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Abstract. We show that, in the weak coupling limit, the laser model process
converges weakly in the sense of the matrix elements to a quantum diffusion
whose equation is explicitly obtained. We prove convergence, in the same sense,
of the Heisenberg evolution of an observable of the system to the solution of
a quantum Langevin equation. As a corollary of this result, via the quantum
Feynman-Kac technique, one can recover previous results on the quantum
master equation for reduced evolutions of open systems. When applied to some
particular model (e.g. the free Boson gas) our results allow to interpret the
Lamb shift as an Ito correction term and to express the pumping rates in terms
of quantities related to the original Hamiltonian model.

1. Introduction

In the quantum theory of irreversible evolutions, the weak coupling limit was
originally formulated as a device to extract the long time cumulative effect of a small
perturbation of the global Hamiltonian of a composite system on the reduced
evolution of a subsystem [9,29]. As far as we know, the consideration of the weak
coupling limit dates back to Friedrichs [18] in the context of the well-known
Friedrichs model. However, in the physical literature the weak coupling limit is
known as the van Hove limit, since van Hove [31] was the first author to consider
the limit A->0, ί-> oo, with λ2t held constant, in the derivation of an irreversible
evolution of semigroup type for the macroscopic observables of a large quantum
system.

The original problem of van Hove has not been set into a fully rigorous form
yet, although related rigorous results have been obtained by Martin and Emch
[27] and DelΓAntonio [14]. On the other hand, theorems on the weak coupling
limit for specific models of open quantum systems have been proved by Davies
[9] and Pule [28]. A general formulation in terms of the master equation approach
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was given in a series of papers by Davies [9-11]. More precisely: we consider
a spatially confined quantum system (the "system" S), coupled to another (infinitely
extended) quantum system (the "reservoir" or "heat bath' jR), initially in a given
reference state φR (which is usually a quasi-free state on the Weyl or the CAR
algebra over some Hubert space), through an interaction of the form λV, where V
is a given self-adjoint operator. Denote by s/s and by <s#R the W*-algebras of
observables of the system and of the reservoir respectively. Typically, j/s will be
the algebra of all bounded linear operators on a separable Hubert space 3tfs, and
s/R will be the weak closure of the GNS representation of the C*-algebra of the
reservoir determined by the reference state φR. Let

Hλ = Hs®l + l®HR + λV (1.1)

be the total Hamiltonian of the composite system (in self-explanatory notations).
For each x in ja/s, let xλ(t) be the element of <$/s ® stfR defined by

xλ(t) = exp[iHλί//l2] exp[ - i//0ί/A2](x® I)exp[i#0ί//ί2] exp[ - ίHλt/λ2]

= u$ϊ(X®i)u%>9
where

17$2 = exp[iHoiM2]-exp[ - iHλt/λ2]9 (1.2)

i.e. we consider the Heisenberg evolute, in the interaction representation, of an
observable of the system 5 in a time scale of order l/λ2. Then [9,28] in the limit
as λ->0 and under suitable assumptions, there exists a semigroup Tt of
weakly-*-continuous completely positive normal linear maps of j/s into itself (a
quantum dynamical semigroup on &fs in the sense of Gorini Kossakowski and
Sudarshan [23], Lindblad [26], a quantum Markovίan semigroup in the sense of
Accardi [1]) such that, for all x in jtfs and for all normal states φs on <$#s and
t ̂  0 one has

Λ-»0

We refer to the books of Davies [12, 13] for a presentation of the physical ideas
and of the mathematical structures relevant for this phase of development of the
problem. Under some assumptions on the interaction, which amount to the rotating
wave approximation, familiar in the laser models, one sees (cf. [20]), considering
the perturbation expansion of 17 $2, that the first order term does not depend on
the field operators of the reservoir but on some time averages of them of the form

t/λ2

A\λ> = λ f e-ίωsA(S°sg)ds
o

(cf. Sects. 2 and 3 below for the notations). The normalization defining the
"collective annihilation operator" A\λ} is strongly resemblant of the normalization
of the classical invariance principles. This analogy suggests that, as already stated in
Spohn [29], the weak coupling limit should be a manifestation of some kind of
functional central limit effect. That is we expect that, in analogy with the quantum
invariance principle proved in [2], the collective creation and annihilation processes
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A\λ)± converge, in some sense to be specified, to some of the quantum analogues
of the Wiener process, namely the quantum Brownian motions. A heuristic
discussion of this approach to the weak coupling limit has been sketched in Frigerio
[20], with some preliminary lemmas and some conjectures.

Moreover, if the quantum dynamical semigroup obtained in the weak coupling
limit is norm continuous with infinitesimal generator G given by

n

G(x) = K+x + xK 4- £ LΐxLp xe^s

with LpKes/s satisfying

n

7=1

then we have, for all x in j/s and t in R+,

Tt(x) = E0[U+(t)(x® lR)l/(t)], (1.3)

where l/(t) is the solution of the quantum stochastic differential equation, in the
sense of Hudson and Parthasarathy [25],

( n 1
dU(t) = \Kdt + £ ILjdAf (t)-L/A4<ί)] \U(t\ (7(0) = 1, (1.4)

( j = ι )

and where Aj(t\ A*(i) are mutually independent Fock quantum Brownian motions
and E0 is the vacuum conditional expectation. Then it is natural to conjecture
that, under suitable assumptions and in a sense to be specified, one has, for all t
in R + ,

liml/$2=l/(ί) (1.5)

and, for all x in «s/s,

lim xΛ(ί) = U+(t)(x® lR)U(t). (1.6)
λ-»0

The fact that the weak coupling limit should lead to a unitary process, satisfying
a quantum stochastic differential equation was first noted by von Waldenfels [35]
in connection with the Wigner-Weisskopf model. The explicit form of the stochastic
equation, for the Wigner-Weisskopf model was obtained independently by Maasen
[27a] in the Fock case. A thorough study of this equation, in the finite temperature
case, is due to Applebaum and Frigerio [7b]. In all these cases the stochastic
differential equation is not deduced as a (weak coupling) limit of Hamiltonian
systems, but postulated ab initio.

In the present paper, using the notion of convergence for quantum processes
introduced in [2], we give a precise statement and proof of the above conjecture
(here we use the terminology "weakly convergent in the sense of the matrix
elements" since, as remarked by a referee, the convergence considered in [2], when
restricted to the Abelian case, gives a convergence weaker than the convergence
in low). We shall only give here the proof of the first two statements above in the
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case when φR is the Fock state. The proof of (1.6) and the case of a thermal state
at finite temperature is in [5]. The Fermion case introduces no additional difficulties
(cf. [6]).

Among the motivations for the present work the following deserves to be
mentioned. There are widespread misgivings concerning use of quantum Brownian
motion as a (boson or fermion) reservoir in the description of open systems; in
particular it is objected that:

(i) the one-particle energy is unbounded from below as well as from above;
(ii) the reference state satisfies the KMS condition not for the automorphism giving
the time evolution of the reservoir, but for a much more trivial one, consisting of
multiplying the creation operators by a phase factor exp[ — iωQt~\,

Our results show how these features arise precisely in the weak coupling limit
starting from a perfectly "legal" dynamics. A detailed discussion of the KMS
condition is given in [5].

A preliminary version of the present paper has appeared in [7a]. Here we have
greatly improved the uniform estimate, due to our improvement of Pule's
inequality. Moreover we have changed two important notations with respect to
[7a]:

1. We have particularized our Definition (2.3) of quantum Brownian motion (in
the commutative case our previous definition reduced to the usual one only up
to a "random time change").
2. The notion of weak convergence in the sense of matrix elements (cf. Definition
(2.2)) was called in [7a] "convergence in low." However, without further quali-
fications of the random variables, also this definition might lead to incongruence,
in the abelian case, with the standard terminology.

These changes were motivated by some constructive critiques of the referee of
this paper, to whom we express our gratitude.

2. Statement of the Problem, Notations, Results

By a Hubert space we mean a complex separable Hubert space and by a pre-Hilbert
space we mean a complex vector space endowed with a (possibly degenerate)
sesquilinear form whose induced topology is separable. The *-algebra of continuous
linear operators on a pre-Hilbert space JΓ will be denoted B(Jf ).

