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Abstract. This article continues the analysis of the first arcticle under the same
title. Using methods of stochastic analysis we prove Feynman-Kac formulas for
the relevant heat kernels. We also present classical limit theorems.

This paper is the second part of a work devoted to a probabilistic approach for the
quantum Heisenberg ferromagnet relating this model to a Euclidean lattice field
theory.

In Sect. 2 and 3 of the previous article heat kernel representations of the
partition function were given. In Sect. 4 the resulting Euclidean field theoretic
Lagrangian was calculated. Here, in Sect. 5 and 6, we formulate Feynman-Kac
representations for the heat kernels involved, first for the one-lattice point theory
and then for the full interacting theory on an arbitrary finite lattice. Our
presentation is strongly influenced by Bismut's work on probabilistic proofs of
index theorems [Bi2].

In Sect. 7 we present classical limit theorems for the purely bosonic sector of the
theory.

We use the notations and results of [HMPS].

5. Feynman-Kac Formula for the One Lattice Point Theory

In this section we will establish a rigorous stochastic expression for the kernel of the
semigroup

where t > 0 and h e g. For simplicity we consider the case m = 1 . The general case

m>0 can be obtained by the rescaling ί-> — , h-+hm. The first step is to construct

the stochastic process on Λ(^λ) that is generated by the (horizontal) Bochner
Laplacian — (FA)2. The stochastic representation of the kernel (5.1) will then be
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obtained by a variant of the well known subordination procedure used by Malliavin
[Ma]. It consists in setting up a stochastic differential equation (SDE) whose
solution takes account of the difference

Π-idπλ(h)+±(φλΫ . (5.2)

In fact, this is possible due to the Weitzenbδck type formula (2.32) and relation
(2.31). These equations imply that the expression (5.2) is a first order differential
operator —iV£h, i.e. a "drift" term, plus a strict vector bundle endomorphism.

The construction of a stochastic motion in Λ(& λ) is facilitated by the fact that
we have sufficiently many vector fields on Mλ at our disposal, namely the Killing
vector fields which span the tangent space at each point. In particular, writing KΎ

with 7eg in local real coordinates xj for zeMλ as

KY = K>^ (5.3)

we have (see e.g. [KN, Vol. II, p. 200])

-ΣKlr«Kiβb
aβ = 9ίJ (5.4)

*,β

for the metric on Mλ. Moreover, the vanishing of the covariant divergence of the
Killing vector fields implies

Σ jfί I _ Ίfj \ faaβ _ Πik TΓJ /c c\

Ma? y * J ~g ik ' ( '*,β \ϋx /

Therefore the Laplace-Beltrami operator A ̂  0 on Mλ takes the form

Δ = ΣKYΰCKYβb*e . (5.6)
*,β

We rewrite these formulas in the following way. Let the matrix d*β = dβ* be the
unique positive definite square root of — bΛβ and define global vector fields Lα on M
by

4 = ΣV (5.7)
β

Then (5.4) takes the form

Σ^ί=ff u . (5 8)
α

whereas (5.5) gives

^ (5.9)

such that
-ΣLΪ = Λ . (5.10)

α

Consider the principal Uλ bundle 3P over Mλ defined as

Uλ-> G
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It is easy to see that Λ(J£ λ) is the bundle associated to 2P via the following
representation σ of Uλ. A typical fibre of A(^λ) is provided by the vector space

Let σ = σ1(x)σ2, where σi(u) = χλ(u) with ueUλ and where σ2 is the isotropy
representation of Uλ on Λ*T£(0'i}Mλ resulting from the coadjoint action of G on
MΛ. Let (oλ be the connection form on ̂  associated to the connection Vλ. By X we
denote the horizontal lift to ̂  (via ωλ) of a vector field X on MΛ . In particular we
have dπ(Kγ) = Kγ (note that Kγ^ Y where we identify 7eg with the left invariant
vector field on G generated by it), dπ(L0[) = L0ί and due to (5.10)

-ΣZα

2(/°π) = (/J/)oπ (5.12)
α

for /eC°°(MΛ). Let w( ) be a standard Brownian motion on RdίmG and consider
the following SDE on^:

(t} . (5.13)

