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Abstract. After recalling the main properties of a conformal embedding of Lie
algebras g ID p, which is defined by the equality of the Sugawara central charges
on both sides, we launch a systematic study of their branching rules. The bulk
of the paper is devoted to the proof of a general formula in the case
suimή)! ^> su(m)n® su(ή)m. At the end we give some applications to the con-
struction of modular invariant partition functions.

1. Introduction

Affine Lie algebras are one of the main tools in the construction of Conformal
Field Theories. They underlie some of the most important examples of Rational
CFT, namely the Wess-Zumino-Witten models [19]. In these models the Hubert
space is built from unitary representations of an affine Lie algebra g at some
positive integral level k. Another very useful tool is the coset construction [6].
Given an embedding g => p of Lie algebras and an irreducible unitary highest weight
representation L(Λ) ofg, one obtains a set of representations U(Λ, λ) of the Virasoro
algebra, which intertwines with the action of p on L(Λ). More precisely,

L(Λ) = Q)U(Λ,λ)®L(λl (1.1)
x

where the sum runs over all representations of p of level k = kj, k being the level
of L(Λ\ j the index of g ID p and U(Λ, λ) the subspace of ^-highest weight vectors
with weight λ. The central charge of the Virasoro algebra acting on U{Λ9 λ) is
Φ ) - Φ ) with

h(g) being the dual Coxeter number and c(g) (respectively c{p)) the central charge
of the Sugawara representation of the Virasoro algebra acting on L(Λ) (respectively
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L(λ)). Let h and h denote Cartan subalgebras of g and p. One can choose them so
that Ac/i. Let H = {τeC\lmτ >0} be the upper-half plane. The normalized
character χΛ of L(Λ) is the holomorphic function on H x h:

χΛ(τ,z) = <Γ c (* ) / 2 4TrL ( Λ )exp2ίπ(τL 0 + z), (1.3)

where as usual q denotes exp2ιπτ, 0 < \q\ < 1. Suppose that zeh, then from (1.1)

we get:

t(τ)χλ(τ,zl (1.4)

where the branching function bχ is

bf(τ) = q™-«»»<2*ΎrϋiΛ,λ)q
L°. (1.5)

The modular transformation properties of the characters are given by [13]:

χΛ{τ+\,z) = e2'«h^™χΛ{τ,z) (1-6)

with
(Λ + 2p|Λ)

ftA=W*foJ) (L7)

and

eik^/τ Σ S(Λ9M)χM(τ9z). (1.8)
MeP f c

+

is the set of dominant highest weights of level fc, and

(1.9)

|ϋ4+1 is the number of positive roots of g,P is the weight lattice, P* its dual, W
the Weyl group, and Λ and p denote the "finite" parts of A and p, i.e.
A = kA0 + A,p = h(g)A0 + p, see [14]. Using the Weyl character formula, one can
rewrite (1.9) as follows:

^ " " ^ I + Λ (MO)

where Tr^ denotes the trace over the finite-dimensional ^-module with highest
weight M. One shows that S(Λ, M) is a symmetric unitary matrix.

Set S(Λ) = S{Λ,kΛ0). By the Weyl denominator formula,

π ( y l " f ^ ' α ) (1.11)

Hence S(A) is a positive real number, which appears in the asymptotic behavior
of χΛ(τ,0) as τ-*0. It turns out to be:

(1.12)
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Indeed from (1.8), χΛ(τ,0) = ξ S ( Λ , M ) χ M ( - l/τ,0) and since χA(τ,O) = ^

(1 + o(q)) and hA £ hkΛo = 0, (1.12) follows.
Returning to (1.4) one easily deduces the transformation law of the branching

function:

~-)= Σ S(Λ,M)S*(λ,μ)b¥(τ) (1.13)
τ / MeP\,μePk

+

(from now on dotted quantities refer to the subalgebra /?).
By definition, g ID p is a conformal embedding when U(Λ, λ) is finite-dimensional,

or equivalently when c(g) = c(p). This implies that the level of g is one. Conformal
embeddings are classified in [4]. In this case bχ(τ) = dim U(Λ, λ) = b(Λ, λ) is a
constant and (1.13) reads:

b(Λ, λ)=Σ S(Λ, M)S*(λ, μ)b(M, μ\ (1.14)

i.e. the rectangular matrix b(Λ, λ) intertwines with the action of the modular group
on the characters of g and p. This matrix also obeys the important identity:

S(Λ)= X b(Λ,λ)S(λ)9 (1.15)
λePk

+

obtained by inserting (1.12) and its analog for p in (1.4).
In this paper we compute b(A, λ) in the case g = su(mή)ι =>p = su(m)n © sw(n)m,

which is conformal for m,n> 1, the subscripts denoting the levels. The previous
equations need to be slightly modified to account for the non-simplicity of p. For
example (1.14) becomes:

b{AXλ)= X S(Λ,M)S*(λ,μ)S*(lμ)b(M,μ,μ). (1.16)
M,μ,μ

Here and in the following, single dots refer to su(m) and double dots to su(n).
Similarly (1.15) becomes:

(1.17)

It should be mentioned at this point that some results on the branching
coefficients of conformal embeddings have already appeared, see [13] and references
therein. For instance the branching rules for the regular conformal embeddings
are known. Also in [15] the branching rules of all conformal pairs g^p with g
exceptional are listed. Of more direct relevance to the present paper is the work
of Frenkel [10] who dealt with the case gl(mn) ^ sl(m)φgl(ή). The decompositions
under su(mή) z> su(m)@su(n) are also considered in a recent paper [17].

The paper is organized as follows. In Sect. 2 we gather a number of relations
among highest weights of su(m)n and su(n)m, and the matrices 5(A, μ\ S(λ, μ), before
stating the general formula for the branching rules b(Λ, A, λ). Section 3 deals with
the proof of this result. Section 4 contains some applications to the construction
of modular invariant partition functions.
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2. Weights of su(m)n and su(ή)m

We start by describing P\ and P+, i.e. the highest weights of su(m)n and su(ή)m.
P\ is the set of weights

where fcf are non-negative integers such that

m - l

Σ *ι=» (2.2)

and yif = /ί0 + ώ,-, 1 ̂  i ̂  m — 1, where ώf are the fundamental weights of su(m).
Instead of λ it will be more convenient to use

m-ί

Σ
i = 0

(2.3)

m - 1

with ki = fc. + 1 and £ fct = m + n.
i = 0

Due to the cyclic symmetry of the extended Dynkin diagram of su(m\ the group
Z m acts on P\ by

^il~~>Ai + σ)modm> σ e ^ m (2-4)

Let ί2mflI = Pn+/Zm be the set of orbits under this action. The following observation
is crucial:

Lemma 1. There is a natural bijectίon between Ωmn and Ωnm.

Proof. Draw a circle (Fig. 1) and divide it into m + n arcs of equal length. To each
m - l

partition £ fcf = m + n there corresponds a "slicing of the pie" into m successive
ΐ = 0

parts with angles 2π/ct/(m + n), drawn with solid lines. The complementary slicing

in broken lines defines a partition oίm + n into n successive parts, £ /,- = m + rc. •

The careful reader will note that if for instance the fc-slicing is ordered
counterclockwise, there still remains the freedom to order the /s in the same or in
the opposite sense. We choose the latter.

Fig. 1
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We shall parametrize this bijection by a map

β:Pn

+^Pm

+ (2.5)

as follows. Set

rj=j?ki9 l ^ gm, (2.6)
i = j

w h e r e km = k0. T h e s e q u e n c e (r1,r2,...,rm) is decreas ing , m + n = r ι > r 2 > •••

> r m ^ 1. T a k e t h e c o m p l e m e n t a r y s e q u e n c e (fί9r2,...9rn)in { l , 2 , . . . , m + ή] w i t h

ϊι>r2>- >rn. Put

s</ = m + n + r I I ~r I I _ i + 1 , l ^ ^ n . (2.7)

Then m + n = s 1 > s 2 > > s r t ^ l . The map β is defined by

(r1,...,rjh->(s1,...,sπ). (2.8)

Thus when λ runs over an orbit ώeΩmn,λ = σ β(λ) runs over an orbit ώeΩnm if
σ runs over Zπ.

