~ by assumption, this means bφCy. Since (7 is a
regular D-set, τCb is nonempty. There exists r such that

but rφτC~ .

For if r e τC^ => r 6 τC~, then τCft~ C τC~, i.e. beC~,a contradiction. If r φ βC~, set
a = r. If reβC~, apply Lemma Π.2.7 to obtain α such that r<ζa<ζb.

From the above separation we are now able to construct a separation by
regular D-sets:

II.4.5. Theorem. // U is a regular D-set , x,yeU, xή=y then there exist regular
D-subsets V and W of U such that xeV,yeW,and FrW=0.

Proof. Since xφy one cannot have both yeC* and yεC~ simultaneously. We
may therefore assume, without loss of generality, that yφ C~. By Theorem II.4.4
BpeU such that p <ζy and pφC~nU. But then xφC*. Applying Theorem Π.4.4
with order reversed to x and C*, xφ C*, we see that 3qeU such that q^>x and
qφC^U. Then C~nC+=0. By Theorem II.3.7, we see that 3 points p',q'eU
such that p<y<p', q>x$>q'. Then xel(q',q\ yεl(p,pr), I(q',q)r\I(p9p

r) = Φ, and
I(q, q'), l(p, p') are regular D-subsets of U.

H.5. Local Structure and Topology. In the preceding sections we have defined
D-sets and have established their fundamental properties. They lead us very
naturally to the local structure axiom and the topology.

Π.5.1. Axiom (Local Structure Axiom). The ordered space M satisfies the following
axiom: For each xeM3α regular D-set Ux such that xeDxCM. Π

Π.5.2. Definition. The order topology on M is defined to be that topology which
has the family of regular D-subsets as a base. Π

J/.5.3. Remarks. 1. It follows from Proposition Π.2.4 (the intersection of two
D-sets is a D-set) and Corollary II.4.3 (every /-connected nonempty D-subset of a
regular D-set is itself regular) that the family of regular D-subsets is indeed a base
for a topology.
2. Theorem II.4.5 now states that the order topology is Hausdorff.

Π.5.4. Theorem. In every D-set, τC£ =IntC+ (the interior of C+ ) and βC+
= dCχ (the boundary of C*), and the same for reversed order.

Proof. Only the second assertion needs to be proven. If y φ C*, then y is separated
from C+ by an open set, hence J^CIC^ (the closure of C+). Hence CIC^ = C+.
Therefore dCf = Cf \Int C = βC? .

J/.5.5. Remark. The order topology introduced above clearly coincides with the
standard topology on R4 in Minkowski space, and is therefore strictly coarser
than the "fine topology" for Minkowski space introduced by Zeeman [12]. By
itself, the order topology does not imply a "causal" or a linear structure on M.
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Note added in proof: After this manuscript was submitted for publication, we came across the
article by J. Schrόter [N1]. We would like to take this opportunity for clarifying the relationship
between our work and the analysis of the mathematical structures of the space-time of general
relativity which was started by Hermann Weyl [N 2] and continued by Synge [N 3, N 4], Ehlers,
Pirani, and Schild [N 5], Woodhouse [N 6] and most recently by Schrόter (loc. cit.). We are
attempting to put the order structure on an axiomatic basis, and hope to end where the
abovementioned works [Nl, N5, N6] begin.
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