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Abstract. We consider the Schrodinger-like operator H in which the role of a
potential is played by the lattice sum of rank 1 operators \υn)(vn\ multiplied
by gtanπ[(α, n) + ω], g > 0, α e IRΛ n e Zd, ω e [0, 1]. We show that if
the vector α satisfies the Diophantine condition and the Fourier transform
support of the functions vn(x) = v(x — ή), x e Rr f, n e Zd, is small then the
spectrum of H consists of a dense point component coinciding with 1R and
an absolutely continuous component coinciding with [ρ, oo), where ρ is the
radius of the mentioned support. Besides, we find the integrated density of
states N (λ) (it has a jump at λ = ρ) and zero temperature a.c. conductivity
σ t(v), that also has a jump at λ = ρ and vanishes faster than any power of
the external field frequency v as v -> 0 and λj=ρ.

1. Main Results and Discussion

The present work is devoted to the spectral analysis of an operator

H = -{2π)-2Λ + Q (1.1)

on L2(IR^) Here A is the Laplace operator and the operator Q (a pseudopotential)
has the form

Q=

(\vn)(vn\φ) (x) = vn(x) (vn, φ), vn(x) = υ(x - ή) ,

tn = tanπ[(α, ή) + ω] , ω G [0, 1) (1.3)

ωi=\-iμ9n) (mod 1), n£Zd, (1.4)

the vector α £ ΊRJ1 satisfying a Diophantine condition

|(α, n)-m\> C\n\~β\ meZ, n e Zd\{0} (1.5)

with positive constants C and β.
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On the function v(x) that appears in the definition of the pseudopotential Q
we shall impose

Condition V: v(x), x € 1R̂  is a real function whose Fourier transform

v(p) = J e-2πi^v(x) dx, pe Rd, (1.6)

is v(p) = a(p2), p2 = (p, p), and a real function α(μ), μ > 0, is infinitely differentia-
ble on [0, oo), and for some positive ρ,

a(μ)=0, μ > ρ ; α(μ) > 0 , 0 < μ < ρ . (1.7)

We assume that for ρ = oo the function a and all its derivatives decrease faster
than any power of μ"1 when μ —> oo.

The factor (2π)~2 before the Laplacian in (1.1) is introduced to simplify many
expressions that will appear below.

We will denote by E(dλ) and Eo(dλ) the resolutions of identity of the operators
H and Ho — —(2π)~2A, respectively; we will also introduce notations: Jf_ =
£o((-oo, ρ))L2QRd), 34?+ = E0((ρ, oo)) L2(JRd) and S = S(Kd) being the Schwartz
space.

Theorem 1.1. The operator H is essentially self-adjoint on S. The sub spaces <#?+
and Jf- reduce the operator H, the restriction of the operator H to J4?+ coincides
with the restriction of the operator —(2π)~2Δ to 3ti?+ and for dλ c (ρ, oo),

E(dλ)je + = E0(dλ)Jtr+. (1.8)

Thus the spectrum of the operator H on the [ρ, oo) has an absolutely continuous
component.

Theorem 1.2. Let ρ > \. Then all the assertions of Theorem 1.1. are valid and,
besides, there exists such a positive number ρi that for almost all in the Lebesgue
measure ω 6 [0, 1) the spectrum of the operator H in the (—oo, ρi) is pure point,
dense and has multiplicity 1, while the eigenfunctions belong to S.

Theorem 1.3. Let ρ < \. Then all the assertions of Theorem 1.1. are valid and,
besides, for almost all in the Lebesgue measure ω G [0, 1) the spectrum of the
operator consists of point and absolutely continuous components, the point spectrum
has multiplicity 1, is dense in ΊR. and the respective eigenfunctions belong to S.
The orthogonal projections corresponding to the point and absolutely continuous
components coincide, respectively, with the projections onto J f _ and 34f+ subspaces.

It is easy to see that the operator H = H(ω) investigated here, belongs to
the class of metrically transitive operators [1,2]. In this connection, it is natural
to consider the integrated density of states (IDS) N(λ). It can be defined by the
formula used in the case of Schrodinger operators with a local potential [3], viz.

• /

N(λ)= dω SpχτE(λ,ω)χτ, (1.9)



Schrodinger Operator with a Nonlocal Potential 359

where T is a unit cube and χx is a multiplication by its characteristic func-
tion considered as the operator on L2QRd). The measure corresponding to a
nondecreasing function N(λ) will be denoted by N(dλ). In [1-3] we proved the
equivalence of Eq. (1.9) to the definition of the same function N(λ) as a limit of
similar functions for a system of infinitely expanding cubes for a fairly broad class
of operators. Here we intend to calculate this quantity for operator (1.1)—(1.5).

Theorem 1.4. Let ρ < £. Then the measure N(dλ) is absolutely continuous, i.e.
N(dλ) = n(λ)dλ and its density (the density of states) n(λ) is determined by the
formula

n(λ) = np(λ) + χ(λ-ρ)n0(λ),

where the first term corresponds to the point component of the operator H spectrum
and is equal to

= ~ ίn J ( p ) (p)
P2<Q

while the second term corresponds to the absolutely continuous component of the

spectrum of H, χ(λ) being the characteristic function of the [0, oo), and no(λ) =

NQ(X) = πϊΓ~ι(^)λϊ~ι being the density of states of the operator HQ. Besides if

VQ is the volume of a ball of radius Q in R d , then

00

/

np(λ)dλ= Ve.

Theorem 1.5. Let ρ > \. Then the measure N(dλ) is absolutely continuous on the
interval (—oo, ρi) with ρi determined in Theorem 1.2. The density n(λ) of N(dλ) is
given by the formula

-im'
with the function wχ(p) being determined by Eqs. (1.12), (1.15).

Thus, we see that the measure N (dλ) in the (—00, ρi) is due to point component
of the spectrum in accordance with Theorem 2.