Corollary 1. The orbits of the vacua nλ0 and mλ0 correspond to each other.

There is yet another description of the bijection of Lemma 1, which will be used
later on. It is best formulated in terms of Young tableaux, so let us first introduce
notations for these. Y(λ) will stand for the Young tableau corresponding to a
dominant weight λ of su(N\ with at most N — 1 lines. Recall that Y(λ) has at most
k columns if λ has level k. Let Y(λ)τ denote the transposed tableau obtained by
exchanging rows and columns. It can be interpreted as a su(k)N tableau if we erase
in it every column with exactly k boxes. We denote by λτ the corresponding su(k)
dominant weight.

Proposition 1. Let λeP\ and let c(λ) be the number of columns of Y{λ). Suppose
σ = c(λ) mod n. Then

σ-β(λ) = λτ. (2.9)

Proof. Define km by £ ki = n, and suppress the tildes from now on in this proof.

Let Pj, j = 0,..., n be the coordinates of λτ:

λτ = PoΛo+~ +pH-iΛH-1 (2.10)

which obey the relations, for j = 1,..., n:

pn+--+Pj = sup{i\km_ι + ki^j}9 (2.11)

where pn = p0- Consider, when i = 0,..., m — 1:

ΣkJ + L ( 2 1 2 )

T h e s e a r e m i n c r e a s i n g n u m b e r s b e t w e e n 0 a n d m + n—l. O n t h e o t h e r h a n d ,
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(2.13)

are n increasing numbers between 0 and m + n— 1. We claim that these two
sequences are complementary. Indeed for qe{l9...,n} let i0 be such that

Then

Therefore we obtain the formula

io i o + 1

Σkj<q< Σ
7 = 1 J = l

i

Σ kj
I

rq = m + n - q - sup \ i

which, according to (2.7) implies

sq = m + n - q + 1 - sup <

We now observe, that if q — km ^ 1,

1
1 k, > q } = i
•i ' ~ J

whereas if q — km ^ 0 (implying km ^ 1):

sup \ i Σ i

ΣkJ<(l

S U P

and pq + n_km = 0, since

Pπ+ * +Pn+l-fcm = SUP{ίΊfcm+ ••• + f c i ^ Π + l } = 0 .

Set sn+ι = 0 and

t = s — s — 1

which are the coordinates of jβ(A):

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

where t0 = tn. Assume that 0 < km < n (the other possibilities are trivial). Take q
such that q^n—1 and suppose that q — km^.\. From (2.18):

(2.23)

J = ι

Pq+l-km = Pq-krr
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and the proposition is proved in this case. The other cases can be dealt with

similarly. •

We turn now to a study of the relations between the different S matrices entering
(1.16). We start with S(Λ,M). The set of level 1 highest weights of su(mή) are in
1-1 correspondence with the elements of Zmn:Λ0,Λί,...,Λmn_1, and we have:

S(Λ9 M) = (mn)-ι/2 exp (—ΛAf\ (2.24)

\mn )

where we identify the weights Λ, M with the corresponding elements of Zmn.

Let λeP\. Put φ^λ) = ri-m~1 £ rp where the r£ are given by (2.6). Then [13]:
7 = 1

(2.25)

where

Nm,n = im(m~1)/2m~1/2(m + n)~{m~1)/2. (2.26)

The next lemma gives the relation between S and S.

Lemma 2. Let λePn+, σeZn and

δ(λ, a) = ( £ rΛ + ma - \m{m + 1). (2.27)

Then, for all λ,μeP\, a,veZn one has

S(λ, μ) = ( l Y/2 exp (~ δ(λ, σ)δ(μ, vλs*(σβ(λ\ vβ(μ)). (2.28)

In particular,

S(λ) = (-) S(aβ(λ)) (2.29)

for all σeZn.

