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Abstract. U(ί)XD model with the Villain action on a g-loop generalization Fg

of the Bruhat-Tits tree for the p-adic linear group GL(2, Qp) is considered. All
correlation functions and the statistical sum are calculated. We compute also
the averages of these correlation functions for N vertices attached to the
boundary of Fg. When the compactification radius tends to infinity the
averages provide the g-loop ΛΓ-point amplitudes of the uncompactified p-adic
string theory, in particular for g = 0 the Freund-Olson amplitudes.

1. Introduction

The idea of a non-archimedean string proposed in the papers [ί-4] has stimulated
great activity in this field [5-9]. The authors of [3-4] have interpreted bosonic
string amplitudes at the tree level of perturbation theory over the non-
archimedean number field Q p as integrals of some combinations of multiplicative
characters over Qp (it is very close logically to the definition of the corresponding
amplitudes for the usual open string over the real number field R). In refs. [8] these
p-adic amplitudes were produced from some non-local scalar field theory on Qp.
Then the local formulation was given [9] which is actually more similar to the
archimedean (Polyakov's) one. In the papers [9-10] the connection was es-
tablished between p-adic string amplitudes and the Gaussian model on the
Bruhat-Tits tree [11-14]. The Bruhat-Tits tree Γis manifestly determined to be the
connected infinite graph with no loops, each vertex of T being connected with
exactly p +1 neighbour vertices by links. The branch Bz is defined to be a connected
subtree with the only boundary vertex z of the graph T\BZ in the interior of T. By
definition, the branch contains no cycles. A g-loop generalization of the p-adic
string theory is given by the theory on the generalized tree Fg. It consists of a finite
connected graph Ff with g independent loops, which is called a reduced graph, the
branches Bx, x e Ff, and each vertex is connected by links with exactly p +1 nearest
neighbours (for every link two endpoints of which are identified with a vertex, we
include the vertex itself twice into the number of its nearest neighbours). If the
vertex xeFf has only one nearest neighbour y eFf, xφy, then p branches Bx and



624 L. O. Chekhov and Yu. M. Zinoviev

the link [x, 3;] form the branch By. Hence instead of the reduced graph Ff we may
consider the reduced graph Ff\[x,y]. From now on F$ is merely a single vertex
and p +1 branches should be added to Λ; in order to obtain the whole tree T. For
g>0 every vertex xeFf has 2^n(x)^p + ί nearest neighbours in Ff and b(x)
=p +1 — n(x) branches should be added to x in order to construct the generalized
tree Fg. By Euler-Poincare formula the reduced graph Ff consists of 3g—3 or less
segments (segment is the line containing only the vertices with exactly two nearest
neighbours). The lengths of these segments are called the moduli of the
corresponding p-adic surface, for examples see [10].

The open p-adic string world sheet F0 = T may be interpreted as a coset space
PGL(2,Qp)/PGL(2,Zp), where PGL(2,K) is the group of fractional linear trans-
formations of the projective line P 1 ^ ) over a ring K (we deal with the field of
p-adic numbers Q p and with the ring of the p-adic integers Zp) [12,13]. Usually the
generalized tree Fg may be interpreted as a coset space Fg = T/Γg, where Γg is some
Schottky group, i.e. a free subgroup of PGL(2, Qp) with g generators, all non-unit
elements of which are hyperbolic [the element of GL(2, Qp) is called hyperbolic if it
has two eigenvalues which have different p-adic norms] [11-13]. The boundary of
this world sheet corresponds to p-adic Mumford curve of genus g [11]. The
appropriate local string action on Fg [for the scalar field φ(z) e R taking real values
on the vertices zeFg] has the form:

s(φ)=-β/2 Σ (Φ(*)-Φ(y))2 (i.i)

All correlation functions for the action (1.1) were computed in [15]. In [10] the
multiloop amplitudes with the action (1.1) were calculated for the scattering of N
identical tachyons attached to dFg. In this paper we generalize the technique
developed in [9,10] to fields φ(z) taking values in a compact abelian group U(l)x D.
The case U(ί)xD corresponds to the bosonic field compactifϊed on the
D-dimensional torus. Moreover it is of special interest since the compactifϊed
bosonic field appears in the archimedean string theory in the framework of the
bosonization procedure [16]. In order to find the correlation functions, scattering
amplitudes and statistical sum we shall use the results of the papers [17] where the
general technique for the abelian gauge field theories on arbitrary lattices was
presented. As the compactification radius tends to infinity we obtain the
correlation functions and the amplitudes of the uncompactified p-adic string
theory.

