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Abstract. The inverse scattering method is applied to the integrable nonlinear
system describing temperature correlators of the impenetrable bosons in one
space dimension. The corresponding matrix Riemann problems are constructed
for two-point as well as for multi-point correlators. Long-distance asymptotics
of two-point correlators is calculated.

1. Introduction

Impenetrable Bose gas in one space dimension representing bosons with the point-
like infinite repulsion is the simplest nontrivial integrable model. In the state of the
thermal equilibrium at temperature T > 0 the distribution of particles with momenta
k is given by the Fermi weight (1 +exp{ε(fc)/T})~1 (energy ε(k) = k2 -h, h is a
chemical potential). Our aim is to obtain the long-distance asymptotics of
equal-time temperature correlators in the model. To do this we use essentially
results of a previous paper [1], where the completely integrable system describing
temperature correlators was constructed and partial differential equations for them
were obtained. So the description of temperature correlators in the quantum model
is reduced to the investigation of the classical nonlinear integrable system. This is
done by means of the inverse scattering method in the matrix Riemann problem
formulation (see, e.g. [2]).

Let us begin with introducing notations and formulating results of paper [1]
further. The two-point correlators will be mainly considered, namely, the two-point
field correlator

- z)}τ = (V/Γ/4)B+ +(x, t, γ)Δ(x, r,y)|y = 2 / π (1.1)
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SU-191011 Leningrad USSR
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and the generating functional for density correlators

expL]ψ+(y)ψ(y)dy\) =Δ(x/29t9y) (1.2)
tθ J I T y = (l-exp{α})/π

The value of the last correlator at α = — oo(y = 1/π),

.7)1,-1/, d 3)

gives the probability that there are no particles with coordinates 0 ̂  y ^ z at the
state of the thermal equilibrium ("emptiness formation probability") and is of
special interest.

On the right-hand sides of representations (1.1)—(1.3) x and ί are the
renormalized distance and the chemical potential,

/ t = h/T9 (1.4)

and A is the Fredholm determinant,

Λ(x,ί,y) = det(l-yJf) (1.5)

of the linear integral operator Jf,

(Jff)(λ)= ] K(λ,μ)f(μ)dμ,
— 00

K(λ,μ) = lW-μ)Tι(e+(λ)e-(μ)-e-(λ)e+(μ)). (1-6)
Functions e± are

e±(λ) = yft(λ)exp{±iλx}, (1.7)

the Fermi weight 3(λ) being given as

5μ) = ( l + e x p μ 2 - ί } ) " 1 (1.8)

(the dependence of these quantities of x and t will as a rule be suppressed in
notations).

"Potential" B+ + in (1.1) is one of the potentials Blm(l = +, - m = + , - ) ,

Blm(x,t9γ) = γ ] eiλ)fm{λ)dλ,
— oo

B ί + = β + + = β _ _ ; β ί _ = β + _ = β _ + . (1.9)

Functions f± are the solutions of the linear integral equations

f±(λ)-y ] K(λ,μ)f±(μ)dμ = e±(λ). (1.10)
— oo

The logarithmic derivatives of the Fredholm determinant A can also be expressed
in terms of the potentials B. Introducing the function σ,

);σ(0,t,y) = 0, σ(x, -oo,y) = 0, (1.11)
one has

δxσ = - B+ _, d,σ = - xd,B+ _ + (1/2)(<5,B+ _) 2 - (l/2)(a,B+ + ) 2 . (1.12)
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So all the correlators are represented in terms of the solutions of system (1.10).
It was shown in [1] that the following relation for the two-component function

F(λ)(F1 =/+(A),F2 =/_(*)) are valid,

(2λdt + dλ)F(λ) = (ixσ3 - idtB+ _<τ3 - dtB++σ2)F(λ). (1.13)

This is a zero curvature representation for a nonlinear evolutionary system for
potentials B,

dxB+_=B2

++, 2xB+++dxdtB++=2B++dtB+_9 (1.14)

which results in the equation for the potential B++,

dt{B\ + ) = 1 + (l/2)dx((dxdtB+ +)/B+ Λ (1.15)

It should be mentioned that all the results (1.5)—(1.18) are valid not only for function
9(λ) defined in (1.8) but also for arbitrary Θ(λ) satisfying conditions

(2λdt + dλ)S{λ) = 0; 9\χ2_t^ + oo^09 (1.16)

this arbitrary function playing a role of a reflection coefficient in the inverse
scattering method. So all the notations and necessary results of [1] are given.