Theorem 1.6. Let ρ < \ and σ(v, λ) be the conductivity corresponding to the opera-
tor H at zero temperature, external field frequency v and Fermi energy λ (rigorously
defined in Sect. 4). Then

σ(v, λ) = σp(v, λ) + σo(v, λ),

where the first term corresponds to the point while the second one to the abso-
lutely continuous spectrum components of the operator H. Here σo(v, λ) denotes
the conductivity corresponding to the operator χ(Ho — ρ)Ho and σp(v, λ) for λj=ρ
decreases, when v —• 0, faster than any power ofv.

The main ideas how these facts can be proved are given at then end of this
section, while the detailed arguments are given in Sects. 2 and 3. Our present
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intention is to discuss these facts in the framework of the spectral theory of
random and almost periodic operators and from the viewpoint of the theory of
disordered systems, the latter being a branch of theoretical physics were such
mathematical studies find their applications.

Operator (1.1)—(1.7) is a continuous analog of the following finite difference
operator acting in d

(Win = Σ w»-™^m + g tanπ[(α, ή) + ω]ψn, (1.10)
meZd

where n e Zd, w* = w_w, |wn| < Ce~m, C, 0 > 0.
This operator was introduced in the physical paper [4] and then studied in the

papers [5,6]. It was shown there that if the vector α satisfies Eq. (1.5), then the
spectrum of the operator h coincides with R, is pure point and has multiplicity
1. The eigenvalues λm, m G Zd, are in one-to-one correspondence with the Έd

points, and the respective eigenfunctions have the form

where φn(λ), n e Zd, for every λ € IR decrease exponentially as \n\ —• oo.
In the one-dimensional case (d = 1) the absolutely continuous spectrum

component is absent for all irrational α G IR.
The most natural continuous analog of the operator (1.10) seems to be given

by the Schrodinger operator with a local potential

where δd(x), d = 1, 2, 3, is the so-called point potential (e.g., see [7]). For d = 1
δι(x) is the one-dimensional Dirac delta-function; the spectral analysis of the
Schrodinger operator in this case is reduced (by a simple trick) to the spectral
analysis of the operator h [8]. Thus, in the one-dimensional case the Schrodinger
operator with the local potential (1.11) has a pure point spectrum, while the
Schrodinger operator with the nonlocal potential (1.1) to (1.7), i.e. for ρ < oo has,
according to Theorem 1.1, an absolutely continuous component even for d = 1.
Besides, if the nonlocality is strong enough (ρ < \), then, according to Theorem
1.3, an absolutely continuous component is present on the semiaxis [ρ, oo) along
with a dense point one, i.e. these two components coexist on [ρ, oo).

It should be noted that in [19] a massive absolutely continuous component was
found in a high energy part of the spectrum of the one-dimensional Schrodinger
operator Hi with a local smooth and quasiperiodic potential satisfying the
Diophantine condition (1.5).

Moreover, results of recent papers [20-22] show that under certain additional
conditions all spectrum on the semiaxis [λι, oo), λ\ being large enough, is absolu-
tely continuous, but the low energy region [inf spec Hi, Λ.2), λi < λ\ is pure point.
Thus, one should expect the transition from a pure point spectrum (localized
states) to an absolutely continuous one (extended or delocalized states) in the
intermediate region [λ\, h], and the present state of our knowledge does not al-
low us to exclude mixing of these two components in the mentioned intermediate
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region1. For a local potential the mechanism of the localization-delocalization
transition is provided by quantum mechanical resonances [10, 20].

Our operator (1.1) to (1.7) shows that a nonlocality of a potential can supply
some other mechanism of delocalization and coexistence of point and absolutely
continuous spectra.

In the theoretical physics of disordered systems it is widely accepted that the
vicinity of the spectrum lower boundary of the Schrόdinger operator with random
potential belongs to the point component (in the discrete case the vicinities of
both boundaries belong to this component). This part of the spectrum of random
operators was singled out and studied, on a physical level by I. M. Lifschitz [7,8]2.
He called this part of the spectrum the fluctuation one since its existence is due
to large deviations (strong fluctuations) of the potential. These fluctuations are a
system of deep potential wells located chaotically and far apart from one another.

The potential g tan π[(α, ή) + ω], n e Zd, of the operator h from Eq. (1.10) in
the case of the Diophantine α's has a similar structure. Thus, it is natural to expect
that the spectrum of the operator h studied in [4-6] as well as the behaviour of the
respective low frequency conductivity (see [6]) model the fluctuation spectrum
and conductivity behaviour for typical random potentials in their fluctuation
spectrum (see also [11]).

An important question in the theory of disordered systems is stability of the
point spectrum, in particular, the fluctuation spectrum (the Anderson localiza-
tion) when the particle interaction is switched on. Convincing physical arguments
are known suggesting that the interaction inhibits the localization (see, e.g., survey
[12]). A well-known device in solid state physics to account for the interaction
within the one particle approximation, is to introduce nonlinear or nonlocal
terms in the Schrόdinger equation (in the latter case the potential becomes a
pseudopotential which, in the general case is an integral operator). The recent
results by B. Soulliard and P. Devillard [13] brought evidence that nonlinearity
inhibits the localization. The results of the present work on existence of the abso-
lutely continuous spectrum for the simple essentially nonlocal3 pseudopotential
(1.2)—(1.5), whose local variant (1.11) has a pure point spectrum, should, perhaps,
be considered as another argument suggesting that the interaction inhibits the lo-
calization and enhances the appearance of extended states even in the fluctuation
spectrum.

One should note, however, that the question seems to be not too simple, since
in accordance with the recent papers [14, 15, 18], switching on a small interaction
retains at least a substantial portion of localized states.