2. Correlation Functions

In order to find the correlation functions and the statistical sum for the infinite
graph Fg we calculate them first on a finite connected subgraph KcFg and take a
limit K^>Fg. We suppose that a subgraph K contains the reduced graph Ff. The
subgraph K may be considered as a finite cell complex. It consists of zero- and one-
dimensional cells: vertices and links. Every cell ±sq is labelled by the integer
4=0,1 (dimension) and by the number ±1 (orientation). The cells with the
opposite orientation sq and — sq both belong to the lattice K. An integer-valued
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odd (cQ(—sf)= — cq(sf)) function cq on the g-dimensional cells is called a g-chain of
the complex K. cq can be regarded as a formal sum Σmish where the integers
mi = cq(sq). A set of ^-chains is an Abelian group: cq + c'q=Σ(mi + mdsi' It *s

denoted by Cq(K,Έ). It is possible to introduce the inner product on
Cq(K,Z):(cq,c'q)=Σmim'i. We define the boundary operator d on Cq{K,Z) by
ds°=0 and d[xbxj\ = xj—xi. By linearity it is easy to extend the boundary
operator on Cq(K,Έ). We define the coboundary operator d* by the following
relations 3*c1=0 and <d*c°,c'1y = <c0,d(c'ί)y. A kernel Z^K.Έ) of a homomor-
phism d: Cι(K,Έ)-+C°{K,Z) is called a group of cycles of the complex K. The
image B0(K,Έ) of a homomorphism 3:C1(X,Z)^C°(K,Z) is called a group of
boundaries of the complex K. The image B1^!) of a homomorphism
d*: C°(K,Z)-+Cι(K,Έ) is called a group of coboundaries of the complex K.

A homomorphism of Cq(K, Έ) into an Abelian group G is a qr-chain of the
complex K with coefficients in G. A set of all these homomorphisms is an Abelian
group which is denoted by Cq(K, G). Each homomorphism hq e Cq(K, G) is defined
by its values on the <?-chains 1 s? e Cβ(K, Z) i.e. on the cells Sf. Thus hq is a G-valued
function on the g-dimensional cells of K. On Cq(K, G) we introduce the boundary
and coboundary operators: dhί(c°) = hί(d*c°) and d*ho(c1) = h°(dc1). For example
3*/i°([x, y]) = /i°(x)~x Λ°(y). The group of cycles Z^K, G), the groups of boundaries
B0(K, G) and coboundaries U 1 ^ G) are defined in an obvious way. We consider
two cases G=U(l)xD,ZD. The group ΈP is dual for the group 1/(1)xD: if

i> and mμeZD, then

(2.1)

Analogously, the group Cq(K,ZD) is dual for the group Cq(K, U(1)XD): if
D and φ« e C%K, 1/(1)x D\ then

= Π <r(5f)l^(5?)>, (2.2)

where multiplication runs over all positively oriented links of the lattice K.
Let us consider the l/(l)xl)-model on the lattice K. A field is a chain

φ°eC°(K9 U(l)xD), i.e. a function on the vertices of K taking the values in
D-dimensional torus U(l)xD. The key question is the choice of the action. It is
possible to choose a zero-dimensional version of the Wilson action [18], The most
natural one is, in our opinion, a Villain action [19]:

S(φ°)= Σ Σ h((d*φ°(sl)r)9 (2.3)
s}eK μ=l

where summing runs over all positively oriented links of the lattice K and the
function

^ [ { } } (2.4)
The element of U(ί) is parametrized by eiθ/r, 0e[O,2πr[, r being the compactifi-
cation radius. The statistical sum is

Z κ = J dφQes*°\ (2.5)
C°(K,U(ί)D)



626 L. O. Chekhov and Yu. M. Zinoviev

where dφ° is a normalized Haar measure on the compact group C°{K, U(ί)D). The
correlation function has the form

(2.6)
(1) **>)

where a chain χ°eC°(K,ZD) is a character of the group C°(K, U(l)xD).
By Lemma 1 of [17] the correlation function Wκ(χ°) isn't zero only for

boundaries χ° = dχ1 and

J } (2.7)
where dφ1 is a normalized Haar measure on the compact group B1(K, U(1)XD).