If JΓ is a Hubert space, with scalar product denoted by < , > , we denote

then Hubert space of the square integrable Jf -valued functions — the integral being
meant in Bochner's sense. If JΓ = C, we simply write L2(R).

Throughout this paper, H1 will denote a fixed Hubert space (the "second
quantization" of H^ in a suitable sense may be interpreted as the "reservoir state
space"). Q will denote a self-adjoint operator defined on a dense subspace D(Q) of
Hl and such that, on this domain,

β^l (2.1)
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S®:H1-+Hl will denote a strongly continuous 1-parameter unitary group on H^
commuting with Q, in the sense that:

(2.2)

S?Q = QS? on D(Q). (2.3)

Our basic assumption on Sf and Q will be the following:
There exists a non-zero subspace K g D(Q) (in all the examples it will be a

dense subspace) such that:

f l</ ιΛ°/2> |A<+oo; f l</ιΛ°β/2> |Λ<+oo V f l 9 f 2 e K . (2.4)
R R

This condition implies (cf. Lemma (3.2)) that, for any real number ω, the sesquilinear
form

fι,f2eK^(fί\f2)Q:=$e-i»t(f1,S?Qf2ydt (2.5)
R

defines a pre-scalar product on K. We shall denote KQ the associated Hubert
space, i.e. the completion of the quotient of K by the zero ( | )Q-norm elements
for the norm induced by the scalar product (2.5). In particular, for Q = 1, we simply
write {Klf ( | )}.

Let W(K) be the Weyl C*-algebra over K and let φQ be the quasi-free state
on W(K) characterized by

>; feK. (2.6)
We denote

the GNS triple associated to {W(K\ψQ}. We shall write

feK. (2.7)

Because of (2.3), there exists a unique <pQ-preserving 1 -parameter group of
*-automorρhisms ut of W(K) characterized by

ut(W(f))=W(S?n feK, (2.8)

and we denote Uf:^fQ^J^Q the associated unitary operator:

U? WQ(f) ΦQ=WQ(S?f) Φύ feK. (2.9)

The field, creation and annihilation operators of the representation (2.7) will be
denoted

W> A + (f\ AQ(f); feK. (2.10)

To simplify the notations in the following we shall often omit the index Q whenever
we feel that this cannot create any confusion. Let <s#R denote the weak closure of
WQ(K) in Jfβ; let uf denote the restriction to */R of Adt/f = U*t ( )-U?9 where
17 f is the same as U?; and let φR be the restriction of the state <ΦQ,( )ΦQ> to
s#R. The ί^*-dynamical system {J#R, uf, φR} will be called the reservoir, or the
heat bath. Now let jtf 0 be another pre-Hilbert space (called the system state space
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or the initial space); let l/f:Jί*0-» Jf 0 be a 1-parameter unitary group on J"f0 and
denote

(2-1 la)

We denote
U? = U*®U?eB(jeo®jeQ). (2-1 lb)

The Heisenberg evolution, associated to [7f°, i.e.

(2. lie)

will be called the free evolution of the composite system.
We now introduce an interaction between the system and the reservoir of the

form that is familiar in laser theory (cf. [32]), i.e.

λVg=--tD®A + (g)-D+®A(g)l (2.12)

where A is a positive real number (the coupling constant), geK and D is a bounded
operator on HQ satisfying the condition

u*(D) = e-iωotD, (2.13)

where ω0 is a fixed positive real number (interpreted as the proper frequency of
the laser). This is the type of interaction which arises in the rotating wave
approximation. Our techniques are applicable to a wider class of interactions, but
this will be shown elsewhere. Denoting

(2 14)

we see that, from (2.13) and the antilinearity of A, we have

u?(Vβ) = -y ID ® A + (Stg) -D+® A(Stg)l

where we have introduced the notation

Clearly the conditions (2.2), (2.3), (2.4) are satisfied by S° if and only if they are
satisfied by St. We will assume that the iterated series

oo t t i r n - ι

n= 1 0 0 0

is uniformly convergent, for λ small enough and ί bounded on the domain H0 ® <OQ,
where $Q is the linear space algebraically spanned by the coherent vectors in 3tfQ

and the tensor product is algebraic. Moreover we assume that the series (2.15)
defines a unitary operator U(

t

λ} on HQ®^fQ which, on H0®S>

Q satisfies the
Schrodinger equation in interaction representation:

foϋt =~iV^'Ut ' ί/0 = L (116)
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This is an assumption on D which is always fulfilled if, e.g., D is a bounded operator.
In the following, to avoid unnecessary technicalities, we shall always assume that
D is bounded. For each λ > 0 the 1-parameter family (C/jλ)) is a left wf°-cocycle, i.e.

U(£t = u?(U™) U?\ (2.17)

hence the 1 -parameter family (Kr

Λ), defined by

is a strongly continuous unitary group whose formal generator coincides with

+ λVg, (2.19)
where

VR = e-itHR. υs = e-i<HS (2.20)

(In the case of the Laplacian acting on L2(R), this is rigorously true on the domain
H0 ® <?', where $' is the linear space generated by the coherent vectors correspond-
ing to smooth test functions.) The Heisenberg dynamics, associated to V\λ\ i.e.

ttw = AdK<λ)* = V(

t

λ} ( - ) ' V (

t

λ ) + = U(

t

λ)+'U?(')U(

t

λ) (2.21)

is called the interacting dynamics.
Our goal is to study the time evolution, under the interacting dynamics, of

some physically interesting quantity in the van Hove limit, i.e.

/l-»0; f-> oo; λ2t = 0(1) = of order 1. (2.22)

Since this limit extracts the long time cumulative behaviour of the interacting
dynamics, we expect its effects to be best revealed on those observables and those
states which depend on this long time cumulative behaviour. To make this remark
precise, in Sect. 3 we introduce, as a continuous time analogue of the construction
in [2], the collective Weyl operators

/ T/λ* \

W [ λ f SJdu), (2.23)
\ SM2 )

and the corresponding collective coherent vectors

/ Γ/λ2 \ / Γ/λ2 \

ΦJ λ J SJdu )= WQ(λ I SJdu ) ΦQ. (2.24)
\ S/A2 / \ 5/Λ2 /

The family of all these vectors, with /eX and - o o < S < T < +00, will be denoted

Now let us recall, from [2] the definitions of stochastic process and of
convergence in law of stochastic processes.

Definition (2.1). A quantum stochastic process indexed by a set T over an Hubert
space H is a triple

X = {H,99X(t)(teT)}9

where

i) H is a Hubert space.
ii) T is a set.
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iii) 2 is a total subset in H and X(t)(teT) is a family of preclosed operators on
//, called the random variables of the process, such that for any ίeT,

2 £ D(X(t)):= domain of X(t)

and the set {X(t)} is self-adjoint in the sense that for each ίeT there exists an
uniquely determined element f + eT such that the identity

X(t+) = X+(t):=X(t)+

holds on 2.

Definition (2.2). Let «/ be an increasing net, partially ordered by a relation •<.
We say that a family

of quantum stochastic processes converges to the quantum stochastic process

weakly in the sense of the matrix elements, if the domains ^α and 2 are invariant
for the random variables of the respective processes and if for any αe./ there exists
a map

such that, for any fixed integer fe, for all /c-tuples 1 1? . . . , tkε T satisfying tΛ(tk) -> t'he T,
h = 1, . . . , /c, and for all Ψ, Φe^, one has:

lim<Fβ(n*.(tβ(ωh ^^
α

Notice that, if the Jί, are bounded, then we can take ^α = Ha and ̂  = //, so
that the invariance of the domains, required in Definition (2.2) is automatically
satisfied.

As shown in [2] (Theorem (9.2)) the notion of stochastic process given in
Definition (2.1) is equivalent, in several important cases, to the ones given by [3],
however it is better suited to deal with unbounded processes and nonfaithful states.
In [2], it is also shown how to modify Definition (2.1) so that, in the commutative
case, it includes all the classical stochastic processes. For our purposes, Definition
(2.1) will be sufficient.

