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Abstract. We calculate determinants of second order partial differential
operators defined on Riemann surfaces of genus greater than one using a
relation between Selberg's zeta function and functional determinants. In
addition, we perform a calculation of these determinants directly using
Selberg's trace formula, and compare our results with previous computations
which followed the latter route.

1. Introduction

Since Polyakov [1] introduced his geometric, covariant approach to string
perturbation theory, the question of computing functional determinants of
Laplace-like differential operators on compact Riemann surfaces has gained some
attention. As it is well known in string perturbation theory (see e.g. [2,4-6,10,15]),
the functional integral representing the string partition function may be reduced to
a finite dimensional integral over moduli (or super-moduli) space, where the
integrand can be expressed in terms of some of the determinants considered here.

Several authors [2-9] have evaluated the principal dependence of these
determinants on Selberg's zeta function for the most interesting case of surfaces of
genus greater than one. However, to our knowledge only DΉoker and Phong
[3,4] completed the computations in determining the full answer for operators
acting on tensor and spinor-tensor fields of arbitrary weight. In the following we
present an alternative and more straightforward calculation of those determi-
nants. The commutation relations for the relevant first order differential operators
allow us to derive the spectra of the Laplace-like operators of arbitrary weight
recursively from those of lowest weight. This gives us the opportunity of setting up
a closed formula for the determinants of all those operators and for all genera. For
the case of constant-curvature surfaces of genus greater than one a product
representation of Selberg's zeta function involving determinant functions was
obtained in [7-9]. This enables us to derive explicit expressions for the desired
determinants, including all constants. Alternatively, we perform a direct calcula-
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tion using a trace formula for automorphic forms, following the suggestion of one
of our referees. It turns out that our final expressions are in disagreement with
those of DΉoker and Phong obtained in [3,4].

Our paper is organized as follows: First we review some basic facts on
hyperbolic geometry, Laplace-like operators, determinants and zeta functions. We
then develop the necessary tools for computing the determinants via the first
method. After having evaluated them this way, we perform the trace formula
calculation and then compare our result with that of DΉoker and Phong [3,4]
and comment on their computation.

2. Hyperbolic Geometry

We will mainly adhere to the notations and conventions of [3,4, 7] and restate at
first the basic facts of hyperbolic geometry:

On a Riemann surface M with line element ds2 = gaβdxadxβ, locally isothermal
coordinates may be introduced, so that gaβ = e2φδaβ. As M admits a complex
structure, one may change to complex coordinates z = xί + ix2 and z = xί — ix2,
implying ds2 = 2gz-zdzdz; g-z-z = 0 = gzz, gz-z = (g"y^=\e2«.

According to the uniformization theorem of Klein and Poincare any compact
Riemann surface M is conformally equivalent to some constant-curvature surface
C/Γ, where C is the universal covering of M and Γ is some lattice group,
isomorphic to the first homotopy group of M. We will be concerned with the case
of surfaces of genus greater than one, where C is the Poincare upper-half-plane

, y>0}

endowed with the line element ds2=y~2dzdz (hence gzz=\y~2) and scalar
curvature R=— 2. Γ is then a hyperbolic, discrete subgroup of
PSL(2,R): =SL(2,R)/{±1} (also called a Fuchsian group). Since M possesses a
complex structure, traceless tensors of weight n may be represented as (see e.g.
[10]):

Tn: = {f(z)dzn I f(z)dzn =f'(z')dz'n}, n e N o .

[A prime denotes quantities with respect to new coordinates z' = z'(z).~\

If one fixes for genus g ̂  2 one of the possible 22g spin structures on M, n will also be
allowed to take half-integer values. That means, T 1 / 2 denotes the space of spinors
on M.

Now define covariant derivative operators on M:

*.

With these one can define the invariant, second order differential operators
(henceforth called Laplace-like):

* Δ{-)2vr1v;
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This implies: 4+> = 4 " > = - 2 i ; A:^^-dag
aβ]/^dβ9 g:=det(gα/>), A being the

L yg

usual Laplace-Beltrami operator on M, here: A=y2(d2. + d2).

All the A^ are non-negative and self-adjoint, provided one introduces a scalar
product on Tn:

,: = Jd2;
M

(4)

One may now define spinor-tensors the following way:
Introduce Γ c SL(2, R), - 1 e f, with f /{± 1} = Γ. Then define a character χ: f

-•{±1}, χ ( - l ) = - l . (Since there are 2g generators for f, there will be 22g

inequivalent ways of choosing χ on these generators, hence 229 possible spin
structures.)

