Communications in
Commun. Math. Phys. 130, 381-431 (1990) Mathematical
Physics

© Springer-Verlag 1990

Quantum Deformation of Lorentz Group

P. Podles and S. L. Woronowicz

Department of Mathematical Methods in Physics, Faculty of Physics,
University of Warsaw, Hoza 74, PL-00-682 Warszawa, Poland

Abstract. A one parameter quantum deformation S,L(2,C) of SL(2,T) is
introduced and investigated. An analog of the Iwasawa decomposition is
proved. The compact part of this decomposition coincides with S,U(2),
whereas the solvable part is identified as a Pontryagin dual of S,U(2). It shows
that S,L(2,€) is the result of the dual version of Drinfeld’s double group
construction applied to S,U(2). The same construction applied to any compact
quantum group G, is discussed in detail. In particular the explicit formulae for
the Haar measures on the Pontryagin dual G, of G, and on the double group G
are given. We show that there exists remarkable 1 — 1 correspondence between
representations of G and bicovariant bimodules (“tensor bundles”) over G..
The theory of smooth representations of S,L(2,C) is the same as that of
SL(2, C) (Clebsh-Gordon coefficients are however modified). The correspond-
ing “tame” bicovariant bimodules on S,U(2) are classified. An application to
4D, differential calculus is presented. The nonsmooth case is also discussed.

0. Introduction

Despite 60 years of intensive efforts of many eminent physicists quantum theory is
not yet fully compatible with the (special) theory of relativity. The failure of the
program of constructive quantum field theory is one of many manifestations of this
incompatibility. More detailed analysis shows that the difficulty lies in small space
distances. It seems that the four-dimensional smooth pseudoriemannian manifold
is a good model of our space-time only in the macro-scale. The description of the
space-time in sub-micro level may require the new tools provided by a
noncommutative generalization of differential geometry [2, 9, 12].

It is not clear what the symmetry properties of the space-time in the sub-micro
scale are. The idea that the symmetry properties are described by a quantum group
[3, 8, 10] is very attractive. By virtue of the correspondence principle the symmetry
group should be a deformation of the Poincaré group.

The Poincaré group is the semidirect product of Lorentz and translation
groups. Therefore at the first step we should construct a quantum deformation of
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the Lorentz group. The present paper completely solves this problem. We
introduce a one parameter family of quantum groups. All relevant notions such as
comultiplication, counit, coinverse and the Haar measure are introduced and
discussed in detail. Finite-dimensional representations are investigated. For a
special value of the parameter one obtains the classical Lorentz group.

Throughout the paper by (quantum) Lorentz group we mean the (Qquantum)
SL(2, C) group. Only in the last section we briefly discuss the quantum analog of
the SO(3, 1) group. In many places we refer to the terminology introduced in [8],
replacing however the word “pseudo” by the recently more fashionable term
“quantum”.

The paper is organized in the following way. In Sect.1 we discuss the
commutation relations defining the algebra of continuous functions on the
quantum Lorentz group. These relations are imposed on matrix elements of the
fundamental representation acting on the two-dimensional space of “undotted
spinors”. To derive the relations we shall assume that the fundamental represen-
tation obeys the usual properties known in the theory of spinors and that the
quantum Lorentz group contains S,U(2) (where pe[—1,1]\{0} is a fixed
parameter) in the same way as SL(2, €) contains SU(2).

The Iwasawa decomposition theorem (Theorem 1.3) is the main result of
Sect. 1. It shows that the quantum Lorentz group is in a certain sense the product
of two subgroups. The first one is the S,U(2) subgroup mentioned above. The
second “solvable subgroup” is (as we shall see in Sect. 5) isomorphic to the
Pontryagin dual of S,U(2).

It turns out that for any compact quantum group G, there exists a quantum
group G that contains G, and the Pontryagin dual of G, combined in a canonical
nontrivial way. G is called the double group built over G..

The construction of the double group is carried out in Sect. 4. Sections 2 and 3
contain necessary preparatory material. In Sect. 2 we introduce the convolution
product and the Fourier transform of “continuous functions” on a compact
quantum (matrix) group G,. The quantum space G, of all characters on G, is found.
Section 2 may be regarded as a supplement to [10]. Section 3 is devoted to the
Pontryagin duals. By definition (cf. [8]) the Pontryagin dual of G, is the quantum
space G, endowed with the natural group structure. We study in detail the
comultiplication, counit, coinverse and Haar measures related to G,. We show that
G, is unimodular if and only if the Haar measure on G, is central. The duality
between G,.and G, is described by a unitary bicharacter u. At the end of Sect. 3 finite-
dimensional representations of G, are investigated. It turns out that there exists
natural 1 —1 correspondence between the set of all representations of G, acting on
a finite-dimensional vector space K and the set of all homomorphisms of the
algebra of smooth functions of G, into B(K). In Sect. 4 we use the dual version of
Drinfeld’s construction [3] in order to introduce the double group G built over G..
As a quantum space G is homeomorphic to the cartesian product G, x G, G
contains G, and G, as subgroups. However the quantum group G is not a direct
product of G, and G,. The point is that inside G the “elements” of G, do not
commute with “elements” of G, This noncommutativity is described by a
homeomorphism ¢, : G, x G.—G, x G, defined by (4.9). Using this homeomorph-
ism we introduce the group structure (the comultiplication, counit and coinverse)
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on G. It turns out that there exists on G a left and right invariant Haar measure (G
is unimodular!).

A large part of Sect. 4 is devoted to finite-dimensional representations of the
double group. Restricting a representation 7 of G to G, (G, respectively) we obtain
a representation n, of G, (n; of G, respectively). We show that = is uniquely
determined by the pair (n,, ;) and that =, and =, satisfy a certain compatibility
condition. Conversely any pair (7, 7,) satisfying the compatibility condition gives
rise to a representation of G. The compatibility condition turns out to be
equivalent to the fundamental formula of the theory of bicovariant bimodules
(formula (2.39) of [12]). Due to this fact there exists one to one natural
correspondence between representations of G and bicovariant bimodules over the
algebra of smooth functions on G..

In Sect. S the general theory developed in Sects. 2, 3, and 4 is applied to the
group G.=S,U(2). It turns out that in this case the double group obeys all the
properties considered in Sect. 1. This way the construction of the quantum Lorentz
group is completed. Section 6 is devoted to the study of finite-dimensional
representations of the quantum Lorentz group. To our surprise we discover the
existence of non-smooth representations. At the end of this section we classify the
bicovariant bimodules over S,U(2). An independent description of the 4D, -
differential calculus is given.

Many quantum groups that we deal with in this paper are not compact. The
non-compactness causes the difficulties of a conceptual and technical nature. The
first problem is related to the fact that no general theory of non-compact quantum
groups exists. In particular no precise definition of non-compact quantum group is
yet formulated. In our opinion it is too early to formulate the general theory of
quantum groups in an axiomatic way (as was done for the compact casein [10]). At
first we have to elaborate a number of examples in order to collect the necessary
experience in the subject. We believe that the present paper makes an important
step in this program.

Technically non-compactness means that we work with non-unital
C*-algebras. Let us remind (cf. [8]) that in the category of such algebras a
morphism ¢ e Mor(4, B) is by definition a linear, multiplicative, *-preserving
mapping from A into M(B) such that ¢(4)B is dense in B. In this definition and in
the rest of the paper M(A4) denotes the multiplier algebra of a C*-algebra 4. In
particular if 4 is the algebra of “all vanishing at infinity continuous functions” on a
non-compact quantum group then the comultiplication ® e Mor(4, A® A) is an
*-algebra homomorphism acting from A into M(A®A). Since in general
M(A)®M(A)S M(A®A), the Hopf-algebra formalism does not work in non-
compact case.

The second difficulty produced by the non-compactness is related to the
necessity of working with unbounded elements affiliated with C*-algebras.
According to [13], a is an element affiliated with a C*-algebra A if a is an
unbounded (satisfying certain conditions) multiplier densely defined on A. In this
case we write anA. Let A be the C*-algebra of “all continuous vanishing at infinity
functions” on a non-compact quantum group G and a be a matrix element of a
finite-dimensional representation of G. Then in general a is unbounded and the
relation a€ A can not hold. Instead of this relation we require that anA.
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Let A be a C*-algebra. Elements of M(A) are the only bounded elements
affiliated with A. If 4 is unital then anA iff ae A. Elements affiliated with a
C*-algebra can be transported by morphisms: if anA4 and ¢ € Mor(4, B) then ¢(a)
is a well defined element affiliated with B.

All non-unital C*-algebras considered in this paper are of the form

A= Y04,
neN
where N is a denumerable set and A4, are C*-algebras with unity. Any element anA
is of the form
a= Y%a,, 0.1)

neN

where a,€ A, for any n. If lim|a,||=0 (sup|a,| <oo respectively) then ac A4

see Remark on attached sheet of paper (a € M(A) respectively). It is clear that the
set of all elements affiliated with 4 is endowed with the natural *-algebra
structure (it is a pro-C*-algebra, cf. [6]). One can easily verify that the Pedersen
ideal A, of A is the set of all elements of the form (0.1) where a,=0 for all except
a finite number of n. Let

B= Y®B,

meM

be another C*-algebra of considered form and
¢:Ap3a—>¢(a)nB

be a linear mapping. We say that ¢ is proper if for any me M there exists a finite
subset N,,C N such that for all ae 4,,

( =0 >=(¢(a)m=0).

for all neN,,

One can easily check that any ¢ € Mor(4, B) is proper. If ¢ is proper then ¢(a),,
depends only on a finite number of components of a. Therefore ¢ admits a natural
extension to the set of all elements affiliated with 4. We shall also use the notion of
proper linear mapping in a more complicated setting. In some cases ¢ is defined
only on a dense *-subalgebra .o/ C 4 of the form

d = Zgﬂ Jjﬂ >
where for each n, &7, is a dense unital *-subalgebra of A4,. By definition
Y@ o,={aeAy:a,e A, for any n}.

If ¢ is proper then ¢ admits a natural extension to the set of all elements anA4 such
that a,e &, for all n.
Let
A=Y%4, A=3°4



Quantum Deformation of Lorentz Group 385

be C*-algebras of considered form and
"d = gﬂ J%'l C A b
A'=Y8 A CA

be dense *-subalgebras. We set
AR, L {anAQA : ay € A,® 4,5 for all nk}.
If B and B’ are C*-algebras of considered form and
¢:/—B,
¢ A4 >B,

are proper linear mappings, then ¢ ® ¢’ is proper and admits a natural extension to
o ®,o'. In what follows, dealing with proper linear mappings we shall freely use
their natural extensions without any further comment.

In the paper we constantly consider tensor products of C*-algebras. Dealing
with elements of such tensor products it is in some cases convenient to use “the leg
numbering notation”. We shall explain this notation in the simplest possible case:

Let A,B and C be C*-algebras and ¢,,eMor(A®B, A®BRCOC),
¢13€Mor(A®C, AQB®C) and ¢,;eMor(BRC, AQ B®C) be canonical em-
beddings, i.e.

$12,x®))=x®y®I,
$13(x®2)=xQI®z,
$23(y®2)=1,0y®z,

forany xe A, ye B,and ze C (I , (I and I respectively) denotes the unity of M(A)
(M(B) and M(C) respectively)). For any cnA® B, byA®C, and anBR C we set

C12=9015(¢),
b13 =¢13(b)>
a3=¢,3(a).

Clearly ¢y, b, 3, and a,; are affiliated with AQ B®C. The reader should notice
some ambiguity hidden in this notation. If bpA® C then b, 5 is the corresponding
element affiliated with A® B® C, where Bis a C*-algebra that is determined by the
context.

We shall also use the @ and @© products introduced in [10]. If un B(K)® A and
v B(K)® B (where K is a finite-dimensional vector space and 4, B are C*-algebras)
then

df
udw = uq,03.
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Clearly u®@v n B(K)® A® B. Similarly if unB(K)® A and wyB(L)® A (where
K, L are finite-dimensional vector spaces and A is a C*-algebra) then

u®w £ ug3w,;s.
Clearly u®w n BIK®@®L)® A.
Dealing with linear mappings acting between tensor products of C*-algebras
one may use the diagram notation that generalizes that introduced in [11] (see
Appendix A for details).

1. First Encounter with Quantum Lorentz Group

Introducing a quantum group one has first to define the algebra of “continuous
functions” on it. In most cases this algebra is introduced in terms of generators and
commutation relations. Usually the generators are matrix elements of the
fundamental representation of the group and the relations reflect (specific for each
considered quantum group) desired properties of this representation. For example
in the case of S,U(2) the commutation relations mean that the fundamental
representation is unitary and irreducible and that the tensor square of this
representation contains the trivial representation.