The contents of this paper are as follows. We begin with constructing in Sect. 2
the basic ingredient of the inverse scattering method, i.e. the matrix Riemann
problem. Linear equations (1.10) (which were the main object of the analysis in
[1]) appear to have the sense of simple algebraic reductions for initial data of the
special type (1.8), (1.16) of the GeFfand-Levitan-Marchenko equations. This allows
us to calculate in the next sections the long-distance asymptotics of correlators.
To do this, we use the scheme of the asymptotic analysis of solutions of nonlinear
integrable equations suggested in paper [3]. This is done for correlator (1.2) with
y < 1/π in Sect. 3. In Sect. 4, the complete asymptotic expansion for the emptiness
formation probability (y = 1/π) is constructed.

In Sect. 5, the long-distance asymptotics of the two-point field correlator (1.1)
is obtained. In the Appendix, the matrix Riemann problem for multi-point
correlators is constructed.

2. Matrix Riemann Problem for Two-Point Correlators

Consider on the complex plane λ the following matrix Riemann problem (MRP).
One has to find that the 2 x 2 matrix-valued function χ(λ) (det χ(λ) Φ 0 at any λ\
which is holomorphic for Im λ > 0 and Im λ < 0, is equal to the unit matrix / at
λ— oo,

Z(oo) = /, (2.1)

and the boundary values χ+(λ) and χ~(λ) on the real axis are related as

χ-(λ) = χ+(λ)G(λ)(lmλ = 0)9

H ± iε)(ε > 0,β->0). (2.2)
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The conjugating matrix G here is

) \
rubπγe2_(λ); l-πγe+(λ)e

functions e+(λ) = y#(I)exp { + iλx} and 9(λ) = (1 + exp {λ2 - ί})"1 are the same
as in (1.7) and (1.8).

The explicit form of the matrix G allows us to use the classical results (see e.g.
[4]) to show that this MRP is uniquely solvable at any x and t if

-1/π^g/π, (2.4)

and that the solution χ(λ) is a smooth function of parameters x, t. If condition (2.4)
is violated, the question of solvability becomes nontrivial. However, the sufficient
conditions of solvability are also fulfilled, e.g. in the case

γ = 2/π, - o o < x < + o o , ί < 0. (2.4a)

Supposing that the MRP is solvable, let us study the properties of the solution
as a function of x, t. It should be noted that at \λ\ -+co, function χ(λ) can be
expanded as

χ(Λ) = J + (¥yΛ) + (<F2/Λ2)+..., (2.5)

where functions Ψt(x9 ή do not depend on λ. Due to the symmetry properties of
matrix G,

= G*(-λ), (2.6)

one concludes that the coefficient Ψx can be written as

Ψx = ( - l/2)β+ +σ2 - (i/2)B+ _σ3, (2.7)

where B+ +, B+ _ are some real scalar functions of x, t (it will be shown later that
they are just the potentials (1.9)).

Our first aim is to show that function

= χ(λ)exp{iλxσ3} (2.8)

is a matrix solution of a linear system similar to the zero curvature represent-
ation (1.13). To this end one rewrites (2.2) as Ψ~(λ)= Ψ+(λ)G0(λ), where matrix
Go is

W+7Γ ΓTJ (2 9)

This matrix does not depend on x and has the property (2λdt + dλ)G0 = 0 due to
(1.16). Thus the corresponding logarithmic derivatives have no cuts at the real axis
and are holomorphic for any λ. From (2.5) and (2.6) one has then (using the
Liouville theorem) that for any λ

l(2λθt + dλ)Ψ~\Ψ~ι = ixσ3 - idtB+ _<τ3 ~ 3tB+ + σ 2 , (2.10)
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and matrix Ψ is indeed a matrix solution of a system similar to (1.13). The
compatibility conditions for (2.10) are, of course, just Eqs. (1.14).

In all the above considerations the explicit form (1.8) of function 8 was not
used. It was essential that it possesses properties (1.16). It means that the Riemann
problem may be used to construct solutions of Eqs. (1.14) depending on a functional
parameter. The choice (1.7) for function 9 leads to solutions B++, £ + _ which
were defined earlier in (1.9).