1 It is widely believed that for the multidimensional (d > 3) Schrδdinger operator with a local
random potential such mixing is impossible and the transition region is just a point, the socalled
mobility edge [8]
2 The remarkable results recently obtained by J. Frohlich and T. Spencer and their colleagues (see
e.g. survey [10]) provided the status of mathematical theorems to many Lifschitz's insights; besides,
they essentially extended and developed the fluctuation spectrum pattern outlined by I. M. Lifschitz
3 We mean that the Fourier transform of the function v(x) in (1.2) has compact support [see (1.7)].
i.e., a parameter ρ which is a certain measure of nonlocality of the potential (1.2)—(1.5), is finite and
even small
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Now we pass to the main points, actually to the algebraic essence of the proof
of Theorems 1.1-1.3. The operator will be investigated by studying its resolvent
R(z) = (H — z)~ι. It will be convenient to pass from the functions ψ(x) G L2(JRd)
to their Fourier transform ψ(p), see (1.6). Introduce the operator (Tψ)n = tnψn,
n G Έd, acting in i?2(Zd). Here it is also convenient to pass to the discrete Fourier
transform

where Έd = T = [\, — \]d. The cube Ύd will often be replaced by the correspond-
ing torus which will be denoted also by TF*. Besides, we will often identify the
functions ψ on the torus Td with the periodic functions ψ(-) = ψ( + n), n G TLd in
the entire space IRA Introduce a linear operator ( )τ giving the correspondence
between the function ψ(p) and the periodic function (ψ)τ(p)'

n), peKd. (1.12)
neZd

Hence we obtain the following representation for H:

(Hφ) (p) = p2φ(p) + ϋ(p)T(ϋφ)τ(p). (1.13)

After a simple algebra we get from (1.13)

p2-z f - z \p2-
(1.14)

pi-z

In (1.14) wz is a multiplication operator by the corresponding function. Note that
equality (1.14) implies that the subspaces jf+ reduce H: the restriction of H to
Jf _j_ coincides with the restriction of the operator — (2π)~2Δ onto this subspace,
hence, relation (1.8) is valid.

To define the eigenfunctions uχ(p) and the respective eigenvalues λ of the
operator H, we will use (1.13), whence we get

Now it is clear that the eigenfunctions have the form

^ ' g λ i p + n) = gλ{p)' n G Z"' ( L 1 6 )

where the periodic function gχ, as an element of Z^O^) satisfies the equation

ι 0. (1.17)

The latter implies that λ is an eigenvalue if and only if Eq. (1.17) has a nontrivial
solution. For the sake of convenience we rewrite the operator T~ι + wχ; to
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this end, we will introduce a unitary in ^ ( Z ) operator U of multiplication by
exp{—2τπ(α, ή)}. Then

Γ " 1 = i(I + κl/) (/ - κU)~\ κ = έΓ 2 ί π ω , (1.18)

(Uφ)(p) = φ(p-a). (1.19)

Hence, after some algebra, we obtain (cf. [6])

T~ι + wλ =(wλ + il) (I - cλκV) (I - κV)~ι,

Let us introduce the functions

f(λ,p) = \ogcλ(p)9 (1.21)

fo(λ) = Jf(λ, p)dp = i2πm(λ), m e R , (1.22)

ί(A, p) = (I - U)-1 [f μ, p) - / o μ ) ] . (1.23)

If the function f(λ, p) is infinitely differentiable with respect to p on the torus T,
then t(λ, p) has the same property. It is easy to check by regarding / and t as
elements of the space tiffi) a n d employing condition (1.3) which is important
here. Equations (1.21)—(1.23) imply

CλU = efo{λ)etiλ) Ue-t{λ), (1.24)

where cχ and t(λ) are operators of multiplication by the respective functions of
the arguments p. Combining this result with (1.20), we obtain

T~ι +wλ = (wλ + il)et{λ) [I - efoiλ)κU] e~t{λ)(I - κU)'1. (1.25)

Now, let

eλ = e-
t{λ\l - κU)-{gλ. (1.26)

Then (1.25) implies that (1.17) is equivalent to the equation

(I-efo{λ)κU)eλ = O. (1.27)

From here it is not difficult to see that the eigenvalues λn are the solutions of the
equation

m(λ) - ω - (α, n) = 0(mod 1), neZd, (2.18)

which is obtained with the aid of (1.22). For each n Eq. (1.22) has no more
than one solution λn (so the spectrum multiplicity is 1) with the corresponding
eλn = Qχp{2πί(p, ή)}. Combining this result with (1.26) and (1.23), we get

gλn(p) = (/ _ κU)et{λ»>p)e2πi{n>p), (1.29)

gλn(p) = -2i(wλn(p) - O"1 exp{ί(Aπp) + 2πi(p, n)} . (1.30)

Substituting these values of gχn(p) to (1.16) we get the eigenfunctions.
To conclude the section we would point out that technically the central point

is the proof of the smoothness of the function f(λ, p).
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2. Analytical Properties of Auxiliary Functions

The present section is devoted to studying analytical properties of the functions
Wz(/?)> f(z, p)9 fo(z) and ί(z, p). All properties of these functions important for
further analysis are formulated and presented as lemmas. Everywhere below
z € <C, z = λ + iξ.

Lemma 2.1. Let ρ> \. Then

(a) Imz lmwz(p) > 0; besides for p2<ρiflmz^=0, then Im wz(p) φ= 0.

(b) There exists a sufficiently small positive δ, such that for every z from the
strip Ls = {z e (C, Rez < <5, — | I m z | < δ} the function wz(p), p G T£d, assumes
values from the following subset of<L:

(c) One may choose a continuous branch log( ) so that log 1 = 0 and the func-
tion

f(z, p) = logcz(p), cz(p) = ^ ~ j (2.1)

is well-defined for z € Ls, p Gl£d, and

f(λ, p) = -2iArccot wλ(p), (2.2)

where for Arccot( ) a branch is chosen which is continuous at infinity and is deter-
mined by the relations

Arccot(±oo) = 0, Arccot(±0) = ± f . (2.3)

(d) f(z, p) is an infinitely differentiable function in λ, ξ and p in the domain
J/?<5 = Ls x ί and is analytical with respect to z € Ls:

(e) The function

/o(z) = Jf{z,p)dp (2.4)
T

is analytical with respect to z 6 Ls and satisfies the relations

±Re/o(z)>O, if ±Imz<0,

Re/0(z)=0, if Imz = 0, (

fo(λ)
1 ί

= 2πim(λ), m(λ) = — / Arc cot wλ(p)dp, (2.6)
π J

m(λ), λ < δ, being a monotonically increasing function of λ with values lying in the
interval (—|, | ) and m(—oo) = — | .