Define the space S(2ri) of automorphic forms of weight n on M by:

S(2ny. - { ^ ( J ) }
(5)

On S(2n) a scalar product is introduced through:

/ 1 ) / 2 6S(2n):</ 1 ,/ 2 > S ( 2 n ) :=2"- 1

j ίd 2

2 J ;- 2 /*(z)/ 2 (z). (6)
jί

One is now led to define self-adjoint second order differential operators acting on
spinor-tensor fields:

D2n: = - A + 2inydx = - y2(d2

x + δ2) + 2mydx. (7)

A short calculation shows that D2n + n(n+ί) and Δ^ are conjugate under the
following isometry:

(8)
f{z)d^ff{z).

I~ι can thus be used to define Tn for n being half-integer.
As [_D2n + n(n ± \)~]ynf{z) = ynAi

n

±)f(z% one is left with the following commuting
diagram:

D 2 M 1 \ (

rrifi

3. Determinants, Zeta Functions, and Heat Kernels

The operators A^ (now denoted by A) are non-negative and self-adjoint on a
compact manifold, thus possess a discrete spectrum with a complete set of
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eigenvectors. Denote by 0=λ0Sλ1^λ2^..., λjSao the eigenvalues of A. One
then uses the zeta function of Minakshisundaram and Pleijel [11] (MP-zeta
function) to regularize the functional determinant of A:

ζA(s):=Ύτ'A~s= I λ;s, Res>l . (9)

A prime means the omission of zero-modes of A; the convergence for Res>l
follows from λn = O(n\ n->oo, see below.

Then:

(10)

The trace of the heat kernel of A is:
00

ΘA(t):=Ίre~tA= £ e~λnt, ί > 0 . (11)

This gives:

Res>l ,

(12)
d0: = dim ker.4 = number of zero-modes of A.

For the operators A considered here, the heat kernels have the following small-ί

asymptotics (see below): ΘA(ή=—1-0(1). Therefore the leading term of the

asymptotic eigenvalue distribution of A is given by WeyΓs law:
00 dN _λt

0 dλ « « —
(13)

implying λn~n/a, n->oo .

It is now convenient to define the determinant function @A(z) as a Weierstrass
product over its non-vanishing zeros, which converges for all z e C due to WeyΓs
law:

oo f/ z \ _O

(14)

γA: =

In [7-9] these functions are related to Selberg's zeta function Zv(s) for — A and Dv

These formulae will be used to compute the determinants of all Δ{*\ so we quote
them here. For -Δ one has1 [7-9] (note: do = l):

1 Note the slight inconsistency in our notation, since we write <®Δ instead of Q)-Δ
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Here ζ(s) denotes Riemann's zeta function. For Dx one derives [7] (note: do = 0):

*}2(,- l ) ( 1 6 )

with Barnes' double gamma function (y = Euler's constant):

G(̂  + l ) :=(2π) 2 ^" 2 ~ l 2 " z 2 Π ί( 1 + - ) V Z + ^

and Selberg's zeta function:

""\, Res>l, v = 0,l. (18)

{y}p runs over all primitive conjugacy classes in Γ (if v=0) or Γ (if v = 1),
l(y) denotes the length of the corresponding closed geodesic.

Using Selberg's trace formula (see e.g. [12, Vol. I, p. 448] for m = 0) for the
operator — A and taking the ansatz-function ft(p) = e~ ( p 2 + 1 / 4 ) ί, one can derive [9]
the following small-ί asymptotics for ΘΔ{t)2:

Σ Ktn + O(tN) (19)

, for n ^ l ,

| y ^ } (20)
B2k are the Bernoulli numbers.

Doing the same for D1 (see e.g. [12, Vol. I, p. 448] for m = 1), using the same h(p),
one obtains a similar result (the calculation is performed in Appendix A):

(22)

4. Calculation of the Determinants

Our goal is to evaluate the functional determinant of cA[+\ ceR+, neN or
n e N 0 + i since these are the relevant quantities in string theory. (We leave the
value of the constant c open. It then can be chosen appropriately, according to the
adopted normalizations of the operators, which are not unique in the physics
literature.) To perform the calculations we determine the spectra of these operators

2 Again we write ΘΔ instead of Θ-Δ



586 J. Bolte and F. Steiner

recursively via commutation relations. For an arbitrary (spinor-) tensor
f(z)dzneTn one easily finds:

= -nRf{z)dzn. (23)

Note: This formula is valid for Riemann surfaces of any genus, not necessarily
restricted to the hyperbolic case g ̂  2. (R = 2 for g = 0, R = 0 for g = 1 and R = - 2

Denote the eigenvalues of A{

n

+) by λ^ and the respective eigenvectors by
f{k\z)dz. Then using (23) one obtains:

= {- (n + ί)R + 4Π)} ίVzψ
k\z)-]dzn+1. (24)

Thus [Fz

π/(k)(z)]tίzπ+1 is an eigenvector of 4Vi with eigenvalue 4 Λ + 1 ) = A^
—(n +1)1*. Hence the eigenvalues Λf0 are determined by those of "lowest weight"
n=0 or n = ^ respectively:

n e N o : 4Π) = 4 0 ) - ± Λ φ +1), (25)

n E N 0 + i : 4 w ) = 4 1 / 2 ) - ^ ( n 2 + n - | ) , (26)

4 0 ) being the eigenvalues of A{

o

+)=-A and 4 1 / 2 ) those of Δγ,l

In the case of genus g^2 these eigenvalues correspond to the continuous
spectrum of the operator D2n acting on the whole of Jtf. In addition, D2n has a
discrete spectrum.3 These eigenvalues can be understood physically as "Landau-
levels," when one imagines D2n as a Hamiltonian to describe a free particle in a
magnetic field on f̂. The discrete spectrum was determined e.g. in [16] for the
Hamiltonian

Hn=-A-2inydx + n2 = D_2n + n2 (27)

2 ! 4 2 f (28)

According to Fay [14] the spectrum of D2n depends only on |n|, thus for n^O one
can replace D-2n-+D2n. This leads to the identification

which gives the discrete spectrum of A{

n

+) as

τ<£> = n 2 + i - ( n - m - i ) 2 + n = 2nm + 2 n - m 2 - m , 0 ^ m < n - ^ . (29)

The eigenvalues in the discrete spectrum of A(

n

+) remain unchanged when
turning to the compact surface M = J^/Γ. So the spectrum of A(

n

+) on M splits into
the "discrete" part {τ^} and the "continuous" part {λ^}, which is of course also
discrete on M, but arises from the continuous spectrum on ̂ f. According to this
splitting of the spectrum the determinants fall into a product of two contributions,

det'M<+>) = det'(c4+>)dis det'M<+))con (30)

3 We would like to thank K. Oshima for pointing out that this part of the spectrum also
contributes to the determinants and for drawing our attention to [17]
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A prime on det indicates that the zero-modes of the operator should be omitted.
For g = 0,1 there is no additional "discrete" part of the spectrum and thus

In a first step the "continuous" part will be treated. There the above recursion
relations allow us to present general formulae for this part of the desired
determinants (g ̂  0):

n e N o : det'M<+>)con = det' {c( - A -\Rn{n +1))}, (31)

n 6 N o + i : det'(c4+ \On = det' {c(A[+} -\R{n2 + n -f))}. (32)

We now again restrict ourselves to the case of hyperbolic surfaces (g ̂  2,
R= — 2). There we use the conjugacy of Jj,+> and £)

(i)
= c ζ " ( 0 ) d e t ( - J + φ + l))

(33)

Note that there are no zero-modes for «^1. Here we introduced:

Cπ(s):=Tr(-J+φ4-l))-s = Jo(4"))- s. (34)

(ii) n e No + i : d e t M ^ ^ = det(c(Dί + φ +1)))

(35)

(36)

As explicit formulae for Q)Δ and ^ D l are already known [(15) and (16)], the
remaining task is to compute ζπ(0) and ζn(0). This can be done using the small-ί
asymptotics of the respective heat kernels. Let λk either be an eigenvalue of — A or
Dγ and Θ(t) be either heat kernel. Define

k = 0

If ζn(s) now either denotes the above ζn(s) or ζn(s), then:

N i i s " ^ " w ( n + 1 ) i 0 ( i ) , Re5>l. (37)
o

Note: Θπ(ί) = O(^-Λ(w+1)ί), ί->oo.
Formulae (20) and (22) show the small-ί asymptotics of Θ(ή: Θ(t)

= (g- 1 ) -~b + O(t) L with fc=| for A=-A and b = ^ for i4 = D!. Therefore:

(38)
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Now we can analytically continue ζn(s) to 5 = 0 :

