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Abstract. Quantum oscillators on simple Lie algebras satisfying the special
symmetry conditions are considered. Statsums, the Witten index and some
simple correlators are calculated. The relations between these expressions and
orders of algebraic groups over finite fields Ψq and degrees of some their
representations are established under the condition that the temperature T of
systems is equal to T=ω/lnq. We consider the conformal limit of the theories
where ranks of groups go to infinity. Also we discuss the relation between the
adelic limit of the theories and the Tamagawa numbers.

1. Introduction

In the last several years methods of the quantum field theory were successfully
applied in different domains of mathematics [1]. As a rule they allow to obtain the
independent and transparent proofs of mathematical theorems. The aim of the
present article is more modest - we give here only the quantum-mechanical
interpretation of well-known formulae in the algebraic group theory. Nevertheless
we hope that this approach leads to a deeper understanding of some relations in
this subject.

The first part of the formulae concerns the orders of finite simple groups. The
classification of these groups had been completed recently (see, for example [2]).
The grand theorem states that the list of groups contains besides the alternating
groups and groups of Lie type twenty six sporadic groups. In the present article we
consider only the groups of Lie type over finite fields (GLT). Namely we establish
the connection between the orders of GLT and statsums of quantum oscillators on
simple Lie algebras over R. More precisely statsums are calculated only for the
part of GLT - the Chevalley groups. For the last groups - the so-called twisted
groups - it is necessary to calculate the quantum average of twist operators. The
connection appears when the temperature T is equal to ω/lnq, where ω is a
frequency of oscillators, q — pr and p is a prime number. The similar situation
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occurs in the Dyson description of distribution of levels in heavy nuclei [3] - some
fixed temperatures correspond to statistical systems on classical Lie groups. It is
worthwhile to note also the analogy with the calculations of statsums in conformal
field theories on a torus [4], They depend on a parameter of a torus, i.e. on a
temperature. In particular, if fields take values in a root lattice like in the heterotic
string theory [5] or in a group manifold [6] then statsums are expressed through
characters of representations of corresponding afϊϊne algebras [7]. Moreover in a
field limit which exists for the groups of classical type over finite fields the statsums
that we calculated here take the form of statsums on tori. From the different point
of view we calculate the order of a group - the value of the character of regular
representation on a unit element.

The generalisation of this construction is a calculation of characters of
irreducible modular representations (representations in spaces over finite fields).
These characters are known only in a few cases. For the groups GLn(q) they were
calculated in [11] (see also [12]). It turns out that degrees of some of these
representations (the values of characters on an unit element) coincide with the
Witten index for harmonic oscillators with the special symmetry conditions. The
fermions contributing in the index is nothing else but ghosts corresponding to
some additional restrictions, imposed on systems.

This paper is organized as follows. In part 1 we present briefly the main facts
about GLT and give the quantum-mechanical description of their orders. In
Sect. 2 we first recapitulate the modular representations of the group GLn(q) and
then discuss the quantum-mechanical interpretation of degrees of these represen-
tations. We also consider here the quantum systems related to the irreducible
representation of the dihedral group. In Sect. 3 some additional issues are
considered. First we derive formulae for the statsums when the ranks of groups
tend to infinity. After an appropriate shifting of the vacuum energy the limiting
statsums become modular forms on a torus. We also consider here similarities with
the Dyson theory. The quantum systems with symmetries generated by complex
reflections is a slight generalization of the systems under consideration. We discuss
shortly this approach. In conclusion we consider an adelic ensemble of the
quantum systems in a fermionic description: the fermionic oscillators with the
"prime" frequencies ωp = lnp (p = 2,3,5 ...). It is natural to suppose that there exists
some special sigma-model, which incorporates this ensemble as an essential
ingredient, with the distinguishing feature - the Witten index of the model is equal
to the Tamagawa number of a simple group which is the symmetry group of the
system.

1. Quantum-Mechanical Calculations of Orders of GLT

1. We give here a quick review of GLT. The original objects are a simple Lie
algebra © over (C and a finite field k. There exists some special basis in © - the
Chevalley basis - in which all structure constants are integer numbers. Let R be a
root system in ©. Then it is possible to choose generators Xα, a e R in a such way
that the commutation relations in © have the following form:

=\ 0,

a, a=-β,
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where Ha are Cartan generators. In simply laced algebras a = ± 1. In other cases a
may also take values ± 2, ± 3. The Chevalley basis is generated by {Xα, oceR} and
{Ha for simple roots α}.

