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Abstract. The Radiative Transfer Equation is the nonlinear transport equation

dtf + -vVJ + -Mhf -7) = 0, (RTE)
ε ε2

where f(x9t) = $f(x9v,t)dv denotes the average of/(x,.,ί) on the unit sphere:
|t; I = 1. It describes the absorption and emission of photons in a hot medium.
As the mean free path ε goes to 0, fε converges to a solution of the Porous
Medium Equation dtu = ΔF(u), with F'(u) = (Nσ(u))~1. Since σ blows up at
u = 0, solutions to the PME propagate with finite speed. Specifically if w( ,0)
has compact support in RN so does w( ,ί) for every ί > 0 and the sets
Ω(t) = {x:u(x,t)>0}t>0 form an expanding family as t increases, and
UΩ(t) = R". We show in this paper that these propagation properties hold for
the solutions fε of the RTE for all small ε. Moreover, the growth of the support
of fε is uniform in ε. Our proofs rely on the construction of explicit solutions
(of the travelling wave type) and subsolutions to the RTE. To our knowledge,
this is the first example of a kinetic equation with high velocities where localized
data propagate always with bounded speed. For Vlasov-Poisson equations,
this arises only for particular initial data.

0. Introduction

In this paper we show that the property of finite propagation of disturbances from
0, well known for the solutions of the Porous Medium Equation: ut = Δum, m > 1,
holds also for the Radiative Transfer Equation. In order to be specific, we consider
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nonnegative solutions fε=fε(x,v,t) to the Cauchy problem

dtf + -vVJ + \σ(f)(f -f) = 0 for xeR", vεSN~\ ί^O,
ε ε

for xeRN, veSN~\ {°Λ)ε

where SN~ι is the unit sphere in RN, / represents the average of/ in the velocity
variable

f(xit) = \SN-1r1 J f(x,v,t)dv, (0.2)
S J V - 1

and the initial function/0 satisfies: foeI}(RN x SN~1), f0 §: 0 a.e. and has compact
support in the x variable.

Since the transport operator governs this equation, the maximal speed of
propagation in (0.1)£ is 1/ε and the diameter of the support grows at most like
£>0 + ί/ε. We are going to prove that these intuitive bounds are not realistic for
small ε in the physically relevant case where the opacity function σ blows up at
0. We show that the support indeed expands but its diameter grows at most like
Do + Ctί/2 with constants independent of ε.

This somewhat surprising consequence of the presence of the nonlinear term
ε~2σ(f)(f —/) can be explained by the behaviour of (0.1)ε as ε->0. It is then
known, cf. [2,3], that /ε(x, v, t) converges to a solution M(X, t) of the generalized
porous medium equation

ut = ΔF(u), ί > 0 , xeR*, (0.3)

where F is given by F(0) = 0 and

F(u)=l/(JVφ))>0 if u > 0 . (0.4)

The support of a solution to (0.3) spreads out with a finite speed if and only if F
degenerates at 0 in the following sense: the integral \(F\u)lu)du converges at u = 0,
cf. [10,7,11,4].

Our proofs will rely on the analogy between (0.1)ε and (0.3). In particular, we
construct in Sect. 1 an explicit travelling wave solution to (0.1 )ε inspired by known
solutions of (0.3), and use comparison arguments (Sect. 2) to establish bounds on
the growth of the support. Construction of a suitable subsolution allows to show
that the support does not shrink in x; in fact it expands in time to cover the whole
space RΛ (Sect. 3). It is worth remarking that the support actually expands in v to
the whole sphere SN~X instantaneously at all points where the u-average is positive
at ί = 0.

The precise hypotheses imposed on the opacity σ are the following: Firstly,
( 7 G C ( R + , R + ) with a possible blow up at 0 and

σ(u)^σR>0 for 0 < w < K , (HI)

r du ^ du /ττ_x

f <oo, f =00. (H2)

ouσ(u) \uσ{u)
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Hypothesis (HI) is used in [2,6]. As for (H2), the convergence of the integral at
0 allows to define the pressure function in the next chapter and is essential for
finite propagation. The divergence at oo is not so important. In order to get a
comparison principle between sub- and supersolutions to (0Λ)& we have to add
the assumptions:

σ(u) is non-increasing, σ(u)u is non-decreasing, (H3)

which imply the accretivity of the differential operator, see [9] or Appendix.
Observe that the first condition means that F is convex, while the second condition
implies that F(u) ̂  cu2 for small u>0.

