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Abstract. Ergodicity of two-dimensional billiards which satisfy some general
conditions is proved. This theorem is applied to one concrete class of billiards
that contains, in particular, billiards in the "stadium."

Dynamic systems of the billiard type (or simply billiards) belong to one of the most
popular and best investigated class of hyperbolic dynamical systems with
singularities. Hyperbolicity leads to entailing strong stochastic properties of the
system such as positivity of Kolmogorov-Sinai entropy, existence of ergodic
components of positive measure etc. Nevertheless the usual proof (attributed to
Hopf [H]) of the ergodicity of smooth hyperbolic dynamic systems (for instance
Anosov systems) cannot be applied to billiards in view of the presence of
singularities. Sinai pointed out first (and proved it in [S1] for Sinai billiards on TΓ2)
a new statement that gives the possibility of applying Hopf s idea for the proof of
ergodicity of hyperbolic dynamic systems with singularities. In [BS] the proof of
this statement was simplified and extended to a wider class of Sinai billiards. The
corresponding assertion was named in [BS] the main theorem of the theory of
Sinai billiards. Later [Bl] the same assertion was used for the proof of ergodicity
of billiards in domains with focusing components of the boundary. Therefore it is
now called the main theorem of the theory of billards with hyperbolic behavior.

Sinai proposed in [S2, S3] a more general method for the proof of this
theorem. Making use of this method it was possible in [SC] to prove the ergodicity
of some classes of semidispersing billiards. Especially one has to mention the proof
of ergodicity of the system of three billiard balls on the d-dimensional torus
[KSS1] which was recently obtained by Kramli, Simanyi, Szasz [KSS2]. The
authors of [KSS1] used a modified version of the main theorem which they called
a "transversal" fundamental theorem for semi-dispersing billiards [KSS2]. Here
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we use the method of [S 2, S 3, CS, KSS 2] (which we call below the new one in order
to distinguish it from the old method of [S1, BS]) to prove the main theorem for a
general class of hyperbolic billiards which includes in particular billiards in
domains having boundaries with focusing components. The scheme of our proof is
exactly the same as in [SC, KSS2].

The structure of the paper is the following. In Sect. 1 we formulate axiomati-
cally the properties of some abstract class of billiards, for which the main theorem
is proven in Sect. 2. In Sect. 3 we verify the conditions of this theorem for a class of
billiards in domains with focusing components of the boundary. Section 4
contains some comments on the interrelation between the old and new methods of
the proof of the main theorem. We omit proofs of those statements which
completely coincide with the corresponding proofs in [SC, KSS 2] and give
detailed references.

1. Definition and Main Properties of Billiards Under Consideration

Let Q be a bounded closed domain in the Euclidean plane R 2 or on the two-
dimensional torus TΓ2 with Euclidean metric. We assume that the boundary dQ
consists of a finite number of smooth (of class C3) nonselfintersecting curves dQb

ϊ = l,...,p, which we shall call regular components of dQ. Hence every regular
component of the boundary is closed or has common endpoints with other regular
components of dQ. The points of intersection of different regular components of
the boundary will be called singular points. dQ has at most a finite number of

L

singular points. We denote these points φu ~ ΛL a n d l e t U 4ΐ = ^

We assume that the boundary dQ is equipped with the field of unit inner
normal vectors n(q), q e dQ. We shall assume that the curvature of every regular
component dQb i = 1, ...,p, of the boundary has the same sign at all points or is
equal to zero. We denote by dQ+, dQ~, and dQ° the union of all regular
components with positive, negative and zero curvature, respectively. Regular
components of the boundary belonging to dQ+, dQ~, and dQ° will be called
dispersing, focusing and neutral components, respectively. Besides we assume that
Q is not a polygon, i.e. dQ+κjdQ~ Φ0, and dispersing components intersect each
other and neutral components of dQ transversally.

Furthermore we denote by M the restriction to Q of the unit tangent bundle of
R 2 (T2). The preimage π~1(q) = S1(q), qeQ, consists of unit vectors that are
tangent to Q at the point qeQ. Points x = (q,v)eM will be called unit tangent
vectors and q = π(x) is the footpoint of x. It is easy to see that M is the three-

P p

dimensional manifold with the boundary dM= \J n~ί(dQi)= (J dM{i\ In every
i = l i = l

regular component dM(i) we introduce a coordinate system (r, φ), where r is the
normalized arc length along dQ{ and φ9 —π<φ^π,is the angle between the line
element x and the vector n(q), where q = π(x)edQ.

A billiard in the domain Q is the dynamical system generated by the motion of
line elements xeM along geodesies with unit speed and with reflection from the
boundary according to the law "angle of incidence equals angle of reflection." This
means that if the geodesies intersect the boundary at a regular point along the
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direction v, the further motion occurs in the direction of the vector v' = v
— 2(v, n{q))n(q), where q is the point where the intersection occurs and (v, n(q)) is the
scalar product of the vectors v and n(q).

If a trajectory reaches a singular point then the further motion is not defined.
Let Mt = {x e dM: (x, n(q)) ̂ 0,q = π(x)}, Mf = Mx ndM(i). It is clear that Mί in

coordinates (r, φ\ is the union of not more than p cylinders. We put ^

? 1 β
We denote So = {xsdM:(x9n(4)) = 0}, F0 = π"1(F). The set Ro = SovVo will be

called the set of singular points of the boundary.
We introduce in M the measure dμ = const dqdω, where dq is the measure in Q

induced by the Euclidean metric, dω is the uniform measure on the sphere Sι(q)
= π~1(q) and const is a normalizing factor. The one-parameter group {V) is a flow
in the sense of ergodic theory.

For any point x e M we denote by τ+(x) (τ~(x)) the nearest positive (negative)
moment of reflection of the trajectory of x from dQ. It is easy to see that τ+(x)
<oo(|τ~(x)|<oo) for μ almost all points xeM. Denote nfx=Tt+(x)+ox, πfx

Let for zeMl9

τ(z) = {sup{ί>0: for all s,O<Ls^t, TzsdM)

if it is positive; otherwise inf {t >0 : VzedM}}.

Because of τ+(x)<oo μ-a.e. the transformation Tίx = Tτ(x)+ox,xeMί, is defined
that maps Mί into itself. It is easy to see [CFS] that T± preserves the measure μl9

dμx = const cosφdrdφ, that is the projection of μ onto Ml9 where const is the
normalizing factor. So from the view of ergodic theory [CFS] we obtain the special
representation of the flow {7*} by the automorphism T± of M1 and the function
φ ) , xeMv The differential of Tx we denote by DTV

Let t > 0 (t < 0) be the moment of reflection from the boundary of the trajectory
of a point x. We denote by — Vx the unit tangent vector such that π(— Vx)
= π(Ttx)edQ and — Vx has the direction opposite to the direction of
V~°x(Tt+ox). For XEM1 the unit tangent vector -T?x is defined in the same
way.

It is known [CFS] that the measure (with respect to μ as well as with respect to
μx) of the set of all unit tangent vectors such that their trajectories intersect Vo

equals zero. We denote by M' a collection of all points xeM such that Vx is
defined for any ί, — oo < t < oo.