We follow the same methodology introducing the quantum Lorentz group
S,L2,C), pe[—1,1]1\{0}. We start with the two-dimensional fundamental

representation a, B
= 1.1
" (v, 5> -

corresponding to the representation of classical Lorentz group acting on the space
of “undotted” spinors. Copying the classical case we shall assume that the tensor
square of w is equivalent to w°@w!, where w® is one-dimensional trivial
representation and dimw' =3. It means that there exist Ee B(C!, C*®C?) and
E'e B(C>®C?, C") such that

woOw)(E®N=E®I, (1.2)
(E'®N(wow)=E®I, (1.3)

and E'E +0 (E(1) is the (w@®w)-invariant vector generating the subspace related to
w?; E' is the (w@w)-invariant functional killing the three-dimensional subspace
related to w?).

Let w be the complex conjugate of w:

=i (1.4)

where j denotes an antilinear, multiplicative invertible mapping acting on the
algebra of all complex 2 x 2 matrices: M,(C) > m—m’ € M,(C). The representation
w corresponds to the representation of the classical Lorentz group acting on the
space of “dotted” spinors. Having in mind the classical case we shall assume that
w@®w is irreducible and that w®w is equivalent to w@®w. The latter means that
there exists an invertible linear mapping A€ B(C*®C?) such that

AN (WOW)=(wOW) (A®I). (1.5
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In order to specify E, E', j, A entering formulae (1.2)1.5) we shall assume that
§,L(2,©) contains S,U(2) as a subgroup and that w and w restricted to S,U(2)
coincide with the fundamental representation of S,U(2). This representation will
be denoted by w,. It means that relations (1.2)~(1.5) must be satisfied if we replace w
and w by w,.

Let (¢4, ¢,) be the canonical basis in €. Using the known properties of the
fundamental representation of S,U(2) (cf. [9]) we see that

zy, ZpY Z4, —pz
< ) =< ~lz 4 3) (1‘6)
Z3, Z4 —H "Z3, Z3

for any z,,z,,23,2z,€C and up to a numerical factor,
E(1)=¢, @&, — pe, ®¢,
E’'=E*=hermitian conjugate of E |, 1.7
A = idcz®cz + sEE*
where se@. In order to fix the value of s we notice that G=(E*®id®id)
(([d®A®id) (AR E) intertwines w@®w with itself. Therefore (we want w@w to be
irreducible) G is a multiple of identity,
(e2®¢,|Ge; ®ey) = — p(u?s* +(1+p?)s+1)=0

and s= —pu~ 2 (s= —1 leads to an equivalent theory).
We shall write relations (1.1)~(1.5) in an expanded form. By virtue of (1.4), (1.1),

and (1.6), ) 5*. -

W= L, o (1.8)
and taking into account (1.7) one can easily verify that (1.1)(1.5) are equivalent to
the following set of relations:

af=ppo, (1.9)
oy = uya, (1.10)
ad—puPy=1I, (1.11)
By=v8, (1.12)
Bo=udp, (1.13)
Y0 = udy, (1.14)
da—u 'py=I, (1.15)
Bo*=p~ta*f+p (1 —p?)y*s, (1.16)
yo¥ = po*y, (1.17)
da*=a*o, (1.18)
VB*=B*y, (1.19)

Op* = up*o — p(1 — p?)a*y, (1.20)
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Sy*=u"1y*4, (1.21)

ao* =a*a+ (1 —p?)y*y, (1.22)

BB* =p*p+(1—p?) [6*0 —o*a] — (1 — u)*y*y, (1.23)
WE=r*7, (1.24)

86% =56%6— (1 — pu?)y*y. (1.25)

This way we have found the complete list of relations defining the algebra of
continuous functions on the quantum Lorentz group. The construction of algebra
itself is however much more complicated than in the compact group case
(generators o, f§, 7, 6 are unbounded, whereas we are interested in the C*-algebra of
“continuous, vanishing at infinity functions”). This construction is carried out in
the forthcoming sections where also comultiplication, counit, coinverse and Haar
measure will be considered.

In the remaining part of this section we investigate formal properties of the set
of relations (1.9){1.25). In particular we discover a remarkable version of the
Iwasawa decomposition.

In many formulae in this paper, the square root of u is involved. In order to
avoid the double meaning possible in the case u<0 we shall use the following
convention:

If <0, then for any xelR,

#x — lﬂlxeinx .
Moreover we set
S,={p*:xeR}U{0}.

If >0 then S,=IR ..
It is well known that the group G =SL(2, C) admits the following decomposi-
tion: G=K - AN, where K and AN are subgroups of G:

K=S8U(2)={ueG:u—unitary},

0,

We shall show that a similar result holds for the quantum Lorentz group.

AN= {(“ a?1>:ae1R,a>0,nec}. (1.26)

Remark. In the classical case the solvable subgroup admits the further decomposi-
tion: AN = A - N, where A isabelian and N is a nilpotent subgroup of AN. However
we were not able to find any analog of this decomposition in the quantum case.

Let H be a Hilbert space and M,(B(H)) be the set of all 2 x 2 matrices with
entries belonging to B(H). An element we M,(B(H)) is said to be an §S,L(2, ©)-
matrix if the matrix elements of w

a, B
w= <% 5) (1.27)
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satisfy the relations (1.9)(1.25). Ifin addition w is unitary then we say that wisa K,
(or S,U(2))-matrix). A matrix w, is an §,U(2)-matrix if and only if

= ) az
where o, y.€ B(H) satisfy the relations
ofa,+yky. =1, (1.29)
a0k + ply¥y =1, (1.30)
VEVe=VVE s (1.31)
UY Ol =0V, s (1.32)
HyEo = oyy . (1.33)

If (1.28) is unitary then these relations are automatically satisfied.
Let w,e M,(B(H)) be a matrix with the left-lower-corner element equal to
zero. One can easily check that w, is an §,L(2, €)-matrix if and only if

a, n
Wd= <0, a_1>, (1.34)

where a,n € B(H) satisfy relations

aa*=a*a, (1.35)

an=pna, (1.36)

na*=u " ‘a*n, (1.37)
nn*=n*n+(1—u?)((a*a)~* —a*a). (1.38)

If in addition Sp a C S, (this condition replaces the inequality “a > 0" in (1.26)) then
we say that w, is an AN ,-matrix.

Remark. According to Manin a quantum group is just the set of all matrices whose
matrix elements satisfy assumed commutation relations [5]. E.g. S,U(2) is simply
the set of all S,U(2)-matrices. In our opinion this point of view, hardly accepted in
the compact case, is at the moment completely useless in the theory of non-
compact quantum groups (the theory presented in [4] is not yet generalized for
non-unital C*-algebras).

In the following propositions G is one of the following three symbols: S, L(2, C),
§,U(2), AN . Moreover we say that two operators p, g € B(H) doubly commute if
pq=qp and pg* =q*p.

Proposition 1.1. Let w' and w? be G-matrices. Assume that matrix elements of w*
doubly commute with matrix elements of w?. Then w'w? is a G-matrix.

Proof. The case G=S5,L(2,C) has to be verified by direct computations. The
computations become trivial if one remembers that (1.9)1.25) are equivalent to
(1.2)H1.5). We know that the product of unitaries is unitary and the S,U(2)-case
follows. The same is true for AN ,-case (the product of triangular matrices is a
triangular matrix and t,t,€8§, for t,,t,€S,). Q.E.D.
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As a simple conclusion we get immediately

Proposition 1.2. Let H' and H? be Hilbert spaces and w'eM (B(HY)),
w? e M,(B(H?)). Assume that w' and w? are G-matrices. Then w'QOw?
€ M,(B(H'® H?)) is a G-matrix.

In what follows we assume that |u| <1. We end this section with the following
version of Iwasawa decomposition.

Theorem 1.3. Let wbean S L2, ©)-matrix. Then there exists unique decomposition

th
of the form w=ww,, (1.39)

wherew, is an S,U(2)-matrix and w, is an AN ,-matrix. Matrix elements of w,doubly
commute with matrix elements of w,. Moreover the matrix elements of w, and w,
belong to the C*-algebra generated by matrix elements of w.

Proof. At first we notice that any S,L(2, C)-matrix is invertible: Using (1.9)+1.15)

one can easily check that 5 -1p
w1 < ’ H ) (1.40)
—HY «

is the inverse of (1.27).
Let p,q,r be elements of B(H) such that

P, 4q
Fyy — .
v <q*, r)

p=ara+y*y,
q=a*f+y*d,
r=p*p+0o%o,

where o, f,y, and ¢ are matrix elements of w (cf. (1.27)). Clearly p is positive
selfadjoint. Using relations (1.9)(1.25) one can verify that

It means that

ag=pqe, o*q=puqo*, (1.41)
Ya=uqy, y*q=uqy*, (1.42)
pa=ap, py=yp, (1.43)
Sp=pu~2yq+a*, (1.44)
Bp=p"aq—py*. (1.45)
We claim that
rp=I+p"2q*q, (1.46)
ap=p""pq. (1.47)

Indeed using (1.44), (1.45), and (1.15) we have
1p=B*Bp-+3*6p= F*(u™ag — ")+ 6%~ *1g + %)
= (0 — uBy)* +p~2(B*a+0*))g=I+u"2q*q.

Similarly one can prove (1.47).
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We shall also use the equality

K 2q*q—qq* =(1—p)(p*—1). (1.48)
The proof of this formula consists in complicated and boring computations. The
difference -, . 2

1orq*q—qq* —(1—p)(p™=1) (1.49)

is a linear combination of monomials of the form afa,a%a, (Where g, € {«, §,7, 5},
k=1,2,3,4). Using (1.16)—(1.25) one may convert (1.49) into a linear combination
of monomials of the form afa%asa,. Then using (1.9)(1.15) one easily verifies that
(1.49) vanishes. The details are left to the reader.

Let SQR,: R, —>C be the function such that [SQR,(¢)|=t"/> and SQR(t)€ S,
for any teR .. Clearly SQR, is continuous and

SOR, (1= 21) ="' SQR, (1 (1.50)

for all teR . If u>0 then SQR, coincides with the arithmetic square root.
Relation (1.46) shows that p is invertible. Let

a=SQR,(p). (1.51)

Then a is normal, Sp aCS, and
a*a=p. (1.52)
Using (1.43), (1.47) and taking into account (1.50) we obtain
I 059
qa=p taq, qa*=p la*q. (1.54)

According to (1.46) p is invertible, so is a. Let

n=a*"1lq. (1.55)
Using (1.54) and remembering that a is normal we see that (1.35)+1.37) hold.
Moreover, by virtue of (1.47) and (1.52), (1.38) is equivalent to (1.48). It means that

w, introduced by (1.34) is an AN ,-matrix.
It turns out that

P, 4
wiw,= <q*, r) =wHw. (1.56)
The only non-trivial part of this equation (the equality of matrix elements standing
in the right-lower corner) follows easily from (1.46) (cf. (1.52) and (1.47)).
Remembering that S,L(2, €)-matrices are invertible and using (1.56) we conclude
that the matrix

w.=ww; !

is unitary. Let o, fi,, 7., and J, be matrix elements of w,:

aC’ BC
wc— <’y€7 50)’
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Using (1.40) to compute w; ' we get

a,=aa !, (1.57)
Bc= —#—1“"+ﬁa,
y.=ya !, (1.58)

é,=—p yn+éa.

Multiplying both sides of (1.44) and (1.45) from the right by a* ~* and using (1.53)
and (1.54) we see that

.Bc= _Hy:‘,
5C=a:‘5

so that w, is of the form (1.28). According to the remark following formula (1.33), w,
is an §,U(2)-matrix. Moreover using definitions (1.57), (1.58), (1.55) and taking into
account (1.53), (1.54), (1.41), and (1.42) one can easily verify that a and n commute
with a,, y,, ¥, and y*.

To prove the uniqueness of the decomposition (1.39) we notice that due to the
unitarity of w, we have a*a=p and a*n=gq. Using the first formula, remembering
that ais normal (cf. (1.35)) and taking into account the spectral condition we obtain
(1.51). The second formula implies (1.55). It shows that w, is uniquely determined,
sois w,. Q.E.D.