We denote by I S * ' 1 ! = 2πN/2/Γ(N/2) the usual (N - l)-measure of the unit
sphere and denote by V, A the spatial operators VX,ΔX, The main properties of
the porous medium equation can be found in the survey paper [1].

2. Travelling Waves

This section is devoted to the construction of exact travelling waves for the
Radiative Transfer Equation (0.1). Since we do not make use of comparison
principles, the accretivity assumptions (H3) are not necessary.

By a travelling-wave, we mean a wave which travels with velocity c in (x, ί)-space,
with fixed profile in v. We consider such functions of the form

/(x,M) = w(χ c + |c | 2 0 φ ) . (1.1)

Our solution will be so constructed that g(v) ̂  1 when ε is close to 0. In this way,
the dependence on v is lost in the limit ε-^0 and we recover a travelling-wave
solution to the P.M.E. (0.3).

With this motivation the construction proceeds as follows. Inspired by the
P.M.E. theory, cf. [8], we define the pressure associated with u by

P(u) = ]-±-dt, uZO (1.2)
o tσ(t)

and let Pλ(ύ) = P(u)/λ. Thanks to (H2), Pλ is well defined, increasing, continuous
and P(0) = 0, P(oo) = oo. Therefore, P " 1 is a well defined, continuous, increasing
function R + ->R+ with P~^oo) = oo, P~ι(0) = 0.

Let now uλ be defined as

MA(s) = p; 1 (s) for s ^ 0 , uλ(s) = 0 for s ^ 0 . (1.3)

Then u'λ = λuλσ(uλ). It follows that the function

uλtC(x,t) = uλ(x c + \c\2t) (1.4)

is indeed a travelling-wave solution to

dtu-AFλ(u) = 0, (1.5)

with

Fλ(u)=WΦ)\ (1.6)
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since (Fλ(uλ(s)))' = uλ(s). Next, we select a particular ad hoc form of g to obtain the
following candidate to be a solution of (0.1)ε:

We have

Theorem 1. Under assumptions (HI), (H2),/or every ε > 0 and ceRN with 0 < ε\c\ < 1
if N ^3, 0 < ε|c| < 1/(N — 2) otherwise, there exists a unique λ = A(ε|c|) > 0 swcfe
ίftαί the function fε given by (1.7) is an exact nonnegative solution to (0.1)ε.

Remark 1. As ε goes to 0 with fixed c φ 0, A(ε|c|) goes to A(0) = Λf and we recover
the function uNc in (1.4), solution to (0.3).

Remark 2. For a given ε > 0, the limitation c < 1/ε is essential since the speed of
propagation for Eq. (0.1) is clearly equal or less than 1/ε. The restriction on c for
N > 3 is technical.

The proof of this Theorem relies on a calculation given in

Lemma 2. For every α > 0 with <x<lif N^3, α < 1/{N — 2) otherwise, there exists
a unique λ(ot) > 0 such that

with v = (vx,...,vN), is positive and satisfies

j g(v)dv=\. (1.9)
5ΛΓ-1

Moreoverλ(oc)-+N as α-*0.

Proof Let us consider only values of λ in the interval [0, l/α(l — α)) so that g(v)
remains positive. Then, for a given α, we define

φ(λ) = t -
SN-i 1 + λθLV1 + λOL

One easily checks that, for 0 ^ λ ^ l/α(l — α) = λl9 φ(λ) is a convex function with
φ(0) = 1, φ'(0) = — α2 < 0. Therefore, Lemma 2 follows if we can show that
φ(λί)> 1. We have

Therefore, φ^λγ) = oo for N = 1,2,3 and

^ ^ if( l α ) ^ ^
N — 3

Thus, with the restriction α < 1/(N — 2) the conclusion (1.9) holds for a unique
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Moreover, for fixed λ > 0 and small α, we have

Hence, if λ > N, φ(λ) > 1 for α small enough and if λ < N9 φ(λ) < 1 also for α ̂  0,
consequently λ(a) -•iVasα goes to 0#.