Definition (2.3). Let Jf be a Hubert space, T an interval in R, Q ̂  1 be a
self-adjoint operator on Jf and let

{^Q,πQ,ΦQ} (2.25)

denote the GNS representation of the CCR over L2(T,dt;Jf) with respect to the
quasi-free state φQ on W (L2(T,dt;Jf)) characterized by

,dt',tf). (2.26)

Denote 2 the set of all vectors of the form π(W(ξ))ΦQ=WQ(ξ)'ΦQ with
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ξeL2(T,df, jf). The stochastic process

(2.27)

is called the Q-quantum Brownian motion on L2(T,dt, JΓ).
If β = 1 We speak of the Foc/c Brownian Motion on L2(T,dt, jf ); if β is the

multiplication by a constant (/? ̂  1), then we speak of the finite temperature quantum
Brownian Motion, in the terminology of [34] or of the universal invariant quantum
Brownian Motion in the terminology of [24].

Sometimes, when no confusion can arise, we call quantum Brownian motion
also the process

€K}, (2.28)

where A(-),A+( ) denote respectively the annihilation and creation fields in the
representation (2.25). For the normalized coherent vectors we use the notation:

With these notatons we can state our main results:

Theorem (I). Let H± be an Hilbert space and let β,(Sf°), K satisfy the conditions
(2.1), (2.2), (2.3), (2.4). Then, as /ί->0 the stochastic process

Q,@Q(λ),W(λ I Sufdu,S,TeR,feK\ (2.29)
V SM2 / }

with J f Q and ΦQ defined after (2.6), converges weakly in the sense of the matrix
elements to the Q-quantum Brownian Motion on L2(R,dt;K1).

Theorem (II). Lei β=l , then for each u9veH09fl9f29geKl9 Sί,S2,T1,T2GR
(Sj g TJ) the limit

/ ( Γ,/A2 \ / Γ 2 /A2 \ \

l i m ( ι ι ® Φ A \ SJ.du L U (

t f )

λ 2 v ® Φ ( λ f SJ2du}) (2.30)
A->0 \ \ 5,/Λ 2 / \ 52M

2 / /

exists and is equal to

where the scalar product is meant in the space H0®Γ(L2(R,dt',Kl)) and Ut is the
solution of the quantum stochastic differential equation

dUt = lD®dA+(t) -D+®dAg(t) - (g\g).D+D®ldt~]-Ut; U0 = 1 (2.32)

in the sense of [25] and where

(g\g).= ] (g,Sugydu. (2.33)
— oo

Theorem (III). In the notations and assumptions of Theorem (II), for any
the limit

/ / Γ1/λ2 \ / T2'λ2 \\
lim(u®Φlλ J SJidu ) , U (

t f h ' ( X ® l ) U(

tff2'vΦ (λ j Suf2du)
A-O \ \ Sι/A2 / \ S 2 /Λ 2 / /
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exists and is equal to

where, U(t) is the same as in Theorem (II).
The first two of the above theorems are proved in the present paper and the

third one in [7].

3. Convergence of the Collective Process to the Noise Process

Lemma (3.1). For any geD(Q) and for any — oo < S ̂  T < oo, the integral

}stgdt (3.1)
s

is well defined and belongs to D(Q\ moreover

(3.2)

Proof. By the strong continuity of Sί? the function t\-+Stg is weakly measurable
and with a separable range. Since \\Stg\\ = \\g\\, it follows that t\-+Stg is Bochner
integrable. Moreover, for each feD(Q) one has, using (2.2) and (2.3):

Γ Γ

s s
T

hence J StgdtεD(Q) and (3.2) follows from the definition of Bochner integral,
s

Lemma (3.2). For any pair f,geD(Q) satisfying (2.4), and for any Sί9 7\,S2, T2eR
(Sj ^ Tj) one has

I TV/I2 Γ 2 /A 2 \

l i m ( λ f Sufdu,Q-λ j Svgdv ) = <χ[Sl,Γlι^[s2,τ2]> f <f,S,Qgydt, (3.3)
λ-»0 \ S i/Λ 2 S 2/Λ 2 / R

where the scalar product of the characteristic functions is meant in L2(R) and the
limit is uniform for Sl9 T\,S2, T2 in a bounded set ofR.

Proof. From Lemma (3.1) it follows that

Tι/λ 2 T 2/λ 2

λ } SJιdu,Q λ j Svf2dv
Si/λ 2 S2/λ2

Γι/λ2 Γ 2 /A 2

= λ2 J duί J du2(SuJl9SU2Qf2y
Si/λ 2 S 2 /Λ 2

Γi/λ 2 T 2 /Λ 2 -uι

= A2 J dw! J du(flySuQf2y
S i / A 2 S 2 /λ 2 -U!

= J dtίj J du(fl9SuQf2y. (3.4)
Si (S2-«ι)/Λ2
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Now notice that for each ule(S^Tl)n(S2,T2) = (Sί v S^T^/\ T2), one has
S2 - uί < 0 and T2-u^> 0, hence

(Γ 2 -uι)/λ 2

lira f
λ->0 (S2-uι)/λ2

(3.5)

On the other hand, because of (2.4) for each u1e[^Sί9 TJ, the limit on the left-hand
side of (3.5) is non-zero only if S2 — uv ^ 0 and T2 — uί^ 0, that is if uv e[S2, ̂ 2!
Therefore, by dominated convergence, we obtain:

Tι (Γ 2-uι)/λ 2

lim Uu, ί
A - o o S , <S2-u,)M 2

(Γ 2-uι)/λ 2

f

To prove the uniformity of the convergence it will be sufficient to consider
separately the two cases: (i) [Sl5 TJ = [S2, T2]; (ii) [Sl5 TJ n [S2, T2] = 0. In
(i) we have:

case

Si/A 2

Si

(Γι- ι ι , )/A2

(Sι-wι)/λ 2

(S,-u,)M2

j

whence the uniform convergence in case (i) follows. In case (ii) one has

Ί (Γ 2-uι)/λ 2

<T
S i / Λ 2 2<su l/ l 9sU 2ρ/2>

(S 2-uj)/λ 2

Aι|</ι,SBβ/2>|. (3.7)

Assuming, without loss of generality, that O^S1^T1^S2^T2 and choosing
ε > 0, arbitrarily small, the right-hand side of (3.7) is majorized by:

(Γ 2-Sι+ε)/λ 2

j \ < f ι , S u Q f 2 y \ d u
(S 2-Γι+ε)/λ 2

(3.8)

which again implies the uniform convergence.

Remark. In the following we shall use the notation

From (3.3) it is clear that the sesquilinear form ( | )Q is of positive type. In particular,
it defines a scalar product on K, as anticipated in Sect. 2.

Corollary (3.3). On the space L2(R) ® KQ ^ L2(R, dt; KQ), the operator 1 (x) Q ̂  1 on
the domain given by the linear combinations of vectors of the form φ ®/, where ψ
is a step function in L2(R) andfeD(Q).
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Proof. That 1®Q^ 1 on the domain specified above, follows easily from (3.3)
and the fact that Q^ 1.

The following theorem includes the poof of Theorem (I) of Sect. 2.

Theorem (3.4). As λ -*• 0, the quantum stochastic process

Tlλ2 \ ( τιϊ2 \]
f SJdu iwlλ j Sugdu V (3.9)

S/λ2 / \ S/λ2 / J

(S < TeR, /, geK) converges weakly in the sense of the matrix elements, to the
Q quantum Brownίan Motion on L2(R,dt;KQ) in the sense of Definition (2.3).
Moreover, denoting

Q, tQ, Q

the cyclic quasi-free representation of the CCR over L2(R, dt; KQ) characterized by:

<VQ,WQ(χ®f)ΨQy = e-l'2^2 <^ *eL2(R), feK, (3.10)

one has that for eachfί9...9fneK9 Sl9 Tl9...,Sn, Tn9xί9...,xneR9 the limit

Γι/λ* \ / Tnlλ* \

iλ f Sufίdu)^W(xnλ f SM/> Φc
5ι/A2 / \ 5M/Λ2 /

uniformly for x l 5 . . . , xn, S^ ,...,£„, 7\,..., Tπ in a bounded set of R.