(f) The function m!{λ) = -—m(λ) can be represented as
oλ

m{λ) = - [\S(lp)\2dp, λ<δ, (2.7)
π J

(2.8)
p2-
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(g) There exists a function t(z, p) satisfying the homological equation

t(z, p) - t(z, p-a)=f(z,p)- /o(z), peTd, (2.9)

which is infinitely differentiable in its arguments λ, ξ and p in the domain J?s and
is analytical with respect to z G L$. Besides, for real λ,

Ret(λ,p)=0, p&Ί4. (2.10)

Proof. We will need the following representations of the function w which directly
follow from definition (1.15):

( 2 1 1 )

Since the function w is periodic in /?, we will assume in what follows that

| p y | < ^ , l<j<d. (2.13)

The validity of assertion (a) immediately follows from (2.11).
To demonstrate (b) we will remark, at first, that

(p + ή)2 > max \pj + nj \2 > \ , n £ 0. (2.14)

From here and from the definition of the function w(1) it follows that at λ < | ,

where A\ is a constant independent of A; the boundedness of A\ is ensured by
Condition V. Introduce a pair of arbitrary (for the time being) constant δ and
δ\, 0 < δ <δ\, and consider the following sets of pairs (z, p):

ϊ l = JS?i Π {(z, p> : | p 2 - A | < ^ } .

Show that
^ = f f l u 8 ί + . (2.16)

Indeed, let (z, p) e J?s and (z, p)€3I. It is easy to see that p2 — λ is positive, since
otherwise p2 — λ < —δ\9 i.e. λ> δ\> δ. Hence, p2 — λ > δ\ > δ, i.e. (z, p) e ^ί+
which terminates the demonstration of the validity of (2.12).

Let us check now, for δ < | the validity of the relation

( z , p ) e 2 l + = > w z ( p ) 6 K , (2.17)

where the cone K is defined in point (b) of the Lemma. To this end, we make
use of (2.11) which implies

(2.18)
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where the left inequality is obtained from inequality (2.14). It immediately follows
from inequalities (2.18) that wz(p) Ξ K.

Let us examine the case (z, p) £ $1 now and show that for a sufficiently
small δ

|w z(p) |>2, (z,p)eW. (2.19)

Introduce the constant a\ = mmΰ2(p) which is positive from the condition of the
2A

lemma Q > \ and Condition V. Combining relations (2.12) and (2.15), we obtain

for (z, p) eSΆ and δ < | ,

\Wz(p)\>\δi+iξΓ1 min v2(p) - A{ > £- - Ax.

Hence, assuming that the following inequalities

0 < δ < δx min{|, aι/2(2 + Aι)} (2.20)

are valid, we obtain (2.19). Thus, for δ satisfying (2.20) both (2.17) and (2.19) are
valid; the latter relations together with (2.16) warrant the validity of point (b) of
the lemma.

In order to demonstrate (c) and (d) we make use of the obvious inequalities
for complex w:

Re(w - i) (w + i)"1 > 0, if | w | > l ,

Im(w - 0 (w + 0" 1 < 0, if R e w > 0 .

These inequalities by virtue of point (b) of the lemma imply the following
relations for the function cz defined in (2.1):

cz(p) e {ReC > 0} U {ImC < 0}, A^1 < \cz(p)\ < A2, (2.21)

with A2 being a positive constant. Hence, the function /(z, p) can be obviously
defined by relations (2.1) from which equality (2.2) immediately follows. That the
function / is smooth and analytical in the corresponding variables in the domain
2ί+ follows from similar properties which follow from representation (2.11). The
same properties of the function / in the domain 2X can be easily demonstrated
through multiplying both the numerator and the denominator of the fraction
defining cz by p2 — z and making use of relations (2.12), (2.15), and (2.20). It
remains to note that both S& and 91+ are open sets whose union coincides with
«£?<$ this terminates the proof of points (c) and (d).

Examining the points (e) and (f), note that the analyticity of the function /o(z)
directly follows from its definition by equality (2.4) and from point (d). Further
we will use the following elementary relations implied by (2.1):

Re/ I m w < 0 ; R e / = 0 , if Imw = 0. (2.22)

Combining this result, definition (2.4) and point (a) of the lemma, we prove the
validity of relations (2.5) to (2.8), as well as other assertion of point (e). As to
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point (g), note, first of all, that the function ί(z, p) whose Fourier coefficients
tn(z), n G Έd, are given by the equalities

tn(z) = (1- e-2^rlfn(z), n£ 0,
to(z) = O,

where /„ are the Fourier coefficients of the function /, at least formally satisfies
Eq. (2.9). But, by virtue of point (d) the Fourier coefficients fn(z) are analytical
with respect to z and uniformly in z e L$ decrease faster than any power of
\n\~ι. Combining this result, the Diophantine condition (1.3) and (2.23), one easily
concluded that the coefficients tn(z) possess the same properties. Therefore, ί(z, p)
is smooth and analytical in the corresponding variables and it satisfies Eq. (2.9).
Relation (2.10) immediately follows from (2.22) and (2.23). The lemma is proved.

Lemma 2.2. Let ρ < \. Then (a) the function wz(p) is equal to v2(p)(p2 — z)" 1

inside the ball B = {p GTd : p2 < ρ} and the zero outside the ball, i.e. on the set
Bc = Td\B; Imz Im wz(p) > 0.

(b) Extend the function a(μ) from Condition V for negative μ by the constant
a(0) and introduce the complex sets

L!=UeC:ReC<ρ, |Imζ|

i ^ ζ-μ- ia(μ)
< 2 for 0 < μ < ρ

C - μ + ia(μ)

then the function cz(p) defined in (2.1), assumes no negative real values for (z, p) e
L x B, and for some positive constant C,

C" 1 < \cz(p)\ < C, (z, p) € L x T* (2.24)

Li is an open set containing the ray (—00, ρ).