Proof of Theorem 1. Let ε > 0 and ceRN satisfy the assumption above. We may
always assume that c has the direction of the x^axis. We then take fε as in (1.7),
i.e. fε = uλc-gλMcl9 with λ = λ(ε\c\) as in Lemma 2. Then fε = uλc and

ε2dtfε + εv V/ε + σ(fε)(fε -fε) = g{v)u'λ(ξ)[ε2\c\

+ σ(uλ(

where ξ = x-c + \c\2t. Using uλ = λuλσ(uλ), we get

(*) = σ(uλ(ξ))uMMv)(l + λεvc + λε2\c\2) - 1] = 0.

This computation holds for ξ ^ 0 , but since fε is continuous, Eq. (0.1)ε holds in
@>'(R2N x R) and Theorem 1 is ρroved#.

2. Finite Speed of Propagation

We now use the travelling waves constructed above to establish the finite speed
of propagation of the support for bounded solutions of (0.1 )ε. Since we will make
use of a comparison argument, we need assumptions (HI), (H2), (H3) on σ. We
also assume that 0 < ε < 1.

Theorem 3. Let (H1)-(H3) hold and let fo(x,v) satisfy: 0 ^ / 0 ^ M, supp(/0) c= BR

for some M,R>0. If fε is the solution o/(0.1)ε, then

supp/ε( , M ) c £ R ( ί ) , (2.1)

where

R(t)^R + (At)1/2 (2.2)

with A^cN PN(cNM)9 cN>0. Moreover, for δ — PN(M)ε2/t close to 0, we have
A = 2PN(M + Mδ112) + p(δ\ where p^>0asδ-+0.

Remark. In particular, letting ε -• 0, we recover for the Porous Medium Equation
the bound (cf. [8])

R(t)iR + 2(PN(M)tyt2. (2.3)

The rate ί1/2 is optimal for L00 initial data, since it is the precise rate of expansion
of the support for selfsimilar solutions of the form tφc,ί) = φ(xt~1/2) constructed
e.g. in [5]. See [12] for a detailed investigation of growth rates.

Proof Let ε > 0 and choose c Φ 0 such that

ε | c | < l if ΛΓ^3, ε\c\ < 1/(JV- 2) otherwise. (2.4)



462 B. Perthame and J. L. Vazquez

We also choose t0 > 0 such that

|c | 2 ί 0 - R\c\ = Pλ[_M{\ + Λβ|c| + λε 2 |c | 2 )], (2.5)

where λ stands for λ = λ(ε\c\) of Theorem 1. Since Pλ is nondecreasing, this gives
for every x such that x c ^ — R\c\

whence

fε(x, t0) = — - — - — - ^ fo(x9 v), veSN~1. (2.6)
1 + λεcv + λε \c\2

Since f0 vanishes identically for x-c^ —R\c\ and all veS""1, (2.5) is true on
RN x SN ~1. Of course, for a given time t > 0, fε( , v, t) vanishes for all large | x | and
all VES*"1, since the speed of propagation for (0.1) is at most 1/ε. We now use
the comparison principle together with Theorem 1 to conclude that for all ί > 0
and (X9V)ERN X S*" 1 ,

it. (x t _L t\

(2.7)
' ' l+λεc-v + λε2\c\2'

Since (2.7) holds for any vector c of fixed norm satisfying (2.4), we conclude from
(2.7) that supp/8( ,v,t)c Bi(tc), where R(t) = |c|(ί + ί0), ί0 given by (2.5). Therefore,
we get an estimate for R(t) of the form

R(t) S R + \c\t + ̂ -PΛ(M(l + λε\c\ + λε2\c\2)). (2.8)

kl
To obtain estimate (2.2), we have to choose suitable velocities c in formula
(2.8). Thus, when t = t1 is large, more precisely, when δ = PN(M)ε2/tί <δo =
(min(l,|JV-2Γ1))2,

\r\ — i I (Ί 0^
I c i — I i , \£..y)

satisfies (2.4) since ε\c\ ^ δ1/2. Moreover, if δ is small, since ε\c\ = δ1/2 % 0, λ(ε|c|)
is close to N (see Remark 1, Sect. 1), so that (2.8) gives for t = tί9