Let V be a finite-dimensional representation of ©. In V exists a lattice M which
is invariant under the action of all operators X™/m\ (oceR,meZ+). Note that the
operators Xa are nilpotent. Therefore on the space Vk = M®πk the action of
operators

x a ( ή = Qxp(tXa)= Σ tmXmJm\, tek
m=0

is well-defined. The operators {xa(t), tek} generate a finite group GLT which is
called the Chevalley group.

Consider, for example, the algebra © = s/2 and the field fc=F2 = {0,1}. The
Chevalley generators are X±(X = σ± and Ha = σ3. The Chevalley group generated
by the matrices X±Λ{t) consists of the six matrices:

) ί ) ί1 °) (° *) ί° ') ί1

o \y \o \y \ί \y \\ o/' \i v' v o
This group is isomorphic to the permutation group S3(|S3| = 3!) which is not simple
- there is the normal subgroup of even permutations Λ3 (the alternating group).

As a rule the Chevalley groups do not contain normal subgroups - it happens
only for groups of lower ranks. But, generically the Chevalley groups do contain a
center which has a following form c = Horn(LJL0, fc*), where L^LQ) is the weight
(root) lattice in © and k* is a multiplicative subgroup in k. Via factoring a largest
"simply connected" group Gx by c we obtain the simple group Go. The other
examples of Chevalley groups:
1. The tetrahedron group T^^1(3) = 5/2(F3).
2. The icosahedron group /^^ 1(5) = S/2(F5).

It is not the whole story about GLT - there exist also their twisted versions.
These groups are constructed by means of external automorphisms of Lie algebras
and automorphisms of fields. These automorphisms define the automorphism σ
of GLT G. The twisted group Gσ is an invariant subgroup of G under the action of σ.
The automorphism σ has the following description. Let φ be an external
automorphism of a Lie algebra ©. It corresponds to an automorphism of the
Dynkin diagram which generates a permutation ρ of roots {α} and generators
{Xa}. The automorphism φ acts on the generators xa(t) which has been earlier
defined.

xρΛ(
εa.t) α is a long root or ©

is a simply laced algebra,
ΦM=[xρa(sJ") α is a short root, ( U )

where εα = ± 1 (ε = 1 if α is a simple root), p is the characteristic of k. It is worthwhile
to note that if p = 2 the algebras C2 and F 4 have the external automorphism of
order two. If p = 3 G2 also has the external automorphism of order two.

The automorphism σ is defined as a joint action of φ (1.1) and an
automorphism θ of k. There are restrictions on an order of θ. If ρ permutes roots
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with equal length then an order of ρ must be equal to an order of θ (and it is equal to
1, 2 or 3). If ρ permutes unequal roots then yθ2 = id9 where γ is the Frobenius
automorphism γ: t-+tp (p is the characteristic of fe).

Thus a twisted group Gσ is the invariant subset

Gσ = {geG\σg = g}. (1.2)

The twisted groups are denoted as mGj(g) where m is an order of σ. The twisted
groups 2Λn(q)9

 2Dn(q) (n>4), 2E6(q), 3D4(q) are called the Steinberg groups, the
groups 2G2(3), 2F4(2) are the Ree groups and the group 2C2(2) is the Suzuki group.
Note that any automorphism θ of k is an element of cyclic group generated by y.
The order of this group is equal to m, where q = pm is the number of elements of k.
Therefore for

the following values of q for different algebras are allowed

2. We are interested in the formulae for orders of GLT. They are expressed
through the degrees of invariant polynomials on ©. Being restricted to Cartan
subalgebras these polynomials generate the algebra of Weyl invariant polynomials
Sw. The Chevalley-Shephard-Todd theorem (CSTT) describes this algebra [8,9]:

Let W be a finite group acting in a space ί) and Sw is defined as previously. Then

1. Sw is generated by n homogeneous polynomials Iί9...,In9 where n = dimί).
2. The degrees dl9 ...,dn of the polynomials Il9 ...,/„ are determined uniquely by W
(they are invariants of W).
3. If 1 is valid, then W is generated by reflections.

All groups generated by reflections acting in a real space has been classified by
Coxeter [10]. Beside the Weyl groups corresponding to Lie algebras these groups
exist also in spaces of dimensions two /2(w) (dihedral groups), three - H3

(icosahedral group) and four - H4. The Coxeter groups and their invariants are
written down in Table 1.