(c) Let log( ) be a continuous branch given on the complex plane with a cut on
the negative real half-axis, log 1 = 0 , then relations (2.1) define the function f on
the set L x B; outside of this set assume by definition that

—π, Re z < ρ ~
, p2>ρ (2.25)

π, R e z > ρ F * V '

with relations (2.2) and (2.3) being valid for any real λ and ρ on the torus Ύd

(d) /(z, p) is an infinitely differrentiable function in the arguments λ, ξ and p
in the internal points of the set L x Ύd\gP, where 0* = {(z, p) : λ = ρ, p2 > ρ};
f is an analytical function in z in the internal points of L and has a discontinuity
defined by equality (2.25) on the surface 0>; f(z, p) is infinitely differ entiable up
to the boundary in the arguments λ, ξ and p in the domain {Re z > ρ} x Td.

(e) The function fo(z) defined on L by equality (2.4) is analytical in the inter-
nal points of the set L and is infinitely differ entiable up to the boundary on the set
{ReC > ρ}, satisfies the relations (2.5) and (2.6), where m(λ), λ e R, is a mono-
tonίcally increasing, continuous from the right, real analytical at λ J= ρ function;
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here m(±oo) = ± ^ , m(ρ) — m(ρ — 0) = (1 — VQ), where Vρ is the volume of the
d-dimensional ball of radius ρ.

(f) The function mf(λ) = dm/dλ can be represented as

1 ί 9
fit (ΛJ =7C I \v\λ, p)\ Up, yZ.ZΌ)

P2<Q

where mr(λ) is regarded as the right derivative and

ri(λ)dλ = VQ. (2.28)

(g) There exists a function t(z, p) defined on the set L xTd that satisfies the
homological Eq. (2.9), is infinitely differ entiable in the arguments λ, ξ and p in the
internal points of the set L x Ύd\£P, is infinitely differ entiable up to the boundary
on the set {Re ζ > ρ} x TP*, is analytical in z in the internal points of the set L,
is infinitely differ entiable in p for any z from L, i.e. including all real z for the
function t(λ, p), l e l R , relation (2.10) holds.

Proof Note first of all that the assertions of this lemma are similar to the
appropriate assertion of Lemma 2.1. The only difference is that here the functions
cz(p), f(z9 p) and /0(z) are defined on a broader, as to z, set L => R so, thanks to
the condition Q<\, one can study the properties of these functions on a broader
set L x Ύd. With this similarity in mind, we will skip reasoning common for both
lemmas.

Since Q < \, the operator ( )τ in the definition on w in (1.15) may be omitted,
which immediately demonstrates point (a). Combining this with Condition V,
we obtain the following representation:

c z ( p ) = - l , peBc, zeL.

Introducing the set L in point (b) we, having in mind to define the function
/ = logc, must ensure the following: 1) L => 1R; 2) for z G L : z j= b(μ), b (μ),
μ e R, and in L there exists no closed contour surrounding the points b(μ)
and b*(μ); 3) for p e B the function cz(p) does not assume values on the real
negative half-axis; 4) smoothness of the function c on a sufficiently broad set.
It is easy to check whether the first three requirements are met on the set L.
Smoothness and analyticity of the function c in the appropriate arguments on
the set {|ImC| < \a{Reζ)9 Re£ < ρ} xΎd immediately follow from (2.9). The
infinite differentiability of the function c, hence /, up to the boundary on the set
{Re ζ > ρ} xΎd follows from the inequality
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since Condition V implies that, when μ —• ρ — 0 a(μ) tends to zero faster than
any power of ρ — μ. Inequality (2.24) follows from the definition of the set L\
and inequality (2.30). Relation (2.25) can be easily deduced from (2.29).

As to the properties of the function /o(z), it is smooth and analytical as well
as f(zp), the properties of the latter being valid for the former since it is defined
by Eq. (2.4) the jump of the function m(λ) at the point ρ is calculated from
relations (2.25), whence we get Eq. (2.28).

Finally, the assertion of point (g) is proved similarly to the corresponding
point of Lemma 2.1, using point (d) of the present lemma.

3. Selfadjointness and Structure of the Spectrum

The present section contains proofs of Theorems 1.1-1.3 together with important
representations for the resolvent and eigenfunctions of the operator H.

Lemma 3.1. Let H be the operator by Eqs. (1.1) to (1.7): Then HS a S and H
is a symmetric operator on S.

Proof. The Diophantine condition (1.5) implies the inequality

\tn\ < C^nf + I)-1, neΈ*, (3.1)

where C\ is a positive constant while it follows from Condition V that v e S and
VψeS,B >0 3C(ψ,B):

\(υn9 ψ)\ < C(ψ, B) (\n\ + l ) " β , neZd. (3.2)

It is not difficult to observe that the two latter inequalities together with the
relations vn G S imply that

Qψ= ^ tn(Vn, ψ)Όn £ S , (3.3)

neZd

the series being convergent in the metrics of the space S. Hence, taking into
account the obvious relation AS cz S9 we conclude that H is a symmetric
operator on S that transforms the space S into itself. The lemma is proved.

Lemma 3.2. Let for a fixed z wz(p), cz(p) and t(z9 p) be functions on the torus Ύd

which are defined by relations (1.15), (2.1), and (2.9), while wz, cz and t(z) are
operators of multiplication by the corresponding functions in the space Z^OΓ^). We
shall assume that in the notation of Lemmas 2.1 and 2.2 z G L$, if ρ > | , and
z G L, if ρ < ^. Then the following representations and an inequality are valid:

CzV =efo{z)Et{z)Ue-t{zK (3.4)

Γ" 1 + wz = (wz + ίl)et{z)(I - eMz)κV)e~t{z\l - κV)~ι, Imz £ 0, (3.5)

\\(T~ι + wz)-11| < | C 2 | 1 - eR*Mz)Γι, I m z £ 0, (3.6)

where, in the case ρ > \, C2 is a positive constant independent of z e L&, while

in the case ρ < ^, if A is such a bounded closed interval that A c (—00, ρ) or
A cz [ρ, +00), then C2 = C2(A) for z G LΠ {Reζ e A}.
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Proof. Equation (3.4) immediately follows from definition (1.19) of the operator
U and Lemmas 2.1, 2.2(g): To establish Eq. (3.5) one has to use (1.18) for
obtaining (1.20), exchanging λ for z, and then to substitute the right-hand-side
of Eq. (3.4) instead of czU. Since for Imz J= 0 wz is a bounded operator, the
domains of both sides of (3.5) and of the operator (/— κU)~ι all coincide because
of (1.18).