+ \

{PN(M))112

^R + {PN{M)t)112 + ~PN(M + cNMδl2)ιl2t1'2.
A

On the other hand, if Pε2/tί ^ δ0, we use the fact that the propagation speed is
at most 1/ε to get

This completes the proof.#
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3. Expansion of the Support

We devote this section to prove that the support of the solutions expands in the
variables x, v as t grows. In fact, the support expands instantaneously in the v
variable to the whole sphere SN~1 at all points where the average/(x, 0) is positive.
With respect to the x variable, we show that is does not shrink by means of
comparison with suitable subsolutions that we construct. In fact, the solution
expands and as t-+oo its support becomes the whole space Rw. We obtain
power-type bounds for the expansion of the support and the decay of the solution.

We begin by establishing the instantaneous expansion in v.

Theorem 4. Let f be a nonnegative of(0Λ)ε, 0 < ε < 1, such that

f(x9v90)^φ(v)9 φ^θL>0 (3.1)

for xeBr = Br(x0), xoeRN, r>0and veSN~K Then

f{x, v9 ε
2t0) ^ -(1 - e-

σial2)t0) > 0 (3.2)

for every xeBr/29 veS1*"1 and 0 < t0 < r/2ε.

Proof of Theorem 4. We introduce the solution g(x9 v9 t) of the linear problem

^(x,t;,O) = /(x,t;,O).

We are going to prove (i) that for any ί0 > 0, g(x9 v910) is positive in Br/2 x SN~ \
and (ii) that g(x9v9ε

2t) is a subsolution to (0.1)ε. We conclude the proof using the
comparison principle

(i) Observe first that for ί0 > 0, we obtain

g(x, v, t0) ^ l ^ l j l e«'l2)is-'0)ds = β(t0) = ?(1 - *-"<"2>'°) (3.4)

by integrating (3.3) along characteristics and recalling that f(x9v9θ) ^0 .
(ii) In the same way, we get

g(x9 v91) ^ f(x - εvt9 v90)β"ff(α/2)ί + -σ(- )}ef^^'^ds. (3.5)
2 \2/o

Thus, for |x — xo | + εt ^ r,

^(x, ί) ^ e~σ{a/2)t0L -h - ( 1 - e-
σia/2)t) ^ - .

It follows from (3.3), (3.5) and (H3) that

ε2dtg + εv-Vg + σ(g)g ̂  σ(g)g9

if τ = ε2t and |x — xo | + εt^r. Hence g(x9v9τ/ε2) is a subsolution to (0.1)ε in
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(iii) We recall now that the speed of propagation for Eq. (0.1)β is bounded above
by l/ε and use a simple variation of the comparison principle to conclude that

fε(x,v9ε
2t)^g(x9v9t)

for every xeBr(x0) and ί > 0 such that |x — x o | + εt ^ r. This applies in particular
if 0 < t ^ rβε and \x - x o | < r/2.#

We now want to show that once the solution becomes strictly positive in a
certain ball, uniformly in v, it will continue to be so for all times. More precisely,
our result is

Theorem 5. Let f be a nonnegative function such that

f(x9v9t)^c for xeBRo9 veSN~K (3.6)

Then for every ί > 0 , / ( . , . , t) is strictly positive in BR{t) x SN~ι

9 where R(t) is an
increasing function such that

l o g ^ l

t ~JV + 2

On the other hand, f decays no faster than P~1(ΓN/iN+2)).

Remark. With better information on σ, we can obtain finer growth rates for R.
Thus, if we know that for some s ^ 1

(3.8)
Nσ(u)

then we get instead of (3.7),

t
(3.9)

We observe that (H3) implies that (3.8) holds for s = 1. Observe also that as s->0,
we get the ί1/2-rate that is best possible since it was obtained in Sect. 2 as an upper
rate.