{ } (39)

The second and third integrals are finite in the limit s-»0, thus their contribution to

ζn(0) vanishes due to the factor -=r-r.
Γ(s)

Thus we obtain:
U0)=-(g-l){fc + n(n + l)}, b=±ίor-Δ, b^ϊorD,. (40)

Inserting (15), (16), and (40) into (33) and (35) yields the final expressions for the
desired determinants:

(i) πeN:

(n + l))exp{-(g-1) B+n(n +1)] lnc}

Using G(s+ί)=G(s)Γ{s) and G(l)=l gives:

ln[G(n+l)G(n + 2)]=lnΓ(π+l)+2 f lnΓ(fc)
k = 3

(empty sums are understood to be ignored).

Thus:

j 3 | (41)

(ii)

ί,+))con = ̂ i ) l(n(« + l))exp{ -(g-1) fe+n(«+1)] lnc}

[«]+i
lnG(n+f)=lnG([n] + 2)= X lnΓ(k); \n] = n-\: integer part of n.

(c = 3
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This yields:

- 4 ^ lnΓ(k)J|. (42)

As a general formula for both n integer and half-integer one has:

4 £ lnΓ(fc)
3^fc<n+l

(43)

Now we study the contribution coming from the "discrete" part of the
spectrum, which will be treated for both n integer and half-integer together. In [16]
the normalized eigenfunctions of Δ{

n

+) for the "discrete" spectrum on 3tf are given
to be

(44)

where the Ilm are the usual generalized Laguerre-polynomials. Thus the "discrete
part" of the heat kernel on Jf is

K«\z,z', t) = Σ ί dkψm,k(z)e-^+)<ψmtk(z')- (45)
0 g < l / 2 0

ί
0

The diagonal part reads

(2n-2m-l)m! c t ( 2 w O T + 2 w-m2-m )
7 ή

47Γ 05Ξm<n-l/2

x f ™e-uu<2n-2m-
o u

= λ- £ (2n-2m-l)e- c ί ( 2 w m + 2 w-m 2-m ), (46)
4TΓ 0^m<n-l/2

where use has been made of the integral 7.414(3) of [13],

J dxe-*x*Πn{x)Πm{x)= Γ ( α " ^ + \ > m , Reα>0.

According to DΉoker and Phong [3] only the "zero-length-term" in Selberg's
trace formula contributes to the trace of the heat kernel on M = J#P/Γ. This leads
one to the trace of the "discrete" part of the heat kernel for cA(

n

+) on M:

x/r y

= (g-l) Σ {2n-2m-l)e-ct{2nm+2n-m2-m). (47)
0 ^ l / 2
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Now the "discrete" part of the MP-zeta function is

{2n-2m-\)[c(2nm + 2n-m2-m)Ys. (48)
l/2

Therefore one gets by differentiating and letting s = 0 the "discrete" part of the
determinants

det(c A{

n

+ >)dis=exp ί(g - 1 ) £ (2n - 2m - 1 ) In [c{2nm + 2n - m2 - m)]l.
I 0^m<«-l/2 J

(49)
The main result of this paper may thus be summarized in the following formula for
the determinants of Laplace-like operators on Riemann surfaces of genus g ^ 2 :

2n + l)ln2π+4C(-l)-2(n+|)2-4

+4(n-|-[n])lnΓ(n + l)+ Σ (2n-2m-l)
0^m</i-l/2

x In [c(2nm + 2n - m2 - m)] l | , (50)

which must now be compared with the expressions (3.5) and (3.6) in [3].

5. Direct Computation via the Selberg Trace Formula

The same result may also be obtained using a trace formula for automorphic
forms, see [12, Vol. II, p. 402f.]. For simplicity we restrict ourselves to the case c = 1
in this chapter. If then ρk=±+pl are the eigenvalues of the operator D2n, the
formula reads in the case concerning us (i.e. for compact Riemann surfaces)

y(y)2nkl(y)

Σ (2n-2m-l)h(U2n-2m-ί)), (51)
l/2 \ ^ /

g(x): = i - J
In -oo

Now, h(p) = e~{p2 + ll4)t yields the trace of the heat kernel for D2n and

Θ,in+it) = e-

Therefore

l d t f e Θ j . J t ) , R e s > l . (52)
1 yS) o
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The trace formula gives three contributions to the trace of the heat kernel, denoted
by ®D2n

 = ®DL + ®(DL + ®DL according to their appearance in (51), which will now
be treated separately. The first contribution is

