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Abstract. We interpret the cocycle condition in quantum field theory as a set of
integrated Ward identities for non-commutative geometry.

I. Basic Notions

The Wightman functions of a super-symmetric quantum field theory given by a
super-trace functional have a geometric or cohomological interpretation. This was
shown in joint work of the authors with Lesniewski [JLO1]. This property is
summarized by the construction of a cocycle τ for the 5-complex of entire cyclic
cohomology, namely a solution to the equation

δτ = 0. (1.1)

Here τ is a time average of certain Euclidean Wightman functional, and d is a
standard coboundary operator of non-commutative geometry, see [C, JLO1].
Furthermore, this natural cohomological interpretation can be generalized to the
case when the Wightman functionals τ are constructed from a finite-temperature
functional satisfying a super- version of the KMS condition of statistical mechanics
[K, JLO2, JLWis]. In this case the super-trace (associated with finite volume
theories) need not exist - only the super-KMS functional has to be defined.

In this note we investigate how Eq. (1.1) has a set of identities as its
consequence, which can be interpreted as a symmetry of the Wightman functions.
We call these identities "Ward identities for non-commutative geometry." Let us
consider an example. Let y denote the Z2 grading in our theory, equal to ( — I)Nf in
models, and let A-*Ay = yAy denote the action of the grading on field operators.
Let A(t) = e~tHAetH denote the propagation of A to Euclidean time ί, and let (A)
denote the expectation

H), (1.2)
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or more generally a super-KMS functional constructed as a limit of functional of
the form (1.2), and which have the properties of [JLO2]. Also let d denote the super
derivation generated by a self-adjoint super charge operator Q by the graded
commutator,

(1.3)

thus omitting a factor of /, used in [JLO1]. From this we infer that

Our example of the Ward identity is

αι^2>-α^1>= - f (dAJAKφdt. (1.4)
o

If Aι=ψ(x,Q)*, A2 = ψ(y,0)> then (1.4) says that

(1-5)

which in a canonical theory gives a sum rule for the right side of (1.5). In general, dip
involves the interaction potential, so (1.5) relates a sum of 2-ρoint functions on the
left side to vertex operators on the right. For this reason (1.5) can be regarded as a
Ward identity.

II. The General Identity

The general identity is formulated in terms of

τπμι,...)Λ) = (-ir(""1)/2 ί <A1dAl(t1)...dAΓ\tn_1)ydt, (III)

where dt = dtί...dtn,ί and where σn denotes the simplex 0^ί1^ί2^...^ίπ^l. We
adopt the notation that τn depends on n, rather than on n + 1 variables; this follows
Quillen and simplifies our expressions, but it differs from our earlier work, and
from Connes' notation as well. For convenience, we use somewhat different
conventions than in our earlier work: we omit the factor i in the definition of d, and
we replace the constant in τn by (_ lyί*-1)/2. These changes have the effect of
replacing the coboundary operator b + B in our earlier papers by the new
coboundary operator

d=b-B.

It is known that τ satisfies the identity

(bτJ(Al9...9AH+l) = (-iγ<*-w ί <dAldAl(tl)...dAΐ+l(φdt9 (11.2)

see [JLO1] and also [EFJL, JLO2]. Here b is the coboundary operator which
maps n-cochains to n-hl-cochains. Explicitly,

7=1

+ (-l)"τπμΓ+ iAltA2, ...,An). (113)
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Writing out (II.2) in the case n = 1 we have the Ward identity (1.4). We claim that it
is reasonable to pose

Definition 11.1. The identities (II.2) are the "Ward identities" of non-commutative
geometry.

These identities have an expansion in terms of operator products, generalizing
(1.4-5). If Aί9 ...9An+1 are n + 1 operators, the identities can be written

Σ (-iy+1 f ^ (̂ίj...̂ ^
7=1 ff n-ι

A\(tύ. . .dAΐ+ t(φdt . (Π.4)
σn

In particular, the leading singularities which would arise in an operator product
expansion about coinciding points in the terms on the left side (each of which have
equal time contributions) must add to exactly equal the leading singularity in the
term on the right.

III. Exponential Formalism

In a recent paper, Quillen studied the JLO-cocycle using his formalism of
super-connections; see Sect. 8 of [Q]. Here we use a similar method, in order to give
a direct derivation of our Ward identities.

Let 91 denote the algebra of field operators. In this paper we assume that this
algebra is an algebra of bounded operators; but for considerations such as in
Sect. II, 91 should be extended to an algebra including certain unbounded
operators. A typical situation would be the case where the operators in 91 are
defined on a common, dense, invariant domain 2.