Finally, in order to obtain inequality (3.6) we make use of representation (3.5),
whence we obtain

( Γ " 1 + w,)-1 = (/ - κU)et{z)(I - eh{z)κU)~ιet{z){wz + il)'1. (3.7)

It is obvious that

||7 - κU\\ = 2, ||(/ - eMz)κU)~ι || = |1 - eRe/o00|-i. (3.8)

Besides, the inequalities hold,

ll(wz + 0~Ίl = \\\cz - 111 < C3, ||ί(z)|| < C4 (3.9)

the former follows from (2.21) and (2.24), the latter follows from Lemmas 2.1
and 2.2(g). Equations (3.7)-(3.9) imply (3.6) which terminates the proof of the
lemma.

Lemma 3.3 Let z assume the same values that in the previous lemma with Im z ^= 0,
let R(z) be an operator defined by Eq. (1.14). Then

(a) R(z) is a bounded operator and R(z)S c S
(b) (if - zI)R(z)φ = φ,VφeS;
(c) H is an essentially self-adjoint operator on S whose resolvent coincides with

the operator R(z);
(d) the spaces J^± reduce the operator H namely

Proof. Note first of all the following simple relations:

), n e Έά => (ψVi)τ = (v)τψi > ( 3 1 0 )

\{gψ)τ(p)\2dp<

< sup(|g|2)τ(p) ί\ψ(p)\2dp. (3.11)
peT J

Then the boundedness of the operator R(z) immediately follows from Eqs. (3.11),
(3.6), and (2.5). Choose an arbitrary φ e S and consider R(z)φ. The first term in
(1.14) obviously belongs to S. To establish the same for the second term, make
use of (3.7) and note the validity of the following relation:

y € C ( T ) , (3.12)

which follows from the identity (wz + 0"1 = \^z — \ e χ p{/( z )} Lemmas 2.1, 2.2
(d.g) and Eq. (2.5). It is obvious that v e S, so, because of (3.12) the second term
in (1.14) belongs to S, hence, R(z)S ̂  S. Point (a) is proved.



Schrδdinger Operator with a Nonlocal Potential 371

The assertion of point (b) of the lemma is checked directly, by using point (a)
and Eq. (3.10). Points (b) and (a) immediately imply that (H —zI)S = S, whence
it follows that the operator H is essentially self-adjoint on S, [16]. Combining
this assertion and (b), we easily obtain the validity of the second assertion of
point (c).

Finally, to prove (d) from (a) to (c), it suffices to make sure that the spaces
Jf+ coinciding with the functions from L2(Rd) with supports in the sets
{άzp2 > ±έ?} reduce the resolvent R(z) and its action on J f + coincides with
that of the operator (—(2π)~2A — z)~γ. The latter assertion can be easily deduced
from representation (1.14) and Conditions V which completes the proof of the
lemma.

This lemma obviously implies Theorem 1.1.

Lemma 3.4. Let Q < \ and Jί = (— ,̂ m(φ — 0)) U [m(ρ), ^], where the function
m(λ) was defined in Lemma 2.2(e). Then

(a) the set of eigenvalues of the operator H coincides with the set of solutions
of Eq. (1.28), the latter having exactly one solution for each n if

(α, n) + ω e Jί{moά 1), (3.13)

and no solutions if (3.13) does not hold;
(b) for each n satisfying relation (3.13) there exists the eigenvalue λ and the

eigenfunction uχ of the operator H, such that

m(λn) =ω + (α, n) (mod 1), (3.14)

λn{p) ^ ( 0 p
p-K \v -K

with uχn £ S.
Proof Assume that λ and uχ 6 L2QRd) are eigenvalues and eigenvectors of the
operators H, i.e. Huχ = λuλ. The latter equality, because of the preceding lemma
is equivalent to the equality R(z)uχ = (λ — z)~ιuχ for every z e LΠ {Imζ j= 0}.
This equality, using (1.14) and some elementary algebra, can be rewritten in the
form

(3.16)

gλ(p) = -tt ~ z) (T-1 + wz)-{(v(p) (P2 ~ zΓluλ(p)h (3.17)

Let us show that

gλ, T-ιgλeL2(W) (3.18)

Indeed, by multiplying both sides of Eq. (3.16) by v(p) and applying the ope-
ration ( )τr to the result, we obtain, on taking account of (1.15) and (3.10), that
Wλgλ = (t>w;ι)τ. Hence, on using inequality (3.11), we obtain that HW^HLSCT) <
max \v(p)\ \\uχ\\L2Q&dy But the norm of the vector uχ has been assumed to be finite,

hence, wχgχ E L2(TΓ). Further, let us consider Eq. (3.17), noting that the operator
(T~ι +wz)~{ because of inequality (3.6), is bounded, so the vector acted upon, by
virtue of (3.11) belongs to L2(T). Therefore, gλ e L2(T). That is why Eq. (3.17)
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implies that (T~ι + wχ)gχ G L2OΓ), whence, since the operator wχ is bounded,
T-Xgx e L2(T).