Here and in the sequel we adopt the convention of e.g. [Bi2] and denote the
Stratonovich differential of a process Z by dZ, its Itό-differential by δZ. Since
9 is compact and Lα horizontal, standard theorems (see e.g. [IW]) guarantee
existence and uniqueness of solutions to (5.13) with initial conditions u(Q) = ue^>.
Also z(t)=^πu(t) defines for ί^O a standard Brownian motion on M starting at
z(0) = z = πw. This follows immediately by projection of (5.13) yielding

Jz(0-ΣLα(z(0)rfwα(0 , (5.14)
α

and then using standard stochastic calculus (cf. [IW]) combined with relation (5.10).
Moreover, the process u(t) on ̂  with t ̂  0 is related to the Bochner Laρlacian-(P A)2

on Λ(<gλ) in the following way. Via σ the process {u(t), t^Q} may be considered
(a.s.) as giving a map of the typical fibre Ί/~ of Λ(<£λ} onto the fibre π-1(z(ί)) (see

e.g. [KN, Vol. I, p. 115]) and therefore TQ = uu(t)~l is the stochastic parallel
transport of the fibre at z(t) onto the fibre at z.

Proposition 5.1. For all t > 0, φ e C°° (Λ(gλ)) and zeMλ

(eWλ?φ)(z) = E(τt

Qφ(zm . (5.15)

Proof. We first note the relation

(5.16)

which is proved in [Bi 1 ] for the case of a tensor bundle and with the frame bundle as
associated principal bundle. The arguments in [Bil], however, easily extend to the
present case. Proposition 5.1 is then a consequence of (5.16) and the relation

ΣO^)2^)2 , (5.17)
α

which is proved in the same way as (5.10).
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Let now F be a smooth section of the bundle EndGΪ(JS?λ))£/ϊ(JS?λ) ®Λ(<eλ) *
of strict vector bundle endomorphisms of Ά(^λ). Obviously this bundle is
associated to ̂  via the representation σ(x)σ* of Uλ on ιΓ(x)iΓ*. If we denote the
resulting stochastic parallel transport from the fibre over z(t) to the fibre over z by
τj), we have

)-1 , (5.18)

which is an endomorphism of π~1 (z). Moreover, for a vector field X over Mλ we
again let X* be its dual 1-form with respect to the metric g on Mλ. We consider the
SDE

t)} (5.19)

in the fibre π~1(z) of End(/ί(j2?Λ)) with initial condition C/(0) = id. Here the
multiplication of the 1-form X* by the Ito differential δz is with respect to the Levi-
Civita connection on Mλ in the sense of Meyer [Me]. In local real coordinates xl for z
v/ithX=Xjd/dxj,

(5.20)

With these preparations we are ready for the proof of the following result.

Theorem 5.2. Let φ be a smooth section of Λ(&λ) and t>0. Then

(5.21)

Proof. We compute the differential of U(t)τ'0φ(z(t)). By a well-known localization
argument (see e.g. [IW]) we are allowed to work in local coordinates. Then

d(U(t)τ'0(z(t)))

i Σ αί^f)(z(0
α

^martingale (5.22)

+ martingale , (5.23)

where the equality (5.22) follows from standard stochastic calculus and (5.23) from
relations (5.8) and (5.9).

As an application we make the choices X=Kh and

F(z) = ih(z) + iEh(z)+^DK(z) - DS(z)-^iτ S(z) (5.24)

such that
Ώ-idπλ(h)=-±(rλ)2-iP£h-F . (5.25)

In this way we obtain a Feynman-Kac formula for the semigroup (5.1) acting on
smooth sections φ of Λ(£?λ).

Furthermore, we remark that the construction of the measure dB\ z, of a
Brownian bridge between z and z' in Mλ in time t may be taken over from Bismut
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[Bi3]. This measure lives on the space of continuous paths z( ) such that z(0)
= z, z ( t ) = z' and has the heat kernel of the Laplace-Beltrami operator as transition
probability. If in (5.21) we then replace the expectation by dB\ z, and φ by 1 we arrive
at a Feynman-Kac representation of the kernel of the semigroup (5.1).