Proof. By the CCR and (2.6) it follows that

(φQ,w(xiλ
Tfsjldu}^w(xnλ

Tfsufndu]φ,
\ \ Sί/λ2 / \ Sn J

= expί — i lm Σ XjXkλ
2 j j (SUίfpSU2fk}duldu2

V l ^ J < f c ^ « Sj/λ2 Sh/λ2 I ,

•expf-' Σ *V*T T <Sβlfj,QSnfk>du1du2} (3.12)
\ ^7,/c=l Sj/λ2 Sk/λ2 /

and by Lemma (3.2), as Λ,->0, this tends to

exD I — i Im y^ x x» ( Ύ Ύ* I -̂-/ 7 Ac \ Λ[5j Tj]' Λ[5k Tfc

1 /ι

— ^ V7 PF ίr v ί S ^ f ^ . . M ^ l Ύ v 6bf \Ψ \ Π 1 T ϊ~ \ * Q> ^Q^lA^i.Ti]^/!/ yVQ\XnX[Sn,Tn]^Jn) *Q/ (J.LJ)

uniformly for x t , . . . , xπ, S^,..., Sn9 T{,..., Tn in a bounded set of R.

Corollary (3.5). /n the notation of Theorem (3.4) and (2.10), for each neN and for
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eachfl,f2,gί --gn€K, the expression:

/ δ i / A 2 \ / 7VA2 \ / Γ n/A 2 \

W(λ f S.Λdii UC,B A J S r f ldu —B A f Sugndu)
\ α i / A 2 J \ S!/A 2 / \ Sn/A2 /

converges as λ -> 0 to

\ ^Q\X[aι,bι]®fiy ^Q^(X[Sι,Tι]®dl)'"^(X[SnιTn]®9n)' ^QvZ[α2,ί>2] ®/2/' *Q /

(3.15)

uniformly for α l 5 i>1? α2> b2,Sί,Tί,..., Sn, Tn in a bounded subset of R.

Proof. We know from [4] (Lemma (3.2)) that the expression (3.14) is equal to

( W\ λ f S u f i d u }φn, W\ λ f Stlf-,du \Φn rPn(s(λ\...,s(λ\ί(Λ,...,ί(λ), ),
\ V aι/λ2 J ^ \ αzμ2 / / " ' n - l , n / »

(3.16)

where ?„ is a polynomial in the variables:

/ 2 1 T ^ l f l O / * - l ' ' / % 1 X ^ i / . ^ » V Λ ^ f t ^ f •* t f v !

^V Λ) j R p I / I /7C I Πt i ^ I ft Λ Π \ / I ΠC i Sit ( ^ I (i ^ Π > I

L 02/A 2 Sj/λ2 αi/λ 2 Sj/A2 J

+ iIm|V2f dsΓf2dt<Ss/2,S,07> + λ^'f^sT^KSJΊ.S,^)]; (3.17)
L «2/A 2 Sj/λ2 fli/A2 Sj/A 2 J

Th/λ2 Tj /A2 Γ h/A 2 Tj/λ2

' J ds j dί<Ss0Λ,βSf0;> + ι'Imλ2 f ds } dt<S S ^ Λ ,S t gj>. (3.18)
S h/A 2 S, /A 2 Sh/A 2 S,/A 2

The polynomial Pn is of degree n if the variables 5Jλ) are considered to be of
degree 1 and the variables t(j} of degree 2 and universal in the class of quasi-free
representations. By Lemma (3.2)

A-*0

Therefore, using the result of Theorem (3.3) to control the scalar product in (3.16)
and Lemma (3.2) to control the limit of the variables (3.17), (3.18), we obtain, using
again Lemma (3.2) of [4], that the limit of (3.16) for A^O is equal to (3.15). In the
rest of this paper we shall always consider the case Q = 1 and we shall simply
write Φ for ΦQ.

4. Estimate of the Negligible Terms: The Fock Case

The next step in our program is to estimate the asymptotic behaviour, as Λ,->0,
of expressions of the form

( Tι/A 2 \ / T2/A 2 \ \

λ J S u J ι d u ι } 9 U (

t f }

λ 2 ' V ® Φ [ λ } SU2f2du2 } ) (4.1)
S i / A 2 / V S 2/A 2 / /
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with M,ϋeJf 0> S1? T l5S2, T2eR, S,-^ Tp /ι,/2eX, i.e. of matrix elements of the
time-rescaled intersection cocycle U\fλ2 with respect to pairs of collective coherent
vectors times some vectors u,v in the system space. Using the iteration series
(2.15), this leads to estimate terms of the form:

tn-1

λ" J dt^dt,- J dtn
0

(4.2)
V s2μ

2 / /

with ί ̂  ί ! ̂  ί2 = * ' * = ̂

Vg(f) = i(D ® A+(Stg) -D+® A(Stg)). (4.3)

With the notations

D0=-D + ι D,=D (4.4)

A° = A; Aί=A+ (4.5)

one obtains:

W W - - F,(ίπ) - X i»Dβl - - Dεn ® A«(Stlg) - - A*»(Stng\ (4.6)
ε = (ει,...,εn)e{0,l}"

and this leads to the problem of estimating matrix elements of products of the form

A<>(Stlg) ..A* (StJg) (4.7)

with respect to pairs of collective coherent vectors. To this goal, we introduce now
some notations which shall be used throughout the paper in the following.

For given neN and εe{0, 1}", let k = k(ε) denote the number of ones in the
rc-tuple ε = (ε1,...,ε l l), i.e. the number of creation operators in (4.7), and let
OΊ» 5 A) = 0» 5 w) be the ordered set of the indices of time in (4.7), corresponding
to the creation operators.

Lemma (4.1). Any product of the form (4.7) can be written as a sum of two terms:

A«(Stίg)...A°"(Stjι) = Il + IIl (4.8)
with

k Λ (n — k) m

'*= Σ Σ Yl <st]r^g,stjrgy
m = 0 1 ̂ ri < <rm^k α= 1

{0,7'i,...Jk}nUn-l,...,7'rm-l}=0

Π ^(^9) Π A(Stjg) (4.9a)
je{ji,...,jk}-{Jn,...,Jrm} je{l,...,«}-[{jι,...,jk}u{jrι-l,...Jrm-l}]

k Λ (« — k) / m

"',= Σ Σ Π <s,,.fl,s,.,β>
m = 0 (q\,p\,...qm,Pm) «= 1

Π Λ+(V) Π ^(M (4 9b)
je{jι,...,jk}-{flι,...,ίm} J'e{l,...,«}-[{jι,...,jk}u{pι,...,ί7m}]

where, by definition, Π« = i = 1 ΛW^ w/zere the symbol £ denotes summation
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over all the 2m-tuples (<?ι, Pi, . . . , qm, pm) such that for all α, β = 1, . . . , m

and for some α

4α-Pα^2. (4.11)

Notice that possibly by renumbering the pairs (pα, gα), one can always assume that

q1<q2< -<qm. (4.12)

Remark that {f l ι, . . . ,g m } respects, as a set, with {jn,...Jrrn} and {Pι,...,pm}
with { j r ι — 1, . . . , jfm — 1 }. They differ only in the order. However, from (4.9b) it is
clear that the indices pα, qβ enter only in the product of scalar terms, so that the
order is not relevant.

Proof. In the above notations one has:

_1)+<^V m_1,^ r m»..., (4.13)

where the dots stand for products of creators or of annihilators not containing
terms of the form A(gjr _i)Ά+(gjr). Expanding the products in the right-hand
side of (4.13), we find an expression of the form

Π (-Λ(0jV,-ιM + (0,v,)-) (4.14)
F £{!,...,«,:} \αeF / \αe{l,...,m,} -F J

where the sum runs over all the subsets F of { 1 , . . . , mε} and the product of operators
is meant of increasing order from left to right. The products of creators and
annihilators appearing in the sum (4.14) have the following property: either they
are in Wick ordered form, or they are not Wick ordered, but in this case they
contain a term of the form A(gp)A+(gq\ such that q — p^2. For this reason
in bringing to normal order the products in (4.8), only two kinds of terms will
appear

(i) The sum over all the terms in (4. 1 4) which are already in normally ordered form.
(ii) The sum collecting all the terms which contain at least one commutator of
the form

with q-p^2. (4.15)

The terms of type (i) are those we denoted by Γg and the terms of type (ii) are
those we denoted by IΓg. To complete the proof of the identity (4.9), we note that
since the indices jri9...,jrm label pairs of annihilation — creation operators, the
number of these pairs is less than or equal to the total number of creators or
annihilators, i.e.

mε ̂  k Λ (n - k) ̂  w/2;

moreover, due to the meaning of the indices rα, it follows that for all indices m, in
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both sums (4.49a), (4.9b) such that m > mε, one has necessarily

Uι» > Jk} n {jn - 1, . . . , jfm - 1} ̂  0,

hence in the first sum of (4.9a) the terms with m>mε give zero contribution.
Finally, also in the second sum the index m is ^ k /\ (n — k) since the appearance

of a scalar product implies that one creation and one annihilation operator have
been eliminated.