To prove this last statement one analyzes the system of singular integral
equations equivalent to the MRP. In the matrix form, these equations for function
χ(λ) (2.1), (2.2) are written as

The special det (/ - G(λ)) = 0 of matrix G(2.3) allows us to reduce (2.13) to two
scalar equations. Putting

= χ+(λ)E(λ); E(λ) = (l * + W V m A = 0), (2-12)

and rewriting (2.11) for χ one obtains two scalar integral equations for functions

( / = l , 2 ; e i = e + , β 2 Ξ e _ ) , (2.13)

where K(λ,μ) is just the nonsingular kernel (1.6) entering Eqs. (1.10) for functions
/± So

/-(4 (2.14)

and the reduction of the system (2.11) to system (1.10) is realized.
The remaining two equations of the system (2.11) (rewritten for χ) are

expressions of functions χn = χn (I = 1,2) in terms of χl2. Due to (2.14) they are
written as

2i - oo μ — λ

(/=l,2;/1=/+;/2=/_). (2.15)

Expanding now in (1//1) one has for Ψx in (2.5),

(ΨJn^ll f,(μ)e-(μ)dμ, (2.16)

so that functions B+ +, B+ _ in (2.7) are indeed the same as those defined in (1.9).
We conclude the discussion of the Riemann problem with the following two

remarks.

Remark 1. The equivalence of systems (1.10) and (2.11) established above allows
us to interpret (1.10) as a GLM equation for nonlinear system (1.14). In turn, this
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gives the possibility to consider the Fredholm determinant (1.5) as a τ-function
for the system. This question will be discussed in more detail in a separate paper.

Remark 2. There exists an interesting relation of the objects discussed above to
the spectral theory of the Dirac operator entering the L — M pair (1.13). To
demonstrate this, let us introduce scalar functions oc(λ), β(λ) as (we suppose that
(2.4) is valid)

(2.17)
β{λ)) Γ[ 2πi-Λ*μ-λ

Functions gay gβ (depending also on ί, γ) are

gΛ(λ) = s0(λ)/s1(λ); gβ(λ) = s0(λ)/s_1(λ) (2.18)

with functions s0, sί9 s_x given as

sp(λ) = 1 - pπy + exp {μ2 - t}(p = 0,1, - 1). (2.19)

It is to be noted that functions α(A), β(λ) are holomorphic for Im λ > 0 and Im λ < 0,
α(oo) = β(λ) = 1, and for real λ they satisfy relation

(2.20)

being solutions of the corresponding scalar Riemann problems. They allow us to
transform matrix G(2.3) to a matrix with diagonal elements equal to 1. Going to
the matrix-valued function Φ,

0 a(λ)

one changes (2.2) to

φ-(λ)=Φ+(λ)Gφ(λ),

b*(λ)exp{2iλx}\

)

with

b(λ)=-πγβ-(λ)9{λ)/oc+(λ) (2.23)

obvious symmetry properties,

β*(λ*)=l/β(λ) = β{-λ) (2.24)

are taken into account). Comparing now matrix Gφ with the conjugating matrix
for the Dirac operator L (see, e.g. [2]),

σ + ( . ) , (2.25)
dx \u* 0/

one comes to the conclusion that the finding function B++(x,ί) is equivalent to
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the reconstructing potential u for a given coefficient b(λ) (u = iB+ +). The fact that
the potential appears to be pure imaginary is connected to properties (2.24).

3. Generating Functional for Density Correlators (y < \/π)

Here the asymptotics at x-» oo of correlator (1.2) for — oo < α < 0 is calculated
(the case α = — oo is considered in the next section). The correlator we are interested
in now is the Fredholm determinant Δ (1.5); due to (1.11) its logarithm σ can be
expressed as

σ=-]B+4ξ,t,γ)dξ. (3.1)
o

The partial differential equation (1.15) for B+ + (remember that B\ + = dxB+ _) can
be used to reproduce the complete asymptotic expansion, but one has to obtain
first terms of the asymptotics before doing this.

