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Ising Model on the Generalized Bruhat-Tits Tree
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Abstract. The partition function and the correlation functions of the Ising
model on the generalized Bruhat-Tits tree are calculated. We computed also
the averages of these correlation functions when the corresponding vertices are
attached to the boundary of the generalized Bruhat-Tits tree.

1. Introduction

The Ising model on the Cay ley tree turns out to be very interesting [1,2]. The
Cayley tree T is manifestly determined to be a connected infinite graph with no
loops, each vertex of T being connected with exactly p +1 nearest neighbour
vertices by links. If p is a prime number, the Cayley tree is called the Bruhat-Tits
tree. The branch Bz is defined to be a connected subtree with the only boundary
vertex z of the graph T\BZ in the interior of T. By definition the branch contains no
cycles. Let us introduce the generalized Bruhat-Tits tree Fg. It consists of a finite
connected graph Ff with g independent loops, which is called a reduced graph, the
branches Bx, x e Ff, and each vertex is connected by links with exactly p +1 nearest
neighbours (for every link, two endpoints of which are identified with a vertex, we
include the vertex itself twice into the number of its nearest neighbours). If the
vertex xeFf has only one nearest neighbour y e Ff, x + y, then p branches Bx and
the link [x, j/] form the branch Br Hence instead of the reduced graph Ff we may
consider the reduced graph Ff\[x,y]. From now on F* is merely a single vertex
and p +1 branches should be added to this vertex in order to construct the Bruhat-
Tits tree Fo = % for g > 0 each vertex xeFf has 2 ̂  n(x) S P +1 nearest neighbours
in Ff and b(x)=p +1 — n(x) branches should be added to x in order to construct
the generalized Bruhat-Tits tree Fg. Due to [3-5] the Bruhat-Tits tree T= Fo may
be interpreted as the coset space PGL(2, Qp)/PGL(2, Έp\ where PGL(2,K) is the
group of fractional linear transformations of the projective line P^K) over a ring
K (we deal with the field of p-adic numbers Qp and with the ring of the p-adic
integers Zp). The element of GL(2, Qp) is called hyperbolic if it has eigenvalues
which p-adic norms are different. A Schottky group Γg is a free subgroup of
PGL(2,Qp) with g generators, all non-unit elements of which are hyperbolic.
Usually the generalized Bruhat-Tits tree Fg may be interpreted as a coset space
T/Γg9 where Γg is some Schottky group [4-6].

Since the configuration σ takes the values +1 the Ising model action may be
rewritten in the form

β Σ σ(x)σ(y) = βNί-β/2 £ (σ(x) - σ(y))2,
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where Nx is the total number of the links of the lattice. If σ is allowed to take any
real values we obtain the action for R Ising model

s(Φ)=-ββ Σ (Φ(χ)-Φ(y))2

\χ-y\ = i

by omitting the unessential term βNί and by changing σ^φ. This model is a lattice
version of the free massless field. On the broad class of the lattices including the
generalized Bruhat-Tits tree the correlation functions of the R Ising model with
the free boundary conditions may be computed exactly [7]. By using the special
average of these correlation functions the multiloop p-adic string amplitudes were
calculated for the scattering of N identical tachyons attached to the boundary of
the generalized Bruhat-Tits tree [8,9].

In this paper we calculate the partition function and the correlation functions
of the Ising model on the generalized Bruhat-Tits tree with the free boundary
conditions. We also compute the averages of these correlation functions which are
analogous to the p-adic string amplitudes.

2. Correlation Functions

In order to find the correlation functions and partition function for the infinite
generalized Bruhat-Tits tree Fg we calculate them first on a finite subgraph K c Fg.
A finite subgraph K of the generalized Bruhat-Tits tree Fg may be considered as a
finite cell complex. It consists of zero- and one-dimensional cells: vertices and
links. Every cell ±sq is labelled by the integer q — 091 (dimension) and by the
number ± 1 (orientation). The cells with the opposite orientation sq and — sq both
belong to the lattice K. An integer-valued odd (cq(—sq)=— cq(sq)) function cq on the
^-dimensional cells is called a g-chain of the complex K. cq can be regarded as a
formal sum £ m f̂, where the integers m{ = cq(sq). A set of ^-chains is an Abelian
group: cq + ctq = Σ{mi + m'ύsq