Now, we begin to estimate the terms of type II.

Lemma (4.2). Denote

t/λ2 ίi f n _ ι m

j Λ j Λ 2 . . . f dtπ γ[\<Stpjg,S
0 0 0 7 = 1

Π λ'T KSuJ fcΛk0>|rfu fe (4.16)

wiί/z rc,/ceN, m = 0,...,n/2, Sl9...,Sk, 7\,..., Tfc, t,λeR, fί9...,fk,geK9 and for any
choice o/pι, . . . ,p m ,<Zι,. . . ,<? m e{l, . . . ,n} SMC/I ί/iαί ί/iβ conditions (4.10\ (4.11), (4.12)
are fulfilled, then

(4 17)

vvfί/z
(4.18)

c 2= max ίl</Λ,S^>|du (4.19)
ft=l,...,fc R

uniformly in Λ,e(0, 4- oo). Moreover

(4.20)

Proof. With the change of variables vk = uk- tk, the quantity Δ™n becomes

t/λ2 tι tn-ι m

λ2"-2m f AJA 2 - J dtnY\\(S g,S gy\
0 0 0 j = l

Π \<fk,SVkgy\dυk, (4.21)
/ce{l ..... n}-{pι,«ι,...,pm,4m} Sk/λ2-tk

hence, with the further change of variable sk = λ2tk (k = 1, . . . , n), one finds:

= 2 - d s " Π KftS(^_.,j)
A 0 0 0 7=1

(Γk-sk)/Λ2

Π ί
k6{l,. .,n}-{Pι^ι. ..,Pm,gm} (Sk-sk)/Λ2

ίΛι ί^ 2 . . .^ Π \<0,S<,tj-,,jVί*0>\. (4.22)
0 0 0 j = l
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Now we do the change of variables

sqj-spj = tqj; y = l , . . . ,m, (4.23)

5α = ία, α/4,, 7 = 2,...,m. (4.24)

The right-hand side of (4.22) then becomes:

A m 0 0 -ίpl 0 0 -tpm

r<ϊm + ίPm t9m+l tn - 1 W

0 0 0 j = l ^

where

',-ι» lf <?;-!/<7;-ι (426)

^i + ίpj.p if qj-l=qj-ί

The further change of variable

*,,/λ2 = Rq, (4.27)

brings the expression (4.25) to the form:

r f g i - 2 (ίqi - 1 ~tpι)/λ2 λ2Rql+tpl tq^-l (t'qm ~ l ~ tpm)!^2

cn~2m'\άt^" \ dtqι,ί J dRqι } Λίl + ι - j Λίm-ι ί
0 0 -ipi/^2 0 0 -ίpm/Λ2

i l D - L / * _ μ ι
Λ Λ 9m^ Γ Pm 'qm^ 1 ίn - j m

o o o j = ι 9j

The crucial remark is that t f

q j _ 1 — tpj ^ 0. In fact, if t'qj_1= tqj_l9 i.e. qj—\> q^_:

then this is clear, while if ί' _ , = ίΛ , + ίn _ , , i.e. j,-— 1 = ^ / _ ι then, p . - < ύ f , ι — 1
yj i 4j i f j i Z J ^J 1 * j -^J A

and

^ _ ι _ tp_ = j 4. ^ _ ̂  g ^ _ 1 _ ίp^ ̂  o. (4.29)

Since Rqj ^(t'qj.l - tpj)/λ2 ^0 it follows that Q£λ2Rqj + tPJ^t'qj_ί. Hence the
expression (4.23) is majorized by:

0 0 -ίpiM2 0 0 -tpm/λ2

o m o o j = ι q j

0 0 0

- -, (4.30)
(n — m)\
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and this proves (4.17). Finally, denote

if fy - 1 > fy_ 19 then t'?j_ ^ - tp. = tq._ί - tp. < 0 almost everywhere; i f fy - 1 = fy_ 1?

then by the definition of j one has p j _ 1 = fy_1 — 1, so p j < f y _ 1 — 1 and
tqJ-ι'-tpj^tqJ-ι-ι—tpj<Q almost everywhere. Moreover since ίι— »<#,£,#> is
bounded, the expression

m (t'qj-ι-tpj)/λ2

Π ί K</,S^>|̂ . (4.31)
7=1 -ίp,M2

tends to zero, as A-»0, almost everywhere in the variables tp9tq 19 hence by
dominated convergence the left-hand side of (4.22) tends to zero as λ -> 0 and this
implies (4.20).

5. Uniform Estimates: The Fock Case

Throughout this section, we shall use the notations introduced at the beginning
of Sect. 4 and in Lemmas (4.1) and (4.2). In particular, expanding the product
Vgbi)-- Vg(Q using the notations (4.3), (4.4), (4.5), we obtain

= Σ Σ inDEl . Dεn A*ι(Stlg) .A*»(Stng), (5.1)

where ε = (ε1,...,εj is uniquely determined by (Λ> >Λ) and ^e sum over
OΊ,...,A)^(U . - » w ) is extended to all the ordered subsets of {!,..., n} of
cardinality k (remember that the indices (;Ί,...,Λ) label the creation operators).
Now, for each εe {0, 1 }", let (;Γ1, . . . , jrj g (;\, . . . , jk) g (1, . . . , n) be as in (4.9a). Since
the correspondence between the ε and the ( j1? . . . , jk) is one-to-one, we can use the
notation

^V ^^o ,,...,̂  (5-2)

where ( j ί 9 . . . , jk) corresponds to ε = (εl9 . . . , εn) in the way indicated above.

Theorem (5.1). For each neN, u,veH, / l 9/ 2,gfeK and T1? T2,Sί,S2eR (S^Tj),
the limit, for λ ->Ό, of the quantity

\

v®W[λ J Suf2du) Φ) (5.3)
V S 2 /Λ

exists and is equal to
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n k Λ (n -k)

Σ Σ Σ Σ r<u,DUl>mjJ,>
k = 0 l^jι< <jk^n m-0 1 ̂ ri < ••• <rm^k

{0,jι,...Jk}n{j r ι-l,...,jrm-l}=0

j...j
0^ίn^ ^ίjrw+ 1 ^ OVW = Orm - ί^" ^tjrί + 1 ^ί jrι ^ ί jr } - 1 ^ " ' ̂  ί 1 ^ ί

Π fc1,τl](^) (/ιl^"m

J6{ j 1 , . . . Jk} - { jr i , . . . ,jrm}

Π fe.Tz
7e{l,...,n}-[{7i,...,jk}u{j r i-l,...,jrw-l}]

.τZ]®/2) ^> (5.4)
where, by definition

( g \ h ) _ = f < f f,S1,Λ>dH, (5.5)
- ex)

ί/ze symbol ij means that the variable tj is absent and Ψ is the vacuum vector of

Proof. Expanding the product Vg(tι) -Vg(tώ and using (5.1), (5.2), the scalar
product (5.3) becomes

fc = 0 1 ̂ 71 < <jk^n 0 0 0

'(w(λ J SJ^du \Φ,Aει(Stlg) .>Aen(Stng)w( λ ] SJ2du\Φ\ (5.6)
\ V SiM2 / " \ S 2 /Λ 2 / /

Now, according to Lemma (4.1), the expression (5.6) can be split into two pieces

lg(n, λ) + IIg(n, λ) (5.7)

with

Σ
(q\,p\ ,...,qm,pm)

t / λ 2 t\ tn-\ m

λ" J dt^dt2. . J Λ.Π
0 0 0 α = l

MJι. .Jk}-{9i. ..9m} S i / A 2

\ / Γ2/^2 \

dt t lΦ. ίy A j SB/2du)φ
/ V S2/λ2 /

(5.8a)
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Π

Σ Σ B < <χ/)0,,...Jk).>

Γf SJ\dwVw'(V2f Suf2du]φ
S!/λ2 / \ S2/λ2 /

ί/λ2 i i ί π _ ι f cΛ(n-k)

•λ" f Λ.μV f A, Σ
0 0 0 m = 0

X = l

n

7'e{jι...,7k}-{>1,...,Jrm} 5 tμ2

Π λ j <StJg9SUJf2>duj. (5.8b)
j e { l , . . . , n } - [ U ι . . . , 7 / c } u { j V 1 - l , . . . , 7 V w - l } ] S 2/A 2

Using the notation (4.16), we obtain, for this piece, the estimate:

\Ilg(n,λ)\^i Σ *1Γ Σ K",^,,...,^)!