The results obtained in Sect. 2 reduce the problem to calculating the asymptotics
of matrix elements χ n , χl2 for the matrix χ (2.2). It is convenient to go to matrix
Φ (2.2). Potentials B can be extracted from the (l//l)-expansion (2.5), (2.7) of χ(λ),
or, equivalently, Φ(λ):

B+_=2i\imλ{Φγι{λ)-β{λ)\
λ-00

B++ = -2ilimλΦ12(λ), (3.2)

(functions oc(λ) and β(λ) which are often used below are defined in (2.17)). To find
the asymptotics of Φ one begins with the system of integral equations (2.11) which
is readily rewritten for functions as

2 i Λ ( μ A i O ) α - ( μ ) S ( μ )

where functions sp(p = 0, ± 1) are given by (2.19). For functions Φ the following
estimates are valid:

(3.5)

(3.6)

where Im λ ̂  0, t ̂  ί0, x ̂  x 0 and constants C, D depend on x0, t0 only (for γ
fixed). These estimates can be obtained directly from (3.3) and (3.4) (one can also
make use of Remark 2 of Sect. 2 to interpret Φik as the Jost solutions for the Dirac
operator L which permits to use standard facts .[2] of the scattering theory for
this operator).

Let us now take into account that function Φ^^cciμ^βiμ) is analytical in the
upper half-plane and also satisfies estimate (3.5) (remember that Φn(oo) = α(oo) =
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/?(oo) = 1). Hence the integration contour in (3.4) can be shifted into the upper
half-plane and the integral can be represented as a sum of residues at first-order
poles at points λk, — λ* (which are zeros of function sx(λ) in the upper half-plane):

*κ = [In (1 - ny) +1 + (2k + l)ιπ]1 / 2; Im λκ > 0, Re λκ > 0. (3.7)

Thus the following representation is obtained for function Φ1 2:

ΦU^nΊΦUW)*M2iλx]+m, (3.8)

where S(λ) is given as a series,

S(λ)= ΣWλκ,λ) + S(-λ*,λ)) (3.9)
fc = 0

and

π y Φ l l ( W ^ ) e X p { 2 ^ x } (3.10)

series (3.9) is uniformly convergent for λeU, x ̂  x 0 and t t g ί ̂  ί0 (where tx is an
arbitrary but finite constant). This series is also asymptotical at x -• + oo uniformly
for λeU, tt ^ ί ̂  ί0 (from now on it is supposed that condition (2.4) is fulfilled).

Putting expression (3.8) into (3.3) one comes to the representation for function

ΦUλ)=l^ 1 ΦΐΛμ)dμ 1 ? Riμ)dμ n i nΦUλ)l 1 ?
1 1 w 2i ΛSi^S.^AίK/i-A-iO) 2πi Jx(μ-λ-i0

with

Equation (3.11) may be regarded as a singular integral equation for the
inhomogeneous scalar RP:

where due to (2.20), function g(λ) is given as

g(λ) = *-(λ)β-(λ)/oi+(λ)β+(λ),

which solves the problem. Using the fact that Φlί(oo)= 1, one has

or in a more explicit form (see (3.12), (3.9), (3.10)),

A(-λ*,λ)Φlι(-λ*)2 (ImA^O), (3.14)
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where

Λ(λκ,λ)= π \ g ^

-λ)

This representation allows us, in particular, to obtain the first term of the
asymptotics of ΦίX at x-• + oo (see also Remark 1 in this section). Due to the
possibility of shifting the integration contour in the integral in (3.15) into the lower
half-plane and to the estimate (3.5), these integrals can be estimated by
C|exp {2ίλox}/(λ + λo)\. Hence one has

Φn(λ) = (x(λ)β(λ) + Θ(exp{-4roxsmφo}), ( x ^ + oo), (3.16)

where r0 = \λo\,φo = arg20 (see (3.7)).
From (3.4) one also obtains

Λ /n y 1 (α*(μ))2exp{2iμx}</μ
Ll - oo

+ ^(exp{-4r0xsinφ0}) (x-* + oo). (3.17)

These estimates are uniform for Im λ ^ 0, ίx g ί ̂  ί0. Expanding in (1/i) (see (3.2))
one gets for potentials J5,

ππ - oo l—πγ + exp {A2 — ί}

+ 0(exp{-4roxsin<po}) ( x ^ + oo), (3.18)

- (α+(A))2exp{2ax}

^ - ^ ( l - π y + expμ 2 -*})

+ (P(exp{-4roxsinφo}) (x-^ + oo) (3.19)

(we substituted functions sp (2.19) in the explicit form). Shifting the integration
contour in the last formula to the upper half-plane one obtains a more exact
estimate for £+ + ,

rκ

• sin {2xrκ cos φk + 2 arg a(Ax) - φ x} + 0(exp {- 4xr0 sin φ0}), (3.20)

where rκ = \λκlφκ = aτgλκ and integer K = K(t,y) has to be defined from
conditions