Let us present some needed relations. Let N be a number of positive roots of (5.
Then

N=Σ(dι-ί) (1-3)

The order of Coxeter group W also can be expressed through invariants:

The dimension /„(/) of the space of homogeneous W-invariant polynomials of
degree / is equal to the number of solutions to the equation
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Table 1. The Coxeter groups

Type of
groups

Λ
Bn,Cn

Dn

G2

F4

E6

EΊ

E8

I2(n)

H3

H 4

Orders of invariants

2,3,...,w+l
2,4,...,n
2,4,...,2(«-l), n
2,6
2,6,8,12
2,5,6,8,9,12
2,6,8,10,12,14,18
2,8,12,14,18,20,24,30
2,n
2,6,10
2,12,20,30

N

n(n + l)/2
n

φ - 1 )
6

24
36
63

120
n

15
60

The generating function for /„(/) (the Poincare series of Sw) has the following form:

Πίi-^Γ1- (1.5)

In [8] the formula for the orders of Che valley groups is derived. It has the following
form:

The orders of the twisted groups are calculated in the similar way. Considered
previously the automorphism ρ generates the transformation of ί) for which we
conserve the notation ρ. Let Sj be its eigenvalues (/ = 1, ...,n). For all the twisted

groups except 3 D 4 ε̂  = ± 1. For 3D4 &j = exp —j (j = 1,2,3), ε4 = 1. The orders of

the twisted groups (1.2) are expressed through ε, and dp

<lNh(<ldj-εj)' (1.7)

The correspondence between ε7 and dj will be pointed out further.
The formulae (1.6) and (1.7) give orders of simply connected versions. They are

concretized in Table 2. In the last column the orders [c] of center c are presented.
An order of a simple group is equal to an order presented in Table 2 divided on [c].
Here (a, b) is the common divisor of a and b.
3. The quantum systems describe a motion of a quantum particle on a Cartan
subalgebra ί)=W in an oscillator potential and thereto the states have a definite
type of symmetry under the action of the Weyl group W. In the simplest case of
W-invariant states it is possible to consider the enlarged configuration space - the
whole algebra © and correspondingly the invariant states on it.
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Table 2. The orders of GLT
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G(q) \G(q)\ kl

The Chevalley
groups

2An (-1)

— 1 for d} = n

qNll(qdj-\)(*)

3D4

2E6

2c2

2G2

2FΛ

1 for other dj
1 for dj = 2,6
ω,ω2 dj = 4,4

2πi
3

(-i) d j

1 for dj = 2
— 1 for dj = 4

1 for dj = 2

— 1 for dj — 6

1 for dj = 2,%
- 1 for d, = 6,12

change on qn +1

ql2(q2-i)(q6-ί)

(**)

q\q2 —1)(^4 + 1)

q6(q2 — l)(q6 +1)

q2\q2 ~ i)(q6 +1)

We consider here the eigenvalue problem

) = EkΨk(x), xeh,

Σ
j —

In this section we consider only the Hubert space of invariant states

Ψ(sx)=Ψ(x), seW.

(1.8)

(1.9)

It is not difficult to calculate the spectra of the systems. Introduce to this end the
creation and the annihilation operators α/=i(β J + iωxi/)J aj=^(pj — ίωxJ). Then

H= andΣ
. 7 = 1

h ) m . (1.10)

Thus if |/c> is an eigenstate with an energy £ k , then (α/)m|fc> is also an eigenstate
with an energy Ek + mω.

Let Il9 ...,/„ be the complete system of generators of Sw. Consider operators
Iι(aι, . ..,απ

+), ...,In(cii, . ..,απ

+). As it follows from CSTT the action of these
operators on the ground state

= exp(-|x (1.11)
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gives the complete set of eigenstates

|fc> = /**,...,/*«|0>, /c = (/c1,...,fcπ) (1.12)

with energies [see (1.10)] „

Now it is possible to calculate the statsum of the system

Z(0) = Trexp(-j8Jϊ). (1.14)

It follows from (1.12) that the degeneracy of the spectrum is given by the Poincare
series (1.5). Therefore

e~βEo f[ ( l -έ

Introducing the notation

or T=ω/lnq

we come to the expression

q-E^χ\{\-q-dr1 (1.16)
j = i

Note now, that the dimension of the algebra © is equal to dim© = /z + 2A/\ Then
taking into account (1.3) we express the statsum (1.16) through the orders of GLT
(1.6):

- ( U 7 )

After the appropriate shift of the Hamiltonian (1.8) H' = H + E\ where
£ '= — £ 0 + ωdim©, we come to the simple expression