Let M\ = M! n Aί', then μWJ = 1. It is easy to see [CFS] that the ergodicity of
the flow {V} follows from the ergodicity of the dynamic system with discrete time
generated by Tv

Consider a curve γCQ that is of class C2. By a framing γ of the curve γ one
means a continuous section of the unit tangent bundle over y such that at each
point q e y a unit tangent vector x e y, π(x) = q, is orthogonal to γ at the point q.
According to this definition γ corresponds to a beam of trajectories orthogonal to
γ. It is clear that γ has two framings. After choosing a framing we define a sign of the
curvature of y at any of its points. If the curvature does not equal zero at all points
of y then its value at a single point defines a framing uniquely.
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Let yeQ be an arbitrary nonselfintersecting smooth curve and let y be its
framing. Denote by κo(x) a curvature of γ at a point xeγ. We assume that there are
no points of y which do reflect from the boundary dM during the time between 0
and t. It is not difficult to derive the relation (see [SI])

κt(x) =
+ fco(x)t'

(1)

where κt(x) is the curvature of the curve Vy at the point T*x.
Hence if κo(x) > 0 then κt{x) > 0 for any t > 0. In case κo(x) < 0 one has κt{x) < 0

for 0 ̂  t < ί/\κo(x)l the value κt(x) equals infinity at the moment t0 = 1/|JCO(X)|, and
for t>t0 the curvature κt(x) is positive and decreases inversely proportional to
t-t0.

We shall call a smooth nonselfintersecting curve γ convex (concave) at a point
x € y if 0 < κ(x) < oo (— oo < κ(x) < 0). A point x, where κ(x) = 0 (κ(x) = oo) will be
called a flattening (conjugate) point. It is clear (see for instance [B1]) that convex,
concave and flat curves generate divergent, convergent and parallel beams of
trajectories (Fig. 1).

α)

Fig. la-c b) c)

The curvature of a curve suffers a jump at the moment of reflection. Denote by
K-(x) and κ+(x) the curvature of the curve γ at the point xey, π(x)edQ, at the
moment just before and after the collision respectively. Then we obtain (see [BS])
that

(2)
cosφ(x)'
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where q — π(x), ki0\x) is the curvature of dQ at the point q, φ(x) in the angle of
incidence of the unit tangent vector x (O^φ(x)^f).

Let now xeMl9 and T[xφV0 for O^j^n. We define

Λ + W= Π li+ίCf-iM^x)!, (3)
i = l

where τf(x) is the time between the (i—l)th and the ith reflections of the trajectory of
x from the boundary, τί(x) = τ(x\ and

Kt-M 2kf\x)
A ) ί+φfa-άx) cosφiix)' K>

where k\0)(x) and 0f(x) are the curvature of dQ and the angle of incidence at the
point of the ith reflection of the trajectory of x from the boundary.

Analogously, we introduce a value

Λ(Λx)= Π 11 + Kί-χMτViMI, (3')

where τ£x) = τ(— 7i~fx) and

where £jO)(x) is curvature of dQ at the point π (7ί~'x) and ^(x) is the corresponding
angle of incidence.

The relations (3), (4), ((3'), (4')) do not determine completely the values of Λ{

n

+\x)
(Λ{

n~\x)). One has to fix also the curvature κo(x) (ico(x)) of a local beam of
trajectories under consideration. According to formulas (1), (2), (4), (4') this
curvature could be defined by fixing the value of the derivative dφ/dr\x,
x = (r,φ)eMv

For any integer k we define Sk = TfS0, Vk = T/%. The transformation Tt (Tfx)
has singularities on the set S_ x = Tf 1S0(S1 — T^Q), where it is discontinuous and
on the set V_ί = Tί~

iV0 (Fi = Tiiy, where it or its derivative is discontinuous.

Denote J R ? . 1 = R O U S _ 1 U 7 _ 1 , R? = Λ o uS 1 uF 1 , R+= \J T?R0,
k O
J

k = O

R-=\J Tt-
kR0.

k = 0

It is easy to see that the set So is given via the formula φ = ± f on the cylinder
(or on the collection of cylinders) Mv The set Vo forms a finite collection of vertical
segments r = fb ί^ί^L, where ft is the coordinate of a singular point &•

Let Jί+(JC) be a set consisting of all points xeM1 such that the positive
(negative) semitrajectory of 7y+(JC)x(Tf-(x)x) has reflections from the boundary
dQ at 3Q° for some integer /ί+(x)<oo (/ί_(x)<oo). Denote M*κjJi~ =Jί. It is
clear that expanding (contracting) cones K(n\y) (K(s)(y)) do not exist at the points
T?+ixhc, T?+w+1x,... (T»-(x)x, Ίf-w-^,...). It is easy to see that
Jt\Jί+{Jί\Ji~) is an open set.

We suppose that the following condition is fulfilled for billiards under
consideration.
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Gl. For point x^M^Jί such that T^φRoiTf^^xφRo) there exist closed cones
K{u\x) (K(s)(x)) in the tangent space fxM1 to Mι at the point x such that K(u\x)

x),

TΓ'x)),

and there exist integers fc+(x)^l, /c_(x)^l such that

DxT^x\K^u\x))cK^{T^x)x),

DxTfk-<x\K*Xx))cK*\Tfk-ix)x)9

where
K(U)(X) =

κ(s)M = ί *?>(*) ύ^ύ k

0 < *§•>(*) < fc(

2

u)(x) < oo ( - oo < k{l\x) < kψ(x) < 0)

if π(x)edQ + vdQ° and -oo<k^(x)<k2

u\x)<0

(0<fe(

1

s)(x)<k(

2

s)(x)<oo) if π{x)edQ-.

The cones K{u\x) and Kis\x) will be called expanding and contracting
respectively. [One has to remark that (5') means a strict inclusion.]

The next condition is the following one.
We shall call a C^-smooth curve ΣcMx expanding (contracting) if for any

point y = (r,φ)eΣ one has kffty) S dφ/dr ̂  kψ{y) (jfcf>(y) ̂  dφ/dr ̂  kψ(y)). It follows
from (5), (5') that iϊΣ is an expanding (contracting) curve and the transformation Tx

(T^1) is smooth on Σ then TγΣ (T^1Σ) is also expanding (contracting).
It is easy to see that to every expanding curve ΣCπ~ί(dQ + vdQ°) there

corresponds a divergent beam of trajectories (Fig. 2a) and to every expanding
curve Σcπ~1(dQ~) there corresponds a convergent beam of trajectories. A
divergent beam would be divergent at all times up to the next reflection from the
boundary. For a convergent beam of trajectories there exist different possibilities
in this respect which are represented in Fig. 2b and c.

We assume that billiards of our class satisfy the condition

G2. Each smooth component of the set TnR(T~nR) is an expanding (contracting)
curve, where n>0 is an integer.

The following property of billiards under consideration is their hyperbolicity.

G3. For almost every point xeM there exist local unstable manifold (LUM)
Wiu)(x) and local stable manifold (LSM) W{s\x) such that both W(u\x) and W(s)(x)
are C1 curves. Besides V is continuous on W(u)(x) (W(s)(x)) for all t < 0 (ί > 0) and for

any points yl9 y2eW™(x) (y1,y2eW's\x)), Q(Tyu Tyjί^O {Q{Vyu

Vy2)-^-*0\ where ρ( , •) is a metric in VW{u\x) {TW{s\x)) induced by the

Riemannian metric in M.
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Fig. 2a-c

It is known [SI] that if G3 holds then there exist almost everywhere in M1

LUM's W}u)(y) and LSM's W{s\y) for the group of automorphisms {77} that are
projections on Mt of LUM's and LSM's for {V}. It is easy to see that every LUM
W[u\y) is an expanding curve and every LSM W[s\y) is a contracting one.