Finally let us compare formula (5.21) for the operator (5.25) with the heuristic
expressions (4.16) and (4.17). To this end let us pretend that Mλ has global
coordinates. Then the stochastic parallel transporter τ^ is formally given by

} ωk(z(s))ώf(s)}} , (5.26)
.0 J/

where ω = iA + C is the (local) connection form of the bundle Λ(3?λ) (cf. Sect. 2).
Using stochastic calculus, we derive the following SDE:

(5.27)
Z,

where Fis as in (5.24). The formal solution of (5.27) satisfying the initial condition
,=n = id reads

\(N(z(S))ds + i(K*)k(z(s))δxk(s) + (iAk(z(S))
0

(5-28)

with

N(z) = ih (z) -

(5.29)

This agrees with the formula (4.16) up to the free fermion Lagrangian there and the
last term in (5.29) which is a correction due to the fact that the paths are (a.s.)
nonrectifiable, and it ensures the correct transformation property of the Itό-integral
under a change of coordinates. We recall that the free fermion Lagrangian
combined with the Berezin integration serves to compute the fibrewise trace.

We conclude this section by giving a stochastic representation of the character of
the irreducible representation πλ. For this purpose ίdπλ(h) in (5.1) has to be
replaced by dπλ(h). We are thus led to the SDE

(5.30)

in the fibre π~ J(z) of End(/L(J^A)) with initial condition K(0) = id. In (5.30)
GeCro(End(/ϊ(JS?λ))) is given as

. (5.31)
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Then the desired stochastic representation follows :

Trace^Λ {πλ(e'")} = Trace,,, {e«"<^}

} , (5.32)

where traceπ-ι(z) denotes the trace in the fibre π~1(z) of End(Λ(^λ}) over z.

6. Feynman-Kac Formula for the Interacting Case

In this section we extend the methods of Sect. 5 to a general lattice A and /Φθ.
Again we choose m — \ since the general case can be obtained by a rescaling
argument. Hence /is assumed to be sufficiently small. Since the interaction term HΛ

is a second order differential operator, we have to find a second order elliptic
operator whose leading symbol agrees with that of Πλ + HA and for which it is
possible to associate a stochastic process. To construct such an operator, we first
note that the metric g on MΛ introduced in Sect. 4 may be obtained in the following
alternative way.

Let A = (<x,k),B = ( β , k ' ) , . . . with l^α,β^dimG and k,k'eA denote double
indices. For given / and c = {c"β(k, k')} we define the matrix D by

β/? i f k = k f

i f J ' ( }

For / sufficiently small the hermitian matrix — D will be positive definite; let
( — D)1/2 be its unique positive square root.

We define global vector fields on MλtΛ,

LA(z)= £ Kγkβ>(z)(-D)V2AB . (6.2)
B = (β,k')

Then with /}
^(z) = Σ^(z)~ (6.3)

in real local coordinates x" for zeMA > / 1, by construction we have

XL^L;(z) = r(z) (6.4)
A

Next we introduce the principal x keΛ Unbundle 0>Λ= xkeΛ0
>= ^keΛG = GΛ over

MλίΛ= xkeΛMλίk with projection π and associated to A(<£fy via σΛ given by
σΛ(u)=®keΛσ(u(ky) on the typical fibre of A(^^^® ^ for u = {u(k}}keΛe

keΛ

x keΛ Uλ (cf. Sect. 5). Also let ωλ

Λ be the connection form on &A associated to the
connection V\ on Ά(^\). Again ^denotes the horizontal lift (via ωλ

Λ) to £PΛ of a
vector field X on MλtA. In particular we have dπ(LA) = LA. Let now w( ) be a
standard Brownian motion on ]RdimGMI an(j consider the following SDE on @>Λ:

du(t)^LA(u(t)}d^A(t) , (6.5)
A

which again has a unique solution for the initial condition
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Also for nonnegative times ι(t} — π(u(t)) is Brownian motion on Mλ Λ with
infinitesimal generator-^] L\ and starting point z = π(u). Note that LA is not a

A

Killing vector field with respect to the metric g. Hence this operator is not the
Laplace-Beltrami operator for the metric g unless J=0. As in Sect. 5 we define IQ
= u u (t) ~ 1 1 o be the stochastic parallel transport in A (3?A ) along z ( ) of the fibre at

τ(f) onto the fibre at z.
If we set

-Σ^tχF^A> (6.6)

then in analogy to Proposition 5.1 we have

Proposition 6.1. For all t>0, φeC°°(/ϊ(^)) andzeM^A,

(6.7)

To obtain a stochastic representation for the kernel of the semigroup defined by the
operator of our theory, we observe that by construction the difference

ΠΛ + H^Δ (6.8)

is a first order differential operator. In order to exhibit its structure we have to
generalize the notion of covariant derivative in the following way.