Proof The main ingredient in deriving (2.28) is Laplace's formula from the theory
of determinants [11]. Let A be an N x N matrix. We choose a k x k submatrix of
A by fixing two sequences of indices, 1 ̂  iί < i2 < ••• < ίk ^ N and 1 ̂ jί <j2 < •••
<jk^N with k^N. Let 1 ̂  Γf < ••• <ϊN-k^N and 1 ̂ / x < ••• <jN_k<.N be the
complementary sequences. Let JB(/J) denote the minor of A'1 defined by (ί) and (j),
and v4(i, j) the minor of 4̂ defined by (i) and (j). Then

B(ίJ) = (det A)" H - l ) Σ " + Σ M ( ζ /). (2.30)

The rest is a matter of (lengthy) computation, expanding the determinant in (2.25)
until one gets a minor of A'1, where

(A)jk = (m + nΓ 1 / 2exp( ^ Z ί Λ 1 <;;fc ̂  m + n. (2.31)
\m + nl
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At this point one applies (2.30) and then recasts the new minor obtained in the
form of a S(λ, μ). Another useful formula is

(2.32)

Equation (2.29) follows from Corollary 1. •

In the next section we will need the conformal dimensions corresponding to
the various highest weights we have discussed. For Λe{0,...., mn - 1},

A(mn — A)
Λ 2mn

and for AeP+, σeZn we have

h + Km = y— %λ> σ)(mn ~ δ& σ))mod z ( 2 3 4 )2mn

3. The Branching Rules

Now we are in a position to state our main result, the proof of which will occupy
most of this section. The notations are those of Sect. 2.

Theorem 1. Let AeZmn denote a level one highest weight ofsu(mn). Let AeP+, /ίeP+.
Then the multiplicity b(A,'λ,λ) of L(λ)®L(λ) in L(A) has the value:

b(A, A, λ) = 1, if λ = σβ(λ), σeZn and A = δ(λ, σ) mod mn,

b(A, A, λ) = 0 otherwise.

As aTirst consequence, we obtain a special case of a general conjecture in [13]:

Corollary 2. // b(Λ, λ,λ)*O and b(M, μ, μ) Φ 0, then S(Λ, M)S*(λ, μ)S*(JL, μ) ̂  0.

Proof. Use Eq. (2.28).

The next lemma is the most technical and we have relegated its proof after all
the others. It gives a vanishing/non-vanishing criterion for b(Λ, λ, λ) which cannot
be obtained from modular considerations.

Lemma 3. Let Q be the root lattice ofsu(m\ Λi9 0 ̂  i g m — 1 its fundamental weights
and Qi = (Q 4- A^nP^. Let AeZmn and λeQΛmodm. Then there exists 'λePrl,σeZn

with λ = σβ(λ) such that b(A, A, λ) Φ 0. furthermore, b(Λ, A, λ) = 0 if XφQΛmod m.

L e m m a 4. Let /e{0, l , . . . , m — 1}, then

Σ A = i (3.1)

Proof. See [13].

Lemma 5. Let AeZmn and λeQΛmodm. There exists a unique λeP™ such that
b(A, A, λ) φ 0. In this case b(A, A, λ) = 1 and λ = σβ(λ) for some σeZn.

Proof. We start from Eq. (1.17) and use Lemma 3:

(3.2)
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where now summation is over λeQΛmodm and λeP™ such that b(Λ, A, λ) φ 0. For
each λeQΛmod m, we choose one of those λ for which b(Λ, A, λ) Φ 0, and write it as
σβ(λ). Equations (2.29) and (3.1) imply:

/m\l/2

*(-) Σb(Λ9Kσβ(λ))(S(λ))2

/ 2 (3-3)

However by (2.24) we have S(Λ) = (mn)~1/2. The lemma follows. •

Proof of the Theorem. The preceding lemmas imply all the assertions in the theorem
except the fact that A = δ(λ,σ) mod mn, a condition which determines σ, which
in turn locates the weight λ being coupled to A and A. We prove this in two
steps.