(rκ sin φ x = Im λκ < 2 Im λ0 = 2r0 sin φ0

\ rκ+1sinφκ + ι>2rosmφo

It should be noted that, using Eq. (1.14), dxB+_ = £ + + , one can obtain the
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next terms of the asymptotics of function B+ _ by means of (3.20):

B+_=a-&2(8r0)~ι exp {-4xr 0 sinφ 0 }

•[(sin φoy
ι + sin {4xr0 cos <p0 + 20O - φ 0}]

+ $(exp {—4xr0 sΰλ φo}\ x -^ + co, (3.22)
where

1 ^ . . t l + e x p { / l 2 - ί }

7T -oo 1 - π y + exp{λ 2 -r}

- Φ o - (3-23)

So we have obtained the first terms of the asymptotics of potentials. Apply
now these results to get the asymptotics of function σ *= In Δ, which is just the
logarithm of correlator (1.2). Using representation (3.1) and Eqs. (1.12), (3.20) and
(3.22), one obtains:

σ=-a(t)x + - ]

• [(sin φ0)" 2 + cos {4xr0 cos φ0 4- 2ΘO - 2φ0} ]

+ 0(exp {-4xr0 sin φ0}) {x-> + oo). (3.24)

Constant K here does not depend on x, ί, being a function of y only: K = κ(γ). Its
exact value is unknown to us. Asymptotics (3.24) is the main result of this section.
It is uniform in t at any (but finite) interval tγ ^ t ^ t0. Asymptotics of correlator
(1.2) is readily obtained as

<exp {ocQ(z)})τ = exp {σ(x/2,t9γ)}9

where one should put x *= zJ~T, t = Λ/T, y = (1 - exp {α})/π. Before going further
we would like to make the following two remarks.

Remark 1. Equations (3.18) and (3.20) give the main terms of asymptotics of
potentials #+ + , # + _ . Next terms and, in principle, complete asymptotic
expansions can be obtained from the nonlinear differential equation (1.15) for
function B+ + , if one substitutes the following ansatz into it:

θκ} + £A*e-2«r«™*«+r>sin(pi)

- sin {2{rκύnφκ±rι sin <pι)x + θkl} H — .

We use this approach in the next section in the more simple case y = 1/π.
Another way to obtain asymptotic expansions is to use representation (3.14).

Putting there λ = λκ, λ = - λ*, one obtains an infinite dimensional linear system
for coefficients Φ(λκ\ Φ(-λ*) which can be used to construct asymptotic
expansions.

Remark 2. It was already mentioned that from the point of view of the scattering
theory for the Dirac operator L (2.25), potential B+ + corresponds to the reflection



Temperature Correlators of Impenetrable Bosons 481

coefficient b(λ) (2.23). It is not difficult to restore the transition coefficient a(λ\

π - oo μ — λ — i\)

For the "scattering amplitude" r(λ) one then has

r(λ) = b*(λ)/a(λ) = — πy(α + (Λ))2(l — ny + exp {λ2 — ί})" 1,

so formula (3.19) obtained for B++ can be interpreted as a well-known Born
approximation.

4. Emptiness Formation Probability (γ= 1/π)

The emptiness formation probability (1.3), being a special case at α = — oo of
correlator (1.2), is the Fredholm determinant A with γ = 1/π. Below the complete
asymptotic expansion of the logarithm of this correlator, σ(x,ί,y = l/π) =
In Δ(x, t,γ= 1/π) is obtained. As was already explained at the beginning of Sect. 3,
the problem is reduced to the asymptotic analysis of the system of singular integral
equations (3.3) and (3.4). The method of the analysis is, in principle, the same, but
estimates are essentially different. In particular, they are now uniform in the interval
t ^ t0 including t = — oo. For example, representation (3.8) is now changed for

P \λ)

where R(λ) is a function continuous at AeOIR, holomorphic for ImA<0 and

satisfying the estimate \R(λ)\ < C/yJ\λ\2 + x2 uniformly for ImΛgO, t^t0 and

x^x0. Repeating the corresponding considerations of Sect. 2 (but taking into

account (4.1)) one obtains for Φ n instead of (3.13),

so that
Φxl(λ) = φ)β(λ) + exp {-2x2 + t}L{λ\ (4.3)

where function L(λ) is continuous for λeiU, holomorphic at Imλ ^ 0 and satisfies

the estimate, \L(λ)\ < C/Xy/\λ\2 + x2 uniformly for I m ^ 0 , ί ^ ί o , x ^ x o

 τ h e

asymptotic representation of Φ 1 2 is obtained from (3.4) and (4.3). At Im/l > 0,