It is easy to compute the Fourier transform of the function h(eι\

(2.8)

By using the Fourier transformation on the group BX(K, U(1)*D\ due to the
formula (2.8) and Proposition 1 of [17] we obtain

y 2 \gDf2

Zk\2πr

- ^ J Σ ({XΎ+ Σ Φ»(XΎ+ Σ Φι)}> (2.9)
2 r μ = l \ i = l i = l / J

where χ1 e C\K, ZD) and (χ1)^ = Σ (x\sl)Y s} is a chain from C\K, Έ). z1?..., zg

form a basis of the group of cycles Z^K.Έ). Since a subgraph X contains the
reduced graph Ff and any branch has no cycles, the group ZX(K, Έ) coincides with
the group Z ^ F * Z). A subgraph K is connected, hence any chain χ1 e O{K,ΈΏ)

N

may be presented up to the shift (χ1)μ-»(χ1)μ + Σ k i z i a s (xΎ = Σ mi%c x > where

3CCyX. is some path without returns from the arbitrary fixed vertex ceFf to the
vertex xt and the integers nή satisfy the conditions for μ— 1, ...,D:

Σ mμ = 0. (2.10)
j=i

Taking the trivial chain χ1 =0, i.e. m̂  = 0, we obtain the statistical sum

Σ (n»njKztZj>\, (2.11)α

2

where the scalar product (nb Πj) = Σ nιn) The symmetric g x g matrix of cycles of

the graph FfcK:

4 , = <ZfrZ,> (2.12)

is a natural non-archimedean analog of imaginary part of period matrix 2πlmτ ί j

in the archimedean case (note that in the open string case τ l7 is pure imaginary).
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Applying the Poisson resummation formula:

Σf(n)=Σίdxf(x)e2πinx,
n R

we can rewrite the relation (2.9) as

.Σ nήx}) = [deU] ~D'2 WR ( £ nήxj

x ^ ^nήΛ^iX^z^lm^A-1^, (2.13)

where

Wi(.Σ nήxή =exp{- |

- Σ Σ K m i K ^ O V ^ x W l } (2 1 4 )

is the correlation function which is calculated for the theory with the action (1.1) on
the lattice K in the paper [15] and 0-function [20],

θ(yf\Ω)= Σ expίiπ Σ Σ nfΩfχ + 2πi Σ Σ nfyfi (2.15)
{n?}eZ9*D I μ,v=ί i,j=ί μ=ί i=l J

depends on the vector {j/f} e(E9*D and on the symmetric complex (gD) x (gD)-

matrix Ω with the positively definite imaginary part. In our case Ω = 2πi -^Λ'1®!,

where / is the identity D x D matrix.
Taking the trivial chain mf = 0 we obtain the statistical sum:

(2.16)

0(O| •) is the modular form of the weight 1/2 with the transformation property:

r2 _Λand the modular parameter τf/ = 2π^-ylo (χ)/μv.
cc

The result (2.13)—(2.16) was obtained in [15] for the zero-dimensional version
of the Wilson action [19] but only in the weak-coupling region. If the vertices
xl9...,xN are fixed, then the limit K-*Fg for the correlation function and the
statistical sum is given by the formulas (2.13)—(2.16). We denote these limits

w( Σ nήxΛ and Z.

3. Amplitudes

Now we shall present the amplitude for the emission of N particles from the
boundary of Fg.
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Let us define the boundary of a generalized Bruhat-Tits tree Fg. If a vertex
x φ Ff, then by the definition of the graph Fg there exists the unique vertex xR e Fff
such that the path

,x, (3.1)

where the path 9CC,XR belongs to the reduced graph Ff and the unique path fχRjc

lies in the branch BχR. Any half-infinite path without returns in BχR starting at the
vertex xR we call a ray xR-+x. The set of all rays will be called the boundary dFg of
the generalized Bruhat-Tits tree Fg. On dFg we introduce the basis of open sets dBx,
where xeFg\Ff, and dBx consists of all rays having infinite intersections with the
branch Bx. The measure μ0 on dFg is defined by the following relation:

R>*>**R»<>. (3.2)

The relation
\x*^x9y*-+y\p=p-<*R-*>yR-y> (3.3)

defines the distance on dFg.
The reduced graph FR is merely a single vertex c. The boundary dF0 can be

naturally identified with the p-adic projective line PX(QP) [12,14] with the measure
dμ0 related to the Haar measure dx on <Qp by:

dμo(c^>x) = dx, \x\p£ί9
(3.4)

2

p, | x | p > l ,

where | \p is the standard p-adic norm on Qp, and the distance |x, y\p on PX(QP) is
defined by its restriction on Qp:

p J | J , > l , | y | p > l ; (3.5)

|c->x, c->y\p = 1, otherwise.