If one substitutes now expression (3.16) into Eq. (3.17) and, using relations
(3.18), carries out some elementary transformations, one gets Eq. (1.17). Let us
introduce the vector eχ = (I — κJJ)~γgχ, which by virtue of (3.18) belongs to
L2(T). Having applied the bounded operator (wχ + il)~x to both sides of Eq.
(1.17) and using the obvious boundedness of the operator wχ{wχ + il)~ι we easily
get

[/ _ {wχ _ u) {wχ + iiyiκu]2λ = 0. (3.19)

Combining this equality with Eqs. (3.4) and (2.9) at z = λ we obtain equality
(1.27), whence, by the same reasoning as in Sect. 1, we get λn and uχn. The latter
belong to the set S Π 3tf _, which follows from representation (3.15) and Lemma
2.2. It is not difficult to check with the aid of Eqs. (3.16), (3.17), (3.19), and (1.17),
that they are eigenvalues and eigenfunctions. The lemma is proved.

Lemma 3.5. Let ρ < \. Almost everywhere in ω G [0, 1) with respect to the
Lebesgue measure the eigenfunctions of the preceding lemma form a basis of the
space 34f-.

Proof The functions uχn being the eigenfunctions of the self adjoint operator H,
are mutually orthogonal for various n. By normalizing them, we will introduce
the functions

Un(p) = Uλn(p)\\uλJ~l

= (mf(λn)Γ^(λn, p^^e2*^ . (3.20)

Here we have used representation (1.30) and relations (2.10), (2.26), and (2.27).
Let us introduce the projection-valued function

λn<λ

where \ύn) (un\ is an orthogonal projection onto the appropriate vector. J*p(λ) is,
obviously, a nondecreasing function of λ generating a projection-valued measure
that will be denoted as Jp(dλ). We will choose an arbitrary φ £ Jf_ and, having

1

introduced the notation J...dω = ( . . . ) , we will investigate the nondecreasing
0

function

((φ, Sp{λ)φ)) = Σ(χΛλn)\(φ, ϋn)\2) (3.22)

with χχ being the characteristic function of the interval (—00, λ). Consider a term
with the subscript n in the last sum and note that, because of representation
(3.20), the dependence ύn on the parameter ω is realized via the dependence of
the eigenvalue λn{ω) on ω. Here Lemma 3.4 implies that if (α, n) + ωeJ^(moά)
then the function un(ω, p) "disappears" from the set of the eigenfunctions of the
operator H. It means, bearing in mind the right-hand side of Eq. (3.22), that for
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such ω's (φ, ύn) should be set to 0. This remark, combined with Eq. (3.14) and
equality (3.20), yield

λ

(χλ(λn)\φ,Un)\2)=\Jm(μ)dμ

<p*(p) (

w
This relation together with (3.22) yield

-H \φ , p)\2dp

(3.23)

(3.24)

[in obtaining (3.24) we made use of (3.10) and (2.10)]. Equation (3.24), since
Q<\, yields

((φSP(dλ)φ)) = f \φ(p)\ (3.25)

with B = {p2 < ρ}. Now let us investigate the nondecreasing function N(λ9 φ) =
((φ9 E(λ)φ)}, φ G Jf _, and the corresponding measure. Note that if z G L Π
{Im ζ > 0} then

φ(p) ΰ(p) J
((R(z))φ) (p) =

(ΰ(p)φ(p)\
(3.26)

p2 - z p2-z wz(p) + i\ p2-z ) Ύ

This equality follows from representations (1.14) and (3.7), since relations (2.5)
allow to expand the operator (1 — eMz)κU)~ι in κ = e~

2πiω, and the result of
applying the operation (... )τ will be the same as if we just set κ = 0. Equation
(3.26) implies that

Im(φ, (R(z))φ) = / dplm(p2 - z)~ι \\φ\2 -Revφ vφ
0- 1

- [
J

pz-zjτ

(wz

B • - - (3.27)

Set z = λ + zε and tend ε to zero. The first integral in (3.27) will tend to zero
since the second factor of the integrand equals 0 at z = λ + iO. Thus, after some
algebra and taking account of the smoothness of φ and Conditions V, we will
deduce from (3.27)

2

Im(φ, (R(λ + iO))φ)= ί vφ (3.28)

Having used the inequality Q < \ and equality (2.27), we shall get

, (R(λ + i = J \i(λ, p)f\φ(p)fdp, λeΊR, φGSΠJ^-. (3.29)
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00

On the other hand, since (φ, (R(z))φ) = J (λ — z)~ιdN(λ9 φ), we shall get
— 0 0

π-1 \m{φ, (R(λ + iθ))φ) = §-N(λ, ψ) (3.30)

almost everywhere in the Lebesgue measure. Since, according to (3.29), the left-
hand side of Eq. (3.30) exists and is bounded at λ e R, the measure N(dλ9 φ) is
absolutely continuous [16] and

N(dλ, φ) = ((φ9 E(dλ)φ)) = J \S(λ, p)\2 \φ(p)\2dpdλ, φeSΠ^^. (3.31)

Denote an orthogonal projection onto Jf_ by β and note that since un £ Jf-,
than J>(λ) < J>. Besides, it is evident that

Sp(dλ) < E(dλ) and JE(dλ) = E{dλ)J,

since Jf7_ reduces the operator H. The above reasoning together with Eqs. (3.25)
and (3.31) yield that {Jp{dλ)) = {E(dλ)J) and, therefore, for almost all ω's,

J%(ω, dλ) = E(ω, dλ)J. (3.32)

This equality means, in particular, that for almost all ω's <fp(ω, oo) = J, i.e. the
eigenfunctions uχn form a basis of the space Jf_. The lemma is proved.

Remark. In the course of writing this article the authors found that the proof of
completeness in their article [6] has a gap. Nevertheless, the complete proof can
be constructed out of assertions contained in [6]. To be exact, the completeness
of the eigenvectors for almost all ω's can be proved either as in Remarks in
[6, p. 415] or as has been proved above. The completeness for all ω's follows
then from the observation that the projection P onto the space generated by the
eigenvector is strongly continuous with respect to ω, i.e. s — lim P(ω') = P(ω).

ω'—>ω

This assertion immediately follows from representation (3.59) in [6].
Lemmas 3.3 to 3.5 imply Theorem 1.3.