For simplicity we assume 91 to be a subalgebra of <£ (3?\ the set of bounded
linear operators acting on a Hubert space 2? . Following [Q], we define
n-cochains as n-linear maps from 91 to <£ (Jtif), an algebra of such operators,
containing 91, and acting on a Hubert space 2%,

for Ai E 91. A 0-cochain will be a "constant" map from 91 to 3? (^C\ namely an
operator on $£(3?\ A cochain f will be a sequence

f=(/0, /I,- ..,/„...)

of n-cochains on 91. On the other hand, if / is an n-cochain, we let f denote the
cochain sequence with

= f/ if m = n
Wm (0 otherwise.

Let ^V(9I) denote the space of cochains in the above sense, and let ^>(9ϊ)
C^V(9I) denote the n-cochains. Furthermore, in case we choose for $f the one-
dimensional subspace space C of ffl , we let ^c(9l)C^V(9I) denote cochains such
that each component takes values which are multiples of the identity operator / in
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}. Thus ̂ C(9I) is the space of cochains in the ordinary sense, namely sequences
where fn is an n-linear functional on 91.

We define a map ω,

by

where

ω(/J (A19...,AJ = Ίτ(ynfn(A^ , Λ,)) - (ΠI.l)

Of course, the map ω may not be defined for all cochains f, or the domain of ω( - )
may not be all of 91. However here we study algebraic aspects of this construction,
returning briefly to comment on analytic questions at the end.

There is a natural multiplication on ̂ V(9I), so it can be regarded as an algebra
with the product of components,

(f'g)*= Σ fn gm, (IΠ.2)
n + m = k

where

Remark. Quillen [Q] uses a different sign convention in his product.

The multiplication on the right is multiplication of operators in J5? ( 2tf ). The
identity cochaίn θ is the one-cochain

where we consider 91 as a subset of <£(#?). Also let θ= (0,0,0, ...) denote the
corresponding cochain in ^V(9I). Let y denote the operator on Jf which defines
the Z2-grading, and such that Ay = γAγ. Let V denote the coboundary operator

On 0-cochains, we define V to be 0.
Let us decompose f according to the grading 7, namely f =f+ +f~, where

and

Correspondingly we decompose the space #*, (21) of cochains according to the
grading γ and write
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Then the operator b of the previous section is generalized to

+ (-\)n(fn

+(A>>+1Al,A2,...,An)+f-(An+1A1,A2,...,An)).

(111.5)
We use the convention

fMΓ,AΓ

2

l\...,AΓ

n'»)=f+(AΪ\AΪ\...,AΪ")+fn-(A1,A2,...,An)

and

Jn(A 1^25^3' " 9 An+ ι) = Jn (^±1^l2?^3> •> ^n+ l) ~^~ Jn l^ 1^2> ^3> •• >^w

Thus

We also introduce a generalization of Connes' coboundary operator B which is
defined by

Furthermore, we define B/0=0.
It is convenient, given the form of B, to introduce a cyclic permutation operator

on <gV(2ϊ). Let us define the operator T on ̂ (91) by

The total symmetrization operator on /„ is given by

(Sym/π) (Alt . . ., An) = V Tkfn .
fc = 0

In the case when

f e 0 (^M(9l)n^(?t)+)®(^ + HβQ
n

we note that

(Γ/n)μι,...,^) = (-l)"+1/π(^r+1^1,..,^-ι) (ΠLll)

and

(III. 12)

Furthermore, let us define the projection f- fc) of f by

Then we have the corresponding formula of (Symf) on ^V(9I), namely

(Symf)= Σ T*"1^^.
fe=l

This agrees with (III. 10) on the n-th component fn off .
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The superderivation d on 91 can be lifted to a superderivation on .̂#>(9l) as
follows: define d as a map of ^V(9Ϊ) into itself by

df=Qf-PQ.

Here Q is interpreted as a constant cochain, namely an element of ̂ #>(9ί). We then
can write (III.ll) in the form

(111.14)

In particular, the nth component of the left-hand side is

(Tω(dθf))n(A,,...,An)

which is the nth component of the right-hand side.
It is also useful to introduce a superderivation D with respect to a grading of

.̂(91) different from y, namely a grading ε defined by

The superderivation D on # (̂21) is given by

When acting on θ, the relation between D and d is that

£>θ = - d(yθ) , <ίθ = - D(yθ) . (III. 1 5)

The above definitions indicate how we extend maps defined on '&#, for all n to
maps on %#, and we use the same symbol to denote this extension. For example,

Lemma III.l (Graded Leibnitz Rule). The operators d, D, and V are superderiv-
ations on ^̂ (91) with respect to the gradings y, ε, and ε respectively:

d(fg)=(df)g+fdg, D(fg)=(Df)g+/Φg, b'(fg)=(b'f)g+rb'g.
(III. 16)

The supersymmetry of the mapping ω can be expressed in terms of the
invariance of ω under the differential D. In addition, the commutativity of the
maps V and ω involves j, see Lemma III.3.