The general theory of hyperbolic dynamical systems with singularities (see
[KS]) states that for the billiards under consideration the foliations of Mt into
LUM and LSM are absolutely continuous.

We suppose that the following condition on defocussing holds.

G4. Let Σ C π " \dQ ") be an expanding curve and let Tx \ Σ be continuous. Then for
an arbitrary point xeΣ there exists a curve ΣxCΣ, xeΣu such that the beam of
trajectories generated by Σx before the next reflection from the boundary is passing
through a conjugate point, i.e. it becomes divergent.

The condition G4 means that for a beam of trajectories generated by an
expanding curve ΣCπ~ι(dQ~) one has the situation that is represented in Fig. 2c.

Let us take an expanding curve ΣCn~ι(dQ^ that contains both its endpoints
and consider a set A(Σ) that consists of all closed segments [x, 7\x]. Consider now
all curves γ CM that are framings of curves γ = π(y)Cβ orthogonal to all segments
in A{Σ). (We mean here a framing of γ that is defined by the direction of trajectories
corresponding to Σ.) The set of such curves will be denoted by B(Σ). The curves γ



606 L. A. Bunimovich

and y = π(y) are closed sets. Suppose π( Tx Σ) c dβ,. Let Z1 + be the curve y C β(Σ) that
is the framing of the curve nearest * to dQt and let (7iZ)_ be the curve γt C B(2^ that
is the framing of the curve γx = π(y1) that is nearest to dQj. According to G4 this
definition is a correct one.

Suppose y CM is the framing of the smooth nonselfintersecting curve y = n(y)
C Q and denote by £t{y) the length of γ that is induced by the Euclidean metric in Q.
We easily get from (1).

Proposition 1. Let Tx be smooth in y and no point of y is reflected from dQ during the
time interval (0, ί) Then for any point xey,

where κo(x) is the curvature of y at the point x.

We put ίί[Σ) = ί1(Σ+) for any expanding or contracting curve ΣcMv

We shall say that a contracting (expanding) cone Kis)(y) (K(u\y)) at a point y is a
perfect cone if

Λ{

n-\y)= min Λ Π J O - ^ + O O ,

(6)

The minimum in (6) is taken over all contracting (expanding) curves where the
transformation Tfn (Γ") is continuous. It is worthwhile to mention that by fixing
Σ{s) (Σ(u)) we determine simultaneously a value of ico(x) {κo(x)) in the formula for
A\Γ\x) (4+ )«).

We introduce also the following property of strong defocussing.

G5. Suppose that at a point x there exists a contracting cone and for some k> 0 one
has Tkxeπ-\dQΐ\ Tk-ιxφπ-\dQ;\ Tk^xe%-\dQ;) for 0^ΐ<fco, Tk+k°x

φπ~1(dQ['). Then ~**° >X>1. The analogous property holds for expanding
Λk (x)

cones if we consider the corresponding segment of the negative semitrajectory of x.
In view of G1-G5 and the invariance of μγ the general theory of hyperbolic

systems with singularities gives that the following property holds (see [KS, W]).

Proposition 2. Suppose there exist at a point x, contracting and expanding cones.
Then one can find integers n+(x)>0 (n_(x)>0) such that for any expanding
(contracting) curve Σiu)sx (Σ(s)3x) where the transformation T?+{x) (T{~n-(x)) is
smooth we have (see (l)-(4)),

^(τrix)Σ^)
Λ(^)

1 The distance between two closed subsets Dx and D2 equals min d(qlfq2) where d is the
qieDi,q2eD2

Euclidean metric in Q
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and correspondingly (see (1), (2), (30, (4'))

G1-G5 make the following proposition true as well.

Proposition 3. For every point yeM^ the cones K(s)(y) and K{u\y) are perfect (if
they exist).

In the following we usually speak about perfect cones.
Let to = 0 < t 1 < f 2 < be the moments of consecutive reflections of the

positive semitrajectory of a point x e M\ from the boundary.
Denote

κis\x) = - , (7)

|cos<?

τ 2 w+
2kψ{x) 1

cos φ2(x) τ3(λ;) +. . .

where τ£x) = ti — ti-1, k\°\x) and φ^x) are the curvature of dQ and the angle of
incidence at the point of the /th reflection of the trajectory of c from the boundary.

It is known [SI] that the LSM at the point x is given by the following equation:

^ = κ(s\x) cos φ(x) - ki0\x). (8)
ar

Consider x' = x — 2(x,n(q))n(q), where q = π(x). Then the LUM at the point x
has the form [SI]

^ = κiu\x) cos φ(x) 4- k{0\x), (80

where κ{u\x)=-κ{s\xf).
The relations (8) and (9) can be derived [SI] from formulas (1), (2), and (4).
We shall assume that the following condition is fulfilled for the billiards under

consideration.

G6. If the positive (negative) trajectory of a point xe Mx does not intersect with R
then κ(s\x) (κ(u\x)) is continuous at x. Moreover for every ε > 0 there exist a positive
integer n0 = no(ε) and a suitably small neighborhood Uε = Uε(x) such that for
n>no(ε) and for every yeUεnM' and every expanding curve γs(Tny)',

\κ<s\x)-κ%(y)\<ε,
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where

$ . (9)

cos

Here κy{{Tny)') is the curvature of y at the point {Tny)f.
Denote i?_ 1 =S_ 1 uF_ 1 , Ri = S1κjV1. We shall formulate now the last

condition (see [SC, KSS2]).
A. There exists a perfect cone K{s\x) (Kiu\x)) for almost every point x e £ ° x

(x e Λj) (with respect to a measure induced by the Euclidean metric on R°_ 1 and

Theorem 1. Let the billiard satisfy conditions G1-G6 and A. Consider a point
xx G M\ such that its trajectory {Tfx^, —oo<n<oo,is not tangent to dQ for all n
and the cones Kiu\xt) and K^XxJ are perfect ones. Then there exists a neighborhood
Ui(*i) belonging modO to one ergodic component of the dynamical system under
consideration.

2. Proof of Theorem 1
For a point xeM by the length L(x) of the segment (π(x),π(Tτ(x)(x)) we shall
understand the length of free path of x. If Q is a bounded domain in R 2 then L(x)
<L0(Q)< oo for all points xeM. The set R where Tt has discontinuities consists in
this case of a finite number of smooth components.

If Q c T 2 then in order to get the same situation we shall use the following
procedure (see [SC]). Let TΓ2 be obtained by gluing together the opposite sides of
the rectangle K. Consider the billiard problem in the domain with boundary dQ
KjdK. Inside this domain the motion is free with unit velocity. The reflections from
dQ are usual elastic reflections but when the moving point reaches qedK then it
instantly jumps to the point q' e dK that corresponds to q by the gluing and the
further motion is going in the same direction (i.e. parallel to the previous segment
of this trajectory that ended at q). We shall denote the corresponding derived
automorphism of this extended boundary ΘQudK into itself also by Tv We
preserve also the notation of phase space as M1 and dQ for π(M J. The invariant
measure μγ of the automorphism Tγ has the density dμί(x) = const \(n(q),x)\drdφ,
where q = π(x)edQvdK.

Let us now take a straight segment [πx, π(T{~ ix)] that has its endpoints in two
regular components of the extended boundary dQ and include it in a continuous
family of parallel segments that have their endpoints in the same regular
components of dQ (Fig. 3). We denote by \z(x) the distance from [πx, π(Ti" xx)] to
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/ \

Fig. 3 (

the nearest boundary segment of this family. It is clear that either such a boundary
segment is tangent to dQ or it contains a singular point of dQ (Fig. 3).