i. It is denoted by C\K,Έ). It is possible to introduce
the inner product on Cq(K, Έ): (cq, c'q} = £ m^. We define the boundary operator
3 on Cq(K,Z) by ds° = 0 and d[xbxj]=xj — xi. By linearity it is easy to extend the
boundary operator on C%K,Z). We define the coboundary operator 3* by the
following relations 3 V = 0 and <δ*c°,c/1> = <c°,δ(c/1)>. A kernel Zt(K,Z) of a
homomorphism d: C1(^,Z)^C°(X,Z) is called a group of cycles of the complex
K. The image B0(K,Z) of a homomorphism 3: Cι(K,Έ)^C°{K,Έ) is called a
group of boundaries of the complex K. The image B^KjZ) of a homomorphism
3*: C°(K,Έ)^>Cγ{K,Έ) is called a group of coboundaries of the complex K.

A homomorphism of Cq(K,Z) into the Abelian group Z 2 = {±1} (Don't
confuse with 2-adic integers) is a g-chain of the complex K with coefficients in Z 2 A
set of all these homomorphisms is an Abelian group which is denoted by Cq(K, Έ2).
Each homomorphism hqeCq{K,Z2) is defined by its values on the g-chains
l-sqeCq(K,Z) i.e. on the cells 5?. Thus h9 is an Z2-valued function on the
g-dimensional cells of K. On Cq(K, Έ2) we introduce the boundary and cobound-
ary operators: dhί{c°) = hί{d*c°) and d*h°(cί) = h°{dc1). For example d*h°{[x,y])
= h°(x)h°(y\ because of σ~ι = σ for σ= +1. The group of cycles Z1(K,Z2), the
groups of boundaries B0(K,Έ2) and coboundaries Bι(K,Έ2) are defined in an
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obvious way. The group TL2 is selfdual: if σί9 σ2 = ± 1, then

<σί\σ2} = σJ

1^ = σJ

2^\ (2.1)

where J(σ) = 1/2(1 - σ). Analogously, if c\, c\ e Cq(K, TL2) then

π )
sfeK

where multiplication runs over all positively oriented links of the lattice K.
Let us consider the Ising model on the lattice K. A configuration is a chain

σ° G C°(K,Z2), i.e. a function on the vertices of K taking the values + 1 . The Ising
model action may be rewritten as

S(σ°) = β Σ d*σ°(s})9 (2.3)
s\eK

where the summing runs over all positively oriented links of the lattice K. The
partition function is

Zk = 2~No Y eS(σ°\ (2.4)

where No is the total number of the vertices of the lattice K. The correlation
function has the form

Wκ(χ°) = Z^2-N° Y <χ° | σ°}es^, (2.5)
σ°eC^K,Z2)

where the chain χ°eC°(X,Z 2) takes the value —1 at the vertices xl9 ...,xw and
takes the value 1 otherwise. Thus the definition (2.2) implies <χ°|σ°>
= σ°(xί)...σ°(xm).

By Lemma 1 of [10] the correlation function Wκ(χ°) isn't zero only for
boundaries χ° = dχ1 and

Wi(3χ1) = Z ^ 1 | B 1 ( i C , Z 2 ) r 1 V <χ 1 |ψ 1>expj/ί Σ Φ'isj)}, (2.6)
φίeBHK,Z2) { sjeK J

where \Bι(K,ΊL2)\ is the order of the finite group of the coboundaries JB
1(X,Z2). By

using the Fourier transformation on the group BX{K^2) we obtain due to
Proposition 1 of [10]

Wκ{dχ') = Zϊ\chβ)^ Σ expί-2/J* Σ Jfo^ίK'fo1))}, (2.7)

where J(σ) = 1/2(1 — σ) and the number β* is given by the following equation:
2^

Let K be a finite connected subgraph of the generalized Bruhat-Tits tree Fg. Let
K contain also the reduced graph Ff. The cell complex K is torsion free. Hence

p{iπ(ac1)(s?)},

ζ^s,1)},

where cι eCι(K,Έ) and ζ 1 e Z^X, Έ). Since the graph K is connected any chain dc1