Consider now the twisted case. The group, generated by ρ acting in ί), is a
normalizator of W. Therefore ρ does not change invariant states (1.9). Recall now
that either ρ2 = l or ρ3 = l and that the automorphism σ defining Gσ (1.2) is
constructed by means of ρ and also depends on the characteristic p of k. Consider
the average of ρ in the Hubert space

(1.18)

Operator ρ transforms a homogeneous invariant polynomial into itself

It was proved in [8] that ε̂  coincides with eigenvalues ε} of the operator ρ when it
acts in t): ε° = εy Thereby the relation between ε, and ά} in (1.7) is established. By
means of (1.12) <ρ> may be written as follows:

^ (1.19)
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Taking into account (1.3) and (1.7) we obtain the desired expression

Zρ(q) = q-Eo/ω+dim&\Gσ(q)\~1 (1-20)

Also as previously by shifting the vacuum energy Eo we can get rid of the multiplier
d

2. Degrees of Irreducible Modular Representations of GLn(q)

1. One of the main problems in the theory of GLT is a calculation of characters of
irreducible representations in spaces Vd over a field k (modular representations).
They are known only in a few cases. In particular for GLn(q) the complete table of
characters has been constructed by Green [11] (see also [12,13]). Here we write
down the formulae for the degrees of irreducible representations of GLn(q) (the
values of the characters on the unit element) and give the quantum-mechanical
interpretation for some of them.

Let kd (d^. 1) be an algebraic extension of degree d of k and k be its algebraic
closure. Consider the set Φ = {f} of irreducible polynomials /efc[ί], except
f(t) = t, of degrees d(f) with the highest coefficient 1. The set of these polynomials
can be described as follows. Let x be a root of f(t) e Φ. Because the Frobenius
automorphism γ acting on roots of a polynomial over k=Fq does not change it, the
roots of f(t) can be obtained from x by the action of γ:

i = 0

Hence there is a one-to-one correspondence between roots of

and the orbit of γ. Thus Φ is the set of orbits of γ in fc*.
Let for f(t) = td-ad_it

d~1... ±a0 U(f) be a matrix of order d,

0 1 0 . . .

0 0 1

and for m ^ l ,
(U(f) ld 0

um(f)=\ •-, •- id

\ o • u(f)ι

is a matrix built from m diagonal blocks. If A is a partition of length \λ\ = konp,
positive integers tf1 ^ . . . ^ / p > 0 then the matrix

C/A(/) = diag{C/,1(/),..., U<JJ)} (2.1)

has a characteristic polynomials /(ί)fc. An arbitrary matrix AeGLn(q) has a
characteristic polynomial

J —J\ JN 9
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where fί9 ...,fN are irreducible polynomials of degree d1,...,dN over k a n d

Any matrix A e GLn(q) is conjugate to a block-diagonal matrix

A~dmg{UVι(fι\...,UVN(fN)} (2.3)

with a characteristic polynomial (2.2) with the restriction Σ \Vi{fy\d(fy = n. In other
words a function v(/) on the set of orbits Φ which takes values in partitions
determines a conjugate class

/ Γ ( / l ) fNN(fN) = Π / v ( / ) > (2 4)
/etf>

which is represented by (2.3) with the additional restriction

Σ v(f)d(f) = n. (2.5)
feφ

Consider as the simplest example the group GL2(q). The conjugated classes are
represented by the matrices

α θ\ (a 1\ /α θ\ /i, 0

a)'\0 αJΛθ iS/'VO t
where a,βeΨ* (the multiplicative group of the field F4) η, ηq e F*2 - are roots of an
irreducible polynomial of degree 2.

In accordance with (2.4) we have

c 1 = / 2 , deg/=l ,

c 2 = / 2 , deg/=l ,

c 3 = / i / 2 , d e g / ~ l ,

c 4 = / , deg/=2,

The degree of irreducible representation corresponding to a conjugate class
v(/) (2.4) has the following form. Consider a Young tableau for v = ί1 +. . . +£p.
Let /z(x) be a hook of a cell x in a tableau - the sum of horizontal cells right from x
and lower vertical cells including x9 and f(x) be a foot - the sum of lower vertical
cells. Then the degree of a representation is equal to

feφ X e v l q f

 d f (2.6)
Σ v(f)d(f) = n, tpπ(^) = ( ^ - l ) . . . ( ^ - l ) , qf = qd'*f.

feφ

For GL2(q) (2.6) takes the form

d1 = l, d2 = q, d3 = q+ί, d4 = q-ί.