In complete analogy to [SC] and [KSS2] one can prove

Lemma 1. For any arbitrary ε>0,

μί{xEMί:z(x)<ε}<cίε,

where c1=cί(Q).

An open quadrilateral G will be called a parallelogram if one pair of its opposite
sides consists of expanding curves and the other consists of contracting curves. The
expanding (contracting) part of the boundary of G will be denoted by Γ{U)(G)
(Γ(s)(G)), Γ(G) = Γ(tt)(G)uΓ(s)(G). A parallelogram G is called u-inserted (s-inserted)
in a parallelogram Gί if GcGx and Γ(S)(G)CΓ(S)(G1) (Γ(u)(G)cΓ(M)(G1)). It is clear
that any parallelogram G has a (nonunique) partition into expanding (contracting)
curves with endpoints in Γ{S)(G) (Γ(M)(G)).

Let l/(xi) be an open neighborhood of xv Consider a family of finite coverings
B& = {G{f\...,G%)}, m = m(δl of Ufaά where every Gf, l g i ^ m , is a parallel-
ogram and the parameter δ will tend to zero in what follows.

The sets Gf can be considered as images of the standard unit square under
inhomogeneous linear mappings HP-tUixJ where linearity is defined in terms
of some fixed coordinate system in U(x±).
A family B{δ) will be called a regular one if the following conditions are satisfied:

1. the centers y? of G\δ) (with respect to the fixed coordinate system) have LSM and
LUM and, moreover, the tangents to W{u\yδ) and W{s)(yδ) are parallel (according
to coordinate system) to the corresponding sides of Gt.
2. if G ^ n G f + 0 then μ^G^nGf^C^2, where C ^ O does not depend on δ.
3. any point y e U^x^ does belong to not more than four different parallelograms
G\δ) for any fixed <5.
4. the centers yδ of parallelograms G{δ\ i — 1,..., m(δ\ constitute asymptotically as
<5-»0 a linear lattice (with respect to the fixed coordinate system in U{x^)).

It is clear that regular coverings exist. We shall consider in what follows such
regular coverings that contain long strips of parallelograms that extend into
directions corresponding to expanding and contracting curves.

The crucial point in the proof of Theorem 1 is the following
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Lemma 2. For any δ < <5o(*i) the parallelograms of the regular covering {G^} could
be divided into two groups Uff and Uψ such that

(a) let U(u) be a neighborhood of radius ε^ of the two expanding sides of a
parallelogram G^CU^K The constant εx does not depend on δ and could be made
arbitrarily small by taking smaller neighborhoods £/i(xχ). Consider now all points
z e Uiu) that W}u\z) intersect both contracting sides of a parallelogram Gf\ Then the
set that consists of all these points has positive measure.
(b) the measure of the union of all parallelograms belonging to Uff equal to δφ^δ),
where φι(δ)^>0 as <5->0.

The analogous assertion holds if in condition (a) we consider a contracting side
of G{δ) instead of an expanding one.

We will show how Theorem 1 follows from Lemma 2. It is quite analogous to
[S2, S3, SC, KSS2].

As was mentioned above the proof of Theorem 1 is based on Hopfs idea [H].
Let us mention first that every LSM (LUM) belongs modO to one ergodic
component. It was proved in [S2] that the following assertion follows from
Lemma 2.

Lemma3. There exists a collection of parallelograms UψcUψ such that

(al) U G\δ) is a connected set

(a2) μ, (U^xJ \ U G\*>\ <φ2(δ\ where φ2(δ)^O as δ^O.

Furthermore according to G3, for almost every pair of points x\ x"
there exist LSM W[s\x') and LUM W[u\xft) and ^^W^x'^-δ^Q, Λ(WiM)(*"))
-(5">0. Therefore one can find δ<mm{δ\δ") such that W[s\x') and W[u\x") to
intersect the parallelograms belonging to Uψ. Hence, in view of a) in the
formulation of Lemma 2, one can find a so-called Hopf chain, i.e. a collection W£s\,
W}u)

2, Wϊ%,..., Wlu)

k of LSM and LUM such that x'eWf\, x"eW±u)

k and W?\
nWi%1 Φ0 or W[ύ}nW[%+1^ for all i = l,2,..., fe-1. Thus the points x' and x"
belong to the same ergodic component.

Proof of Lemma 2. Recall that the transformation T± is pointwise smooth. Making
use of the procedure of the extension of the boundary we obtained, in the case when

Q cT 2 , that Tf has singularities in the set (J TfR0 which is the union of a finite

number of curves for any integer k. In what follows we shall refer to these curves as
to (generalized) discontinuity curves of 7?.

Denote by 17$ the union of all parallelograms G\Λ) which intersect at least two
discontinuity curves of the transformation T[{δ\ The next lemma follows from
Lemma 4.6 in [KSS2] (see also [S3]).

δ-*0 δ-*0

Lemma 4. There exist functions F(δ), F(δ) • oo and φ3(δ), φ3(δ) >0 such
that μι(U$l)<δφ3(δ).

Proof We shall include 17$ into the set l/j?>.



Ergodicity of Two-Dimensional Hyperbolic Billiards 611

Let Σ{u\x)cMγ be an expanding curve. Denote by x+ (x_) the point on the
trajectory of x closest to x that belongs to Σ{+\x) (Σ^Xx)). An analogous object
could be considered for a contracting curve Σis)(x)CMv

We take a point y e M\ \M ~, an integer n > 0 and δ > 0. Consider all expanding
curves Σ(u) {Tfny) that contain the point T1~

ny = y1 such that T^\Σ{u){T^ny) is
smooth and that both distances from the point q+(Tι~ny) = π((Ά~ny)+) to
endpoints of the curve π(Σ(!(}(Tί~

ny)) do not exceed <5.
Denote by λ(

n~J(y) the minimal coefficient of expansion at any point of such
curves that arise by the transformation of Σ%\T^ny) into (TfΣ^XTf ny))_. By λ(

n^
we denote the minimal coefficient of expansion at points of a fixed curve Σ.

Lemma 5. // the negative semitrajectory of the point y e M\\Jί~ does not touch dQ
then λ{

n~^(y) increases monotonically as δ->0 and has the limit

ί = l

where the values Λ^iy) were defined in formula (3'), iSf

0{y1) = l^ι){y1) + " ^/\ if

π(yί)edQ°vdQ+, K'oiyJ^kfXyJ + kWXyJ/cosφiyά if π(yi)edQ- and the values
κ'j[y) were defined for i>0 by the recurrence relation (4').

Proof In view of the definition of expanding curves the beam of trajectories that
correspond to Σ(u\T1~

tty) is divergent if π(Tί~
ny)edQ+κjdQ° and is convergent if

π(Tfny) e dQ ~. In the first case it follows from (1H4) that the minimal coefficient of
expansion along the trajectory of a point zeΣiuXTί~

ny) corresponds to an
expanding curve Σ(u\T1~

ny) that has minimal curvature at z. Furthermore if
π(Tί~

ny)edQ~ then, as we explain below, one can obtain from (l)-(4) and G4 that
the minimal coefficient of expansion is in the curve Σiu\T1~

ny) that has minimal
modulus of curvature. The only case which we have to consider corresponds to a
reflection from dQ~ such that the next reflection is from dQ+.