Lemma III.2 (Supersymmetry of ω). We have

ω(Df)=0, ω((dθ)f)=-ω(yθ(Df)). (111.17)

Proof. We compute using Qγ= —γQ,
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In particular,

0 = ω(D(yθf)) = ω(Z)(yθ)f) - ω(yθ/)f) = - ω((dθ)f) - ω(yθDf) .

Lemma III.3 (Projection of £?, V, and B from ^^(A) to ^A)). We have

b'ω = ωyb' , bω = ωγb, Bω = ωyB, (III. 18)

and furthermore

ί?'θ = θ2. (111.19)

Proo/. We have

We use here y2 — 1. The calculations for b and for B are similar. The calculation of
fe'θ follows from its definition.

IV. The Entire Cyclic Cocycle

The particular cochain we are going to study in the following is

f=θίΓκ, (IV.l)

with

K = H-ydθ. (IV.2)

Here e~H is the cochain (e~H, 0, . . .) with H = Q2. The exponential e~κ is defined by
the Duhamel expansion

This sequence is the unique solution to the equation

Under the map ω, the cochain θe~κ on ̂ (9ϊ) yields the cochain τ on
introduced in (II. 1), namely

Explicitly,

We now give the basic identity of perturbation theory.
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Proposition IV.l. Let σ denote a grading of ^V(Sl) and let d denote a superderiv-
ation on -̂(91) with respect to this grading, such that de~sH = Q and (δ(ydθ))0 = 0.
Thenfort^Q,

de~tκ = }
o

Proof. Applying d to (IV. 3), we find

de~tκ= } d(e-sK)ydQe~(t-s}tlds + J e-sKσd(ydQ)e-(t~s^ds. (IV. 6)
o o

Inspecting the nth component of this equation, we see that (de~tκ)n on the left-hand
side is expressed in terms of (de~tκ)m, for m < n. Thus to prove (IV.5) by induction in
ft, we may substitute (IV.5) into the right-hand side of (IV.6) - as the induction
hypothesis. This gives

de~tκ= J
Ogsιgs 2 ^

+ J e-s

o

In the first integral we substitute s = s2 — $ι and s' = s1? to find

de~tκ= } e~sKσd(ydQ) (e-
(t-s)H+ V β-β>Vβe~(ί"β"β>)H^ ) ds

o \ o J

= e-sκ d(yd6)e-(t-s*ds,

where we have again used (IV. 3). Hence (IV. 5) holds for all components.
Our main results are the following, from which the Ward identity and the

cocycle condition are immediate consequences:

Proposition IV.2 (Ward Identity). The coboundary operator b on #c(Sl) satisfies

bτ = bω(Qe~κ) = ω(dQe~κ) . (IV.l)

Proposition IV.3 (Cocycle Condition). The coboundary operator B on ĉ($ϊ)
satisfies

Bτ = Bω(Qe-*) = ω(dQe~κ) . (IV.8)

Therefore, Eq. (IV.8) can be written

bτ = Bτ, or δτ = 0. (IV.9)

Remark. As a consequence of Lemma III.3, we have

Since (III.7) can be written

bτ = b'τ

we also rewrite b as

bτ = ω(yb'Qe-κ - yβe~KEQ) . (IV.10)
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Lemma IV.4. The coboundary operator V satisfies

. (IV.ll)
Furthermore,

κ=De~κ= J
and °

o

Proof. The identities (I V.I 2-1 3) follow from Proposition I V.I,

D(ydθ) = yQydβ - (ydβ)εyQ = d2Q = [H, θ] , (IV.14)

and

Finally we note that

-
o as

= i

thus proving (IV.ll).

Proof of Proposition IV.2. The identity (IV.10) is a translation of (III.5). Using
(III. 19), (IV.ll), and the superderivation property of b',

Multiplying by 7, and using Lemma III.2, we obtain

Thus by (IV.10), we obtain (IV.4).