Consider an element W of C°°(End^(^)(x)ΓcMλ^)(3C00(Γ€MA>y4)) of the
form

(6 9)
Since Vλ

ΛX is Cco(Mλ ^-linear in XeCco(T(CMλ Λ), the operator

?ΛW=Σ WAX* (6 1Q)
ί = l

is well defined. Let W* e C°° (End Λ(&Λ)®T$MλιΛ) be the dual of W with respect
to the metric g ; thus in local real coordinates xμ for z

μ^ , (6.11)
1 = 1 μ

where

X*(*)μ = Σθ\MXv(τ) (6.12)
v

Then for any F0 e C00 (End Λ(&$) we consider the SDE in the fibre of End Λ(&Λ)
over z = z(0)

dU(t) = U(t)(F0F0(z(ty)di+W*-(z(f))fo(ty) (6.13)

with initial condition t/(0) — id. Here again TQ denotes the stochastic parallel
transport in End Λ(^A) along z( ) of the fibre at z(ί) onto the fibre at z such that a
relation analogous to (5.18) holds. In (6.13) the multiplication of W*(τ(t)) by the
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Itό differential δz(t) is given in local coordinates as

2 Σ

Note that

(6.15)

are the Christoffel symbols of a connection V (with nonvanishing torsion) on TMλ Λ

which is compatible with the metric g. By construction the resulting Bochner
Laplacian on Cco(MλtΛ) equals — Σ^Λ

With the preceding constructions, there exists a unique solution of (6.13)
satisfying the specified initial condition. In analogy to the discussion of Sect. 5, for
φeC">(Λ(&%)) we obtain

In particular, if W and FQ are given by

W(z) = iKh(z) + JΣ Σ
Λ,β k,k'

fcφfc'

+ ( r*'(z) + E y j (z))Λ:yί(z)} cα"(A:, k') (6. 1 7)
and

*,*') , (6.18)
α,/3 k,k'

k φ f c '
then

-DΛ-^=-U+Γ^ + F0 - (6.19)

Thus we have proved the following theorem.

Theorem 6.2. Le_r U(t) be the solution of (6. 1 3) for the choices (6. 1 7) <m J (6.18). Then
for all φeC°°(Λ(&*i)) and t>09 zeMλ>yl,

(exp{-t(nA + H^}9}(z) = E(U(t)^9(z(t))) . (6.20)

As in Sect. 5 we may now compare the resulting stochastic representation for the
partition function with the representation in terms of the Euclidean Lagrange
function of Sect. 4. Since this is straightforward, we refrain from giving the details.

7. Classical Limits

In this section we establish various classical limits in the purely bosonic sector
employing methods developed in [Si, HPS, ST1].

We fix λ and write D = DA to exhibit the A-dependence. The basic idea is to
consider the irreducible representations πnλ as n -* oo , n = 1 , 2, 3 , . . . . Recall that for λ,
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highest weight for the representation πλ®πμ is given by λ + μ and the
highest weight vector by ψλ®ψμ (up to a scalar). This vector is hence contained in a
copy of nλ+μ. Given λ, set

<λ,α>Φθ

where - as in Sect. 1 - ρ denotes half the sum of all the positive roots. Then with
dλ = dimJjf A, the dimension of the representation space ffl λ of πΛ, and by virtue of
WeyΓs formula

) . (7.2)

The first result of this section pertains to the one lattice point theory.

Proposition 7.1. The following classical limit relation holds for all heg:

-

\ exp{-r//^'(p,z)}φr,Mλ(^,z) . (7.3)

Here dμτ*Mλ is the canonical volume form on the cotangent bundle T*Mλ. We
emphasize that £? nλ is regarded as a line bundle over the coadjoint orbit Mnλ. Also
Mnλ is equipped with the Riemannian metric induced by the Cartan-Killing form on
g^=DMnλ. In particular, the probability measure dμMnλ(z) equals the canonical
volume form on Mnλ divided by the volume of Mnλ . The classical Hamiltonian H^
was defined by relation (4.7) in Sect. 4. Note that in the classical partition function
the ^-integration may be carried out such that (7.3) may be rewritten as

lim ( ί / )

x f expjί(ίA(z)+y(Af,JKfc)(z)>)jψMA(z) . (7.4)
MΛ I ^ /J

Moreover, in (7.3) and (7.4) the dependence on the t/(l)-gauge potential A has
dropped out reflecting the absence of dia- and paramagnetism in the corresponding
classical theory.