Consider two local convergent beams of trajectories that have reflections from
Mϊ at the same point x. Let the curvatures of these beams after these reflections be
κ\(x) and κ'[(x) with \κ\(x)\ < \κ'[(x)\. (Recall that both values κ\(x) and κ'[{x) are
negative.) Then the coefficient of expansion under the action of T equals λ\ = τ'2/τi
for the first beam and equals λ'[ =τ"2lτ\ for the second one, where τ\ = \κ'1{x)\~ί,
τ'l = K(x)Γ\ τi+τ /

2 = τϊ+τ5 = τ(x). So τ'[<τ'u τ"2>τ'2. We have κ/_(Tx) = (
) = (τ2)""1. So according to (1), (2), we get

fc(O)(73c)

cos<

Therefore λ\λ'2<λ"iλ"2. If T?x,..., TnxedQ~ then it is easy to verify by induction
that the needed assertion is true, i.e. the minimal expansion coefficient corresponds
to the curve that has minimal (in modulus) initial curvature.

It follows from the definition of the curves Σ^ that λ{

n~J(y) increases
monotonically as <5->0. Hence there exists a limit λi

n~(&y)= lim λ{

n~J(y) that is
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defined by the relation given in the formulation of lemma. Thus Lemma 5 is
proven.

It is easy to see that the analogous assertion holds if the positive semitrajectory
of the point ye M\ \J(+ does not touch dQ. In this case one has to introduce the
corresponding values λ^{y) and to use in the formulation of Lemma 5, the
relation (4) instead of (4').

According to the conditions of Theorem 1 one can find n0 = WoÔ i) s u c h that the
following property holds:

(α) Let C/i(xi) be a neighborhood of xι where 77"0 is smooth. Take now a point
xeU^x^. Then for any expanding curve Σiu) containing (— T"°x) the curve Σ^
under the transformation into (T?°Σiu))_ expands by a factor not less than A > 1,
where Λ = Λ(xί) does not depend on x and Σ{u\

In order to show it we mention first that the cone X(M)(xi) is a perfect one.
Therefore xx φJί+. Further because dispersing components of the boundary dQ
intersect transversally there exists an integer Λί >0 such that for any expanding
curve Σ(u) the minimal coefficient of expansion λ{~^u)>λ'>\ if TkΣ{u)CMΪ for
fc=0,1, ...,n, n>Λ1 (see [BS]). Then according to G4 and the condition of strong
defocussing G5, for any expanding curve Σ{u)cM\ there exists an integer ή2>0
such that λ{~^u)>λ">\ if n>Λ2. Hence a neighborhood U^x^) with the needed
properties exists.

We choose now a neighborhood U^xJ small enough that T^yφU^xJ for all
y e U^xJ, 0 ̂  n < n0. [If the point xί is periodic then we can make the same choice
since no(χi) does not exceed the period xx.]

Consider now the set

Uf^iyeUάxJ'.ziTϊy^δλί+t'iy) for all n>0}.

Lemma 6. There exists a number C2 > 0 such that for any point y e C/(

1

0) the length of
the LSM Wis\y) is bounded from below by C2δ.

Proof Denote by r(y\ yeM, the length in the metric fγ of the arc from the point
n(y+) to the nearest endpoint of π((W^(s)(y))+). We put r(y) = 0 if y does not have an
LSM.

The proof of the following statement is completely analogous to the proof of
Lemma 4 in [SC] (see also Lemma 5.4 in [KSS2]).

Lemma 7. If ye Uf} then r(y)^δ.

Proof Take any expanding curve Σin) s — T"y such that Σ(+} has its center at the
point (—T?y)+ and its ^-length equals min{δ,z(T?y)}. The mapping tn that
transforms Σf$ into (TϊΣ(u)). is pointwise smooth. Let Σ%\03 Tfny be a smooth
component of a curve Σ(+} where this mapping acts smoothly and f(+)

>o==π(^+),o)
In view of the definition of Λ£$(y), Λ e ^i-length of the curve Σ{l\0 increases by a
factor not less than λj$(y) under the action of tn.

Let rjy) be the fγ-distance from π((—y)_) to the nearest endpoint π((«(w))_) of
the curve π{TnΣ

{l\). Suppose rn(j;)<<5 for some n^O. If u{n) = %u{S\ where
π{u$)edΣ%\0 then z{{-T^y)^δλ^Γ' and rn(y)^z(-T^y)λ[y^δ.

In the opposite case one can find an integer k,0<k<n, such that TfuffeSo
uF 0 . So z(Tfy)^δλ(

ky~\y) as yeUψ\ Hence rn(y)^z(TΪy)λ£δXy)^δ. Therefore
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rn{y) ̂  <5 in any case. In view of the relation W[s\y) = lim - {π^{tnΣ
{l\ 0)) Lemma 7

n-*oo

is proven.
The transformation π^ is smooth at the point (A^)-. Therefore we can choose

C2 such that W[s\y) has length not less than C2δ. Lemma 6 is proven.
Introduce the set 17O = ^i(xi)Wi0). τ h e n U0 = U0 ^UQ 2 U . . . , where Uo n

= {ye U^Yz^Ϋj^δiλ^iy))-1}. (We shall omit the'index (+) in λ^ in what
follows.) We have C/o,«£^o,«,ou^o,/i,iu '

Hence

U Σ Σ ^i(^o,Π,J= Σ Σ μΛπu0<nj. (9)
n= 1 m = 0 m = 0 n = l

In the same way as Lemma 5 in [SC] and Lemma 6.3 in [KSS2], one can prove

Lemma8. For any m^O, 0^nί<n2, the sets T^UOfnum and TyιU0tn2tm do not
intersect.

In fact the neighborhood U^xJ satisfies the condition (α). Therefore if there
exists zeTrU0,numnTFU0tn2tm, then Tr^eU^^QU^l Γ-W2zel/0,Π2,m

CU^xJ and also λnuδ(T-n*z)e[Λm,Λm+1l λn2tδ(T-n2z)elΛm,Am+1l But this
contradicts (α) because the minimal expansion coefficient of the transformation
j-Π2-m o n a n y expanding curve ΣcU^x^ is larger than A.

According to Lemmas 8 and 1 we can write

Σ M i ( T ? t 7 o . - . J = M i ( 0 π o ^ μ Λ y W S ^ ^ J
n=ί \n=ί / (10)

Equations (9) and (10) imply that

U Σ c 2 (x 1 )όr = c3(x1)ί. (11)
0

F(δ) oo

Consider Uo α = \J Uo „, Uo ω= \J UOn. We shall show that
0 ' ' F(δ)+l

(12)

where ψ4(<5)-»0 as ^->0.
The following statement is proved in [SC] as Lemma 6 and in [KSS2] as

Lemma 6.7.

Lemma 9. If for any m^O and for any function Fγ{δ) such that F^)-^oo as <5->Ό
one has

1 Σ
n = Fί(δ)

then the inequality (12) holds.
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Let us assume now that the conditions of Lemma 9 fail, i.e. one can find mγ ^ 0,

εί ^ 0 and a function F^δ) > oo such that

Σ μi(U0.H,mι)^εiδ. (13)
n = Fί(δ)

It follows from condition A that λHj 0(T?y)-* oo as n-^ oo for almost every point
y e R _! with respect to a metric in R _ x that is induced by the metric in Mv Hence
for any such point yeR_1 one can find a neighborhood V1(y)CM1 such that
λnt0(T?y')>Λmι for all /eViOO if n>n1(y). Furthermore there exists smaller
neighborhood V2(y) C Vx{y) such that λHt d{T?y') > Amχ for all n > n2iy)> y' e V2iy\ and
δ<δ2(y). Thus according to the definition of C/Owm the set T"UOintmί does not
intersect V2(y) for any δ < δ2(y) and n > n2(y). Therefore for any ε0 > 0 one can find
numbers δ0 > 0, n0 > 0 and a neighborhood V0{R) C Mx of the manifold R such that

μi(V0(R))n

for all δ < δ0. In view of the contradiction between (14) and (13) the relation (12) is
proven.