1. Classical Case. Each representation L(A) of su(mn) is graded by the eigenvalues
of L o . The subspace with the lowest eigenvalue hΛ is nothing but the finite-
dimensional representation L(Ά) of su(mn) whose tableau Y(A) is a single column
with A boxes. Y(Λ) decomposes into a sum of finite-dimensional representations
of su(m) © su(n) as follows [18]:

Y(A)= © Y(A)®Y(A)T, (3.4)
\Y(λ)\ = Λ

where | Y(A)| is the number of boxes of the tableau Y(λ). We will say that b{Λ, A, λ)
is classical if it is non-zero and |Y(A)|=Λ According to (3.4) this implies
that λ = λτ. By Proposition 1,AT = σβ(λ) with σ = c(λ) = number of columns of
Y{λ) mod n. Also, one finds that

δ(λ, σ) = I Y(λ)\ + m(σ - c(λ)) + mn, (3.5)

so we have shown that δ(λ, σ) = A m o d mn when b(Λ,λ9λ) is classical.

2. The General Case is reduced to the classical case by means of automorphisms.
The center Zn of su(ri) is embedded in the center Zmn of su(mή) by the m a p

vi—>mv (3.6)

in the additive notat ion. Since the elements of Zn and Zmn act as automorphi sms
of the corresponding algebras, this implies that

b(A + mv, A, v λ) = b(Λ, A, λ). (3.7)

Suppose now that b(A, A, λ) φ 0. There exists veZn such that b(A + mv/λ, vλ) is
classical. This is because by Lemma 3, we know that λeQΛmod m, which is the same
as I Y(A)| = ylmodm. Rewriting the latter explicitly as | Y(λ)\ = A + mv proves our
claim. But now we have

A + mv = <5(A, vσ) = <5(A, σ) + mv mod mn, (3.8)

and the proof is complete. •

Proof of Lemma 3. All required properties of b(Λ, A, λ) will be obtained from a
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study of the conformal pair

so(2mn)x ID su(m)n © su(n)m 0 u(l) (3.9)

which in turn is the isometry embedding of the symmetric space

SU(m + n)/SU{m) x SU(n) x U(\). (3.10)

The link of (3.9) with

su(mn)ι 3 su(m)n © su(ή)m (3.11)

is provided by

so(2mn) => su(mn)φ w(l) (3.12)

which is also conformal, with known branching rules (see below). For short, set
g = so(2mn), h = su(m -f n), p = su(m)®su(ή)@u(l). One has the decomposition

(3.13)

in which V is a p-module and (symmetric space property):

[ K F ] c : p . (3.14)

In [1] it was explained how the decomposition of the spinor representation s©ί
(sum of the two half-spins) of g as a p-module may be obtained by considering
the affine root system of h. However [1] only covered the case when h and p have
the same rank, h is simple and p is semisimple. Let us first extend the method given
there to a reductive p, i.e. allow a w(l)in it. What we want to show is that no terms
will cancel each other in χs — χt. Let 5 and t denote the finite-dimensional spinor
representations. It is known that considered as p-modules, they do not have any
common weight. Assume now that 5 and t do have a common weight, so that

λ-qδ-Σk^μ-rδ-Σl^ (3.15)

where λ and μ are respectively weights of 5 and ί, q9 r are non-negative integers, αf

are the simple roots oίp and ki9 lteZ. Therefore q = r and λ — μeQ0, the root lattice
of p. Hence s and ί contain respectively irreducible components sί and tί in the
same congruence class. But these must have a common weight, a contradiction.

Next, the affinization of w(l) is the Heisenberg algebra, so its irreducible
characters are inverse of Dedekind's η function. The root system, Weyl group, etc.
of p are defined to be those of its semisimple part. All the other arguments work
without modifications. Hence the decomposition of 5 0 ί of g into irreducible
^-modules is

0 p0), (3.16)
weW/Wo

where from now on quantities with a subscript 0 refer to /?, W is the affine Weyl
group of h,p is the affine Weyl vector of A. In (3.16) it is understood that W/Wo

is a system of coset representatives such that w(p) — p0 is a dominant weight of p.
It breaks into

W/Wo = (Sm+n/Sm x Sn) x (Q/Qo\ (3.17)
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where Sm is the symmetric group on m objects. The root lattice Q of h is spanned
by simple roots α 1 , α 2 , . . . , α m + π _ 1 . We take {α 1 , . . . ,α m _ 1 }u{α m + 1 , . . . ,α m + n _ 1 } as
a basis of Qo. Therefore Q/Qo = Zαm.