Proof of Proposition IV.3. We calculate using Proposition I V.I, dl = 0, and
£/! = () that

Bω(Qe ~κ) = ω(yBQe ~κ) = ω(yBQ(e -κ-e~H)).

Here e~H is the zero-order term in e~κ. Thus using the definition (III.8) of B we
have

Note that
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so that (III. 12-1 3) apply. We are thus reduced to proving

Proposition IV.5. With the choice

f

we have

Symf=
fc=l

Proof. We repeatedly apply the perturbation identity (IV. 3) to the definition of f to
obtain

*> = f
<Tk

= J ω(e-SίHdθe~(S2~Sl)HydQ...e~(Sk~Sk-l}HydQe-(ί-Sk)K)ds.
ffk

Apply the identity (III. 14) to this expression (k — 1) times and replace sk by t. Thus
we obtain,

= f / J ω(dθβ-(1-ί)Ke-SlVθβ-(S2~Sl)H...7dθβ~(ί-Sk-l)H)d5^ Λ.

Summing over k we obtain,

Symf= £ r*-i|(^*)= j cχdβέΓ(1-')K<ΓΛ)A = J
k=ί 0 0

as claimed.
Let us finish this section with a few remarks on topology of the space of

cochains. We put a norm on the space of cochains as follows. Let us define a norm
on the space ^^ by

where Ml|^= \\A\\ + ||ίL4||. With this topology, we can define a norm ||| ||| on
by

This norm restricts in a natural way to (̂̂ O? by replacing the £?(£?) norm with
the absolute value. This is the norm on ordinary cochains. We define the space of
entire cochains ^entire(^ί) as the subspace of ̂ (Sί) with finite ||| ||| norm. Connes
has established that the operators b and B act on the space ^QniirJ(Ά} of entire
cochains [C].

Proposition IV.6. The cocycle defined in (IV A) is entire, τ e ̂ entire(9I).

Proof. Since τ0 =0, the estimates of [JLO1] showthat \\τn\\n<^Tτe~H(n-l)Γlΐoτ
n>0. Hence we have ||



Ward Identities for Non-Commutative Geometry 129

V. Exponential Form of the Super-KMS Functional

It is possible to define the cocycle τ under more general conditions, namely without
the assumption of the existence of a Fredholm operator Q and without the
existence of a trace class heat kernel e~Q2. Instead, we substitute a super-derivation
and unitary action as explained in [JLO2] and use a super-KMS functional to
define a generalized trace on 21.

We assume that 21 has the structure of a quantum algebra. In particular, 21 is
represented as an algebra of operators on a Hubert space Jtif . There is a Z2-grading
on 21 which acts as a self adjoint operator y on Jtf*. There is a continuous, one-
parameter group α, of * -automorphisms of 21, whose generator is the square of a
densely defined super-derivation d on 21. Furthermore, we then know that there is
a dense subalgebra 2Iα of 21 defined by those elements such that <xt(A) extends to an
entire function of t. We assume that 2Iα is an invariant domain for d.

Under these assumptions, a super-KMS functional on 21 is a continuous linear
functional ω such that when restricted to 2Iα the following two relations hold:

) = 0, and ω(AB) = ω(B^i(A)). (V.I)

We extend the definition of ω to ^>(2I) by defining

Remark that if in addition we have the structures used in Sects. I-IV, then an
example of a super-KMS functional is ω( ) = Tr(y - e~Q2).

Theorem V.I. // ω is a super-KMS functional on 21, and selR then there exists a
family of entire cochains on 21 defined by

g(s)= Σ ί ^*stl(ydQ)ast2(γdβ)...«stn(γdβ))dt. (V.2)
π = 0 σn

This family of cochains is the boundary value of a cochain-valued function g(s),
which is analytic in the strip 0<Ims<l and satisfies

uniformly in the strip. Furthermore, g(s) has a continuous boundary value as Ims->l.

Remark. The cochain function g(s) can be interpreted as a trace of a wave operator,
for in case that β and H exist, then g(s) = &(θeίsH+γdQe~ίsH).

Theorem V.2. // ω is a super-KMS functional on 21, then there exists an entire
cyclic cocycle τ on 21 defined by

τ = g(0 (V.3)

In other words,

τe^entire(2I), and dτ = 0. (V.4)

The cohomology classes of τ are stable under bounded perturbations of d and the
corresponding perturbations of α and of ω.
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The proofs of Theorems V.I-2 have an analytic and an algebraic part. The
analytic estimates follow closely the arguments of [JLO2, JLWis], so we do not
repeat them. The algebraic calculations parallel those in Sects. Ill and IV.
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