2πϊ ( μ ^ )

where |M(λ)| < C/x 2 y
Thus one has, due to (3.2), the following asymptotics for potentials B,

B+.(xj) = - ] ^ l n ( l + ^ - Λ 2 ) + ̂ (exp{-2x2 + 2ί}/x) ( x ^ + oo), (4.5)
π -oo

B++(x,ί) = - f ^ ( α + μ))2exp{2αx + ί-A2} + (P(exp{-3x2 + 3ί}/x2). (4.6)
π - on



482 A. R. Its, A. G. Izergin and V. E. Korepin

These estimates are uniform for t ^ t0 including t = - oo (which differs from (3.18),
(3.19) in this aspect).

Construct now the complete asymptotical expansions for B+ + , B+ _, using the
partial differential equation for B+ + (1.15). One begins with the representation of
the integral in (4.6) as

- f dλ(oc+(λ))2exp{2iλx + t-λ2}

where α x are introduced by means of the expansion of function α(A) (2.17) (it is
to be remembered that γ = 1/π) as

α 2μ)=l+
fc = O

Due to the explicit form of α(A), all αx 's can be calculated from the identity

1+ Σ (ακ/

ck = - ] Λ 2 f cln(l+exp{ί-/ί 2})<U. (4.7)

π -oo

Thus one obtains

α0 = - icOi αx = - c2/2, α2 = - /ct + (ic^/6), α3 = - cocx + (cJ/4!), ^ίc. (4.8)

Returning now to the asymptotics (4.6) for B+ + , one can write

β + + (x , ί ) = e x p { - x 2 + ί} f (αΠ/x") + d?(exp{-3x2 + 3ί}/x2) (x-> + α>), (4.9)
w = 0

where coefficients αΠ (functions of ί) are expressed in terms of OLK\

, a2 = a j y /

) ( * }

(it is to note that the sum here are taken over integers /c, /).
Turn now to the nonlinear partial differential equation (1.15) for β + + ( x , ί).

Estimate (4.9) suggests the following ansatz:

X X 2 X 3

+ exp{-3x2} - | + ̂  + ̂ + -
\X X X J
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- , (4.11)

Quantities aj9 bpdj- -d{j*\... are functions of t which should be (except for known
cij (4.10)) determined. Putting formal series (4.11) into Eq. (1.15) and taking into
account (4.5) one obtains for functions b,d,d(N) the linear ordinary differential
equations in ί, e.g. for b2,b3, b4, one has

dtb2- (l/3)b2 = ( l / 3 π 3 / V ,

δtb3 - (l/3)b3 = (3/16π^2)etI3dt(e8t/3c0)9

dtd4 - (l/5)b4 = (l/δOπ5 '2)*5 '. (4.12)

The solutions of these equations are defined up to solutions of the corresponding
homogeneous equations, these being

B2(t) = const exp {ί/3}, B3(t) = const exp {ί/3},

D4(t) = const exp {ί/5}.

All the constants here should be, however, equal to zero as functions
b{t\ d(i)... should not contain fractional powers of exp{ί} in the expansion at
ί-> — oo. This is the direct consequence of the uniformity for t ^ ί0 of estimate
(4.6) (see also Sect. 6 of paper [1] where the explicit expansion at ί-> — oo is
constructed). Thus one has from (4.12),

M ί ) = - ( l / 1 6 π 3 / 2 ) e x p { 3 ί } ,

M ί ) = (3/16π3/2)exp{3ί}c0(ί),

d4(ί) = (l/384π5 / 2)exp{5ί}. (4.13)

Arguments of this kind are valid also for any higher terms in the expansion (4.11).
It should be emphasized, however, that it is essential that coefficients a} are already
defined independently. The reason is that a solution of the corresponding
homogeneous equation is exp {t} and arguments about the presence of only entire
powers of exp {ί} give nothing in this case.