As a generator of the u(\) subalgebra of/?, we can take the fundamental weight
ωm dual to αm. Remember that weights of su(m) are of the form

λ=Σ λJ£p (3 1 8 )
7 = 1

m

where {εf} is an orthonormal basis of Cm and Σ λj = O. Sm a c t s a s permutations
7 = 1

of the εt . The fundamental weights are chosen to be

cbi = Y ε — — Y ε , (3-19)
7 = i mj=i

ώ^t^n^-j-1 Σεm+r (3.20)
j=l ^ 7 = 1

One has the relation:

(3.21)

obtained by choosing εh 1 ̂  i ^ m + n to span the weight space of su(m + n).
(Remember: single dots refer to sw(ra), double dots to su(n).)

In order to get a dominant weight w(p) — p 0 , we have to use as representatives
°f Q/Qo *n W7Wo> n o t Λe translations t(kccm) by multiples of αm, but the powers of

Γ=w ( m )w ( n )ί(αm) (3.22)

with w(m) and w(n) some fixed elements of Sm and Sn. See [2] for details. Then we
get a more explicit form of (3.16):

5 0 1 = (J) (J)L(σ~fcσ*(vv(p) — Po))®F(hk), (3.23)
w e C m > r i keZ

Cmn = Sm + n/Sm x Sn. σm and σn are generators of Z m and Zn acting as in (2.4). F{hk)
is an irreducible Fock space representation of the w(l) Heisenberg algebra with
conformal weight hk. In deriving (3.23) we used

(3.24)

which is a consequence of (3.21) and (3.22).
Now the Weyl vector (half-sum of the positive roots) of su(m + ή) is

2 7=1

A weight λ of su(m) is (strictly) dominant iff it is of the form (3.18) and λj > λj+ι,
j = 1,..., m — 1. Thus we see that a suitable choice for Cmn consists of permutations
which bring the sequence (1,2,...,m + n) into (μι,...9μmμί,...9μn\ where (μ )̂
is increasing, (μf) is decreasing, and they are complementary sequences in
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Fig. 2

{l,2,...,m-|-n). Using the same kind of diagram as in the proof of Lemma 1
(see Fig. 2) we number consecutively m + n lines on the circle, m of which are the
solid lines μh the other n lines μt being broken.

We set for weCmn

wip) =

with

Let

Then one has

pk = (m + n 4- l)/2 - μk,

pk = (m + n 4-1)/2 - /ifc.

= ΣA=-ΣA
fcl fcl

(3.26)

(3.27)

(3.28)

mn
ωm

where

N m

— Σ εfe»
W fci

iV n

Σ

(3.29)

(3.30)

(3.31)

(3.32)

With the help of Fig. 2 it is now easy to see that β(rk) = (sk) up to a possible
rotation by some σeZn. Thus we have shown that λ = σβ(λ) in (3.29).

Define
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It is also fairly easy to show that every XeP\ arises in (3.29) as w runs through
C m n . Indeed suppose that w is such that μ1 = 1, say. Given λ + p, or rather a
sequence (rk), the rest of the μf are determined using (3.27) and (3.32):

μt = m + n + μx — rf, ifLi^m. (3.33)

This proves the existence of weCm „ such that w(p) gives rise to any given λ + p
in (3.29).

Observe, that since hs = ht — mn/S, with (2.34) we can determine hk in (3.23):

We now want to compare the branching rules of (3.11) and (3.9). The latter are
[13,3]:

s 0 ί = 0 L(/t mod mn) ® F(hΛ% (3.35)
ΛeZ

where hΛ = (A — mn/2)2/2mn. Both right-hand sides of (3.23) and (3.35) are periodic
with period mn, up to differences in hk and hΛ by integers. It is therefore enough
to compare (3.23) and (3.35) over two basic periods.