Γ 2 /Λ 2 \

J SJ2du\Φ
S2/λ2 /

W(λ f Su

and the right-hand side of (5.9) tends to zero, as λ->09 by (4.20). Hence the limit
of the expression (5.6) (if it exists) is equal to

lim Ig(n, λ).
λ-*0

And since, by Theorem (3.4), and in the notation (2.24), the scalar product of the
collective coherent vectors converges to

^jl < - - - <jk ^ n,

0 0

the problem is reduced to proving that, for each fc = 0, . . . , m and 1
the limit of the quantity

t/λ2 tι tn- i k Λ ( n - k )

λ- d t d t i - f A, Σ Σ
0 m = 0 1 ̂ n < •• <r m ^Λ

{0 Ji . . . , jk) n{jr , - 1 , . . . , >m - 1 } =

Π (5.10)
S 2 /A 2

as Λ-»0 exists and has the expression that one deduces from (5.4), (5.5). To
this goal notice that, with the change of variables u, - f , = υ,-, this expression
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becomes
k Λ ( π - k ) t/λ2 tι tn-\

Σ Σ λ2"-2™ j ΛjΛ 2 . . . j dtn
m = 0 1 ̂ r ι< •• <r w ^fc 0 0 0

{0,jι ...,jk}n{Jπ ~ l,...,jrm- 1}= 0

m Tι/λ2~tj

Π 2/ί tj<9>SVJf2ydvp (5.11)

with the further change of variables A2ί^ = s7 , we obtain

k Λ (w — k) ί si Sn-1 m

m = 0 l ^ π < - - - < r m ^ Λ 0 0 0 α = l JΓa JΓα

ίO,,,..,7k}n(,n l,...,>m l}-0 ^^^

Λ)5y J }(sl-i)/λ

2<Svjfl'gydVj. Π

(52

2_f λ 2 < 9 > S V j f 2 ) d v j . (5.13)

Now, putting
f>α = (Sjr, - sjra- ι)M2; α = 1,..., m, (5.14)

ί; = S;; je{l,...,n}-{j r ι 5...j rj (5ίl5)

we obtain:
k Λ / n _ f c v r t i 0

m = 0 lZn< ~<rmZk 0 0 - ί j r ι _ ι / Λ 2

{OJi ...,jk)n{j r l - 1 ,...,jrm-1}= 0

^ 2 ί J r l

+ ί J r 1 - l Or^"2 Q

0 Γ1 0 _ ί j V ^_ 1 / λ 2

^ 20rw+0rm-l r n _ ! (Tl~tj)/λ2

ί Λ^+i- ί *»\6_ Π. s f <SOJfltg>dvj

(T2-tj)/λ2

Π ί <9,SVjf2>dvj. (5.16)
7e{l,...,ιι}-[{y1...,7k}u{Jr1 - l,...,>m-l}] (S2-tj)/λ2

Now, as λ -> 0,
o

ί 2

dtjr<9>stJrβ}-*(g\g)- (5.17)
Jr2 ~ I / A

• 'Γ *V-> ί *Λ.*Io o
ίηr-' VA 2

• J <SΓ/β,^>Λβ^χ[Sβ>Γj(ίJ)(/Jrt; α = l , 2
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with (g\g)- given by (5.5). Since in all cases the convergence is dominated (due
to t < oo and (2.4)), it follows that, as Λ->0, the expression (5.14) converges to (5.4)
and this ends the proof.

Lemma (5.2). Let /ι,/2,£M, onά D± be a fixed as in Theorem (5Λ) and let Ig(n, 1),
be defined by (5.8a) respectively, then

(5.18)

uniformly in λ > 0, where, c is a constant.

Proof. The terms of type In(λ) have the form (5.8a) and therefore they are estimated
using (5.16) which yields the majorization:

n k Λ (n~k)

\Iβ(n,λ)\ϊ Σ Σ Σ (5-19)

wμ'f sj,dτλφ,w(λTl\ sj2du)Φ
\ S i / A 2 / \ S 2/Λ 2 /

/I 2 r j r ι +r j r ι -l ljrm~2

\<g,S,_gy\ j dtjrί + 1. ] A j V m-ι ί

ί ίi 0

JM*2... ί Λ>,
o o -Ov/^2

0

„.

• J A^+1- J ΛΛ Π ί KS.,/
0 0 J6{ j i , ..., jk} -Uπ,. . jrm) (Si- ίj)/λ2

(Γ2-ίj)M2

Π ί \<9,sVjf2y\dvj.
je{l,...n}-[Uι,...Jk}u{j r ι-l,...Jr r n-l}] (S2-0)/^2

Now, since ίjrαe( - (l/A2)ί j r a_ 19 0), it follows that λ2tjra + ίjrβ_ j g ί j rα_ x and therefore,
since n — m^ n/2, the expression (5.19) is dominated by

(ί v 1)" (ί v 1)"
^|| n i l - | | r i l e " max - L^ I I ^ U . ^ H C - L . , (5.20)

and this proves the lemma.

Lemma (5.3). There exists a constant C, such that for each

"'•M i s c? (5 21)

Proof. From (5.9) we have that for each neN,

\IIg(n,λ)\^i X "If*' Σ C5/1W, (5.22)
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where c3 is a constant satisfying:

and where £ has been defined by (4. 1 0), (4. 1 1 ), (4. 1 2). From this definition,
(pl,4l . .Pm,4m)

one easily verifies that the following identity holds:

Σ = Σ Σ Σ (5.23)
(/M,fl i, . . .,pm,flm) qι< <qm {Ph}%=1 c {!,..., n}-{jh}% = ί σe&"m

teh)™= j c= {jh}* = j I {phj^L j I = m

where, denoting ^m the permutation group on {!,..., m} and

Now, fix fc = 0, !,...,«, 1 ̂  Ί < ••• <jk-^n, and let m g j ^ w , then, from (4.17) it
follows that with c l 9 c2 given by (4.18), (4.19), one has:

| ^n -< max I Ic^ max
U = 0,...,n \ f c / m = 0,...,n/3

ml ί\~n~]\ (ί v I)"
^c"(ί v I)n2n-n24n max ^c" - !~—-. (5.24)

ms»/3(H-m)! V L 3 J / ([§«])!

If m^|n, then, for each fixed q^ < ••• <qm and Pι,...,pw as in (5.23), after the
change of variables A2ί7 = s_y in the expression (4.16) for Δ(

n

λ)

m we are led to estimate
the quantity:

λ~2m Σ i* i f^2- ί *„ Π K^s( ί p { h ) )M^>l (5 25)
(re^m 0 0 0 Λ = l h Pσ(h)

For this goal, notice that, for each pe{l,...,«} — {pΛ,^Λ}^= t, the expression (5.25)
is equal to:

0 0 0 0 0 0

Π K f f ' V - . * > l (5.25a)
h=l

where, the variable ίp does not appear, in the interand. Since, for any such p,
tp ^ tp-1 ^ ί, it follows that (5.25) is majorized by:

σe^'m 0 0 0 0 0

m

• Π K0'S(f -f ) / Λ 2 ^ > l (5 26)
/,= ! 9h P<τ<h>

Repeating this estimate for each pe{l,. . .,n} — (pή,ςfΛ}^=1, we obtain that the
expression (5.25) is majorized by:

' 0 0

,S 2βy\. (5.27)
h σ(h)
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Here, 1 ̂  ql < - - < qm = 2m, and pσ(h) < qh, for each h = 1, . . . , m. Now, for each

m, put

if 7 = 2 Λ , Λ = l , - . . , m
., . . . - P.^O)