Taking into account (2.5) we transform (2.6) to the form

~f(x)

= q 2 Π , [ -«,)• (2-7)
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For representation with deg/=l for all /, (2.7) is simplified

w(«+l) n Π~f{x)

= Q 2

2. Here we present a quantum-mechanical interpretation of dv(q) (2.8). To this end
it is natural to consider a quantum system on gln, or excluding an independent
degree of freedom related to a trace of a matrix - a system on sln. In fact, we
consider a generic case - a system related to an arbitrary Coxeter group (including
a noncrystallographic one).

In this connection it is necessary to change the boundary conditions (1.2). Let
the wave-functions carry an additional index which enumerates a basis of an
irreducible representation v of Coxeter group1

T(v\s)Ψ(v)(x) = Tiv)\b

aΨ
(;\x) = Ψ{v\sx). (2.9)

Because a Coxeter group W is generated by reflections which commute with the
Hamiltonian (1.8), the wave-functions Ψ(v)(sx) correspond to the same energy level
for all 5 e W. Let R + be a set of positive roots and A = {x e ί) | (x, α) ̂  0} be a positive
Weyl chamber. Then by means of (2.9) it is possible to restrict Ψ(x) to A with
appropriate boundary conditions on walls (x,α) = 0 of A.

Note also that an arbitrary wave-function has a form

Ψk(x) = h(x)\0>, (2.10)

where Ik(x) is a multidimensional analog of the Hermite polynomials which
satisfies the equation

IΔ - 2(x, d) + 2(Ek - E0)Vk(x) = 0 (2.11)

and the symmetry conditions which follow from (2.9).
The simplest conditions (2.9) correspond to semi-invariants [9] which are

defined by means of unitary characters χ(v) of the Coxeter groups

ψW(sχ) = χ^\sx)Ψiv\x), seW. (2.12)

If χv(s) = 1 is the trivial character, then the states Ψ(v) are invariant ones. The anti-
invariant states correspond to the character χ(v)(s) = dets. To calculate their
ground-state one must use (2.10), (2.11),

|0>ant= Π (α,x)|0>inv. (2.13)

Here |0>inv, is given by (1.11) and N is a number of positive roots. The simply-
laced algebras A, D, E have no other semi-invariants. For B, C, G2, F4 algebras
there are two additional semi-invariants. Let R*+,RS+ be subsets of long and short
roots in 1£ + : R + = R+vRs+. These subsets define the corresponding semi-invariant
ground-states

(2.14)

|0>sh= Π M | 0 > i n ϊ , E$ = E™ + Nshω. (2.15)

* Irreducible representations of crystallographic groups are listed in [14]
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A Coxeter group W acts transitively on subsets of roots of equal length. Thus the
semi-invariant ground-states one-to-one correspond to the set of orbits of W in a
set R of roots: 1) invariant states |0>inv->a trivial orbit 2) lO)1-*!*1 3) |0>8h-»Λ8h,
4)\0}ant^RshuRx=R.

An arbitrary semi-invariant is obtained from the semi-invariant ground-states
by the multiplication on a polynomial from Sw [see (2.10)].

For the quantum systems of type An^ί which are our main interest the Coxeter
group is isomorphic to the permutation group Sn. The quantum system describes a
one-dimensional rc-body problem. The invariant (anti-invariant) wave-functions
describe bosons (fermions). More general conditions (2.9) correspond to parasta-
tistic wave-functions. Consider an irreducible representation v of Sn which is
defined by an Young tableau v = {n1, ...,n}, where \v\ = n = n1 + ... + nk9

nί ^ n2 ^ . . ̂  nk > 0. For example, for the invariant state v = {n} and for the anti-
invariant v = {1,..., 1} = {lπ}. The dimension of a space of an irreducible represen-
tation v is given by the "hook" formula [12]:

b (216)

where h(x) is the hook of a cell x.
Return now to the general situation. In addition to (2.9) we put also the

following constraints: any state is annihilated by the all W-invariant combinations
of the annihilation operators:

) ;

PeSw.