/N \

may be presented as d I Σ miκc,Xί )> where κcx. is some path from the arbitrary fixed

vertex c e Ff to the vertex xt and the integers mi satisfy the condition Σ ^ = 0. (By
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definition the path κCtX. is the sum of the different links connecting two vertices c
and Xi.) In view of the first relation (2.8) it is possible to add to the chain 5c1 any
chain c° = YJnisf with even integers nf. Hence we may consider all mf = l and
N=YJmi = 0 (mod2), i.e. N is even. Since the graph K contains the reduced graph

g

Ff and any branch has no loops each cycle ζ1 e ZX(K, Έ) has the form C1 = Σ mίzί

where the loops zl9 ..-,zg form the basis of the group of cycles Z ^ F ^ Z ) . It is
possible to choose the basis in this way thus zk(s}) = 0, + 1 for any link sf and
k = 1,..., g. In view of the second relation (2.8) we may consider all mf = 0,1. Thus
the relation (2.8) may be rewritten as

(2.9)

where the numbers £j=0,1.
It is easy to verify the following formula:

J = Σ ( -
l

iπΣεΛ
1/2(l-e ' J = Σ ( - 2 ) 9 " 1 Σ β t l...β t,, (2.10)

q=l kγ<...<kq

kj=ί

where the numbers εk = 0,1.
In view of the formula (2.10) the substitution of the relations (2.9) into Eq. (2.7)

yields for the correlation function

X
ε

1 Γ Γ 2N 2JV

Σ expj-2/?* Σ (-2Γ- 1 Σ <κc,Xkι,...,κc,x
i,...,εg = 0 t [_m=l kι<...<km

f J\n - 1 Y

2N g 2N g

+ Σ. Σ . ( - 2 ) m + n - \ Σ . . Σ _<κc,Xkι,...,κc,Xkm,
m = l n = l

:hzh,...,8lnzlny\> (2.11)

and for the partition function

l [ g g )

Σ <εhzh,...,εlnzln)[(2Λ2)



Ising Model on Bruhat-Tits Tree 437

Here for the chains cJ,..., c{ e CX(K, Z), k = 1,2,..., we introduced the product

Σ ( i t ) l ( l ) ) . (2.13)
s j e K

For the Bruhat-Tits tree T=F0 the formula (2.12) gives the partition function
calculated in the paper [1].

If the vertices xl9..., x2N are fixed, the limit K-*Fg for the correlation function
(2.11) is obtained by omitting the multiplier (ch/?)^1 in the formulas (2.11) and
(2.12). We denote this limit by

/ 22V
/ iπ Σ <5X

W[e ' = 1 J

3. Averages

Our aim now will be to compute the correlation functions with the vertices
attached to the boundary of the generalized Bruhat-Tits tree.

If a vertex xt φ Ff then by the definition of the graph Fg there exists the unique
vertex xR e Ff such that the path

where the path κCtχR belongs to the reduced graph Ff and the unique path κχRχ lies
in the branch BχR. Any half-infinite path (without returns) in BχR starting at an
vertex xR we call a ray xR^x. The set of all rays will be called the boundary dFg of
Fg. On dFg we introduce the basis of open sets dBx, where x e Fg\Ff, and dBx

consists of all rays having infinite intersection with the branch Bx. The measure μ0

on dFg is defined by the following relation:

μo(dBx) = p-<"*«•*>. (3.2)

The relation

defines the distance on dFg.
The reduced graph FR is merely a single vertex c. The boundary dF0 can be

naturally identified with p-adic projective line P1(QP) [4,5] with the measure
related to the Haar measure dx on Qp by the following relations:

dμo(c^)=dx^ M ^ ( 3 4 )

where | \p is the standard p-adic norm on Qp, and the distance (3.3) on P 1 ^ ) is
defined by its restriction on Q

I c ^ ^ c ^ l ^ l x - 1 - ^ - 1 ^ , MP>U \y\P>ί; (3.5)

\c ->x, c -*y\p = 1, otherwise.

We call the vertex xR e Ff external if xR is the end of b(xR) > 0 branches in Fg. For
g>0 by definition of the reduced graph an external vertex xReFf defines b(xR)
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(0<b(xR)Sp — 1) branches. Then the ray x*->x starting at the external vertex
xReFR may be identified with the p-adic integer number xeΈp'm the form

x = ao + a1p + a2p
2 + ..., (3.6)

where 0^ao^b(xR) — 1 and O ^ α ^ p — 1 for ϊ>0. We denote the set of these
numbers as Έp[a0<b(xR)~]. Thus for g>0,

p)l. (3.7)
b(xR)>0

It is easy to verify that under this correspondence

\χR^χ,yR-*y\p=(\χ-y\p)
ό*R >R, (3.8)

dμo(xR-+x) = dx. (3.9)