2. Compact Quantum Groups

In the first part of this section we recall the basic results of the theory of compact
quantum groups [10] mainly in order to introduce convenient notation. In
particular we introduce the convolution product of “continuous functions” on a
compact quantum group. In the second part we describe a discrete quantum space
of all characters of any compact quantum group, implementing in this way the
program announced in [8].

Let G.=(A4,,u°) be a compact quantum group (i.e. compact matrix pseudo-
group in the sense of [10]), &7, be the dense *-subalgebra of A, consisting of all
smooth elements, @, be the comultiplication, . be the coinverse and e, be the
counit related to G.. The subscript “c” stands for “compact” and will distinguish G,
among other quantum groups considered in this paper.

In [10] the convolution products of the form a * & { * a,and { * £ (where ae <,
{, e ) were considered. In the present paper we also need the convolution
product of elements of .«Z,. Let h_ be the normalized Haar measure on G.. For any
ae o/, we consider linear functionals g,, ¢, € A, introduced by the formulae:

eub)=h(bx; (a)), (2.)
u(b)=h(bx(a)),

for any b € A,. Then the convolution product of two elements a, b € <, is defined by
the formula

axb=axg,=g,*b. 2.2)
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In order to check the second equality it is sufficient to assume that a and b are
matrix elements of irreducible representations and use the orthogonality relations
(cf. [10], Theorem 5.7). The simple computations are left to the reader.

Let us notice that the convolution product is associative:

(bxa)xE=b*(a*?), (2.3)
Ex(bxa)=(*b)*a,
(axb)*c=ax(b*c), (2.4)

for any a,b,ce o/, and e .o/, Indeed we have (b*a)*E=(g,*a)* E=g)*(ax &)
=bx*(ax{) and similarly *(b*a)=&*(b*g,)=(E*b)*g,=(£*b)*a. To prove
(2.4) we notice that according to (2.3) b * (¢, * ) =b * g, for any b € /.. Therefore

0a* $=0unx¢ (2.5)
for any ae o/, and £ e .. Inserting & =g, and using once more (2.2) we obtain
Qa * Qb=ga*b (26)

for any a, b € /.. Remembering that the convolution product of elements of .o, is
associative we get
Q@axb)rc = LQax(brc)

and (2.4) follows (the Haar measure restricted to ., is faithful).

Let ~
{u*:aeG.}

be the complete set of mutually non-equivalent irreducible unitary representations
of G.. The carrier Hilbert space of u* will be denoted by H*:u*e B(H*)® A,. We
know that dim H* < co. According to the general theory [10],

(d®P)u* = Ou?, 2.7)
(@, )u* = (u?*, (2.8)
(d®e.)u* =Ty 2.9)

Using the leg numbering notation one may write u},u?; instead of u*@u*.

Werecall ([10], Theorems 5.6 and 5.7) that in general the Haar measure on G, is
not central. Its modular properties (in the sense of Tomita theory) are described by
a holomorphic family (f,),.¢ of linear multiplicative functionals on 2. In
particular the orthogonality relations for the matrix elements of u* contain the
operator F,e B(H®) introduced by the formula

F,=(d® f;)u*. (2.10)
It is known that F, is positive invertible for any aeG..
Let
A;= Y®B(H%. (2.11)
aeG,

The canonical projections A;— B(H*) will be denoted by =,. In general the sum
(2.11) is infinite and A4, has no unity. In what follows, I, will denote unity of M(A4,).
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Let A, be the Pedersen ideal of A,:xe 4, if and only if the set
{ae G, :m(x)+0}

is finite. The above set will be called central support of x.
For any xe 4,, we set

ha(¥)=3, M,Tr(F; 'n(x)), (212)
aeG,

hig¥)="3, M, Tr(F,m,(x)), (213)
aeGe

where F, is given by (2.10), M,=Tr,F, and Tr, denotes the trace on B(H%)
(normalized in such a way that Tr,I,=dim H%). Clearly h,; and h,; are positive
linear functionals on A,,. We shall see later that h,; (h,g respectively) is left (right
respectively) invariant Haar measure on the dual of G..

The following object plays the central role in our paper:

u= You*. (2.14)
aeGe
Clearly u is a unitary element of the multiplier algebra M(4,® A4,). Relations
(2.7)12.9) mean that

([d®P)u=u,,u,5, (2.15)
(d®«)u=u*, (2.16)
(id®e)u=1,. (2.17)

Let us notice that ue 4,®,, (see Sect. 0 for the meaning of symbol ®,) so the left-
hand sides of (2.16) and (2.17) are well defined.

Now we shall briefly discuss the Fourier analysis on G.. For each ae 4, we
denote by h.a (ah, respectively) the linear functional on A4, such that (h.a) (b) = h(ab)
((ah,) (b) = h (ba) respectively) for any b € A,. Similarly for any x € 4,, we introduce
hyx, hgpx, xhy, xhsge Ay The Fourier transform of an element ae </, is
introduced by the formula

Fa=(d®@ha)u*. (2.18)

Using the orthogonality relations for the matrix elements of irreducible represen-
tations of G, one can easily check that

F o~ Ay
is a linear bijective mapping and that the inverse mapping
F i Ay o,

is given by the formula

F x=(hyx®id)u. (2.19)
We have the usual formulae:
Flaxb)=F (@) Z (b), (2.20)

(Fa)*=F(k(a*)), (2.21)
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for any a,be /. Relation (2.21) can be checked by direct computation: Using
(2.18) and (2.16) we have (Z a)* =(id®a*h,)u=(id®(a*h,) - x )u*. On the other
hand ((a*h)ox; ") (b)=(a*h,) (. (b)) =h(k; '(b)a*)=h(k[(a*)b) for any be s,
and (2.21) follows. To prove (2.20) we combine formulae (2.18) and (2.16). Taking
into account (2.1) we obtain

Fa=(1d®g,)u. (2.22)
Now (2.20) follows from (2.15) and (2.6). Moreover using (2.5) instead of (2.6) we get
F(ax8)=(Fa)(id®)u (2.23)

for any ae o/, and e &,. Let us also notice that
hy(F a)=e(a) (2.24)

for any ae /.. This formula follows immediately from (2.19) and (2.17).

Let G, be the quantum space (cf. [8]) related to the C*-algebra A,. Formula
(2.15) means that (G,,u) is a quantum family of characters of G.. The following
theorem shows that (G,,u) is the quantum space of all characters of G,:

Theorem 2.1. Let B be a C*-algebra and v be a unitary element of M(B® A,) such
that

([d®P)v=v,,0,3. (2.25)
Then there exists unique p € Mor(A4,, B) such that
v=(p®id)u. (2.26)
Proof. If (2.26) holds then for any ae o/,
(d®hav*=p(Fa), (2.27)
and for any x € A,
w(x)=F,0F '(x), (2.28)

h
where F,: of,—M(B)

is the linear mapping introduced by the formula: for any ae </,
ZFa=(1d®h.a)v*. (2.29)

The uniqueness of y is proved (4,, is dense in A4,). To prove the existence we
consider the linear mapping

y:A4—>M(B) (2.30)

introduced by the formula (2.28). We shall prove that this mapping is a *-algebra
homomorphism:

p(xy)=w(x)p(y), (2.31)
p(¥)=y(2)*, (2.32)

for any x,y,z€ Ay
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We know (h, is the Haar measure) that (id®h,)®(x)=h(x)I, for any xe A4..
Therefore for any ae A4,,

(d®id®h,) ([d®P,) [[®a)v*]=(1d®h) [(I®a)*]B ..

The right-hand side equals to #(a)®I.. To compute the left-hand side we use
multiplicativity of @ and formula (2.25). We get

([d®id®h,) (I Pa))v};]v* = F ()R],
and (v is unitary)
(1d®id®h) [(I@P(a)vi;]=(F(A®1)v.
Let be A.. Applying to both sides of the above equation (id®b*h,) we obtain
Zlaxb*h)=F(a)F(b)*.
Repeating the above computations with v replaced by u one obtains
F(a*b*h)=F(a)F (b)*.
Comparing the last two relations and taking into account (2.28) we see that

Pxy*)=yp(x)p()* (2.33)

for any x, y € Ao Any element z € A, is of the form z= xy*, where x, y € A4,. Then
z* =yx* and (2.32) follows immediately from (2.33). Moreover inserting in (2.33) y*
instead of y and using (2.32) (with z replaced by y) we obtain (2.31).

This way we proved that (2.30) is a homomorphism of *-algebras. Remember-
ing that A, is a union of an increasing sequence of C*-algebras we conclude that
(2.30) is continuous and can be extended to A4,

Let ae /.. Using definition (2.1) we see that

0¥(b) £ 0, (b*)=h(b*x. }(a)=h(x. '(a)*b)=h(k(a*)D)
for any be A,. Therefore (cf. (2.29))
(([d®e,)v)* =(1[d®eF)v* = F(k (a¥)).
On the other hand using (2.28), (2.32), (2.21) and once more (2.28) we obtain
(F)* =yp(F a)* =p((F a)*) = p(F (k(a*) = F (k(a*)).
Comparing the last two equalities we get
Z,a=(1d®e,)v (2.34)

for any ae «/..

Let xe B. Then x®I,e BQ A, and (x® 1 )ve B A, (vis a multiplier of BQA,).
Therefore for any ¢>0 there exist by,b,,...,byeB and ay,a,,...,aye L, (A, is
dense in 4,) such that

<E.

”(x@lc)v~ > b,®a,
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Then

U(x@]c)— (; b,,®a,,> v¥| <e

and (id®h, does not increase the norm)

”x— ; b, Z(a,)| <e.

It shows that B#,(,) is dense in B, so are By(A4,) (clearly By(A4,)> BZ (,)) and
w(A,)B. It means that v satisfies the nondegeneracy condition and v € Mor(A4,, B).

To end this proof we have to check (2.26). We know that (2.28) and
consequently (2.27) hold. Let

V=(p®id)u.
Then for any ae .,
Fa=%,a.

If the Haar measure h, were faithful then we could conclude that v=v" In the
general case using (2.34) we have

(([d®g,)v=(1d®g,)v".
Inserting a * ¢ (where & € A;) instead of a and taking into account (2.5) we obtain
(([d®g,)v(id®&)v=(1d® ) (I[d®E)v' =(1[d®e,)v(id®E)v'.
Remembering that (id®g,)v=%,(a) and that BZ (</,) is dense in B we have
(([d®&v=(d @)V
for any £€ A’ and relation v=v" follows. Q.E.D.

Remark. If B=CB(H) (the algebra of all compact operators acting on a Hilbert
space H) then v is (called) “strongly continuous” representation of G, acting on H.
In this case it follows immediately from Theorem 2.1 that v is an orthogonal direct
sum of finite-dimensional irreducible representations. If moreover ve B(H)® A4,
then v is (said to be) norm-continuous. In this case yp e Mor(4,, B(H)), the non-
degeneracy of p means that there exists a central projection Ee A, such that
y(E)=Ip 4, and only a finite number of nonequivalent irreducible representations
may enter into the decomposition of v.

3. Duals of Compact Quantum Groups

In this section we use the universal property (Theorem 2.1) to introduce the group
structure on the quantum space G,. We shall proceed according to the program
described in [8]. All notions related to the group structure on G, will be given in an
explicit way. It turns out that in the general case G, is not unimodular: The left
Haar measure is neither right invariant nor central.

At first we shall prove that the quantum space G, carries a natural group
structure. In the theorem formulated below, s,; denotes the flip automorphism of
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A,® A, and m, denotes the multiplication map defined on 4,®,4,:
Sa(x®y)=y®x, (3.1)
m(x@y)=xy, (3.2

for any x, y € A,. Moreover we shall consider a proper linear mapping k, acting on
Ago- We recall that for any such mapping x,®id,_ (x,®x,, ©,®id,,, id,,®x,
respectively) admits the natural extension to a linear mapping acting on 4,®,<7,
(4,®,4, respectively). We shall also use the leg numbering notation.

Theorem 3.1.
1. There exists unique @,€ Mor (A, A,® A,) such that
(P,@id)u=u,3u 5. (3.3
This morphism is coassociative, i.e.
(2,®1id) Py =(1d® P, P, (3.4)
2. There exists unique e;e Mor(A,, ©) (i.e. e, is a *-character) such that
(e,®id)u=1I,. ' (3.5)
e, and @, are related by the equality
(e,®id)P,=(1d®e,) P, =id. (3.6)
3. There exists unique linear antimultiplicative bijective proper mapping
Kq: Ago— Ao 3.7
such that
(k,®id)u*=u. (3.8)
Moreover for any xe A, we have
Kelrex*)¥)=x, 3.9
D (kX)) = Sk, @K g) (%), (3.10)
my(k,®1d) Dy(x) =ey(x)1 4, (3.11)
m(id®x,) P (x)=ey(x)],. (3.12)

In what follows, @, (e;, k, respectively) will be called the comultiplication
(counit, coinverse respectively) related to G,.