σ(fc), if J = 2h- \,h= l , . . . ,m

Then, εσ is a map from {!,... ,2m} onto the set {<3fι, . . . ,<? T O ,Pι, . . . ,p m } and
εσ(2) < < εff(2m); εσ(2h - 1) < εσ(2Λ); / z = l , . . . , m . Moreover, it is clear that if
σ^σ', then, ε f f ^ε f f >. Identifying the set {^ι,...,^m,^ι,...,pTO} with {!,..., 2m}, ε
can be seen as a permutation on {!,..., 2m} and the expression (5.27) can be
written as:

t"~2m Σ r'ψίjΛ,...'2]"^ π l<0Λ<ΪW-.,<»-,,>M>0>l
εe^2m,ε(2)< <ε(2m) 0 0 0 Λ = l

ε(2/ι-l)<ε(2fι),/ι=l,. . . ,w,

(5.29)

To estimate the expression (5.29), we adapt to our needs an argument due to Pule
([28], Lemma (3)). Denote έP®m the set of all permutations σ of { 1, . . . , 2m} satisfying

σ(2) < σ(4) < < σ(2m); σ(2h - 1) < σ(2fc), h = 1, . . . , m

for t > 0 and natural integer /c, let

finally, let ̂ m act on R2m by

β^H » ?2m) = (^(ip » ^(Im))'

With these notations, if /:Rm-> R+ is a symmetric function, then

= Σ

j fS2h~S

2

2h~'ds (5.30)

because the σ(S[2m)) are disjoint for different σ. Now notice that, if σe^m anc*
τeSj2m), then

τσ(2h-l)~τσ(2h) _S2h-l ~ S2h _
- - - — - — - —— — . h + , — ,..., .

(Tσ(2)' Tσ(4)' - - > Tσ(2m)) = (52, «4» - > S2m) =:(3Ί, - , ̂  JeS}m), (5.32)

and therefore, under the change of variables (5.31), (5.32), the set (J σ(S(2m)) is
σe^2m Γ

transformed into a subset of S(

t

m) x R + so that the right-hand side of (5.30) is less
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than or equal to:

J dy j f ( x ) d x = t m - ί f(x)dx.
S(-) R- ml Rrn

Applying this argument to the function

/(*)= ΠK0,SX,0>|
j = ι

we obtain that the expression (5.29) is majorized by:

tln — m

c" (5.33)
ml 6

Putting together (5.29) and (5.33), we get eventually:

n / k Λ ( π - k ) Λ l /3π fcΛ(n-fc)

ι//,M)|ϊ£Σ Σ Σ + Σ ) Σ
k — 0 1 ̂  j i < •••jk ίgn \ m = 0 m = k Λ (n — k) Λ l / 3 n ,

0 0 0 " / ! = ! '" '""

(Γln-|)l 1
^ c5(ί v 1)" ^ -f- cj(ί v I)11—

^ C"—Γ—f, (4.34)

where, C is an easily estimated constant.
We sum up our conclusions in the following:

Theorem (5.4). For every u, veH0, S1? Tl5 S2, T2eR (Sj ^ Tj),fl9 /2eK and for every
TeR+ the limit

lim u®φλ SJίdu)9U%1υ®φλ$ SJ2du (5.35)
A-O \ \ Si/λ 2 \ S 2/λ2 / /

and is equal to

oo k /\(n — k)

Σ Σ Σ Σ <«,/>„ ..... ,̂ >
n = 0 l^jι< •• <jk^n m = 0 1 ̂ n < ••• <rm^k

{OJi,... Jk}n{jr i - l,...,jVm- 1}= 0

ί-ί

Π χ[5l.Γl]ω σιiff)*-" π

where, (g\h)_ is defined by (5.5).
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Proof. Expanding U\fλ2 with the iterative series one obtains a series which is
absolutely and uniformly covergent in the pair (λ, t)eR + x [0, T] for any T < + oo,

/ / r,/λ2 \ / Γ2μ
2

(u®Φ(λ f SJ.du \Ufλ2υ®Φ(λ J SJ2du
\ \ SlM2 / \ S2/λ2

= < u , ι ι > - φ A j SJJuφλ J SJ2du
s,/λ2

ί/Λ 2 ίi

ί ΛJ
0 0

T2ll SU2f2du2 (5.37)
\ \ Si/A 2 / V S2/λ2

expanding the product ^(ίj Vg(tn) as in (4.6) and using Lemma (4.1), the series
(5.37) becomes

£ ( - i)»Ig(n9 λ) + f ( - i)"//,(n, A) (5.38)
w = 0 n=0

with / (n, A), //Λrc, λ) defined respectively by (5.8b) and (5.8a). By Lemma (4.2) each
00

term IIg(n, λ) tends to zero as λ -> 0 and by Lemma (5.3), the series ]Γ ( — ί)n Hg(n, λ)
n = 0

is absolutely convergent, uniformly in λ and uniformly for ί, S l 5 S2, T^T2 in a
bounded set. Hence

lim f (-0"//,(M) = 0.
λ-^O w = 0

The estimate of Lemma (5.2) shows that the series (5.37) is absolutely and uniformly
convergent for λ,t,Sί,S2,Tί,T2 as above. Therefore the statement immediately
follows from Theorem (5.1).

6. The Stochastic Differential Equation in the Fock Case

Our goal in this section is to prove Theorem (II) of Sect. 2, that is: Q = 1, then
for each W,ί;6//0,/1,/2,^eK1,S1,S2, 7\, Γ2eR (Sj g 7}), the limit

/ / iVλ2 \ / r2/λ2 \ \
lim(u®φ(λ f SJ^du ,l/(

t/>®Φ ( λ j Su/2Aι ) (6.1)
A-o \ \ S l/λ2 / \ S2/λ2 / /

exists and is equal to

where the scalar product is meant in the space H0 ® Γ(L2(R, dtiKJ) and Ut is the
solution of the quantum stochastic differential equation

t', U0 = \ (6.3)

in the sense of [39].
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Notice that, by Theorem (5.4), the limit (6.1) exists.
We shall first prove that the limit (6.1) has the form

<u,G(ί)>, (6.4)

where ίh->G(ί)e/f0 is a a.e. — weakly differentiable function. We then write the
expression (6.2) in the form

<u,F(ί)>, (6.5)

and we show that the functions ίh->F(ί), G(t)eH0 satisfy the same integral equation
in H0. The equality F(t) = G(ί) will then follow from the existence and uniqueness
theorem for this integral equation in //0.

Lemma (6.1). There exists a a.e. — weakly differentiable map

such that for all u,υ9fί9f2eK0 and for all Sί9 TίyS2, T2 one has

( Tι/λ2 \ / T2/λ2

λ ί Suf1du],U\fl2v®Φ[λ j SJs
S i / A * / \ S2/λ2

= <w,G(ί)>. (6.6)

Proof. The limit in the expression (6.1) exists, is sesquilinear in w, v and is dominated
by || u || || v ||. Hence there exists a contraction Vt = V t ( f ί 9 f 2 , Sί9S2, Tl9 T2):H0 -* //0

such that the limit of the left hand side of (6.6) is equal to

Denoting G(ί)= Vtv9 one obtains (6.4). The weak differentiability of ί-^G(ί) for
ίeRXίS^T^SjjTj} follows from Lemma (5.2), Lemma (5.3) and Theorem (5.4).

In order to obtain a differential equation for G(ί), first notice that, for fixed λ,
one has:

d I ( Tί/λ2 \ ί T2/λ2

-(u®φ(λ I SJ1duluyλ2v®φ(λ J SJi
dt\ \ Sl/λ2 / \ S2/λ2

/ / Γ l / Λ 2 \ i
= (u®Φ(λ j SJtdu \- [-D®A(St/λ2gΓ+D+®A(St/λ2g)]

\ \ Sι/λ2 / /ί

'Uyλ2v®φ(λ ϊ SJidu}}. (6.7)
\ S2/Λ2 / /

Now we introduce the notations:

1 / / Γ l / Λ 2 \
lλ = - (u®Φ(λ J SJ1du),(D^A(Slfλ3gΓ)

λ \ \ S./Λ2 /

SJ.du (6.8)
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TVλ2

/ U(&Φ( λ

λΠλ=-- u®φλ Suf1du(D+®A(St/λ2g))

f SJ^du}}, (6.9)
s2/λ2 / /

and we study separately the limits of the quantities IλJIλ as /l->0.

Lemma (6.2).