We call the vertex xR e Ff external if xR is the end of b(xR) > 0 branches in Fg. For
g > 0 by definition of the reduced graph FfO< b(xR) ̂  p — 1. The ray xR ->x starting
at the external vertex xR e Ff may be identified with the p-adic integer x e Zp of the
form

+ . . . , (3.6)

where 0<^a0<^b(xR)-\ and O ^ α ^ p - 1 for Ϊ > 0 . We denote the set of these
numbers as Zp[α0<fc(xΛ)]. Thus for g>0,

g U p
xReF§

b(xR) > 0

It is easy to verify that under this correspondence

\P=(\χ-y\P)
δχR'yR, (3.8)

-+x) = dx. (3.9)

We call the boundary dK of the graph KcFg the set of all vertices from K
which have among the nearest neighbours the vertices from Fg\K. Let
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fι{xR-+x), ...,fN(xR^>x) be the positive continuous functions summable with the
measure dμo(xR^x) on dFg defined by the relation (3.2). We define the amplitude

..,/„)= lim £ w( £ mfo) ft Tfo), (3.10)
J = l ΛΓ

where

TM^iμoidB,))-1 J dμo(xR^x)flxR^x). (3.11)
δBXj

If all functions fj{xR-+x) = l then the definition of the amplitudes (3.10), (3.11)
coincides with the definition of the p-adic string amplitudes of the papers [8, 9].

We find the limit (3.10) for the special sequence of graphs {Kt} such that dKt

= {xeFg\^χRfX,3ί'χRfXy = l,xEBxR, xReFf, b(xR)>0}. We suppose also that the
supports of the functions f^xR-^x) and fj{xR-^x) do not intersect for iΦj.

For g = 0 the relations (2.13)-(2.16), (3.2), and (3.10), (3.11) imply

AN(mμ

u..., mμ

N I fu ..., fN) = \\m exp j ^ ί lnp - ^ (mi> mi)J h [
j " l N

Σ (ft ί
{xjedKlj}\j=ί dBXj

CiXi, are9Xj>\.x exp I - ^ | κ mj) <&CiXi, are9Xj>\. (3.12)

Since the supports of the functions f£xR-*x) and fj(xR^>x) do not intersect for iφj
the last sum in (3.12) absolutely converges as /,—>oo to

i fi(xi)diJφ1)...MxN)dlφN)n\xhxJ^<m'mj\ (3.13)

Here we use the relation (3.3) and we denote by dμo(x) the measure given by the
right-hand sides of the relations (3.4). The distance \x, y\p is given by the right-hand
sides of the relations (3.5). We also use the correspondence dF0^Pι(Qp) [12,14]
and replace the functions f^c-^x) simply by fj(x).

It follows now from (3.12) that

α2

α2

(3.14)

2r2 v ι ' ' ' ' ' '

if
(3.15)

inserting (3.13) into the right-hand side of (3.12) we obtain the non-trivial limit

..,mΊ,\f1,...,fN)= J f1(x1)dμo(x1)...fN(xN)dμo(xN)

xΠfe^"""" 1. (3-16)
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D

Here the scalar product (m^rn^ Σ (m?)2.

Let us consider the generalized Bruhat-Tits tree Fg with g > 0 . Using the
relations (2.13)-(2.16), the decomposition (3.1) and the formulas (3.2), (3.3), (3.8),
and (3.9) we obtain the relation (3.14). If the integers mf satisfy the conditions (2.10),
(3.15) we have the non-trivial limit (3.10):

x ί Mx^xjdx^.. f
Zp[aΌ<b(x*)] ZP[ao<b(x§)]

N —-—ίifti mi)δ^R V

R

x Π l*,-*;l/W ' J '
N

where the correlation function Wl Σ mjxf) ^s giv^n by the equations

(2.13)-(2.16). The proof of the formula (3.17) is exactly analogous to the case g = 0.
Now we consider the limit r->oo, mf->oo such that

where fcf are real numbers satisfying, due to (2.10) and (3.15), the conditions

£fc? = 0, μ=l,. . . ,D
(3.18)

(/ci?/Ci) = 2, i = l , . . . , N .

The amplitudes (3.16) and (3.17) tend respectively to

ΛN(mμ

u ...,mξj\fl9 ...,fN)= J fι(xi)dμo(xί)...fN(xN)dμo(xN)
PH<HP)XN

(3.19)

if Σ W

ί Λ ( χ f - > χ i ) Λ c i . . . J / ^ - ^ ?
R Zp[αo < b(x§)] i < j

because of the 0-function in (2.13) tends to 1. Here the correlation function
α2

is given by the formula (2.14) with the change -^ ->ln/?.

r2lnp

If fj(x)->ί9j = 1,..., N the amplitude (3.19) coincides with the result of the paper

-+δ(x— \)dx, fN(x)dμ0(x)->δ(x)dx9 then the amplitude (3.19) coincides with the
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Freund-Olson amplitude [3]. The result (3.20) is new since the boundary dFg for
the generalized Bruhat-Tits tree Fg with g>0 was not computed explicitly in the
paper [10].
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