Take now a point y e {r(y)<δ}\UOtω and an integer F(δ). Consider the same
smooth curve Σ{+\0 as in the proof of Lemma 7, where n>F(δ). We put Σ$m

= tmΣ(l\ 0, where 0 ̂  m ̂  n. Analogously to Lemma 7 one can prove (see [KSS2]),

Lemma 10. If a point yφUOω then the length of the curve Σ(ζ]n^F{δ) is larger than
δλp{l)δ(y). Thus the curve Σ$n intersects with the manifold of discontinuity of the
transformation T^n for all n. Besides the distance in the t\~metric induced on Σ(

o

rt)

Λ

between the point y and this manifold does not exceed δ.

Recall (see Sect. 1) that the manifolds of discontinuity of the transformation T*
consist for k > 0 of the contracting and for k < 0 of the expanding curves. In view of
the condition G6 we get

Lemma 11. For any ει>0 there exists a neighborhood U^x^ and a number δ3>0
such that for δ<δ3 a maximal angle between tangent vectors to Z 1^, n>F(δ\ and
tangent vectors to a corresponding manifold of discontinuity does not exceed ev

The corollary to Lemma 11 is that the iγ -distance between y and the
corresponding manifold of discontinuity of T[{δ) does not exceed ε2δ9 where
ε2 = ε2{zι) could be arbitrarily small if the neighborhood U^xJ was chosen
sufficiently small. Hence the following statement holds.

Lemma 12. For any ε 2 >0 there exists a neighborhood t/i(xi) such that the set
Dδ,ω = {y:r(y)<δ}\UOω belongs to the ε2δ-neίghborhood of the manifold of
discontinuity of the transformation T[{δ) for all δ<δ3.

We can construct the sets U(δ) and Uff that appeared in Lemma 2 and consist
of "good" and "bad" parallelograms of the covering {G\δ)} of l/i(xi) respectively.

Let the parallelogram G\δ) intersect not more than one curve Σ belonging to the
manifold of discontinuity of the transformation T*™. Suppose that ε3 is a
constant which is defined by a number εt in condition a) of Lemma 2 and that this
condition is valid for it. We put G\*>C Uf iίμ^GψnU^)^(1 - ε3)μ1(Gf}). Also we
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take a neighborhood U^x^ and therefore ε2 so small that the measure of the union
of the ε2(5-neighborhoods of the boundary of dG\δ) and of the set ΣnG\δ) does not
exceed iε3μ1(G| ί)) for any δ and Gf\
Hence there exist two possibilities if Gf^Uf.

1. A parallelogram G{δ) intersects not less than two curves of discontinuity of the
transformation τfF{δ). In this case we put G\δ)cU$l.
2. μi(G| ί )nI7O iJ>iε3μ1(G|* )). Then it follows from the property 3) of the
coverings {G\δ)} and from (10) that the measure of the union of such parallelograms
does not exceed δφ5(δ), where φ5(δ)->0 as δ-+0.

Thus Lemma 2 is proven and therefore Theorem 1 is proven as well.
We consider now the following important generalization of Theorem 1.

Suppose that for a point x one of the two following possibilities takes place:

1) xeM\\Jί and the trajectory of x hits one and only one curve of discontinuity
Σk of the transformation 7j for some A ΦO.
2) xeΣkcTiV0 and its positive semitrajectory (if fc>0) or its negative semi-
trajectory (if k < 0) or both (if k = 0) does not touch the boundary, does not contain
singular points of dQ and all its generalized semitrajectories do not reflect from
dQ° only. We assume further that x is an interior point of a smooth curve Σk. Then
Σk divides the neighborhood U(x) into two parts U± and U2. We could define the
value Λftix) (4±&c)) as the limit of Λ{

n%y) (Λ{

nf}(y)) as y-+x and yeUί (yeU2).

Theorem Γ. // a point xίeMί satisfies 1) or 2), where k^O and Λ ^ X ^ - K X ) as
n-> oo (or k ̂  0 and Λj^Xi)-* oo as n-> ooj, i = 1,2, then there exists a neighborhood
of x1 that belongs modO to one and the same ergodic component.

Proof It is easy to see that a sufficiently small neighborhood U^xJ does not
intersect Jl. Then it follows from Theorem 1 that each of the sets Uί and U2

belongs to one of the ergodic components. Furthermore in the proof of Theorem 1
it was shown that the set of points y e U^x^ that has a LUM W[u\y) which is
shorter than δ can be divided into two subsets with the following properties. The
measure of the first one equals δφ{δ\ where φ(δ)-+O as δ-^0 and the second
belongs to a ε<5-neighborhood of the manifold of discontinuity of the transforma-
tion 7ΐ~W), where F(δ)^ooLa.s <5->0. Taking a sufficiently small neighborhood
^i(*i) w e c a n choose ε arbitrarily small.

Without any loss of generality we may suppose that fc^O. For billiards under
consideration the curves of discontinuity of the transformations If1 and Γ*2

intersect transversally if sgnkί = — sgnfe2 as was mentioned already in the previous
section. Hence Σk intersects trans versally in l/^xj all manifolds T[(VOKJSO), where
0<5^n. Therefore we can take a function F(δ) that tends to infinity as <5->0 so
slowly that the measure of the intersection of a ̂ -neighborhood of the curve Σk and
a ^-neighborhood of the manifolds of discontinuity of T1~

F(^) equals δφ6(δ), where
φ6(δ)-+O as (5->0. So if δ is sufficiently small there is a set of positive measure that
consists of LUMs with one endpoint belonging to Uί and the other one belonging
to U2.

2 But this means that U1uU2 = U1(xί) belongs modO to one ergodic
component and Theorem Γ is proven.

1 If Λ^ G Vo then these LSMs consist of two smooth components
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3. Ergodicity of a Class of Billiards
with Focusing Components of the Boundary

In this section we shall apply Theorem 1 to the proof of ergodicity of one concrete
class of billiards. It was used to show ergodicity of semidispersing billiards in
[SC, KSS1]. Our aim is the investigation of billiards in domains that have
boundaries with at least one focusing component. We do not deal here with the
most general case but instead consider a class of billiards for which verification of
the conditions of Theorem 1 is rather visual. As usual to prove ergodicity one has
to show that the set of points satisfying conditions of Theorem 1 or Γ has measure
one and is arcwise connected.

Let Q be a domain in the Euclidean plane or on a two-dimensional torus with
the Euclidean metric. We suppose that the boundary dQ consists of a finite number
of smooth (of class C3) components that have curvature of constant sign or equal
to zero. Besides assume that the following conditions are fulfilled:

(i) The boundary dQ contains at least one focusing component,
(ii) Every focusing component ΓFCdQ has constant curvature, i.e. it is an arc of

some circle OΓF. Besides the set OΓF\ΓF is nonempty and it and the interior of OΓF

both belong to the interior of Q.
(iii) Dispersing components of the boundary dQ intersect each other and neutral
components of dQ transversally.
(iv) The neutral part of the boundary δQ° consists of not more than two regular
components if β c R 2 and not more than one if β c T 2 . This condition means in
particular that μ1(J(+) = μ1(Jί~) = 0.