J dppe~p2ttanh(πp), neN

00

dp pe~ph coth(πp),

(53)

The Mellin-transform (52) then gives (Res>l)

ptanh(πp)
n e N

(54)

Now the MP-zeta functions have to be analytically continued to s = 0. This is done
in Appendix B. There we show that for neN

J ?coth(πp) + f

o |>2 + (n+i)2] s

and for

(55)

s = o ^

(56)

The second contribution from the trace formula to ΘD2n is

)2nkl(y)

which gives

Γ ( S )
Σ Σ

χ(y)2nkl(y)

(58)

where Kv(z) denotes a modified Bessel function. Therefore

^ί?ίMs)l.=o= -lnZ2 ( Π_ [ n ] )(n + l) . (59)

The third contribution can also easily be obtained,

X (2n-2m-l)exp[-ί(2nm + n - n 2 - m 2 - m ) ] , (60)
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implying

&3Λ>(s)=(g-l) Σ (2n-2m-l) [2nm+2n-m 2 -m]- s (61)

and

j-ίd3Λ)(s)L=o=-(g-l) Σ (2n-2m-l)ln(2nm+2n-m 2 -m). (62)

All three contributions together exactly reproduce our result obtained in Sect. 4.

6. Conclusions

In [3] DΉoker and Phong computed the above considered determinants as:

x exp f(g -1) Γ Σ 2(2w - 2m -1) In (2n - m)

+ (2n +1) In2π + 4ζ'( -1) - 2(n+i)2 + 4(n - [n]) ( n + M (63)

for both n integer and half-integer.

Thus our result differs from theirs. They proceeded by inserting an explicit
expression for the heat kernel of e~tDln, which they derived from a paper by Fay
[14], into Selberg's trace formula. Thus they computed a representation for the
heat kernel of A(

n

+). Performing a Mellin-transform they obtained the MP-zeta
function, which they analytically continued to s = 0. They give:

Γe(ή:=2(g-ί) Σ (2fl-2m-iy
0^m<n-l/2

p-t/4- oo he~b2/4t

l ) ί d b

Σ Σ ^y\e-^>. (64)

Note: An additional factor of two that occurred in [3] in front of the sum in /" has
been corrected in [4]. We take the corrected version for our analysis.

According to the definition (64) their Γe{t) is our θ%\n(t) + θfilJj) and their Γ{t)
is our Θ^ln(t) taken from Sect. 5. A comparison of the corresponding expressions
shows that their Γe{t) and Γ(t) are both offby a factor of \. Besides that, the power of
the character χ in Γ should be 2nk. But those are the only differences from our
result, as (for neN)

J db ^ = f dpptznh(πp)e-*2+W, (65)
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which may be seen by inserting tanh(πp)= — f db 77̂ -, and (for neN 0 +τ)
π 0 . u(b\s i n h U J

-4=— ί dbbe-^'coth (£ = f dppcoth(πp)e-ip2+ίl4)t, (66)
y4πt3/2 0 \2/ -00

which was obtained in Appendix A (69). The error in [3] thus occurs in the analytic
continuation of the MP-zeta function to s = 0.

We now would like to summarize our results as follows: In this article we have
presented a method of calculating functional determinants of Laplace-like
operators on constant-curvature surfaces of genus greater than one, which are
interesting, e.g. in string perturbation theory. This method differs from the so far
used direct trace formula calculations in that for the more involved "continuous"
part of the determinants our method does not require an explicit calculation of the
heat kernel for the operators on the upper half-plane. Rather our method relies on
simpler considerations, concerning commutation relations of first order differen-
tial operators on the surface and the spectra of the Laplace-like operators. We also
present a computation of the considered determinants that is close to the one used
in [3], mainly to be able to detect the error in the calculation done in [3]. We have
also presented the general formulae (31) and (32), that give expressions for the
determinants on arbitrary Riemann surfaces. These can also be used for the tree-
level and one-loop partition function in string perturbation theory. The well
known fact in string theory that in the one-loop case (g = 1) the ghost determinant
is in fact identical to the determinant of the Laplace operator (see e.g. [2,4]) can
easily be seen from our formula (31), since in this case JR=O:

det'(-cA)=-det'(-A). (67)
c

As for the sphere (g = 0, R = 2) the spectrum of the Laplace operator is explicitly
known, the MP-zeta function for cA(

n

+) and thus the determinant can explicitly be
computed (see e.g. [15]). Alternatively the determinant may be evaluated by
formula (31) (see [8]). Both expressions are found to coincide.