Proof of Theorem 5. We will construct a subsolution h to (0.1 )ε which has support
in a small ball BRo as t = 0 and is strictly positive in balls of radius R(t) for time
t > 0 with R(t) increasing and R(t)-+ H-ooasί-^H-oo.Λ will satisfy the inequality
ht + (l/ε)vVh + (l/ε2)σ(h)(h - h) ύ 0 in S = {(x,t):0 < t < oo, |x | < R(ή}9 h = 0 for
\x\ = R(t) and fc(x,0)^/(x,0). Since / ^ 0 , we conclude by comparison that
/(x, t9 v) ̂  h(x919 v) everywhere. We take h of the form

h(x9t)=U(x9ήg(x9v9t) (3.10)

with

( 3 Π )

where PN is defined in (1.2), and

λ(x9t)
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with λ determined so as to have f g(x,v,t)dv = 1 for every x,t. Moreover p will
have the typical form of porous media pressures

| ^ X (J12)
Observe that this means that

Λ2(ί) = - ( ί + Γ)2a, R0 = -T2a (3.13)
B B

)2°-\ (3.14)

We prove that p is a suitable subsolution for appropriate values of A, B, a, T,
which concludes the proof of the theorem

Lemma 6. There exist values of A, T, B and a such that h given by (3.10)—(3.12) is
a subsolution of(0Λ)ε, ε > 0 . Moreover, both R(0) and U p C O ) ^ can be made as
small as desired. In particular, we may take a arbitrarily close to 1/(JV + 2) and B
arbitrarily close to l/2(N + 2). The estimates are uniform as ε->0.

Proof of Lemma 6. We want to prove that h satisfies the inequality

1 1
dth + -v-Vh + -^σ(h)(h -h)^0. (3.16)

ε ε

1st step. Since h = Ug and h = U, (3.16) can be written as

1 1 UY 1 \ σ(U)
Ut + -vVU + -zσ(U)U + -\gt + -υ Vg S " V

ε εz g[_ ε / εzg

Now pt = Ut/(Nσ(U)) and Vp = VU/(Nuσ(U)), hence

1 1 1where

'=-τΛd~ + -—l (3.18)

We have 1/g = (1 + Nεi Vp)A"x, with

1 Λ dt; Γ

A * 1 + Nεu Vp•" 1 - N2ε2v\\Vp|

It is easy to see that 0(s) is a smooth function of s for 0 ̂  s < 1 with φ(0) = 1,
= 1/ΛT and φ"(s) ̂  0. Therefore

^ l^ l + ε Λ Π V p | . (3.20)
At
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Substituting into (3.17), we see that the inequality is satisfied if we have

pt ^ I Vp|2 + eN(υ Vp)| Vp|2 + /. (3.21)

We turn our attention to /. We have

1 Yλt lv Vλ Nε „ N „, „ 1

Nσ(U)\_λ ε λ z z J

Nλε2φ'(s)V ^ „ , 1 l
J

2Vp Vp, + -v V(| Vp|2) + —-V Vp, + — - r V(r Vp),
σ(C/) 1_ ε J σ(U)z σ(U)z

where s = ε2JV2|Vp|2 and z = 1 + NεvVp. We now write (3.21) in the form

P, ̂  -^r-ι> V(ι> Vp) +1 Vp|2 + βJV(β Vp)| Vp|2 + e ^ f V ( | Vp|2)

σ(U)z
(3.22)

It is easy to see at this stage the motivation of our choice of subsolution. In fact,
with p given by (3.12), it happens that

If we disregard the terms in ε and ε2 as ε-+0, we formally obtain

^ 2 (3 23)

which means in terms of U that Ut ^ ΔF(U\ i.e. U should be a subsolution of the
corresponding porous medium equation.

2nd step. We now justify that, for suitable A, B, Γand a, p in (3.12) satisfies (3.22)
in S for ε > 0. We take α > 0 small and determine the values of a and B by

1 - α 1

- α ) ΛΓ + 2

. (3.24)
)

Both a and B are positive. By choosing appropriately A (small) and T (large), we
will require that Ro = (A/B)ί/2Ta be small enough. We also impose that

2g|x |^ 2BR Zggo £
Γ + t ~ ( Γ + ί)ι~aTa~ T ~N

for δ small enough depending on α; this is achieved by choosing T large. We
obtain, noticing that - Δp = 2NB/(T +1) is positive, ε ^ 1,1/z ^ 1 + 2<5, φ'(s) ̂  2/JV
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for δ small enough, λ ^ 1,