Proof of Proposition 7.1. We first observe that as subsets of g^,

Mnλ = nMλ . (7.5)

Consider therefore the map

n : Mλι— *Mnλ,z-^>nz . (7.6)

Under the pull-back by this diffeomorphism the line bundle C£?ΠΛ over Mnλ goes into
the line bundle (&λ)®n over Mλ such that the operators Qnλ turn into (βλ)®Π andynλ

into (jλ)®n (cf. Sect. 2). Also the probability measure dμMnλ is mapped into dμMλ.
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Furthermore, by (2.42) the pull-back of the operator Πnλ on L2(^nλ) is

on L2((&λ)®n). Here A λ>" is the Bochner Laplace operator on (<eλ}®n given by the
connection V^n = (Q^®nd(j^®n, where we view (JS?A)®" as a subbundle of the
trivial bundle 3?®n x Mλ over Mλ. Therefore, in a local gauge of J£?A (see Sect. 4)
with real coordinates xj we have

. (7.8)

The curvature form Sλ'n for Vfrn satisfies tϊSλ'n = ntτ Sλ. Finally, the pull-back of
— idπQλ(h/n) is given by

(7.9)

We are therefore in a situation covered by the discussion in [HPS, ST1] (see in
particular Proposition 2.4 in [ST 1 ]) and the claim (7.3) follows. An analogous limit
relation may be established on the space of </-forms using relation (2.91) in [ST1],
but we refrain from providing details.

The discussion for the interacting case is analogous and we only give the results.

Proposition 7.2. For given λ, c and h let m\J\ be sufficiently small. Then

n-xχ>
lim (JπλΓ

2^ Tracer

2^ J expί-ίflj ^^znrfμ^^^z), (7.10)

where H^λ was defined in Sect. 3 and H^j\c^m(p, z) was defined by (4.20) in Sect. 4.

A similar relation can be derived if His replaced by H [see (3.15)]. Note that the
limit procedure n-+ oo does not commute with the limit m-+ oo in the purely bosonic
sector as discussed in Sect. 2 and 3. In fact, with real ya(k) = — zz( Y£) = — iz(k)(YΛ),
our next proposition is a special case of Theorem 6.1 in [Si].

Proposition 7.3. The following classical limit relation holds:

= f expί-/(/Σ Σ y*(k)yβ(k')c«>e(k,k')-ih(z)}ldμMλΛ(z) , (7.11)
MλtA I \ β *fc

k;fc

k, ^

Moreover, an analogous relation holds if H is replaced by H.

We conclude this section by specializing to the case G = SU(2) and λ defining the

self-representation. Thus 3?λ = <C2 and the highest weight vector ψλ is ί } if we



Feynman-Kac Formula for the Quantum Heisenberg Ferromagnet.il 37

choose as basis 7α = z'σα, where α = l,2, 3 and iσ3 spans the Cartan subalgebra.
Obviously λ(YΛ) = ίδ3oc. Hence if again we let jμα = — iz(Yx) be the real coordinates of
zeMλ viewed as an element of g^, we see that Mλ is exactly the unit sphere S2 in
g*^IR3 with respect to the Euclidean norm || ||.

Furthermore, the Killing vector fields KYχ on Mλ are (up to a factor 2) the
standard ones on S2, i.e.

This gives

, (7.13)

where Λ denotes the vector product and TfMλ=T*S2 is viewed as a subset of
R3 x IR3 such that p e T*Mλ has Euclidean coordinates p*. Note that p and y are
orthogonal. We recall the definition of/?2 as the length squared of/? with respect to
the metric on Mλ induced by the Cartan-Killing form B. The relation b*β = - $δ*β

for the inverse &α/? of B(Y^ Yβ) follows from an easy calculation. Therefore

Consequently, the classical Hamiltonian takes the form

+ Σ Σ (y(k) + 2p(k)^y(k)Yh«(k) . (7.14)
α=l keΛ

Here ||p2|| = ]Γ ||/?(A:)||2, and we have written (in accordance with the notation of
keΛ

Sect. 1) A (fc) eg (the magnetic field h at keΛ) as h(k) = ̂ h<x(k)iσΛ with h"(k) real.
α

Finally we remark that for the particular choice

λ*β if k k' M N
0 ' k RN , (7.15)

0 otherwise

and using that ~i\ι(z) = ̂ ycί(k)hcί(k), the right hand-side of (7.11) becomes the
α

partition function of the classical isotropic Heisenberg (anti-)ferromagnet.
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