Thus one comes to the following asymptotic expansion of potential B+ + :

co), (4.14)

where functions an = an(t) are given by (4.10) and co(t) is defined in (4.7). Using
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now (4.5) and equation dxB+ _ = β+ + (1.14) one has for potential B+ _,

n = l X

) (x-, + oo), (4.15)
2 π x

where functions An = An(t) are calculated from the identity

Jexp{-2x2 + 2ί} X (AJx°)= -

A - ί -A - °ι A - l "* °2

4π 2 ^ 16π 4

Equation (3.1) may now be used to derive the asymptotics of function

1 0 ^ 2 4 + - (4.16)

It should be noted that at γ = 1/π there is no problem with the integration constant
fc as it was in the case γ < 1/π (3.24). Due to the uniformity of all the estimates in
this section for t rg t0 one can take the limit £-• — oo in (4.16) and use the fact that
in this limit σ = 0(1.11).

Remember that the emptiness formation probability (1.3) is given as

P{z,h, T) = exp {σ(x/2,ί,y = 1/π}, x = z^ff,t = h/T9

so one easily the long-distance expansion by virtue of (4.16). We write explicitly
only the most interesting first term:

h/T

^ J (
L2 -oo

co(ί) = - ? ln(l+exp{ί-A2})d/l.
π -oo

5. Two-Point Field Correlator (γ=2/π)

The asymptotics at z-> + oo of correlator (φ + (z)ψ( — z)}τ (1.1) is briefly discussed
here (we hope to give the complete asymptotic expansion in a separate paper).
Remember that correlator (1.1) is the product (^/T/4)B+ + Δ, where the potential
B+ + and the Fredholm determinant A should be taken at y = 2/π.
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First consider the problem for the negative chemical potentials h< 0 (i.e. for
t < 0). In this case (see (2.4a)) taking into account standard results [4] one concludes
that the Riemann problem (2.2) is uniquely solvable for all x. So one can repeat
the consideration of Sect. 3 to obtain the asymptotics. The only essential alteration
is that now zeros λκ, —λ% of functions sx{λ) (2.19),

2-t}-l (y = 2/π) (5.1)

are given, instead of (3.7), as

λκ = \t + 2ikπyι\ (5.2)

so that λ0 is now pure imaginary, λ0 = - λ% = i | ί | 1 / 2 . Hence only one term with
k = 0 should be kept in series (3.9), (3.14). Correspondingly, the term with fc = 0
in expansion (3.20) for B++ should be taken with coefficient 1/2, being equal to

2 | ίΓ 1 / 2 (αμ 0 ) ) 2 exp{-2x | ί | 1 / 2 } (γ = 2/π) (5.3)

(we take into account that r0 = | ί | 1 / 2 , φ0 = π/2 and argα(A0) = 0). For α(A0) one
obtains

<x(λ0) = e x p < — In —: >. (5.4)
y \ 2π Λ μ ' + lίl e x p { 2 + | ί | } l j

Other terms remain the same (of course, γ = 2/π in all the formulae). The non-
decreasing terms in the asymptotics of σ = In A (3.24) remain unchanged and one
obtains for the asymptotics of the correlator (ψ +

l f

- f

Here

exp{-z(2|Λ| 1 / 24-T 1 / 2c(ί))};z-> + oo,ί = - < 0 . (5.5)

1 °°
c(t) = - ί

% - o r

and p 0 is a constant.
Turn now to the case of positive chemical potentials h > 0 (i.e. t > 0), which is

more complicated. The sufficient conditions [4] of the solvability of the Riemann
problem are not fulfilled for real y> 1/π. From a technical point of view, the
difficulty is that zeros λ0, —λ* in (5.2) become real,

A0 = ί1/2, - λ ^ - t 1 ' 2 ( ί>0,y = 2/π), (5.6)

so that estimates of Sect. 3 are no more valid. More exactly, the first term in the
series analogous to that in (3.14) is now not small at x-> + oo and should be
included into the main term of the asymptotics. To avoid the difficulty one
regularizes the problem going to the complex parameter y:y->y + ΐε and then
taking the limit ε -> 0. It appears that the answers do not depend on the sign of ε
(one can also make t complex and then go to real ί; the answers are the same).
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Starting from the system (3.3) and (3.4) of singular integral equations one derives
the representation similar to (3.14) and uses it to calculate the asymptotics as
explained in Remark 1 of Sect. 3. Not going into more detail, let us give the answer
for the main term of the asymptotics of correlator (1.1) thus obtained (see also [5]):

•exp {-zT1 / 2c(ί)}, z-• + oo, t = - < 0. (5.7)

Here
exp{/l 2 -ί}

dλln
π - c e x p { / l 2 - ί } - l

and constant p^ is the same as in paper [6] where the long-distance asymptotics
of the correlator at zero temperature was calculated: p^ ~ πe1/22~1/3A~6

9 A being
the Glaisher constant (A = 1.2824...). It should be mentioned that we obtained
the value of the constant in (5.7) comparing the behaviour of correlator (1.1) at
T->0, x-> + oo with the behaviour at Γ = 0, x-> + oo using the correspondence
between these asymptotics known in the conformal field theory [7].