Proof. To prove the existence and uniqueness of @, we set in Theorem 2.1,
B=A,®A, and v=u,3u,5. It is sufficient to verify condition (2.25).
Using multiplicativity of @, and (2.15) we have

(1d® P )v =134 3U14=Up3U 3Us4l14="0V12013-

Setting @, =1 we see that (3.3) coincides with (2.26). In the same way one can prove
the existence and uniqueness of e,. In this case we take B=C and v=1,. The reader
can easily notice that e, coincides with 7, where 0 € G, is the trivial representation
of G..
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To show formulae (3.4) and (3.6) we notice that according to (3.3) and (3.5),

([(2,®1d) P, ] ®id)u=134Uz4U1 4,
([d®P) P, ]®id)u=us,us4u14,
([(e,®id) 9,1 @id)u=u,
([(d®e,) P ]@id)u=u,
and use the uniqueness statement in Theorem 2.1.

The uniqueness of (3.7) can be easily established. Indeed using (3.8) and (2.18)
we have

K(F a)=(1d®h.a)u

for any ae «Z,. To prove the existence we have to go deeper into the representation
theory of compact quantum groups ([10], [11]).

It is known that for any representation a € G, there exists a complex conjugate
representation a € G,. The relation between « and & is described by an antilinear
invertible mapping

jo:H*—>H*,

This mapping induces the antilinear multiplicative mapping
B(H*)>m—m’ e B(H?) (3.13)

introduced by the formula m’=j,mj, *. It is also known that j,j,=Igy«, and
consequently for any me B(H?),

(m'Y=m. (3.14)
With this notation we have (cf. [11] p. 55, last formula)
U= (u")®*, (3.15)

For any xe A,, we set

k)= SO ).

aeGe

According to this definition x,(x) is an element of A4,, such that
(X)) = (mox*))’ (3.16)

for any a€G.. Clearly «, is linear (as a composition of two antilinear mappings)

and antimultiplicative (hermitian conjugation is antimultiplicative and (3.13) is

multiplicative). Using (3.14) one can easily verify (3.9). It shows that «, is bijective.
We shall prove (3.8). Using (3.16) one can easily check that

(mz 0 6,@id)u* = Y mi@u¥,

where m; and u; are elements of B(H*) and 7, respectively such that  m,®@u;=u"
Taking into account (3.15) we obtain

(75 0 K, ®id)u* =1v* = (7, ®id)u

for any ae G, and (3.8) follows.
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We shall prove (3.10). Using (3.8), (3.3), and (3.1) we have
([52dka® )P0 ki ' 1@id)u=([54(rc,® %) D] @id)u*
= ([s2d(ka®@xa)1®id)ut3uss = (5,4 @id)uy 3155
=Uy3Uy3=(P;®@id)u.

Therefore s,(x,®K,)D,°k; ' =D, and (3.10) follows. In a similar way one can
prove (3.11) and (3.12). Using (3.3), (3.8), (3.2), unitarity of u and (3.5) we have

([m,(x,®id) @, ] ®@id)u* =([m,(x,®id)] ®id)uf;u3;
=(m;@id)u,u;=uu*=1,01.=1,8(e,®@id)u*,

([m(id®x,) P,]@id)u* =([m(id®x,)]®id)ut;u3;
=(m,@id)utsuy; =u*u=1,Q1.=1,8(e,®id)u*

and (3.11) and (3.12) follow. Q.E.D.

Applying e, to both sides of (2.18) and using (3.5) we obtain the dual version of
(2.24):

e F a)=hJa) (3.17)
for any ae «.,.

G, endowed with the comultiplication, counit and coinverse introduced in
Theorem 3.1 is a non-compact discrete quantum group. It is the Pontryagin dual
of G, [8]. The essence of the duality is contained in the unitary u. In order to stress
the properties (2.15) and (3.3), we say that u is a (G4, G.)-bicharacter. In a more
standard approach (cf. [3]) the (G,, G,) duality is described by a bilinear form < , >
defined on A4, x . The relation of this form with the bicharacter u is the following:

One can easily check that any element xy A, is of the form x =(id® &)u, where
¢ e o/, is uniquely determined. Then

(x,ay £ &)

for any ae o/,

Now we shall show that h,; and h,g introduced by (2.12) and (2.13) are left and
right respectively Haar measures on G,.

For any a, §,y€ G, we set

o= (1, ®@75) Pal par) - (3.18)
Clearly 1!* is a (non-unital in general) *-algebra homomorphism
¥ B(H)—»B(H'®@H").
It follows immediately from (2.14) and (3.3) that

uw*@ui*= yO(’@id)u*. (3.19)

aeGe
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Proposition 3.2. For any a, B,y the following conditions are equivalent;

(i) 7 is an embedding,
(i) «Cp®y,
(iii) yCp®ua,
(iv) pca®y.

Proof. Taking into account the orthogonality relations for matrix elements of
irreducible representations we see that « C f®y if and only if there exist matrix
elements a, b, ¢ of u®, u?, and u” respectively such that h(a*bc)+0. On the other
hand by virtue of (3.19) t2# +0 if and only if h(c*b*a) =0 for some a, b, ¢ as above.
We also know that 72 +0 if and only if z?# is an embedding (B(H*) is simple). The
equivalence (i)<>(ii) is proved.

We shall use notation of [11]. If aCS®y then there exists non-zero
seMor(o, f®y). In this case I;@seMor(f®a, fRP®y) and
(t®1,)(I3®s)e Mor(B®a, y), where te Mor(B®p, trivial representation) is given
by the formula

k@D =(jg "(k)l)us

for any ke H? and le H?. Using this formula one can easily check that
(t®1,)(I;®s)+0. Remembering that y is irreducible we see that yC f®a and the
implication (ii) = (iii) is proved. In the same way one checks implications
(iii) = (ii) and (ii) < (iv). Q.E.D.

It follows immediately from Proposition 3.2 that for any a, fe G, we have
87=0 and 12’ =0 for almost all ye G, (“almost all” means “all except a finite
number of”). Taking into account (3.18) we see that for any x€ 4,5 and any fe G,

(nﬂ®ny) Qd(x) = 0 )
(1, ®7p) Pylx) =0

for almost all y € G,. Due to this property we may apply id®h,;, id®hg, hy ®id,
h;r®id to D4(x) (for x € Ayp).

Let F be the element affiliated to A, such that n(F)=F, and let (f,),.¢ be the
family of linear multiplicative functionals on <7, describing the modular properties
of h,. Using Theorem 5.6 of [10] one can verify that for any te T,

F'=(1d® f)u (3.20)
=1d® f_ )u*. (3.21)
We shall prove

Theorem 3.3. For any x€ A,y we have

(1[d®hyr) Py(x)=hyr(x) 14, (3.22)
(har®1d) @ ,(x)=har(x) F? , (3.23)
((d®@hyg) Py(x)=hyr(x)F 2, (3.24)

(hyr®id) @y(x)=hyg(x)1,- (3.25)
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Proof. For any xe A;, and any te R we set
hx)= % M, Tr(Fim(x)).

aeGe

Then hy,=h; ' and hyx=h}. We claim that for any ae o/,
hy(Fa)=f,.1(a). (3.26)
Indeed using (2.12), (3.20), (2.23), and (2.24) we have
(F a)=hy(Fa)F' " )=hy(F(axfrr)=eda*fis1)=fir1(a).

Let { be a proper linear functional on 4, ({(x) depends only on finite number of
components of xe 4,) and ae /.. Then

D(F a)= D (Id®h.a)u* =(1dRidR@h.a)ut;u%;. (3.27)
Applying to both sides {®id we obtain
(®id)P(F a) = F (a((®id)u*).

Using (3.26), remembering that f, are multiplicative and taking into account (3.21)
we have

(@) P(Fa)=hFa){(F~'1).
This way we proved that
(IR Dy(x)=Hyx)F~*~1 (3.28)

for any x € A,,. Inserting t = 4+ 1 we obtain (3.22) and (3.24). In order to prove (3.23)
and (3.25) we proceed in a similar way. Applying (id®{) to both sides of (3.27) we
get

(d®() DA F a)=(id®id@bh.a)u*,

where b=({®id)u*. Trying to rewrite the right-hand side of this equation as a
Fourier transform of some element of <7, we use the modular properties of h,: bh,
=hb', where b'=f_, *b*f_ | =(F{F®id)u*. Therefore we have

((d®{) (¥ a) = F ([(FIF @id)u*]a), (3.29)
and instead of (3.28) we obtain
(hy®id) @ (x)=hy(x)F ~**!
for any x € A,,. Inserting t= +1 we obtain (3.23) and (3.25). Q.E.D.

Remark. Relation (3.22) ((3.25) respectively) shows that hy; is left (kg is right
respectively) Haar measure on G,. Let us notice that h;; is not invariant under
right shifts: formula (3.23) shows that the corresponding modular function
should be identified with F2. We also have the following nice formula:

(X)) = hyg(x)

for any x € A,,. The proof is left to the reader.
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Hint: Show that
K(Fa)=F(k(f1 *axf1))

for any ae o,
Applying e, to both sides of (3.29) and using (3.6) and (3.17) we get

{(Fa)=(FIF®h) [u*1,Qa)].

Let x € A;,. Inserting in the above relation hy; x =F ~ 'xFh,; instead of { and using
(2.18) and (2.13) we obtain

(har ®ho) [(x®@a)u*] = (har @) [u*(x®a)].

Clearly x®a may be replaced by any element of the Pedersen ideal of 4,®A4..
Inserting u(x®a) instead of x®a we get

(ha ®h) [u(x®@a)u*] = (hir ®h,) (x®a) (3.30)

for any xe A,, and ae ..

At the end of this section we shall show that there exists a natural 1—1
correspondence between representations of G, acting on a finite-dimensional
vector space K and homomorphisms of </, into B(K).

Let K be a finite-dimensional complex vector space and

v B(K)®A,.
Then v, is of the form

v =Y Mex;, (3.31)

where m!,m?,...,m%™®* is a basis in B(K) and x4, (i=1,2,...(dimK)?). We
know that each x; is of the form

x;=({d®&)u*, (3.32)
where &€ .47, For any ae o/, we set
ta)=Y Llaym'. (3.33)

Then & is a linear mapping from <7, into B(K). Clearly any linear mapping from .7,
into B(K)is of this form and corresponding v,#B(K)® A4, is uniquely determined.

Theorem 3.4. Let K, v,, and £ be as above. Then the following two conditions are
equivalent

1. v, is a nondegenerate representation of G, acting on K, i.e.
(1d®ey) v,=1Ip, (3.34)

and
([d®P)v;=104120413 - (3.35)

2. & is an algebra homomorphism acting from o, into B(K), i.e.
é(lc) = IB(K) (3~36)
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and
&(ab)=¢(a)¢(b) (3.37)
for any a,be oA,

Proof. It follows immediately from (3.32) and (3.5) that e (x;)=¢&,I,). Therefore
([d®ev, =Y mE(I)=¢E(I). Tt shows that formulae (3.34) and (3.36) are
equivalent.

Let ¢ (i, j,k=1,2,...(dim K)?) be structure constants of B(K):

mm'=Y cim*.
k
Then (3.35) is equivalent to the relation
Bx)= ¥, cix,®x;, (3.38)
i,

whereas (3.37) is equivalent to the relation
Eab)= Y, cilé(a) b). (3.39)
L,J

Assume that (3.39) holds. Then using (3.32) and (3.3) we have
Py(x,)=(d@id®@&Yutus; = ¥ /[(d®E) ]S [(d®E) (u*)]
LJ
=3 cx,®x;
LJ
and (3.38) is proved. Conversely if (3.38) holds then repeating the above

computations we show that
([d®id®@&Yutsuis= Y, /[(d®E)u*]Q(d®E)u*],
L]

and (3.39) follows. Q.E.D.

Remark. One can easily check that the correspondence v;«>¢ is natural in the
following sense: If v} and v2 are non-degenerate representations of D, acting on
finite-dimensional complex vector spaces K ; and K, and &, £2 are corresponding
algebra homomorphisms then the set of intertwining operators

{te B(K,K,): (t®1)v; =vi(t®1,)}
coincides with
{te B(K,,K,): t'(a)=E*(a)t for all ae o,} .