The conditions (iHiϋ) w e r e introduced in [Bl]. Examples of domains
satisfying them can be found in [B1-B3]. It is worthwhile to mention that these
domains could have no neutral components in the boundary as well.

We have to stress that none of the conditions (i)-(iv) *s necessary for ergodicity
of the corresponding billiard. In particular focusing components of the boundary
could have a nonconstant but slowly varying curvature [B4]. One can find in the
papers [W, M] some conditions on focusing components of dQ when the
corresponding billiards can have ergodic components of positive measure under
some additional restrictions on the form of Q. Apparently (see [KMS, BKM]) the
last condition (iv) is not needed. But this result of [KMS] is in the sense of category
and cannot be applied directly to concrete polygons.

Theorem 2. A billiard in a domain Q that belongs to R 2 or to a torus TΓ2 with
Euclidean metric and that satisfies conditions (ϊ)-(iv) is ergodic.

Proof. We shall show that the set Mί CMX consisting of all points satisfying the
conditions of Theorem 1 or of Theorem Γ is arcwise connected and μ1(M1) = l.
Therefore any two points x, y e Mγ one can join by a path that belongs to Mv Due
to its compactness this path could be covered by a finite number of neighborhoods
such that according to Theorem 1 (or to Theorem Γ) every one of them belongs
modO to one ergodic component of the dynamic system generated by the
automorphism Tx. Hence the union of these neighborhoods belongs modO to one
ergodic component. Therefore the set Mx belongs modO to one ergodic
component. In view of the equality μ1(M1) = 1 we get the ergodicity of Tλ.
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Let m_(x)=min{m:π(Tfmx)eδβ + uδβ~}, m+(x)=min {m:n(T?x)edQ+

m>0 m>0

udβ~}. lϊxeMf

1\^~(xeMf

1\^g+) then m_(x)<oo (m+(x)<oo). In view of (iv)
there exists m0 such that m_(x)<m0, m+(x)<m0 for any xeMl9 if neutral
components of dQ are nonparallel. Anyway Mγ\Jί is arcwise connected.

We take an arbitrary point xoeπ~ι(ΓF)<Zπ~1(dQ~) and denote by p±(x0) a
minimal positive integer such that π(T[+(Xo)x0)φΓF and correspondingly
π(Γfp-(*o)x0)φΓF. Consider N = {xeM\ :π(x)edQ~, p+(x) = oo or p_(x) = oo}. It
is clear that N is the union of all periodic trajectories of a billiard that have
reflections with one and the same focusing component of the boundary. Such
trajectories exist if the focusing component ΓF under consideration is larger than a
semicircle.

Recall that in coordinates (r, φ) the phase space Mx of the billiard is a cylinder
or a union of a finite number of cylinders.

Lemma 13. The subset N consists of a finite number of segments of horizontal
curves that have form {φ = const} inMv Besides the complement Mι\N is arcwise
connected.

Proof It follows from (ii) that only segments {φ = const} belong to JV which
corresponds to a family of periodic trajectories of our billiard that have reflections
with one and the same focusing component of dQ.

Since dQ + ΓF and due to (ii) the set MX\N is arcwise connected.
Let the divergent beam of trajectories have a series of consecutive reflections

from the dispersing part of the boundary. Then to such a series corresponds a
segment of a continued fraction (7) with positive elements. It is known that if a
continued fraction with positive elements is convergent then the sequences of
convergents with odd and with even indices tend to the same limit from above and
from below correspondingly. This property allows one to construct families of
invariant cones for Sinai billiards [SI].

For billiards with focussing components the situation is more delicate. In this
case the odd elements of the continued fraction (7) have the same sign and the even
elements have the opposite sign. It was shown in [Bl, B3] that for the billiards
under consideration the sequence of all convergents of (7) is a monotonic one. The
crucial role for these billiards is played by the conditions of defocussing G4-G5.
We shall discuss now the main property that makes it possible to construct families
of invariant cones for the billiards under consideration.

Suppose that an infinitesimal divergent beam of trajectories is incident on the
focusing component ΓF C dQ with curvature fe(0) and suffers a series of n subsequent
reflections from ΓF. Denote by τ the interval of time between any two consecutive
reflections from this series, and by φ the angle of incidence that is constant for such
series.

The following lemma was proved in [B1] (as Assertion 1). We shall denote by
K^ the curvature of a beam of trajectories at the moment just before a reflection
from the boundary dQ.

Lemma 14. Let the curvature κ(^ of a divergent infinitesimal beam of trajectories
2

that is incident on ΓF satisfy the inequality 0 < κ(^ < -. Then a corresponding series
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of consecutive reflections from ΓF of this beam satisfies the following conditions:

(Fl) At a moment just after any reflection from ΓF the considered beam is convergent

and its curvature κ(+] at this moment satisfies the inequality κ(+] < — 2/τ, where

(F2) For any k,ίSk^n—ί,the beam under consideration goes through a conjugate
point and is incident on ΓF as a divergent one, i.e. /cί^O.
(F3) IK ^ / C W

Lemma 14 shows that the class of billiards under consideration is similar to
Sinai billiards. Indeed it says that between any two consecutive reflections from
one and the same focusing components of the boundary each expanding beam
increases its ̂ -length. In Sinai billiards this property holds with respect to the flow
{S*} as well but in our billiards it is valid with respect to {Tn} only.

Thus we can use the following ideas to construct families of invariant cones in
this case. From (i)-(iv) a n d Lemma 14 we have that if an infinitesimal beam of
trajectories was plane (neutral) before the first reflection from 3Q+udQ~ then it
would be divergent before each of its consecutive reflections from the same
component of dQ. Further, after each reflection from dQ + udQ° (dQ~) it would be
divergent (convergent). In addition if the reflection takes place in dQ " then its path
up to the conjugate point is less than half of the total path up to the next reflection
from dQ.

The families of invariant cones are given via the following relations for billiards

satisfying (i)-(iv):

(αl) π(x)edQ+,π(Tί-
m-{x)x)edQ+.

(o2) π(

(α3) π(x)edQ(0\π{Tί-
m-(x)x)edQ+.

1+ Σ

«τr"χ)
m-(x)

k=l

(α4) π(x)edQm,π{TCmAx)x)edQ-.

*m—w») <dA<_
== dr =Σ ^

k=l k=ί
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We define contracting cones K(s)(x) in the following way:

(βl) π(x)e3<2+

Σ
k=ί

(β2) π(x)edQ+,π(TΓix)x)εdQ-.

Σ τ(7fx)
k=l

Σ *(7?x) *" 1+K (

2

+ ) (TΓ + W x) m + Σ τ(ϊf*)

(β4) «(.

fc=l k = l

Making use of (1-4), (3'), (4') it is easy to check (see also [Bl]) that the
constructed systems of cones both satisfy the condition Gl.

Furthermore according to the definition, the set Ro consists of smooth

components that are given by the equations - r - = 0 and -^- = oo. By direct

calculation using (1), (2), (4), (4') (see Lemma 3 in [Bl] or Lemma 3 in [B3] for
details) one can show that each smooth component of the set TiR0(T{~ 1R0) is an
expanding (contracting) curve. Hence G2 follows in view of the invariance of the
constructed systems of cones.

The property of hyperbolicity G3 was proved for the class of billiards under
consideration in [Bl] (see also [W]).