The distance between k rays xf->x1; ...,x
R->xk is defined similarly to the

definition (3.3)

\xR^Xl, ...,xR->xk\p=p-<χR^Xl-'χR^XkK (3.10)

The definition of the generalized Bruhat-Tits tree Fg and the relations (3.3), (3.10)
imply

\xR-+xu...,x
R^xk\p = ( max I x f ^ x j ^ x ^ Y * * *? ^ - . (3.11)

V 1 ' - 7 1 » — » * /

We call the boundary dK of the graph K the set of all vertices from KcFg which
have among the nearest neighbours the vertices from Fg\K. Let
fi(xR-+x), -",f2N(χR^x) be the positive continuous functions summable with the
measure dμo(xR-^x) on dFg defined by the relation (3.2). We introduce the average

/ 2N \ 2N _

A2Itf1,...9f2N)= lim Σ W[ eiπ Σ ^ Π fMj), (3.12)
KF {dK} \ j=ί Jj=ί

where
*))'1 ί dvφ?^x)fμ?-*x). (3.13)ί

RIf all graphs Kj=K and all functions fj{xR-^x) = 1 the average A2N(ί,..., 1) is the
straightforward analogue of the p-adic string amplitude [8,9].

We find the limit (3.12) for the special sequence of graphs {K^ such that

7\JC ίγrl? I /V „ \ / γ cz R „ γR cz FR Wv^WΠl
CivJ — 1Λ KZ Γ q\ \IVχR χ/ — ί, Λ t ±JχRi Λ K: 1 g y UyΛ, J ̂  \Jj .

We suppose also that the supports of the functions f£xR-+x) and fj(xR^>x) don't
intersect for i+j.

For g = 0 the relations (2.11), (2.12), (3.2) and (3.12), (3.13) imply

^2ΛΓ(/I> "'9fiN)= l i m exρ{2iV7(lnp-2j?*)}

x Σ (Π J dμo(c-+x)fjic^x)
{xjedKι}\j=ί dBXj

( 2N 2N )

xexp^-2jS* Σ ( - 2 Γ " 1 Σ <KetXki9...9KetXkmA (3.14)
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Since the supports of the functions fϋxR->x) and fj(xR-+x) don't intersect for i
the last sum in (3.14) absolutely converges as Z-»oo to

2N 2N

x Π Π f max I^^I.Y-2'"-'2"*^-1. (3.15)

ί
Q p)

Π Π f max I^^I.Y-2'"-'2"*^-1

m=2 kί<...<krn\ij=ί m /

Here we use the relations (3.3), (3.10), (3.11) and we denote by dμo(x) the measure
given by the right-hand sides of the relations (3.4). The distance |x, y\p is given by
the right-hand sides of the relations (3.5). We use also the correspondence
ΘFQ^P1^) [4,5] and replace the functions fj(c^x) simply by ffic).

It follows now from (3.14) that

If
2β* = lnp (3.17)

inserting (3.15) into the right-hand side of (3.14) we obtain the non-trivial limit

A2N(fi> •> fin) = ί
PH<tϊP)

2N 2N

x Π Π (. max Ix^x^Y- 2^- 1. (3.18)

Here we considered the simplest case when the supports of the different functions
ft(x) on Px(Qp) don't intersect. In order to extend the formula (3.18) to the general
case it is necessary to study the convergence of the integral (3.18).

Let us consider the generalized Bruhat-Tits tree Fg with g>0. By using the
relations (2.11), (2.12), the decomposition (3.1) and the formulas (3.7)—(3.11) we
obtain the relation (3.16). If/?* satisfies the condition (3.17) we have the non-trivial
limit

A21Afi,...,f2N)= Σ (
{XtR)eFg

R

b(xR) > 0

X ί f1{^^X1)dx1... J f2N2N2N
Zp[a0 < b(xR)] Zp[a0 < b(x?N)]

2N 2N

x Π Π ( max \xkt-xkLT2)m'lδ^<'''δ^^9 (3.19)Π Π ( m a χ \Xkt-Xkj\p
t=2 kί<...<krn\i,j=l m

1

where the correlation function

W\e

22V

i π Σ δ x * .

is given by the equations (2.11), (2.12) with the omitted multiplier (chβf1. The
proof of the formula (3.19) is exactly analogous to the case g = 0. To extend the
formula (3.19) to the case when the supports of the functions fι(xR->x) intersect
one needs to study the convergence of the integral (3.19).
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