4. Double Groups

In this section we construct a quantum group G that contains G, and G, as
subgroups. As a quantum space, G is homeomorphic to the cartesian product of G,
and G, however as far as the group structure is considered, G, and G, are placed in
G in a nontrivial manner.



Quantum Deformation of Lorentz Group 405

In the next section we shall see that in the case G,=S,U(2) the group G should
be identified with the quantum Lorentz group.

To understand better the content of this section we consider the classical case.
Let G be a locally compact topological group and G,, G, be closed subgroups of G.
Assume that the mappings

¢:G.xGy3(x,y)—x-yeG,
:G;xG.3(),x)>y-xeG
are homeomorphisms. Let 6, =¢ ' o . Then
0,:GyxG~G . xGy 4.1)
is a homeomorphism. It turns out that o, cannot be arbitrary. It must be
compatible with the multiplication rules in G, and G,. In particular denoting by
e« €G, and e, € G, the neutral elements we have
O €y X)=(X, €44) 5 4.2)
04(Vs €cs) =(cs> Y) (4.3)

for any xe G.and y € G;. Moreover if ., and ®,, denote the multiplications in G,
and G, respectively:

DG, X G, 3(xy,%,)=x,%,€G,,
Dy Gy x Gy3(y1, ¥2) V1)1 € Gy,
then one can easily check that
o, (idx®,)=(P,, xid)(id x 6,) (0, xid), 4.4)
04 (D, xid)=(id x ®,,) (0, xid)(id x 7). 4.5)
Conversely assume that locally compact topological groups G, and G, and a
homeomorphism (4.1) satisfying conditions (4.2){4.5) are given. Then setting
(X1, 71) (X2, Y2) =(X1X2, V1¥2) » (4.6)

where x,x, € G, y1,, € Ggand (x5, y}) =0,(y;, X,), we introduce a multiplication
(binary operation) on G=G,x G, and G endowed with this multiplication is a
locally compact topological group. The neutral element e,, of G and the inverse of
an element of G are given by the formulae

€y = (e*a e*d) > 4.7)
(o)) t=o,y7hxTY). (4.8)

We say that the group G is the twisted product of G, and G,.

In this section we show that the twisted product construction can be done for
quantum groups. We restrict ourselves to the case when G, is a compact quantum
group and G, is the Pontriagin dual of G,. In this case there exists a natural
homeomorphism (4.1). We shall use the notation introduced in Sects. 2 and 3.

Let

0 A®A;~>A,RA,
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be the *-algebra isomorphism introduced by the formula:
o(@a®x)=u(x@a)u* 4.9

for any ae A, and xe A4,.
It follows immediately from (2.17) and (3.5) that

(e,®id)o=i1d®e,, (4.10)

(i[d®e)o=e.®id. 4.11)

These formulae correspond to (4.2) and (4.3). We shall prove (cf. (4.4) and (4.5)) that
(d®o0) (c®id)([d® P,)=(P,®id)a, 4.12)

(e®id) (1[d®0)(?.®id)=(1d® P, )0 . (4.13)

Assume that ae A, and x,, x, € A,. Using definition (4.9) we obtain
(i[d®0) (0®id) (a®x; ®x,)=(1d®0)u;,(x; ®a®x,)ut,
=Uy3Uy3(X X, ®a)uf;us;
=[(2,®id)u] (x; ®x,®a) [(P,®id)u*].
Therefore for any ae A, and x e A, we have
(1d®0) (0®id) (a® P (x)) = [(P,®1d)u] (P4(x)®a) [(P,®id)u*)]
=(2,®id) [u(x®@a)u*] =(?,®id)s(a®x)
and (4.12) follows. Similarly we prove (4.13). For any a,,a, € A, and x€ A, we have
(0®id) (id®0) (a; ®a, ®x) = (0 @id)uz;(a; ®x®az)ui;
=uy,U13(x®@a; @ay)utsut,
=[d®2,) )] (x®a;®a,) [(([dQD)u].
Therefore for any ae A, and xe A, we have
(6®id) (id®0) (P(2)®x)=[([d®P)u] (xR P () [(dR P )u*]
=1d®?,) [u(x®@a)u*]=(1dR P )o(a®x)

and (4.13) follows.
According to (2.16) and (3.8)

(k,QKk)Ju=u,
(kP )u*=u*.
Remembering that x;®x, is antimultiplicative we obtain
084(Kg®K )0 =5 (kK ®K,), (4.14)

where s;,: 4,®A4,»A.®A, is the flip automorphism (s,(y®x)=x®y for any
x€A, and ye A, and s, =sz".
Combining (4.9) and (3.30) we see that

(hy®h)o=h.®hg. (4.15)
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Now we shall introduce the basic notions related to the twisted product G=G,
x G, The C*-algebra of “all continuous, vanishing at infinity functions on G” is
introduced by the formula

A=A,®A4,.

The Pedersen ideal in A will be denoted by A, One can easily check that
Ao=A.®,,440- We shall also use the algebra of “all smooth functions with
compact support”

o =42/c®algAdo .

o/ is dense in A. The comultiplication, counit and coinverse related to G are
introduced by the formulae (cf. (4.6)-(4.8)):

P=(d®o®id)(2.89,), (4.16)
e=e.Qe,, 4.17)
K=38,(k,RK.)0. (4.18)

Clearly @ € Mor(A4, A® A) whereas e is a proper linear multiplicative *-functional
defined on & and « is a proper linear antimultiplicative bijective mapping acting
on o ._Moreover remembering that @(o/)C A/ ®,,. one can verify that
®(a)e 4@, for any ae o/. The terminology used above is justified by the
following

Theorem 4.1. The comultiplication @, counit e and coinverse k introduced by
(4.16)+4.18) satisfy the following equalities:

(d®RP)P=(PRid)D, 4.19)
and for any ae </ :
(e®id)P(a)=(id®e)P(a)=a, (4.20)
k(x(a*)*)=a, (4.21)
m(x®id)®(a)=e(a)l 4.22)
m(id®x)d(a)=e(a)l, (4.23)
D(k(a))=s(k@kK)P(a). (4.24)

In the above relations id denotes the identity map actingon A, s: AQA—>AR® A is
the flip automorphism: s(a®b)=b®a (a,be A) and m: A®,4A3aQ®b—abnA is the
multiplication map. The unity of M(4) is denoted by I.

Proof. Using (4.7) and taking into account the coassociativity of ¢, and &, one can
easily check that

([d®P)P=(id ®yR®id,) (P.RP,),
(P®id)?=(id @y ®id ) (P.® P,),
where

Y =(1[d®id®0) ([dR®P.®id) (¢®id) (([d®D,) ,
¥ =(0c®id®id) ([d® ?,®id) (d® ) (6,&id).
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On the other hand using (4.12) and (4.13) we obtain
p=(0®0)(d®o®id)(2.8 )=y’

and (4.19) follows. In the similar way using the relations (3.6), (3.9)-(3.12),
corresponding relations for G, and (4.10)~4.14) one can prove (4.20)—(4.23). In fact
(4.19)-(4.23) become trivial when one uses the diagram notation (see Appendix A
for details). Equation (4.24) follows from (4.20)14.23) (cf. [1]). Q.E.D.

Theorem 4.1 shows that the noncommutative space G is provided with a group
structure. We say that G is the double group built over G.,.

Let h=h®h,y.

Clearly h is a positive functional defined on the Pedersen ideal 4, of A. Using the
results of Sect. 3 one can easily show that (h®id) and (id ® k) can be applied to @(a)
for any ae A,. We have

Theorem 4.2. h is left and right Haar measure: for any a€ A,
(h®@id)®(a)=h(a)l,
(id®h)®(a)=h(a)I .

Proof. The above relations follow easily from (4.15), (4.12), (4.13) and invariance
properties of h,, h;z and hy (cf. (3.22) and (3.25)). See Appendix A for the
details. Q.E.D.

Theorem 4.2 shows in particular that the quantum group G is unimodular. In
the present paper we do not touch the uniqueness of the Haar measures on non-
compact quantum groups. In our opinion the uniqueness up to a positive factor
(and the existence) of the left and right Haar measures will be proved within the
future general theory of quantum groups.

In the remaining part of this section we investigate the structure of finite-
dimensional representations of G. We describe the remarkable 1—1 natural
correspondence between the set of representations of G and the set of bicovariant
bimodules [12] over G..

In order to simplify the exposition we shall assume that the counit e, defined
originally on «/, admits the continuous extension to the whole A. Then
e.€ Mor(A4,, ©). This is the case for G,=S,U(N).

Let p.=id, ®e,, (4.25)
pa=e.®id,,. (4.26)

Clearly the morphisms p.e Mor(4, A, and p,e Mor (4, 4,) correspond to embed-
dings G,— G and G,— G respectively. The following theorem shows that G.and G,
are subgroups of G:

Theorem 4.3. We have
¢cpc=(pc®pc)¢’ dedz(pd®pd)¢s
ep.=e, €ipg=¢,

KePe=DPcK KaPa=PaK -
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Proof. The above relations follow immediately from definitions (4.16)—+4.18) and
formulae (4.10) and (4.11). Q.E.D.

It follows immediately from (3.6), the corresponding relation for G, and
definition (4.16) that
(p.®p)P=id, (4.27)

(P®p)P=0. (4.28)
We recall that v is a representation of G acting on a finite-dimensional complex
vector space K if vyB(K)® A and
(id®P)r=v0v. 4.29)
In the similar way one defines representations of G, (cf. [10]) and G,.
Theorem 4.4. Let K be a finite-dimensional complex vector space, vnB(K)® A,
v,=({d®p.)v and v,=(Id®p,)v. Assume that v is a representation of G. Then v, and
v, are representations of G, and G, respectively,
v=0,00, (4.30)
and
1,00, =(1d®0) (1. Ov,) . (4.31)

Conversely if v, and v, are representations of G, and G, respectively acting on K
satisfying relation (4.31) then v introduced by (4.30) is a representation of G,
v.=(d®p,)v and v;=(Id@p,)v.

Proof. If v is a representation of G then using Theorem 4.3 we see that v, and v, are
representations of G, and G, respectively. Moreover applying (id®p.®p,) to both
sides of (4.29) and using (4.27) we obtain (4.30). Similarly applying (id®p,®p.),
using (4.28) and (4.30) we get (4.31).

Assume now that v,e B(K)® 4. and v,#B(K)® A4, are representations of G, and
G, respectively and that relation (4.31) holds. Applying (id®®) to both sides of
(4.30) we obtain (cf. (4.16))

([d®P)r=(d®id ,, ®o®id ;) (AR PR P,) (v.Dv,)
=(id®id, ®o®id,,) (v.Ov.Ov,Ov,)
=0,00;00,Qv,=v@OUv.

In the next to the last step we used (4.31). It shows that v is a representation of G.
The remaining relations are obvious. Q.E.D.

In practical cases (see the next section) the compatibility (4.31) may be difficult
to prove. We shall formulate this condition in a form easy to verify. Let & be a
linear mapping from 7, into B(K). For any ae ./, we set

Era=y m@(¢*a),
axé=Yy m@@x¢),
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where m'e B(K) and &€/, are related to ¢ by formula (3.33). Clearly & *a,
a*(eB(K)® L,

Proposition 4.5. Let v, and v, be representations of G, and G, acting on K and & be
the linear multiplicative mapping from of, into B(K) related to v, via formulae
(3.31)3.33).

Then condition (4.31) holds if and only if

(a*Qv.=v(*a) (4.32)
for any ae ..

Remark. Verifying (4.32) it is sufficient (due to the multiplicativity of £) to check it
for generators of the algebra «7,. For example if G, =S,U(2) then it is sufficient to
consider a=ua, y, o*, and y*.

Proof. Let { be any proper linear functional on A, and
a=((®id)u*.

Clearly ae &, and any element of ., is of this form. Using formulae (2.15) and
(3.31)+3.33) one can easily check that (leg numbering notation!)

Exa=(1d®{®id)v, ,u%;, 4.33)
a*{=(1d®{®id)uf;v,;, . (4.34)

Assume that (4.31) holds. Taking into account (4.9) we have

—(1 — *
V412013 = (1A ®0) (Uc120413) =U230,13V412U33 -
Therefore

* — *
U3304120c13 =Uc13Va12U323 -

Applying (id®{®id) to both sides of the above relation and taking into
account (4.33) and (4.34) we obtain (4.32). Conversely if (4.32) holds then reading
the above formulae in reverse order we get (4.31). Q.E.D.