Let S(h) be an algebra of polynomials on h generated by the creation operators
α^, ...,αn

+. For free oscillators the ground state will be a symmetric one, |0>inv

(1.11), and the functions

|ίc> = α1

+*1α2

+*2...αn

+t"|0> inv, /c^O, kjβZ,
(2.18)

in accordance with (1.10) are eigenstates with the energy

kj. (2.19)

The energy Ek defines the standard gradation of the polynomial algebra
Thus the statsum for free oscillators has the form

(2.20)

Restrictions on creation operators in (2.18) are reflected in the highest degree of the
polynomials Ik(x) in (2.10). Namely, the application af in (2.18) is equivalent to
multiplication on Xj in (2.10). Similar, the annihilation by α,- is equivalent to the
differentiation dj. Consider for example the free oscillators with the constraints
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(2.17). Put now under Tr the operator (— 1)F which gives the difference between the
number of boson and fermion states. The last are generated by the fermion ghosts
corresponding to the constraints (2.17). In fact we go from the statsum to the
Witten index. Taking into account the last remark and comparing (1.16) and
(2.17)-(2.19) we obtain

<f* ft (1-«" ' ' ) n_
^ χ ) ; (2.21)

P{q~^) is a polynomial of degree N. Hence only on a finite number of levels the
operator (— i)F does not vanish. The energy of the highest level is equal to Eo + ωN

( n \
- + N I. The polynomial P(q) has an interesting geometrical description in

terms of an action of the Coxeter group [8,15].
To build the states satisfying also (2.9) it is necessary to apply to the ground

state |0>inγ in (2.18) a homogenous polynomial which is transformed in
accordance with (2.9). In view of (2.17) it is necessary to consider only polynomials
which are annihilated by all W-invariant combinations of the differentiations
dl9..., dn. Denote the dimensions of spaces of these polynomials as M£, where k is
their degree. The Poincare series

for the classical Coxeter groups is calculated in [15]. In particular, for the Coxeter
group of type An_x which corresponds to the Lie algebra gln it takes the form

n

n 1 1 "
{\ τ-r /A -k\ fc = 1

k=l

Thus the Witten index for the systems satisfying (2.9) and (2.17) is equal to

k=l k=l 1 — (

or, as it follows from (2.8),

n(n + 2)

V-22)

, (2-23)

where dv(q) is the degree of representation with deg/=l. Note that nontrivial
energy levels vary between

fc=l

and



Quantum-Mechanical Calculations in the Algebraic Group Theory 453

Shifting the Hamiltonian H-+H + E', where E' = ω—-—, we reproduce (2.8)

exactly. In fact, it is possible to give a similar description of the general formula
(2.7). To this end it is necessary to modify the definition of annihilation and
creation operators. We shall not dwell on this issue.
3. As we mentioned before the formulae of type (2.22) have been derived for the all
classical groups in [15]. Here we consider the dihedral group I2(ή). The
corresponding system describes a quantum particle in the angle 2π/n in the
harmonic potential and the continuation of wave-functions on the whole plane R 2

is implemented by (2.9), where v is an irreducible representation of I2(ri). The wave
functions corresponding to the invariant and anti-invariant conditions were
calculated exactly in [16]. Here we calculate the Witten index for these systems
with the constraints (2.17). For free oscillators it takes the form (see Table 1)

< Γ l ( 1 ~ , ! ){-ΰ2

q ] (2.24)

The group I2(n) has one-dimensional and two-dimensional irreducible represen-
tations. The semi-invariants correspond to the one-dimensional representations.
The decomposition of the regular representation of I2(n) which has dimension In
takes the different forms for the even and odd n. Namely

V
(2.25)

In correspondence with (2.25) the Witten index has the decomposition on the
irreducible components:

Ύτ(-l)Fe-βH

1+2'q-m-l+q-2m-1 + 2-{q-2(l+q-n)+...+q-m(l+q-n)} n = 2m

Every summand here corresponds to the Witten index of a system in which wave-
functions are transformed in an irreducible one-dimensional or two-dimensional
representation v of I2(ή).

3. Comments

1. It is possible to consider a field theoretical limit n-» oo for the quantum systems
related to the algebras of classical types. Let us replace in (1.20)

4 = exp(-2πrr), τ=~~~2π''

Then in (1.19), o . E0
27ΓIT

ω
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Consider the lim Zρ. In this limit the vacuum energy Eo (1.11) is diverged, and we
n —*• o o

use below the zeta-function regularisation: lim n= — \.
H-+O0

Consider the transformation properties of the limit under the modular
transformations generated by T: τ-»τ +1, and S: τ-> — 1/τ. In some cases a limit
statsum is transformed as an element of finite-dimensional representation of the
modular group in a space of modular functions with a fixed weight. After the
regularization and an appropriate shift of a Hamiltonian H^H + Ef one obtains

lim ZBn= lim ZCn = ZB = η-\2τ),
n —*• o o n —*• o o

lim ZmA= ZmA = [_η(2τ)θ3(2τ)r112.
n-> oo

oo

Here η(τ) = qί/24r f\ (l—qj) is the Dedekind function,
j=i

θ3(τ)=Π(l-qj)(l+qj-112)2

is the theta-function. In the first expression we include the invariant dx =1 in the
algebra Sw, i.e. we replace the group SLn(q) on the group GLn(q). This scheme has
failed for the Dn systems due to the additional invariant of order n. It is not difficult
to establish that the modular group acts on the limit statsums as follows:

ZB,

A) ( ) 2 Z ( 2 M ,

where 04(τ)= ft ( 1 - ^ ) ( 1 - ^ ' " 1 / 2 ) 2 .

2. Now consider the quasiclassical limit of the statsum (1.20). We replace βω by
hβω and tend ft->0. Thus this limit is equivalent to the high temperature limit
T->oo, or ω-»0. From (1.15), we immediately obtain

or, taking into account that f] ε. = ± 1 and (1.4),
. 7 = 1
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Comparing this expression with (1.20) we can conclude that in the high
temperature limit the statsum "knows" only about the original W-symmetry. Then
after cooling it looks like the symmetry is "increased" in the "integer" points
Ύ— ω(r In/?) (r e Z, p is a prime number). The groups G(q = pr) (dim G(qγ) > dim G(q2)
if Qi > Q2) a r i s e Evidently they contain the Weyl group W. In fact the degeneracy of
the spectrum is independent of the temperature and symmetries of the systems are
not increased. This situation resembles the Dyson description of distributions of
levels of heavy nuclei [3]. The distribution of coordinates for the classical two-
dimensional Coulomb gas for the three temperatures β= 1,2,4 in his approach
corresponds to statistical ensembles of orthogonal, unitary and symplectic
matrices.

In the case at hand the classical statsum is a Gauss integral which is easily
calculated and yields the formula (3.1). It is worthwhile to note that the systems
under consideration have nontrivial deformation by adding the potential g2/x2

which leads to the class of completely integrable quantum systems of Calogero
type. This deformation changes the algebra of creation and annihilation operators
but the form of statsums is preserved. The classical statsums are no longer Gauss
integrals. Nevertheless it turns out that they are calculable in the quasiclassical
limit of the corresponding quantum statsums [17]. As a result one obtains some
equivalence between the temperature (or frequency) and group parameters.

3. It is possible also to construct quantum systems related to groups generated by
reflections in a complex space C". In contrast with the relation for a real reflection
iS2 = 1, in the complex case one has Sm = 1 for an integer m. These groups have been
classified (see [18]). Moreover as in the real case the CSTT is valid and orders of
invariants are listed in [18]. Besides one infinite sequence depending on three
integers: n - dim of space, m - an order of reflections and an additional integer
number, there exist also 28 exceptional groups in spaces of dimension less than
seven. In all the groups the number of semi-invariants is larger than in the real case.
It permits to consider quantum systems with various types of conditions (2.9),
(2.11). The peculiar feature of complex reflections is the restriction on the smallest
order of invariants: dι ^4. Recall that in the real case d1 =2. The most intriguing
question which arises here is a possible relation between twenty-six simple
sporadic groups and twenty-eight exceptional complex groups.

4. Here we consider another field limit of the theory based on so-called adelic
ideology, which first appeared in a physical literature in a connection with the
strings and the conformal field theory [19]. To this end it is more convenient to
consider fermionic oscillators which are described by the creation bf and
annihilation bj operators with the usual anticommutation relations

and the Hamiltonian

1 n ω
=~ Σ ίbΐ,bj] + -

Z 1 Z

where dj are the orders of Weyl invariants. Consider the ground state |0>: Hfeτm

|0> = 0. Because the relation [H f e r m, &/] = (od bf, we have for the Witten index the
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following expression:

or comparing it with (1.6) for a prime p,

Now let us consider the ensemble of the fermionic oscillators for all the "prime
frequencies"

ω = lnp, p = 2,3,5,7,11,....

The Witten index for this ensemble has the form

W= Π W{p). (3.4)
p-prime

From the Euler formula for the zeta function

ζ(S)= π ( W Γ 1 ,
p-prime

the equality dim(5 = « + 2ΛΓ and (1.3) it follows that
n

W=Ur1(dj). (3.5)
7 = 1

This formula is related to the Tamagawa numbers of adelic groups [20]. We now
clarify this relation.