6. Conclusion

We demonstrated that by applying the inverse scattering method to the integrable
nonlinear system describing temperature correlators of the impenetrable bosons
permits us to obtain the most interesting information from the physical point of
view, namely, to calculate the long-distance asymptotics of correlators. It should
be emphasized that it is done directly in the model considered (the conformal
hypothesis was used only to determine constant p^ in (5.7)). Corresponding results
for zero-temperature correlators were obtained in paper [8]; at Γ = 0, the
correlators depend on the product zh1'2 only and are described by ordinary
differential equations.

In paper [1] the multi-point temperature correlators were also considered. The
matrix Riemann problem corresponding to this case is given in the Appendix.

Appendix

In Sect. 7 of paper [1] the multi-point correlators (ΦI(ZI)"'ΦN(ZN)ΦΛZΪ)"'

ψN{zΰ)}τ

 w e re shown to be described by a multidimensional integrable system
and corresponding partial differential equations in (2N + 1) variables t9xl9... x2N

(t = h/T, x = zT1'2) were given. Below the matrix Riemann problem for this system
is briefly discussed. It is supposed that the reader knows the contents of Sect. 7
of [1]. References to the corresponding formulae will be given as (1.7.1) (which
means Eq. (7.1) of [1]).

The MRP for multi-point correlators is a natural generalization of the MRP
considered above in Sect. 2. Now χ(λ) is a (2N x 2N)-matrix and the conjugating
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matrix G(λ) in (2.2) is defined as

Gmn(λ) = δmn + ( - \fπye+ (λ)e; (λ) (m, Λ = 1,..., 2ΛΓ),

Matrix χ(λ) at A -> oo can be expanded as

χ(λ) = I + (ΨJλ)+...9 (A.2)

where functions Ψ>x do not depend on λ. Representing

(Ψ1)mm = (l/2ί)Vlm9 (A.3)

one has due to the symmetry properties of G(λ) that Vlm=V*m = (—l)ι+mVlm.
Considering the matrix

Ψ(λ9x9t) = χ(λ9x9t)exp{iλJ}9 Jmn = δmnxn9 (A.4)

one calculates the corresponding conjugating matrix

(A.5)

which satisfies equations dnG0(λ) = 0(dn = d/dxn) and (2λdt + dλ)G0(λ) = 0. Hence
one obtains as in Sect. 2 that

dψ)ψ-' = iλJn + υn9

' 1 V

with matrices Un and Vo equal to

\{Un)lm= -l2δnlVml+\VnlVnlδnm

Thus function Ψ(λ) is a matrix solution of the zero curvature representation (A.6)
which is similar to the corresponding representation (1.7.12), (1.7.13) for the
vector-function f +.

The compatibility conditions lead just to nonlinear differential equation
(I.7.14)-(I.7.18) for "potentials" Vlm(x9t).

One can now prove that potentials Vlm introduced here (A.3) not only satisfy
the same equations as potentials Vlm in paper [1] (see (1.7.7)) but are the same.
As in Sect. 2 the proof is based on rewriting the system of singular integral equations
(2.11) for functions %(λ):

E n m = 09 n = l , . . . , 2 Λ Γ ; m # n , m = l , . . . , 2 N - l ,

En,2N = e:(λ)9 n=l,...,2JV.

For functions χn,2JVM o n e obtains integral equations
oo

ί K(λ,μ)in2N{μ)dμ,
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with kernel K equal to
2JV

K(λ,μ)= Σ {-Ψl2i{λ-μ)Yιe+{λ)e-{λ),
m= 1

which are just Eqs. (1.7.6) for functions / + (A). Generalizing now the corresponding
arguments given in Sect. 2 in the case N = 1, one comes to the representation for Vlmi

which is just the definition of potentials in [1].
So the matrix Riemann problem constructed is indeed the MRP of the inverse

scattering method for an integrable system describing multi-point correlators.
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