The remaining part of this section heavily depends on concepts and results
contained in [12]. We shall use letters “DC” (means Differential Calculus) to
indicate references to formulae and theorems contained in that paper.

Theorem 4.6. Let v be a finite-dimensional representation of G. Then there exists a
bicovariant of,-bimodule (I', @ D) such that

1° The space I of left-invariant elements of I' coincides with the carrier space of
v.
2° For any ae A, and w€ ,,, I we have

an=} (Mmw) (& *a), (4.35)

o=y (Wo)v,;, (4.36)
J
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where m', w € B(;,,I'), £;€ 4, and v ;€ o, are related to v in the following way:

(ld®pc)v= Z nj®vcj’
7 4.37)
(d®p)o=Y meGIdQE&)u*.

Any bicovariant of.-bimodule such that the space of left-invariant elements
is finite-dimensional arises in this way. The correspondence

representations <> bimodules
is bijective and natural in the following sense:

1° If v' and v* are finite-dimensional representations of G and I'* and T'* are
corresponding bimodules then any operator intertwining v' and v* uniquely
extends to a bicovariant bimodule homomorphism TI'*—TI?. Conversely any
bicovariant bimodule homomorphism T''—I? restricted to left-invariant
elements intertwines v* with v

2° Tensor product of representations corresponds to the tensor product of
corresponding bimodules.

3° Complex conjugate representation corresponds to the complex conjugate
bimodule.

Proof. We will indicate the main points only. Let 1 5, ..., Wy be the basis in ;[
and (m.)) and (nj,) be matrices corresponding to m' and n':

miw,= Z My,

nfw, Z nkza’k

We set )
Ja=Lm&iox,), (4.38)

Ry = Z NaVcj»
J

k,1=1,2,...,N. Then (4.35) and (4.36) coincides with (DC 2.14) and (DC 2.35). One
can check that the assumptions of Theorem DC 2.5 are satisfied: (DC 2.15) and
(DC 2.16) follow from the multiplicativity of &, (DC 2.36) and (DC 2.37) mean that
(4.37) is a representation of G, and (DC 2.39) is equivalent to (4.32). It proves the
existence of the desired bimodule. The remaining details are left to the
reader. Q.E.D.

Remark. In May 1987 after a seminar in IHES (Bures sur Yvette) devoted to
differential calculi on quantum groups Connes conjectured that bicovariant
bimodules over the algebra of “smooth functions” on a quantum group are (in
natural way) labeled by representations of another quantum group. He proposed
the name “structure group” for the latter group. We tested this idea for S,U(2)
group arriving in the summer of 1987 to the commutation relations (1.9)(1.25).
Next we found the complete set of irreducible representations for these relations.
Analysing the representations we discovered in March 1989 the Iwasawa
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decomposition. This result suggested that the structure group is a combination of
the original group and its Pontryagin dual. At this moment we started to analyse
the formula (DC 2.39) which seems to be the most important relation of the theory
of bicovariant bimodules. Unfortunately the indexes labeling the functionals f;; in
this formula are rather related to the basis contragradient to (w,) then to (w,) itself.
This is why the position of summation indexes in (DC 2.39) is strange. Using
consequently the indexes related to (w,) (cf. (4.16) where the order of indexes k, [ on
the right-hand side is opposite to that on the left one) we arrived at the
compatibility condition (4.31) with ¢ introduced by (4.9). The definition (4.9) is in
turn the key formula in the present paper.

In our analysis of finite-dimensional representations of G we assumed that e, is
norm continuous. If this is not the case then in Theorem 4.4 and 4.6 one has to
assume additionally that the matrix elements of v belong to .«7.

5. Double Group Built over S,U(2)

In this section we apply the general theory developed in Sects. 2, 3, 4 to the
quantum group S,U(2) introduced in [9]. The Pontryagin dual and the double
group will be described in detail. In particular we shall construct a two-
dimensional representation w of the double group obeying all the properties
discussed in Sect. 1. In a certain sense (see Theorem 5.4) the algebra of all
continuous vanishing at infinity functions on the double group is generated by
matrix elements of w. These results allow us to identify the double group built over
§,U(2) with the quantum Lorentz group introduced in Sect. 1.

In the remaining part of the paper G.=S,U(2), G, is the Pontryagin dual of
§,U(2) and G denotes the corresponding double group. Consequently 4., @, %, ...
(Ag Py Ky, ..., and A, D, k, ... respectively) will denote the objects related to S,U(2)
(the Pontryagin dual of S,U(2) and the double group built over S,U(2)
respectively). We shall assume that |u|<1 and p=0.

Let &: o/, —M,(C) be the linear multiplicative mapping such that

vz 0 0, 0
é(ac)=<u0’ #—1/2>, é(y:‘)=<0, 0>5

_ (0 #-1) o (K70
é('}’c)—<0’ 0 )’ 5(ac)_< 0’ 'u1/2>‘

To prove the existence of £ it is sufficient to check that the matrices standing on the
right-hand sides of (5.1) satisfy the commutation relations characteristic for
generators of «/,. The easy exercise is left to the reader.

Let &;; (i,j=1,2) be linear functionals on </, such that

f(x)=(§i1{x))i,j=1.2
for any xe &/, According to (5.1),
Enla)=p'?,  EH)=p"12, L= -1), } : (5.2)
Eppa)=p~12,  EneH=p"?, EuD=1, D=1
All other &(x) (i,j=1,2; x=1,a,, 7, &F, p¥) vanish.

(5.1)



Quantum Deformation of Lorentz Group 413
The structure of the Pontryagin dual of §,U(2) (for |u| < 1) is described in detail
by the following

Theorem 5.1. Let w, be the representation of G, corresponding to £ via formulae
(3.31)3.33). Then

o a, n
1 W= (0 a_1>, (5.3)

where a,nnA, satisfy relations (1.35)1.38) and SpaCs$,.
2° The comultiplication, counit and coinverse act in the following way:

P (a)=a®a, D (n)=a@n+n®a !, (5.9
efa)=1, e n)=0, (5.5)
kf@=a""', xm=-p"'n, (5.6)
Kfa*)=@ ¥, K n*)=—pun*. (5.7

3° Elements a and n generate A, in the following sense:

For any bounded operators a, ii acting on a Hilbert space H such that a is
invertible, SpaCS, and the relations (1.35)1.38) with a,n replaced by 4,7 are
satisfied there exists unique nondegenerate representation n of A, acting on H such
that d=mn(a) and fi=rn(n).

Proof. Ad 1°. In the considered case the decompositions (2.11) and (2.14) assume
the following form:

A;=Y.° B(H"),
u=Yy%u,

where u° is the irreducible (2s+1)-dimensional unitary representation of
G.=S,U(2) acting on the Hilbert space H® and s runs over the set of all non-
negative integers and half-integers. In what follows =, denotes the canonical
projection A,— B(H®). Let

w;= Y. wj
be the corresponding decomposition of w,: each wi=(id®@mn)w, is a 2 x 2-matrix
with entries belonging to B(H*). According to (3.31)~3.33)
W§=((id®fij)us*)i,j=1,2-

Statement 1° of the theorem asserts that all wi (s=0,1/2,1,...) are AN,-
matrices. We shall use induction with respect to s.
For s=0 the statement is trivial. For s=1/2, remembering that

1/2 __ L9 _/"y:‘
u = % ’
y(.‘ ’ aC
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and using (5.2) we obtain

(o, i) (v, o)
0, 1/2 | —1/21_ 2’ 0
Wiz = u [ Ve T (58)

0, 0 p?, 0
0, 0/)° 0, p-'2

and elementary computations show that w;/? is an AN ,-matrix.

Assume now that wjis an AN ,-matrix. We know that w, is a representation of
(id®¢d)wd = W,,@Wd .

Applying (id®m,,,®n,) to both sides of this relation we get

G,

[d®(n,,®@1) DI wa=ws> Owj, (59
and using Proposition 1.2 we see that
[[d®(r, /2 ®ng) P, lw,

is an AN, -matrix. According to Proposition 3.2 (n,,®n,) o ®, restricted to
B(H**'?) is an embedding (spin (s +1/2) representation of S,U(2) is contained in
the tensor product of spin 1/2 and spin s representations). Therefore wj* /2 is an
AN ,-matrix and the proof of Statement 1° is complete.

Ad 2°. (5.3) is a representation of G, and relations (5.4)-(5.6) follow immediately
from this fact. Using (5.6) and remembering that x,; followed by # is an involution
we obtain (5.7).

Ad 3°. According to (5.8) and (5.9),

-1/2
p =0
”1/2(a)= ( 0 ﬂ1/2>

(74 /2 Qn)Pa)=m, /Z(a)®ns(a) .

We also know (cf. Proposition 3.2) that (x,,®mn,)®, restricted to B(H**/?) and
B(H*~'/?) are embeddings. Taking into account these facts and using the
mathematical induction one can easily show that

Sprfa)={u =% pn""" ., 0. (5.10)

A detailed analysis of the commutation relations (1.35)(1.38) shows that if
(@, 7) is a pair of bounded operators acting in a irreducible way on a Hilbert space
H satisfying these relations and condition SpacCsS, then H is finite-dimensional.
For each s=0,1/2,1, ... there exists one and only one (up to unitary equivalence)
such a pair (d,, 7i;) acting on (2s+ 1)-dimensional Hilbert space: There exists an
orthonormal basis {|m,s):m= —s, —s+1,...,s} such that

and

—s+1

dgm, sy =p"lm,s),
Aidlm, sy =/|ul =2 —|ul = 2" — > 2 + |2 m+1, 5) .

In particular Spd; coincides with (5.10).
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Assume for the moment that the pair (na), z(n)) is reducible. Then passing to
an irreducible subspace we would find a pair (g, fi) satisfying the all considered
requirements, acting on a Hilbert space of dimension smaller than 2s+ 1 and such
that Sp d contains y°. According to the above mentioned analysis such a pair does
not exist. Therefore (ny(a), n(n)) is irreducible, (d,, 7i;) must be equivalent to (74(a),
nn)) and Statement 3° follows. Q.E.D.

Corollary 5.2. There exists an orthonormal basis {|m,s) :m=—s, —s+1,...,s} in
H? such that

nfa)m,s)>=pu"lm,s),
nm)lm, sy =|/|ul =2 — g 72" — P2+ u >t m 41, 5)

Let o/, be the *-algebra of elements affiliated with A, generated by a,a™*,n.
We set c=a*a"!. According to (5.11) n(c)=(signu)**I, for all s. Hence c=c* is in
the center of o7, and ¢>=1,. For u>0, c=1,.

(5.11)

Proposition 5.3. The elements
cka'n'n*, (5.12)
where k=0,1 ( for u>0, k=0), l-integer, r,t=0,1,2, ... form a linear basis in </,.

Proof. According to (1.35)(1.38) any element of </, is a finite linear combination of
elements (5.12). To end the proof it suffices to show that these elements are linearly
independent.

Assume that

0=> ‘Ikmckalnrn*t

is a nontrivial linear combination of elements (5.12). We have to show that

0=+0. (5.13)
To this end we choose ko, Iy, 7o, and t, such that
qkoloroto F 0 s (5. 1 4)
Gure=0

for all k,I,r,t such that r+¢t>ry+1t, and

qklroto = 0

for all k, I such that [>[,. In the following lim* (lim‘ respectively) denotes lim,

§— 00 s> 00 §— 0

where s runs over integers (half-integers respectively). Using (5.11) we get

lim lim* {m, s|ny(Q)lm +to — 7o, 3 |ul**o* *Ou "o

m—o Ss§— 00

= {qmoroto 1 d110r0t0 for u<O
qoloroto fOI' 24 >0

and (cf. (5.14)) relation (5.13) follows. Q.E.D.
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Now we are able to give the detailed description of the double group built over
S,U(2) (for [u|<1).

Theorem 5.4. Let us consider the following four elements affiliated with
A=AC®AJ:

a=a.Qa,
=a.@n—uy*®a1,
4 ’” (5.15)
7=7.®a,
0=y @n+a*®a'.
Then
1° a, B, y, 0 satisfy relations (1.9)1.25).
2° The matrix
a, B
w= (y, 5) (5.16)
is a representation of G.
3° The comultiplication, counit and coinverse act in the following way:
P()=a@a+pQy,
P(P)=aRB+ PRI,
B)=a®p+B® (517)

D(y)=y®a+0®7,
P(0)=y®B+0®9,
e(m=e)=1, e(f)=e(y)=0,
k=0, kB)=—p"'f, KW)=-ny, xO)=ao,
Ko¥)=0%, k(f¥)=—pp*, xO*=-p"ly*, x(0¥)=a*.
4° Elements a, B,y, and O generate A in the following sense:
For any bounded operators &, B, 7, 8 acting on a Hilbert space H and satisfying the

relations (1.9)-(1.25) with a, B, y, 6 replaced by &, B, 7, § there exists a unique
representation 7 of A acting on H such that & =n(x), f=n(p), §=n(y), and & = n(9).