Appendix A

We want to determine the small-ί asymptotics of ΘDι(ή, see (21):
In [12, Vol. I, p. 448], one finds a version of Selberg's trace formula concerning

the operator Dv This can be used with the ansatz-function h(p) = e~ip2 + ί/4)t.
Thus(λn=p2

n+i):

ΘDί(t)= Σ h(pn)
71 = 0

=(g-l) 7°dppe-ip2+ll4)tcoth(πp)
- 0 0

1 1

 c-t/4 ^ £ ίx(y)TKy) c-
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The second contribution vanishes exponentially for ί-*0 and will henceforth be
neglected. Using (see e.g. [13, formula 4.131(4)]:

°? , _vsinαx π , an 1
\dxe x . « =—coth—
o smhx 2 2 a

as an integral representation for coth(πp) in (59) gives:

: = 2(g-1) J dppe-(p2+1wcoth(π/>)

2(σ— U e~t/4 °°
** ; -372- J dxxcothxβ" χ 2 / t . (69)
]/π ί ' o

oo 2 B
Inserting the power series: xcothx= ^ / Λ Π f ^x2fc

? |x| <π, yields the asymptotic
k=o (2/c)!expansion for ΘD l(ί):

0Dl(t)=(g-l)J

e — 1 N

Σ
n = 0

< 7 0 )

This is the expression (21).

Appendix B

In this appendix we want to derive formulae (55) and (56). To this end we define for
Res> 1 and z=#0 the functions

oo n f"QtΊ h ί τrn\

(71)

(72)

First, we treat /(z, 5) and analytically continue it to 5 = 0 by a partial integration,

^ f ^ + J/ (73)/(z,S) π f J dp J/ .
s— 1 0 cosh2(πp)

Differentiation at s = 0 gives

(74)



Determinants of Laplace-like Operators on Riemann Surfaces 595

To perform the integral we now differentiate with respect to z,

d d
(75)

An integral representation for the digamma function ψ(z+%) (see [3, p. 17],
corrected through In z->— In 2) yields the integral in (75),

(z -\ - -

therefore
A A / 1 \

(76)

This formula has to be integrated from \ to z,

d _, ,. d J\

)] (77)
Using the integral ([13], formula 6.441 (4)),

f dxlnΓ(ί +χ)= ̂ In2π
o 2 2

and the well-known result for z — nΛ-\—\ (i.e. for the operator —A\

we get

^ 0 (78)
This is the result we wanted for z=^+n, neN.

We now turn our attention to the function J(z,s). We use 2coth2x = tanhx
+ cothx in the definition (72) of J to obtain

1" 2 V ( l s^j + 2 1 " 2J(z, s) = 2 1 " 2 V ( l s^j + 2 1 " 2sI fa s). (79)

The small-ί asymptotics of ΘA(n+)(t) now determines 7(0, s) and J(0,5). According to
(40) thisis(H+i=z),

7(0,5)=-(g-l)(z 2 +^),

J(09s)=-(g-l)(z2+i).
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This may be used to obtain from (78) and (79)

- l ) 2 z 2 -2zln2π-4ζ'(-l)

(80)

At z=0 this reads, taking G(|) = e 3 / 2 ζ ( - 1 ) π- 1 / 4 2 1 / 2 4 from [8],

^ l ) . (81)

To analytically continue J{z, s)tos=0 one subtracts from the integrand in (72) the
parts being divergent at the upper limit of integration and splits the region of
integration,

(82)

Therefore

0

[-2(g-l) J dp\ pcoth{np)ln(p2+z2)-2plnp-^\. (83)

To perform this integral we differentiate with respect to z9

d d , „ At Λ

In [13] one finds the following integral representation for the digamma function
for Rez>0 (see formula 8.361 (3)):

I oo £

ψ(z)=lnz- - 2 f dt -^—
2z

Introducing coth(πp) into that integral representation and splitting the region of
integration yields

/ \— * \A P^hfrp) ™ j^pcothiπp) 1

and thus

A A
(86)
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This will now be integrated to give

^J(z,s)| s =o=^-J(0,s)| s = 0H-4(g-l) z lnΓ( l+z)- fdx lnΓ( l+x)-^- .
as as |_ o 2zJ

(87)

Again the integral 6.441 (4) from [13] appears, thus

(88)
US

which is the desired result.
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