1
-v V(t> Vp) = - f ^ J - ^ ^ ( 1 + 2δ),

σ(U) Nσ(U)z~ σ(U)

\εN(vVp)\Vp\2\Sδ\Vp\2,
2 | ^ 2A 2

σ(U) ~ σ(U) (T +t)2 ~ σ(U)N σ(U)N

v-Vp,
σ(U)z

2εB\x\ _2( l+2^) l V 7 3δ

σ(U)z(t+T)2 Bσ(U)N Bσ(U)N

ε22Nλφ'(s)Vp Vpt

σ(U)

<. 4 ,„., 2B\x\ ^ 2δ2\Δp\

σ(U) (ί + Tf

Finally, we use the estimate p ^ ί/Nσ{U), and (3.22) is satisfied if

p, - (1 - ε<5| Vp|2) - ^ ^ ( 1 + Cδ) < 0
N(C7)

for some universal constant C. For small δ and large T, it is enough to check that

(3.25)

Finally, it is easy to check that, with our previous choice of B and a, p given by
(3.12) is an exact solution of (3.25); on the other hand, the parameters A and Γ
are only required to be small and large respectively, in order that Ro and || p( , 0) || x

be small enough.^

Remark. A careful inspection of our proof shows that the support increases strictly
even near ί = 0 when the initial "pressure" P^Jo) vanishes at the boundary in a
superlinear way, but it is not excluded that waiting times occur when for instance
Pjy(/0) = O(d2), where d is the distance to the boundary (see [12] for an analogous
situation in the P.M.E.).

Appendix. Comparison Principle for the Radiative Transfer Equations

In this appendix, we recall the proof of the comparison principle for solutions to
the Radiative Transfer Equations. We refer to Mercier [9] or to [6] for the original
proof.

Let f(x, v, t), g(x, v, t) satisfy

(A.I)

d,f + Wf + σ(f)(f - /) = S(x, v, t), (A.2)

dtg + v Vg + σ(g)(β ~β)^ S(x, v, t), (A.3)

0 g g(x, υ,0) g f{x, v,0)eL\RN x SN~1),
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and we assume that (A.2), (A.3) hold in L1, i.e.

<K7)7 WaeLHB." x [0, Γ]), (A.4)

OgS, SeL1(RNxSN-1x[0,Γ\). (A.5)

We claim that if σ satisfies (HI), (H3), then

g(x,v,t)^f(x,v,t) a.e. (A.6)

Proof of (A.6). Following [9], we introduce

Γ = sgn-(/-0),

where

r=sup(0,-t), s g n - ί = - l t - > 0 .
then, from (A.2), (A.3) and since dt(f — g) + v V(f — g) lies in L1, we get multiplying
byΓ,

(d, + v V)(f -g)- + Γ[σ(f)f - q(f) - σ(g)g - q(§U S 0, (A.7)

where

q(t) = tσ(t) is non-decreasing.
Setting

f = sgn-(7-0); (Γ = Γ(x,ί))

and integrating (A.7) in x and ι?, we get

dt f (/ - 9)-dx-^. + ί f Γ[σ(f)f - q(f) - σ(g)g - q(§Udxdv g 0.
x,v I " I xv

But the integral in v in the second term of this inequality may be written as

ί Γ[σ(f)f - q(f) ~

iotf)Hf-9)--Γ(f-g)ldv
- Γ(σ(g) - σ(f)) + [pig) -o(f)Y}dv

(since σ is non-increasing). Now, every of these three integrals is non-negative
(since the terms inside are non-negative). This shows that

and thus that (/ - g)~ ^ 0, i.e. / ^ g.
Since the R.T.E. has a finite speed of propagation, it is classical to deduce,

using similar arguments, a local version of (A.6). Namely, if (A.2), (A.3) are satisfied
in a cylinder C = Br x SN~ί x [0, T], then the conclusion (A.6) holds on the set E
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This is used in a crucial way to prove Lemma 5. Also, if (A.2), (A.3) are satisfied
in C, and

g(x, v, t) ̂  f(x, v, ή, Vίe[0, Γ], veSN~ \ xedBr with xv ^ 0,

then (A.6) holds in C. This is used in Lemma 6.
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