Firstly let us define the Tamagawa numbers.
Adel is the infinite sequence which is parametrized by the prime numbers

α = (αo o,α2,...αp,...), (3.6)

where a^ is a, usual real number with the standard Archimedean norm, αp is a
p-adic number. The p-adic field Qp is the completion of the field Q of the rational
numbers by means of p-adic norm: \αp\p=p~r, where r is a multiplicity of p in the
decomposition of α on prime multipliers. In (3.6) all elements in the sequence after
some position are integer p-adic numbers. This means that αpeΈp (\αp\pS 1). The
set of sequences (3.6) generates a ring if one defines the addition and the
multiplication on their components. From the definition of norms it follows that
for any λ e Q,

μioo Π W,=i (3-7)
p-prime

(the product formula).
Consider now an algebraic group G - a subgroup of the linear group GLn(Q)

which is defined by polynomial equations. We assume in what follows that G is a
semisimple group. For the generic case it is necessary to modify the construction.
Let GR be a group of real matrices in G, Gp be a group of p-adic matrices in G and
Up be a subgroup of integer p-adic matrices (the matrix elements of gp e Up are
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integer p-adic numbers). The adelic group GA is a set of sequences with the
component multiplication

G^ = g = (gco,g2 ..gp..O, (3.8)

where g^eG^gpe Gp, and gq e Uq for q > p for some p.
In other words GA is algebraic subset in the product Λm (m = n2 +1) which is

defined by the same polynomial equations as G. The following facts about adelic
groups are needed:

1. It is possible to endow GA with a topology in which GA becomes a locally
compact topological group.

2. The group over rational numbers GQ is embedded in GA as the diagonal
subgroup in (3.8). It is a discrete subgroup in GA which is called the principle adelic
subgroup.

3. There exists an invariant measure on GA with a canonical normalization.
The construction of this measure deserves a short comment. First of all introduce
the highest form ω on G. In local coordinates it takes the form
ω =f(xί9..., x j d x i . . dxm, where / is a rational function with coefficients from Q.
The invariant measure on G is defined by means of ω up to the multiplication on
λ e Q. Similarly one can define forms and measures on Gp (p = oo, 2,...) taking into
account the normalization condition μ(Zp) = 1 for p = 2,3,.... The invariant
measure on GA is the product

μ{GA) = μ{G^ Π l4βp). (3.9)
p-prime

The uncertainty in this definition related to the above-mentioned multiplicator λ
disappears due to (3.7).

4. The coset space GA/GQ has a finite volume which is determined by the invariant
measure μ{GA) (3.8). It is called the Tamagawa number τ(G) of a group G.

The calculation of τ(G) is based on the following two statements:

1. The coset GA/GQ is a bundle with the base GγJGΈ, where GΈ is the subgroup of

matrices with integer matrix elements and the fibre U = Π Up. (Up is a group of
p-prime

integer p-adic matrices.)

2.

f _ \G(P)\

where \G(p)\ is the order of the corresponding Chevalley group (1.6).
Therefore

= Vol(GR/Gz) ΓJ
ip-prime P
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Returning to the quantum-mechanical picture we find from (3.3) that

τ(G) = Vol(GF/Gz) Π W{p), (3.9)
p-prime

where the non-Archimedian part is equal to (3.5). The remaining problem is to
include the first multiplier in a definition of the Witten index of a hypothetical
quantum system. This multiplier in its turn is proportional to the Witten index Wx

of the supersymmetric sigma-model with the target-space X = G^G^. In fact the
Witten index Wx is equal to the Euler characteristic χ(X) of the model [21]. On the
other hand dropping out the subtleties related to the non-compactness of X one
finds from the Gauss-Bonnet representation for χ that Wx is proportional to the
volume of X. This suggests that there should exist a sigma-model partly described
by the fermionic Hamiltonians (3.2) in which the Witten index is equal exactly to
the Tamagawa number. It should be a topological sigma-model in which only zero
modes contribute to the Witten index.

According to A. WeyΓs hypothesis τ(G) = 1 for universal covering groups G.
Now it has been checked in many cases. This equality means that in the
hypothetical quantum system the supersymmetry is unbroken. For example, for
SL2 the formula (3.9) is read as the celebrated Euler relation

i = T Π ( i-p 2 )-
Ό p-prime

If G is a nonsimply-connected group, τ(G)φl. For example, for SOn (n^3)
τ(SOn) = 2, and therefore in the corresponding system the supersymmetry is
broken.
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