The embedding (3.11) is integral so L(λ) ® L(λ) occurs in L(Λ) implies λeQΛmod m

and λeQΛmodn.
Finally, every pair (K'λ)eQΛmodm x β Λ m o d π with λ = σβ(λ) occurs in L(/l), as

otherwise it would be missing in the decomposition of s 0 ί, which as we showed
before contains all of them. All assertions of Lemma 3 follow from these
considerations. •

4. Modular Invariants

The use of conformal embeddings in the construction of modular invariant partition
functions goes back to [8]. Fix a conformal embedding g => p, and take a modular
invariant partition function:

Z = Σ XΛΩΛ,MX*M (4.1)
Λ,M

built from the level one characters χΛ of g. An obvious way to obtain a modular
invariant for p is to simply substitute in (4.1) the decomposition of the characters
1A — Yj^xlλ Even when Z is the trivial invariant, Ω = identity, it is possible in this

x
way to get interesting invariants, such as the E6 and E8 in the ADE classification
[9] of p = su(2) models, out of g = sp(4), G2, respectively.

Another kind of construction is as follows. Suppose now that the conformal
subalgebra consists of two commuting components, p = Pi®p2- Let Ω be as above,
a g invariant, and M be a px invariant, then:

Nj, = b(Λ, A, λ)ΩAMM •/(M, A, μ) (4.2)

(where Einstein's summation convention is enforced) is a p2 invariant, as can be
seen at once from the intertwining property of the branching coefficients, Eq. (1.16).
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However, ΛΓ usually does not qualify directly as a "physical" invariant, the reason
being that the corresponding theory in general does not have a unique vacuum:
JV0 0 > 1, where 0 labels the representation with conformal dimension zero. So one
needs either to subtract from N a known invariant, or divide it by some positive
integer, or a combination of both. The EΊ invariant is obtained in this way from

Below we will consider mainly this second construction, starting from an su(mή)
invariant Ω and an su(m)n invariant M, ending with an su(ή)m invariant N. The
modular invariants of su(r)ί (in the following we put r = mri) have been classified
[12], and the general matrix Ω depends on the divisors of r: let Δ9Δ' be such that
ΔΔ! = r or 2r, if r is odd or even, respectively, and also assume that r, Δ and Δ' all
have the same parity. Then:

where x,ye{0,.. .,r- 1}.
Before giving examples a few preliminary remarks are needed. The classification

of modular invariants is complete only in the two cases mentioned above, namely
su(2) all levels and su(ή) level one. However many invariants are known for su(n)
at higher levels, as well as for other Lie algebras. Let us empirically divide the
invariants for su(ή)m into four classes, neglecting the possible effects of conjugations
[12]. Class s/ consists of the trivial invariant which exists at all levels. Class <6
exists only at the levels m = n and m = n±2, when su(ή) can be conformally
embedded in so(n2 — 1) or su(p) with p = n(n ± l)/2. Class 2 consists of invariants
related to the cyclic group Zn or its subgroups. In the more general context of
rational CFT, such invariants associated with cyclic groups have been studied in
[16], and here we will be able obtain concrete and non-trivial cases using our
method. All type 2 invariants listed below are obtained by setting M = identity
in (4.2). Therefore they have the property that N-^ΦQ if μ = σ(λ\ where σeZn.
Finally class $ contains exceptional invariants.

In the sequel we shall present a few sample applications of formula (4.2). A
more comprehensive analysis is in progress [5].

4.1 Invariants at Level 2. Our first examples of invariants belong to the case m = 2,
i.e. will be su(n)2 invariants obtained from Ω and su(2)n invariants. Note first that
the branching coefficients in this case are easy to compute explicitly. From
Theorem 1 we find the decomposition1:

XΛ = 0 ή(n - J)Λ0 + M 1 ) χ ( / ί ( Λ + Λ / 2 modn 4- Λ{Λ_j)/2 m o d n ) . (4.4)
j:j= Λmod 2

When M is trivial one recovers by the method indicated above invariants of type
s/ and 2 by varying Ω.