Proof.

Ad 1°. Using the known commutation relations satisfied by o, and 7y, (cf.
(1.29)1.33)) and by a and n (cf. (1.35)«1.38)) one can verify that elements (5.15)
satisfy relations (1.9)(1.25) (cf. the proof of Proposition 1.1).

Ad 2°. Relations (5.15) mean that

w=w.0Ow,.
Therefore (cf. Theorem 4.4 and Proposition 4.5) it is sufficient to show that
(x* w,=w(¢ *x)
for x=ua,, ., o, and y*. By easy computation this relation is equivalent to

W.@Ow) (AR =(A®I) (W.OW,), (5.18)
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where 1: C2QC?->C*QC? is the linear mapping defined by
2
)“(si®8j)= . IZ=1 ékj(wcli)sk®8h

where i, j=1,2; (¢, &,) is the canonical basis in € and w,; are matrix elements of
w,.
Using (5.2) one can check that

}.=/.l—1/2[—ﬂ~3/2E . E*
(E is introduced in Sect. 1) and (5.18) follows.
Ad 3°. Like in the proof of Theorem 5.1 this statement follows immediately from
the fact that w is a representation of G.

Ad 4°. It follows immediately from the Iwasawa decomposition (Theorem 1.3),
Theorem 5.1.3° and the corresponding result for G, (Theorem 1.1 of

[9). Q.ED.

Let .o/ be the *-algebra of elements affiliated to ./ generated by «, 5,7, and 6. To
simplify the notation for any integer s we set

- o8 if s=0
S0 if s<O

Similarly
o if s=0
Yes ™ {(a;*)—s if s<0°

With this notation we have (cf. [9, Theorem 1.2])
Proposition 5.5. The elements
UesVeVe™ s (5.19)
where s-integer and m,n=1,2, ... form a linear basis in ..
We end this section with the following

Proposition 5.6. The elements

o By B ok, (5.20)
where r, ' are integers and s, t, s', t'=0,1,2, ..., form a linear basis in <.

Proof. According to (1.9)11.25) any element of .« is a finite linear combination of
elements (5.20). We have to show that these elements are linearly independent. By
virtue of Proposition 5.3 and Proposition 5.5, the elements

oYV ®ckan ¥, (5.21)

where s, l-integers, m,n,r,t=0,1,2,...; k=0,1 (for >0, k=0), are linearly
independent.
According to (1.29)+1.33) for any integers r,7 we have

OlopQlep = ac,r+r' + O(chl) H
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where o(]y,|) is a linear combination of elements (5.19) with n+m> 1. Using this
formula, definitions (5.15) and commutation relations (1.31)-1.33) and
(1.35)+1.38) we obtain

t, %kt ’ _ t, %kt t'+r ortt+r +t 4 +t
arﬁs'y’y ﬂ*sa:ﬁ_uQac,r'Fs—r'—s’yc’y: ®C "a § nsn*s +0(b’c|t t)a

where Q=(r'+5—s)(t+t)+r(s—s) and o(jy/'*") is a linear combination of
elements (5.21) with n+m>t+¢t'. Due to this formula the linear independence of
(5.20) follows easily from that of (5.21). Q.E.D.

6. Finite-Dimensional Representations and the Groups Related to S,L(2, T)

In this section we investigate finite-dimensional representations of G=S,L(2, C).
We shall prove that the theory of smooth representations is the same as that of the
classical Lorentz group. There exist however non-smooth finite-dimensional
representations.

Let o7, be the subalgebra of o7 generated by «, f, 7, and 6. We say that a finite-
dimensional representation v of G is smooth (holomorphic respectively) if the
matrix elements of v belong to &7 (&, respectively). It follows immediately from
(5.17) that &(#)C.A ®,, and

D(ALpo1) C Hnot @ a1g:Hhor - (6.1)

Using Proposition 5.6 one can easily prove

Proposition 6.1.
1° There exists linear multiplicative bijection
q: Sy L,
such that
q)=c., q(f)=—mw?, 62)

aW)=7., 4qd)=o.

2° There exists linear bijection
m:dhol®algdl:)l_’da

such that

m(x@y*)=xy*
for any x,y e oy
Let us notice that g is an isomorphism in the sense of Hopf-algebra theory, i.e.

P, q(x)=(q®q) P(x),
e.oq(x)=e(x)

for any xe€ o, Indeed one can easily verify that these relations hold for
x=a, B, 7,6 and that the involved expressions are multiplicative with respect to x.

(6.3)
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Having in mind Proposition 6.1 one can construct linear mappings
p,D: A >,
such that
p(xy*)=q(x)e(y),
p(xy*)=e(x)q(y)*
for any x, ye o, ;. By virtue of (6.3),
P, p(x)=(p®p)D(x),
P, p(x)=(p®p)P(x), (6.5)
e.op(x)=e(x), e.op(x)=e(x)

(6.4)

for any x € &/. Moreover, using (4.20) and (6.1), for any x, ye o, we get
(p®Db)° P(xy*)=q(x)®q(y)*, (6.6)
(P®p)° P(xy*)=q(y)*®4q(x).
Comparing these two relations we obtain
$eP@p) P(x)=(p@p) P(x) (6.7)

for any x € & (s, denotes the flip automorphism of A, ® A4,). Relation (6.6) shows
also that the composition (p® p) o @ is an invertible linear mapping acting from .o/
onto ./, ®,, .. The inverse of this mapping will be denoted by y:

p(x®y*)=q"'(x)q" '()* (6.8)

for any x,ye </, Using this formula one can check that
Pop(x®y)=(y®y) ([d® s, ®id)(2.QP,) (x®Y), (6.9)
PY(x®@y)=xely), (6.10)
Pp(x®@y)=e(x)y (6.11)

for any x,ye o,

The following Proposition shows that the classification of finite-dimensional
smooth representations of §,L(2, €) is equivalent to that of pairs of commuting
representations of S,U(2).

Proposition 6.2. Let K be a finite-dimensional complex vector space, ve B(K)® o,
v, =(id®p)v and v, =(1d @ p)v. Assume that v is a representation of G. Then v, and
v, are representations of G,

v=>1d®y) (v, Ov,) (6.12)
0,00, =({d®s.,) (v, Ov,). (6.13)

Conversely if v, and v, are representations of G, acting on K and satisfying
relation (6.13) then v introduced by (6.12) is a representation of G, v, =(id®p)v and
v 2= (id ®I$ ) v.

and
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Remark. Relation (6.13) means that the smeared operators corresponding to v,
commute with that of v,: for any f}, f, € &,

[(d® f1)vy, (d® f5)v,]=0. (6.14)

Proof. We essentially repeat the proof of Theorem 4.4. If v is a representation of G
then using (6.5) we see that v, and v, are representations of G,. Moreover applying
(iId®p®p) to both sides of the relation

(d®P)v=v0v

([d®(p®p)° P)v=0v,Ov,

and (6.12) follows. In the similar way (6.13) is implied by (6.7).
Assume now that v, v, € B(K)® ./, are representations of G, and that (6.13)
holds. Applying (id® @) to both sides of (6.12) we obtain (cf. (6.9)):

([d®@P)r=(>1d@y®y) (([d®id, ®s,Qid,) ([dQP.® D) (v; Dv,)
=([d®yRp)(1[d®id, ®s,.®id, ) (v, Ov; Ov,Dv,)
=([d@y®y) (v, Ov,Ov; Ov,)=vOv.

In the next to the last step we used (6.13). It shows that v is a representation of G.
The remaining relations are obvious (cf. (6.10) and (6.11)). Q.E.D.

we get

Relation (6.14) is obviously satisfied if one of the representations v,, v, is trivial.
For any s=0,1/2,1, ... we consider representations w® and w* of G acting on H®
such that . o s

(d®@pw'=u’, (id®p)w =Ilppyea.
dRp)W =Ippyew., (ARP)W =u'.

According to (6.2), w'/? coincides with the representation w introduced by (5.16).

Similarly w'/? coincides with w.

In the following theorem “~” denotes the equivalence of representations.
Theorem 6.3.

1° For all 5,5'=0,1/2,1,3/2, ... ’
w'oOwW* (6.15)

are mutually non-equivalent, irreducible smooth representations of S,L(2, T).
2° Any smooth finite-dimensional representation v of S,L(2,C) is equivalent to a
direct sum of representations of the form (6.15).
3° For any 5,5 =0,1/2,1,3/2, ...,
woOw =Y w, (6.16)

WwoOw' ~Y®w, (6.17)

where the summation runs over s"=|s—s'|, [s—s'|+1,..., s+5 and
WOW ~ W OwS. (6.18)

Moreover w* is the complex conjugate of w".
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Proof.
Ad 1°. Using (6.12) and taking into account (6.8) we see that matrix elements of w*
(w* respectively) belong to o4, (4%, respectively). Therefore (cf. definitions (6.4))

(([d®p) (wOW)=v'al,, (6.19)
(d@p)wOw)=Iou", (6.20)

where I,=Iggrg4 (r=s,s') is the trivial representation of S,U(2) acting on H".
According to Proposition 6.2 the above relations completely determine represen-
tation w'@OW*.

Let K be a (w*@®w*)-invariant subspace of H*® H*. Then (cf. (6.19)) K is
(w*®@I)-invariant and (u* is irreducible) K = H*® L, where L' is a subspace of H*'
Similarly using (6.20) we see that K=L®H*, where LCH®. Therefore either
K=H*®H?* or K={0} and the irreducibility of (6.15) follows.

Remark. Modifying in a suitable way definitions (6.4) and using the above method
one can show that w* @w* is also irreducible.

Assume now that w*@w* ~w ®W" (s,s,r,r=0,1/2,1,3/2,...). Then (cf. (6.19))

@I, ~u'®I, and s=r. Similarly using (6.20) we obtain s'=r". Statement 1° is
proved.
Ad 2°. Let v be a smooth representation of §,L(2, €) acting on a finite-dimensional
vector space K and v;, v, be the representations of S,U(2) introduced in
Proposition 6.2. Representation v, can be decomposed into direct sum of factor
representations (cf. Theorem 5.8 of [10]):

K=Y®H'®K®,

v, = ;9145@15,

where I° = I pxs)g 4, 18 the trivial representation of S,U(2) acting on K*. Taking into
account (6.14) we see that v, is of the form

U= Zels®025 ’
where for any s, v, is a representation of §,U(2) acting on K*. Decomposing v,
into a direct sum of irreducible representations and remembering that (6.19) and
(6.20) determine w*@w* completely we obtain desired decomposition of v.
Ad 3°. According to (6.4) the restrictions of p (and p) to o, and %, are
multiplicative. Therefore (6.16) and (6.17) follow from the similar decomposition
for u*@u* (cf. Theorem 5.11 of [9)]).

Using (6.16) ((6.17) respectively) one can easily check that w* (w* respectively) is
the only (2s+1)-dimensional irreducible subrepresentation of w®29 (W®29
respectively). Remembering that w is the complex conjugate of w we conclude that
w* is the complex conjugate of w*.

Similarly one can verify (6.18): w*@w* (W* @ w* respectively) is the only (2s+ 1)
(25’ +1)-dimensional  irreducible ~ subrepresentation of wWPZIPwWO(Es)
(WO @w®? respectively). According to (1.5) w@PI@wO )~ @25 )y 029
and (6.18) follows. Q.E.D.
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Let 7 be the element of M(A4,) such that
n(1)=(—1)I, (6.21)

fors=0,1/2,1,.... Then 7 belongs to the center of M(A4,) and I,®1 commutes with
the bicharacter u. Therefore (cf. (4.9))

o(I.®7)=1®I,. (6.22)

Let us notice (cf. (5.11)) that 7 = f(a), where f is the function defined on the set of
all integer and half-integer powers of u such that f(u™)=(—1)?>". Clearly f is
multiplicative and using the first relation (5.4) we get

Df1)=1®T.