It follows from (ii) and from Lemma 14 that both the properties of defocussing
(G4) and of strong defocussing (G5) are fulfilled for our class of billiards. So
according to Proposition 3 the constructed cones are perfect ones.

The property G6 for these billiards was proven in [B1] (Lemmas 6-8, see also
Sect. 2, 3in[B3]).

One has to mention that our cones are constructed at all points of MX\(N
where T^m~{x)x (T1

m+(x)x) is defined.
We check now condition A. It is clear that both the sets RxnN and R_x<

contain at most a finite number of points. Hence in view of (ϊ)-(iv), (αlHα4), and
(βlHβ4) A is fullfϊlled for all points XER1{XER^1) such that a positive (negative)
semitrajectory of x does not touch the boundary, does not hit singular points of dQ
and does not reflect solely from the neutral part of dQ. Denote the set that consists
of all such points by F.
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Recall (see Sect. 1) that sets T*S0 and T*V0 consist of expanding (contracting)
curves if k > 0 (k < 0). Further, Vo consists of vertical segments r = fi,i = l,...,L, and

oo oo

So consists of horizontal segments φ = ± π/2. Every set (J T* Vo and |J Γ*S0
fc= - c o k = - o o

contain no more than a countable number of corresponding curves and segments.
Therefore the set F has full measure in Rt (R-ι) with respect to the measure
induced in this set by μ.

Furthermore the set that consists of all points of intersection of at least two
/ oo oo \

regular components of the set (J T*Sou (J T^V0 I has codimension two.
\fc=-oo k=-oo /

Hence its complement is arcwise connected.
Therefore for billiards that satisfy (i)-{iv)a^ the conditions of Theorems 1 and

Γ are fulfilled for an arcwise connected subset Si1cMl9 where μ1(M1) = l.
Thus the transformation Ti and hence the flow {T*} also are ergodic. It follows

from the general theory of billiards and of hyperbolic dynamic systems with
singularities (see [KS], [GO]) that billiards of the class under consideration are
Bernoullian dynamical systems as well.

4. Concluding Remarks

As was mentioned in the introduction the main theorem of the theory of billiards
with hyperbolic behavior was first formulated and proved by Sinai in [SI]. He
suggested also both methods existing now to prove it; they will be referred to in the
following as the old (see [SI, BS]) and the new (see [S2, S3, SC, KSS1, KSS2])
method.

The formulation of this theorem did not change essentially passing from the
old method of proof of the new one. In both cases it states that, for a generic point
x of the phase space of billiards belonging to some peculiar class of billiards with
hyperbolic behavior, there exists a neighborhood U(x) that belongs modO to one
ergodic component. The crucial element of the proof is to show that if U(x) is
sufficiently small and if a parallelogram G is contained in U(x) then the set
consisting of all points yeG such that the LUM W[u\y) and the LSM W[a){y)
intersect both sides of G with the same monotonicity as W[s\y) and W[u\y)
respectively has close to 1 (conditional) measure in G. So the idea of the main
theorem is to demonstrate that in the phase space of billiards from the class
under consideration the process of expansion of expanding curves generated by
hyperbolicity is more effective than the process of their fractioning caused by
hitting of singularities and tangency with the boundary.

The old method of proof of the main theorem deals with the detailed
investigation of the fine structure of the manifolds of singularity of Tx and of their
neighborhoods. The advantage of the new method is that it deals with more
general properties of these neighborhoods. It is worthwhile to mention that the old
method allows one to make quite visible the analogy between structures of
singular manifolds in Sinai billiards and in billiards with focusing components of
the boundary and hyperbolic behavior.

The new method of proof of the main theorem is much simpler than the old one.
[Nevertheless one has to mention that the assertion of the main theorem in its old
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version is stronger (at least formally) than in the new one.] In forthcoming papers
we shall demonstrate that it could be applied to the proof of ergodicity of more
general classes of billiards, in particular many-dimensional ones.

Acknowledgements. I am very indebted to Ya. G. Sinai and Ya. B. Pesin for useful discussions. I
want to express my sincere gratitude to N. I. Chernov, who had read the whole manuscript and
made many important suggestions and useful remarks. I also want to thank G. Bolz and T. Krϋger
for their help in preparing the manuscript.

References

[BKM] Boldrighini, C, Keane, M, Marchetti, F.: Billiards in polygons. Ann. Probab. 6,532-540
(1978)

[Bl] Bunimovich, L.A.: On billiards closed to dispersing. Matem. Sbornik 95, 49-73 (1974)
[B 2] Bunimovich, L.A.: On ergodic properties of some billiards. Funk. Anal. Appls. 8, 73-74

(1974)
[B 3] Bunimovich, L. A.: On the ergodic properties of nowhere dispersing billiards. Commun.

Math. Phys. 65, 295-312 (1979)
[B4] Bunimovich, L.A.: On the stochastic dynamics of rays in resonators. Radiofizika 28,

1601-1602 (1985)
[BS] Bunimovich, L. A., Sinai, Ya.G.: On the main theorem of the ergodic theory of dispersing

billiards. Mat. Sbor. 90, 415-431 (1973)
[CFS] Cornfeld, I.P., Fomin, S.V., Sinai, Ya.G.: Ergodic theory, p. 383. Moscow: Nauka 1980
[GO] Gallavotti, G., Ornstein, D.: Billiards and Bernoulli schemes. Commun. Math. Phys. 38,

83-101 (1974)
[H] Hopf, E.: Statistik der geodatischen Linien in Mannigfaltigkeiten negativer Krϋmmung.

Ber. Verch. Akad. Wiss. Leipzig 91, 261-304 (1939)
[KS] Katok, A., Strelcyn, J.-M.: Smooth maps with singularities. Lecture Notes in Mathema-

tics, Vol. 1222, pp. 283. Berlin, Heidelberg, New York: Springer 1986
[KMS] Kerckhoff, F., Masur, H., Smillie, J.: Ergodicity of billiard flows and quadratic

differentials. Ann. Math. 124, 293-311 (1986)
[KSS1] Kramli, A., Simanyi, N., Szasz, D.: Three billiard balls on the v-dimensional torus is a

K-flow, Preprint No. 38. Math. Inst. of Hung. Ac. Sci., 1988, 40pp
[KSS2] Kramli, A., Simanyi, N., Szasz, D.: "Transversal" fundamental theorem for semi-

dispersing billiards. Commun. Math. Phys. (in press)
[M] Markarian, R.: Billiards with Pesin region of measure one. Commun. Math. Phys. 118,

87-97 (1988)
[S1] Sinai, Ya.G.: Dynamical systems with elastic reflections. Sov. Math. Surv. 5, 141-192

(1970)
[S2] Sinai, Ya.G.: Ergodic properties of the Lorentz gas. Funk. Anal. Appl. 13,46-59 (1979)
[S3] Sinai, Ya.G.: Development of Krylov ideas. An addendum to the book: N.S. Krylov.

Works on the foundation of statistical physics, pp. 239-281. Princeton, NJ: Princeton
University Press 1979

[SC] Sinai, Ya.G., Chernov, N.I.: Ergodic properties of some systems of two-dimensional
disks and of three-dimensional balls. Sov. Math. Surv. 42, 153-174 (1987)

[W] Wojtkowski, M.: Principles for the design of billiards with nonvanishing Lyapunov
exponents. Commun. Math. Phys. 105, 391-414 (1986)

Communicated by Ya. G. Sinai

Received November 10, 1989