For n = 3,5,6 there are two possibilities for Ω and one gets the trivial invariant
along with the 2 invariant belonging to the series found in [7,2], which from now

1 One of the authors would like to take this opportunity to correct [3], in which Eq. (3.38) should be
replaced by (4.4). Everything else should remain unchanged
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on will be denoted 2)0. Recall that these invariants for su(ή)m have the following
shape:

Σ XλXσ(X)λ (4-5)
λePm

+

if m,n are coprime, where σ(λ)eZn and:

Σ "" ' Σ lz,ll2 (4-6)
λePΊnQ σeZ»

if n I m, where Q is the root lattice of su(ή).
Already for n = 4 something noteworthy happens. There are three possibilities

for Ω. Two of them, (Δ, Δ') = (8,2) and (2,8) give respectively the trivial and the
<2>0 invariant, but (4,4) produces another kind of 2 invariant:

Ifoooo + Z0020I + IXooo2 + Z0200I + 2 | χ 1 0 1 0 | + 2 | χ 0 1 0 1 | , (4.7)

where the characters are labeled by the Dynkin integers fci,i = 0,...,3. This is
obviously an invariant associated with a Z 2 subgroup of Z 4 . It is interesting to
note that this invariant could also be obtained using the conformal embedding
su(6)ι 3 sw(4)2 by expanding the trivial su(6) invariant.

Of course it is possible to obtain exceptional invariants by setting M to be one
of the E invariants of su(2). Here we will limit ourselves to the case when M is the
E6 invariant of sw(2)10. If Ω is the identity one obtains2:

j j j)\2, (4.8)

where we have set Λi + 10 = / ί i . Let N^fi stand for the matrix elements of this
invariant. By setting now (Δ,Δ') = (4,10) one gets another invariant with matrix
elements N ;Mfι), where

(4.9)

4.2 Invariants at Level 3. We will study the case sw(5)3. Assume first that M is the
identity. There are four possibilities to consider for (Δ9Δ'):(l591),(1,15),(5,3) and
(3,5). One obtains for N the trivial sw(5)3 invariant in the cases (15,1) and (5,3),
and the @0 invariant for (3,5) and (1,15).

Next we take M to correspond to a ^ type invariant. There is a conformal
embedding 51̂ (6)! => su(3)5 from which one gets the matrix M of an SM(3)5 invariant
by expanding the trivial su(6) invariant. Similarly one gets the matrix N of an
su(5)3 invariant using the conformal embedding su(\0)1 => SM(5)3. We have observed
that N can be obtained from M by using our method based on su{15)1 =» su(3)5 ©
su(5)3,Ω being the trivial su( 15) invariant.

43 Invariants at Level 4. Here we will study the case SM(4)4. The possibilities for
Δ, Δ! are (16,2), which corresponds to Ω = identity, (2,16), (4,8), (8,4). Suppose first
we start with M being the trivial invariant. For (8,4) we obtain an invariant

2 In [17] the same invariant was computed, but given there with a misprint in the third term
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associated with a Z 2 subgroup:

IX4000 + XθO4O I + IXθ4OO +XOOO4I + 1/1012 + Xl21θl + 1̂ 2101 + #0121 I

+ l#2002 + Zθ22θl + IZθO22 + Z22Oθl + IfooiO + ZlO3θl + IZθlO3 + #0301 I

+ 2|χ2o2ol2 + 2 |χ O 2 O 2 | 2 | + 2 | χ i l l l | 2 , (4.10)

while for (2,16) or (4,8) we get a "twisted" version:

I#4000 + XθO4θl + IXθ4OO + #00041 + l%1012 + Xl210 I + l%2101 + #01211

~^~ \X2OO2 ~^~ Xθ22θ)\XθO22 ~^" X22OO) ~^~ \X3OIO ~^~ XlO3θ)\XθlO3 ~^~ Xθ3Ol) +
 C C

2 2 2
, (4.11)

Remarkably the ^ 0 invariant is not produced by this method. Also there is a ^
invariant obtained from the conformal embedding so(15)! ZDSM(4)4:

U4000 + #0040 + ^1012 "+" Xl21θ\

*2ioi + Xoi2il2 + 4 | χ n i l I2. (4.12)

This one has a peculiar behavior: if we take this invariant for M in (4.2) then we
always find N = M, no matter what value of Ω is chosen.
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