) + w, G(ί)> a.e. (6.10)

(6.11)

λ->0

Proof. Using (6.8) we can define Gλ(t) by

and, with the substitution u - ί/λ2 = ι;, the right-hand side of (6.11) becomes

(Tι-t)M2

f <Svfιdv,gy (6.12)

which converges a.e., as λ -> 0, to

(6.13)

since D is a bounded operator.
Now we write the term II λ as follows:

/ / T2/A2 \ / 1\
Πλ = (u®φ(λ J S.Λdu ), --V(D+

\ \ S!/Λ2 / \ λ/
T2/λ2 Γι/λ2/λ2 \ \ / / Γι/λ2 \ / ι\

J SJidu )) + (u®φ(λ j S.ΛdiiU--
2 /Λ 2 / / \ \ Si/λ 2 / V 'V

φ f A J SB/1dn)\ = //λ(fl) + //λ(ft) (6.14)
\ S2/λ2 / /

One easily sees, exactly as in the proof of Lemma (6.2), that

a.e. (6.15)
λ-O

In order to evaluate the limit of Ilλ(b\ we need the following remark:

Lemma (6.3). Let FeL^R) and let for each λeR + , G A :R->C be a continuous
function such that

sup \Gλ(t)\£C (6.16)
(A,ί)eR+ x R

for some constant C < + oo and

lim Gλ(t + λ2r) = G0(ί) (6.17)
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uniformly for r in each bounded subset of R. Then

lim 1 fdsFf^Λ Gλ(s) = G0(t) f F(s)ds. (6.18)
Λ^O A o \ A / -oo

Pro0/. The left-hand side of (6.18) is equal to:

lim J F(r)Gλ(λ2r + t)dr (6.19)
Λ-O _ f / A 2

and the statement follows by dominated convergence.

Lemma (6.4). In the above notations, one has:

limllλ(b)= -(g\g)_ (u,D + DG(t)y. (6.20)
λ->0

Proof. We consider the expression

Πλ(b) = - Du®φλ SJtdu, [(1 ®A(Stlλ2g)\
\

and we split the proof in two steps: first we show that

l im// A ( fe)=- l im £ ^(-iT'M dt, JΛ 2 - . "f
Λ-^O Λ-» 0 «= 1 0 0 0

and then, noticing that the right-hand side of (6.22) has the form

1 f

λ o

ΓiM2 \ / n/Λ 2

/ ( Γ l / λ 2 \ / Γ l / Λ 2

'(D + Du®Φ(λ J Suf1du),U%2 v®φ(λ J S^
\ \ S i / A 2 / \ S ι / A 2

and applying Lemma (6.3) with

T ι / Λ 2

(6.21)

<Stlλ2g9Stίgy (u®φ(λ
\ \

(6.22)

(6.23)

J SJ^di (6.24)
S i / A 2 / /

(6.25)

(6.26)
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we find that the limit (6.23) is equal to

(6.27)

which is the right-hand side of (6.20). To prove (6.22) we expand £/ f/Λ2 in series.
Then, using the identity

we obtain

00 ί/Λ 2 t2 *n-l

n = l 0 0 0

r,M2

• I S./ι«
Sι/λ2

Σ <V0Λ0> (Du®φ(λ f
7 = 1 \ \ S i / A

/ r 2 /Λ 2 \ \

) Φ A J Sβ/2dιι ). (6.28)
\ S->/λ2 ' I

As A-^0, the term with; = 1 in the right-hand side of (6.28) is simply the right-hand
side of (6.22). Therefore our thesis is equivalent to show that

oo t/λ2 Ί * w - ι

lira Σ λ'-^-ίf f dt^dti- ί dtn.
λ->0n=l 0 0 0

/ / ϊΊM2 \

X <St/^,S^> (/)ιι(8)Φμ f S.Λdii LK^)- -K^.J
=2 \ V Sv/λ 2 /

2/λ2 \ \

J SJ2du)) = 09 (6.29)
μ2 / /

J=2

T 2 / λ 2

and the proof of this relation is exactly the same as the proof of the relation (4.20)
in Lemma (4.2).

Summing up, we have shown that the limit (6.6) is a.e. differentiable and that

<M, G(ί)> = lim <u, GA(ί)> = <u, G(0)> 4- lim } ^<u, Gλ(s)yds
Λ-»0 -l-»0 0 US

= <u, G(0)> + lim }(/λ + IIλ)ds, (6.30)
λ-»Q 0

where Iλ and II λ are bounded for (A,s)eR+ x R+. So, by (6.10), (6.15), (6.20) and
dominated convergence, one obtains

<tι, G(ί)> = <u, G(0)> + }ceISlfr i l(s)(/il^<l> + ̂  G(s)>
o

-%2,r2](^l/2)<"^+^)>-^l^)-'<w,/) + /)G(5)>^ (6.31)

But, it is clear that, if Ut is the unique solution of (6.3) and we define F(t) by (6.5),
then the function f-><u, F(ί)> satisfies Eqs. (6.31) with F substituted everywhere
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for G and F(0) = G(0). From this we conclude that, for each ί,

and this proves the identity of (6.1) and (6.2).

7. Examples and Applications

It is instructive to calculate how the scalar product (2.5) looks like under some
particular assumptions on the "one-particle free evolution" S° and on the
covariance operator Q. We assume that this evolution has positive energy with
absolutely continuous spectral measure, i.e.

S f°= ]eitωdE(ω\ (7.1)
o

. (7.2)

Furthermore we assume that Q has the form

Q=]q(ω)dE(ω) (7.3)
0

with g:[0, + oo)-> [1, + oo) a continuous function. For example if, in the notations
of Sect. 2, we choose H^ = L2(Rd) with d ̂  3 and

so = e-itA. 4 _ the Laplacian (7.4)

ί(ω) = coth(j9ω/2), (7.5)

then the sub-space K in (2.4) can be taken to consist of those functions / in D(Q)
such that /and β/are L2(Rd) n Ll(Rd). Defining, as in Sect. 2, for some fixed ω0eR,

(7.6)

we obtain

Lemma (7.1). For allf,geK9 the Rado'n-Nikodym derivative Jftg(') is a continuous
function, vanishing at 0 and at + oo. Moreover the expression

(/I0)Q:= ί </, StQgydt = 2πq(ωQ)Jf,g(ωQ) (7.7)
R

defines a (usually degenerate) positive sesquilinear form on K.

Proof. For f,geK the integral

is a continuous function of ω0 vanishing at infinity by the Riemann-Lebesgue
Lemma. Moreover

J/>ί7(ω0). (7.8)
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Hence Jf,g(') is a continuous function. Since it vanishes on the negative half line,
by continuity it will vanish at ω0 = 0.

If 5r° and Q are as (7.4), (7.5), then Jfίd can be computed explicitly and one finds

*^/,0(ωo) — ωo J
S(d-l)

where S(d~1} g Rd is the unit sphere and dσd_i the normalized measure on it and,
where/is the normalized Fourier transform of/expressed in polar coordinates
in momentum space. Denoting L2(5(d~1}) the space of square integrable complex
valued functions on S(d~ υ with the natural scalar product and considering the map

from (7.8) and (7.9) we obtain

(f\9)Q = (/l0)Q(ω0) = 2πq(ω0)ωd~2/2 </ωo,0ωo>L2(S<d- ι,r

Now we use this result to make more explicit the meaning of the scalar coefficient
(g\g) entering in the stochastic differential equation (2.32). Even though Theorem
(II) is formulated only in the Fock case (Q = 1), we deal here with a general Q. In
this case the stochastic differential equation, (2.32) becomes (cf. [5])

(7.10)

with
o / / O - f l λ \

(9\9ΓQ+= I (f9St[^-)g)dt. (7.11)
-00 \ \ 2 / /

In this case the Ito table for dA*(t) is

therefore, separating the real and the imaginary part in the scalar factors (g\g)^
amounts to separating the Ito correction term from a purely Hamiltonian term
of the form

This is an operator generalization of the scalar Lamb shift. In order to see what
the scalar terms (7.11) look like under the assumptions (7.4) and (7.5), we use the
identity:

f eitωdt = πδ(ω)-i0>-,
-oo ω

where ̂  denotes the principal part distribution, to obtain

=} dt\
- oo R

R2(ω-ω0) "
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This gives the expression of the pumping rates and intensity of the energy shift in
terms of the original Hamiltonian model.
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