It means that t is a one-dimensional representation of G, Taking into account
(6.22) and using Theorem 4.4 we see that ¥ ¥ I ®t is a one-dimensional
representation of S,L(2, C). In particular

P()=t@7. (6.23)

This representation is not smooth: 7 ¢ .o/. Indeed according to Theorem 6.3.2° the
trivial representation is the only smooth one-dimensional representation of
§,L(2, €). We believe that

Conjecture 6.4. Any finite-dimensional representation v of S,L(2, C) admits unique
decomposition of the form:

V=10, @(f®v2) s
where v, and v, are smooth.

To support this conjecture, one can easily show that the trivial representation
and 7 are the only one-dimensional representations of §,L(2, €) (use Theorem 4.4).
According to (6.21), T is unitary and

Spt={—-1,1}=Z,.
Therefore the formula y(x) = x(f) introduces a monomorphism y € Mor(C(Z,), A).
Let &,:C(Z,)-»C(Z,)®C(Z,) be the comultiplication related to the group
structure of Z,. Due to (6.23) the diagram

CZ,) 2 C@,)RC(Z,)
[ v®y

A 2 A®A
is commutative. It means that y defines the quantum group epimorphism

S,L(2, )~ Z,.




Quantum Deformation of Lorentz Group 423

The kernel of this epimorphism is a normal (quantum) subgroup of §,L(2, C) of
index 2. It will be denoted by S,L*(2,C). The algebra A* of “all continuous
vanishing at infinity functions on S,L*(2, €)” is introduced by

At =A4/J,
where J is the closed two-sided ideal in A generated by 7 —I ,. One can verify that
J=A4A.®4;,
where A; = io@ B(H**'/%)C A,. Therefore
”=° A* =484,

where A =A,/A; is isomorphic to Y® B(H®) (s runs over all nonnegative
integers). s=0

Let pe Mor(4, A/J) be the canonical epimorphism. The comultiplication
related to S,L* (2, €) is the only morphism #* e Mor(4*, A* ® A™*) such that the

diagram
A

AR®A
r p®p

A— 2 L At@4t

is commutative. The existence of @ follows easily from (6.23); the uniqueness is
obvious. In the similar way one can define counit and coinverse related to
S,L*(2, ).

As in the classical case S,L(2,C) contains Z, as a normal subgroup. The
embedding Z,CS,L(2,T) is described by a morphism y e Mor(4, C(Z,)) intro-
duced by the formula y=y'®e,;, where ¥’ € Mor(4,, C(Z,)) is defined by

1()=0
(X (@) ()=t
for any teZ, (t= +1). One can easily check that the diagram

and

A A®A

X 1®x

(5]
CZ, — CZ,)®CZ,)
is commutative (Z, is a subgroup of §,L(2, C)). Moreover for any x € 4,
(d®@ ) P(X)=x®Ic@, <> (1®id)P(x)=I¢@,®x (6.24)

(cf. Sect. 6 of [7]). This equivalence means that the subgroup Z, is normal (any
Z,-left-invariant “function on S§,L(2, €)” is Z,-right-invariant).
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The quotient group S,L(2, €)/Z, will be denoted by SO,(3,1). The algebra of
“all continuous vanishing at infinity functions on S0,(3,1)” is introduced by

Acven — {xeA;(id@x)Q(x)=x®Ic(zz)} .

Clearly A*'*" is a non-degenerate C*-subalgebra of 4 (“nondegenerate” means that
the embedding A°¥*"¢, 4 belongs to Mor(4*, A)). One can verify that

Aeven=A:,ven®Ad’

where AZ'" is the C*-subalgebra of A, spanned by all even order monomials of a, y,
a* and y*. Due to (6.24), " £ &) ,.... belongs to Mor (4", A" ® A°'*"), Pever
is the comultiplication related to SO,(3,1). In a similar way one can introduce
counit and coinverse related to this group.

One can easily check that ¥e M(A°**"). Therefore one can repeat for SO,(3,1)
the procedure that produced S,L*(2,C) out of S,L(2,C). On the other hand the
normal subgroup Z,CS,L(2,€) is in fact contained in S,L*(2,C) (x admits
factorization y =y o p, where xy* e Mor(4™*, C(Z,)). Therefore one can repeat for
S,L*(2, €) the procedure that produced SO (3, 1) out of S,L(2, €). In both cases we
obtain the same quantum group denoted by SO, (3,1). The algebra of “all
continuous vanishing at infinity functions on SO, (3,1)” is given by

even+ __ geven +
ATt = AV QAT .

One can easily check that SO (3,1) is the double group (cf. Sect. 4) built over
S0,(3).

”Summarizing we obtain the following commutative diagram of quantum
groups:

f T
00— Z, _— Z, — 0

l

0 — S§L*'2,C0 — SL2C) — Z,— 0

0 — 80}(3,1) — 50,3,1) — Z, —> 0

l | l

0 0 0

All rows and columns are exact.

Analysing the proof of Proposition 5.6 one can show that Jn/={0}.
Therefore the theory of smooth representations of S,L* (2, C) is the same as that of
S,L(2, C): Theorem 6.3 with S,L(2, T) replaced by S,L*(2, €) and w*, w* replaced
by their restrictions to S,L* (2, €) still holds. Moreover it seems (cf. Conjecture 6.4)
that any finite-dimensional representation of S,L*(2, €) is smooth (f restricted to
S,L*(2, @) s trivial). As in the classical case (6.15) is a representation of SO,(3,1)
(and SO, (3,1)) if and only if s+ is integer.
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We would like to combine Theorem 6.3 with Theorem 4.6. A bicovariant
o/ -bimodule I' is called tame if the corresponding representation of S,L(2, €) is
smooth. Let I'" (s,r=0,1/2,1, 3/2, ...) be the bicovariant .«Z,-bimodule correspond-
ing to the representation w*®w". Taking into account Theorem 4.6 and 6.3 we
obtain

Theorem 6.5.
1° The bimodules I'" (s,r=0,1/2,1,3/2,...) are indecomposable. I'" is the
complex conjugate of I'*" and

Fsr®dcrsr — z@ I-vs r ,
s

where the summation runs over s"=|s—s|, |s—s|+1,...,s+5, r'=|r—r]|,
[r—r|+1,...,r+r.

2° Any tame bicovariant sf.-bimodule such that the space of left-invariant
elements is finite-dimensional is a direct sum of bimodules of the form I'*".

For the completeness we describe the structure of I''/%°, Let (w,, ®,) be the
canonical basis in ;,,[*/?>°=(C2 Then any element we I''/?° is of the form

W=wa;+w,a,,
where a,,a, € &, are uniquely determined and combining (5.2) with (4.35) we get
aw; =p'?w,a,
Yo, =p'%w,y,
a*w, =p" "2w,a*,
yroy=p" oy,
aw,=p~ Paya+p~ (1 —p)wy*,
Yo, =p" 2wy —p~ (1 —p)w,a*,
oa*w, = p'Pwa*,
yro,=p oyt
Moreover denoting by & the right action of S,U(2) on I''/*° we have
r®(;)=0,®a,+w,®y,,
r®(@;)= —po, @y* + 0, @a*.
In [12], the 4D, -differential calculus was introduced. Now we give an
independent description of this calculus.
Let I'=I12:112 and I'"* be the external algebra built over I. We know that the

restriction of w@w to S,U(2) contains trivial subrepresentation. Therefore I
contains bi-invariant element. Denoting this element by t we have

TAO0—0AT . . even
de‘[f"”g'“d_{mowm iro0is 44

for any homogeneous element 8 e I'" of grade 06. In particular

da=ta—art
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for any ae «/,. One can check that
T=0;® 4 0F +0,Q 4 0%,

where w; and w, are elements of I''/**° introduced above and * denotes the
canonical bimodule antihomomorphism I'*/2:0—0-1/2,

A. Appendix

In the paper we deal with linear mappings acting between tensor spaces built over
“elementary” vector spaces A, and 4, In most cases the mappings are introduced
as compositions of tensor products of “elementary” mappings such as m,, m,, @,,
Dy e, ey Ko Ky, By hyp, Bag, 0, ... . The traditional tensor notation becomes illegible
if the number of elementary mappings entering a single formula is large. Dealing
with such cases it is convenient to use the diagram notation that generalizes the
one introduced in [11]. We recall that in this notation mappings are represented
by diagrams consisting of lines of approximately vertical direction and vertices.
Lines represent identity mappings acting on the elementary vector spaces. To
make our diagrams more readable we shall use “coloured” lines associating a
definite colour with each elementary vector space. In what follows continuous (for
A,) and dashed (for 4,) lines will be used.

The line is called incoming (outgoing respectively) if it has a free upper (lower
respectively) end placed on the horizontal line that bounds the diagram from
above (below respectively). Each line either is incoming (outgoing respectively) or
starts from (ends up at respectively) a vertex. Lines must not intersect.

Diagrams with N incoming and M outgoing lines represent linear mappings
acting from 4,®A4,8...QAy into A|®A,®...QA) (where A4,, A,,...,Ay
(A4, o Ay respectively) are elementary vector spaces corresponding to the
colours of incoming (outgoing respectlvely) hnes) If M =0 (no outgoing line) then
the diagram represents a mapping into €, i.e. a linear functional defined on
A ®A,®...®Ay. Similarly if N=0 (no incoming line) then the diagram
represents a mapping from €, i.e. an element of AR A4,®...®@Ay. [ M=N=0
(no external line) then the diagram represents a complex number.

The mapping represented by a diagram o will be denoted by [o]. The diagram
representing the tensor product [«]®[ ] is obtained by drawing « side by side f («
on the left). Let us notice that the composition [a] o [ 8] is well defined only if the
number and colour composition of outgoing lines of § coincide with the number
and colour composition of incoming lines of . The diagram representing [a] o [ ]
is obtained by placing the diagram o below the diagram f and connecting the lower
ends of § with the corresponding upper ends of a.

Each “elementary” mapping will be represented by a single vertex diagram. It
consists of a small circle (containing inside the symbol denoting the considered
mapping) and suitable incoming and outgoing lines attached to it. To simplify the
diagrams we shall use

————
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instead of } N/
| \ /
\ /
@ ; ; ; and
// \\ | /
/ \ | /
/ \ | /

respectively. The flip automorphisms: s..: A.® 4,2 A, ®A,, s.4: A.QA;—A,RA,,
S5 A @A~ AR®A, and s4y: A,Q A~ A;® A, will be represented by diagrams

respectively. Each of the above diagrams consists of four lines and one vertex (the
lines do not intersect!). The mappings C31—>AI.e A, and C31—- Al ;nA4,; will be

represented by diagrams
and
|
|
respectively. !
In the diagram notation, relations (3.4), (3.6), and (3.11)+3.12) mean that
— //I T r //
A
7\ A
FAERN = 2N (A1)
// /"\ A AN
/ / N\ \
/ ;o\ /N \
L 7/ / \ L s \ \
r / 7 r / !
//\/ ’/ i
;o\ / —
AN = A = ! (A2)
\ /
\ / |
- A L 7/ |
T : =
/J\\ /*\
S N _
(*a) ) = SONEE (A3)
! \\ 4
¢ ;
1
. I [} 1

Similarly the relations (3.22) and (3.25) can be rewritten in the following form

[}

! ! !
|
|

|
A= © Y = (A4)
&\

/ ! \
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Replacing in the above diagrams e , k4, I, by e, k., I, respectively, h;; and hyg by
h. and drawing continuous lines instead of dashed ones we obtain the correspond-
ing relations for G.. We number these relations from (A.S) to (A.8). The relations
(4.10)+4.15) describing the properties of ¢ have the following form:

(A.9)

(A.10)

(A.11)

= @ (A.12)
i I |

The basic notions related to the double group G are introduced in the following
way (cf. (4.16)4.18)):

r 1 |
[ |
I
1\
o= VN [ie=] O®
\
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Now we can easily prove the relations (4.19)4.23) of Theorem 4.1. Using (A.1),
(A.5), and (A.10) we have

(Peid)0 =

————
z

\ I

(esidl®o = N | = ‘ Vol = id
&e) \\l ) |\
1

and in the same manner one can verify the second part of (4.20). Using (A.10), (A.7),
(A.9), and (A.3) we compute

-

m(keid)® =

™ / Y I
|
l
|

L - -

and (4.22) follows. In the same manner one can verify (4.23). Relation (4.21) easily
follows from definition of «, (A.11), (3.9) and an analogous formula for k.. Finally
we show that the measure h is left and right invariant. Using (A.12), (A.10), (A.8)
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and once more (A.12) we get

(heid)® =

(ideh)® =

|
|
[
|
N

=)
9¢

o
T

Similarly one can verify the second relation of Theorem 4.2:

&
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