Lemma 3.6. Let Q > \ and Ji\ = (— \, m(δ)) with the function m(λ) and the
number δ defined in Lemma 2.1.

Then
(a) the set of eigenvalues of the operator H which lie in the interval (—oo, δ)

coincides with the set of solutions of Eq. (1.28) belonging to the above interval,
exactly one solution corresponding to each n such that

(α, n) + ω G ̂ i ( m o d 1) (3.33)

(b) for each n satisfying relation (3.33) there exists an eigenvalue λn e (—oo, δ)
and an eigenfunctίon uχn of the operator H such that Eq. (3.14) is valid and

uλn (p) = (-2i) -p^-(wλn(p) - ί)-1 exp{ί(4, p) + 2πί(n, p)} (3.34)
P — λn

with uχn e S Π J f _
(c) for almost all ω's (in the Lebesgue measure) the spectrum of the operator

H in the (—oo, δ) consists of the purely point component.
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The proof of the present lemma will be a literal repetition of the proof of
the two preceding lemmas except the fact that here only part of the spectral
axis coinciding with the (—00, δ) will be examined. The similarity follows from
relations (2.12) and (2.15). D

Lemmas 3.3 and 3.6 imply Theorem 1.2.

4. Calculation of Integrated Density of States and Conductivity

At first, examine the case ρ < \. In calculating IDS of H we will use the notation
and relations from the proof of Lemma 3.5. Equations (1.6), (3.32) and (1.5)
imply that

N(λ) = (Spχτ(E(λ)J + E(λ) (I - J))χτ)

= Sp χi(Sp(λ))fa + Sp χτE0 (λ)χρχτ, (4.1)

where χp is a characteristic function of the [ρ, 00) and the operator of multiplying
by the function χp(p2) as well. The operators («/p(λ)) and E0(λ) are the operators
of multiplying by the following functions of p:

I
λ

2dμ\ί(μ,p)\2, χe(pz)χ(λ-pz). (4.2)

Note that the following is valid.

Lemma 4.1. Let h(p), p e 1RΛ be a nonnegative summable function, with h being
the operator of multiplication by this function. Then

Sp χτhχτ = Jh(p)dp. (4.3)

Proof Indeed, Spχχ/zχτr = Spχτ/iχτ, the right-hand side being a nonnegative
operator in L2(W) with the continuous kernel h(x — y)9 x, y G X But, according
to [17], Spχ τ hχ τ = fh(x- y) \x=y dx = h(0) = f h(p)dp. D

T

Combining (4.1), (4.2) and Lemma 4.1, we obtain

λ

N(λ) = JdμJ\S(μ,p)\2dp+ J dp.
Q<p2<λ

From this equality together with Eqs. (2.26) to (2.28) we easily obtain formulas
(1.7) to (1.9) which completes the proof of Theorem 1.4. Theorem 1.5 is proved
in a similar way.

Before the proof of Theorem 1.6 we will give a definition of conductivity. To
avoid cumbersome formulas we will consider a one-dimensional case (d = 1) it
is clear that the results obtained can be generalized to the multi-dimensional case
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without essential changes in the reasoning. Let z\ = λ + ί'ε, z2 = λ + v + iε, ε > 0,
v > 0, while Rj(ω) = R(zJ9 ω), j = 1, 2. Set

λ+v

σ(ε)(v, λ) = -v-1 y (I, <p(Λi - *Γ)P(*2 - #*)) W , (4.4)

where p is the operator of multiplication by the momentum p and 11 is the
function identically equal to 1. The conductivity corresponding to the external
field frequency v, to the Fermi energy λ and to the zero temperature is given by
the expression

σ(v,λ)=\imσ{ε)(φ,λ). (4.5)
ρ|0

This definition is based on the Kubo formula [8] derived in the framework of the
linear response theory with an additional "averaging" over the energy interval
of length v in the vicinity of the Fermi energy. The factor including the electron
charge, the Planck constant and the number π is omitted from the formula.

Reducibility of the operator H pointed out in Theorem 1.3 obviously implies
a representation of the type given in Theorem 1.6 for σ(ε) and, hence, a similar
representation for the conductivity σ, with

λ+v

σ f (v, λ)\ = -v-1 J (χQ9 </?(*! - R*)p(R2 - R^χ^dλ', (4.6)

λ

σp(v,λ)=limσ®(v,λ). (4.7)
ρ|0 y

Thus, one must get here an appropriate asymptotic estimate for the quantity σp as
v J, 0. To this end, we will use the approach developed in [6]. Let η = η(p) = e2πιp.
We will denote by η the operator of multiplication by the function η(p) in L2CΓ).
Set S1 = {C G <C : ICI = 1} and consider the set !F of infinitely differentiable
functions a(η, ζ) of the variables η, ζ e Sι. It is well-known that the function a
belongs to 3F if and only if it is expanded in the Fourier series,

a(η,ζ)= Σ <kηmζ\ (4.8)
m,keZ

ίΓ2 J a(η,ζ)η-<m+»ζ-<k+»dηdζ, (4.9)

and when its coefficients άm^ decrease when \m\ + \k\ —> oo faster than any
negative power of \m\ + |fe| + 1. Each function a G 3F can be put to one-to-one
correspondence with the operator a(η, U) in L2(T) defined by the equality

m,k

Lemma 4.2. A set of operators of the form given by (4.10), when a runs through
^ forms the algebra si. Here

Uηm = ymηmU, y = e~2πia, (4.11)
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and if to denote (A(CO))Q = fa0, (A)η°), then

( f l i . . .α s )o = (a2...asaι)o, (a )o = (fl)o> α / E j a / . (4.12)

The proof of the assertions of this lemma coincides, to within notations, with
the proof of the similar assertions in [6]. It should be noted that the algebra
considered in [6] differs from the algebra described here only by considering
the functions with exponentially decreasing Fourier coefficients (i.e. analytical in
an annulus) in the former case, while here the coefficients are assumed to be
decreasing faster than any negative power. Beside the algebra s# we will consider
its extension stf. Let S/Q be an algebra of operators of multiplication by bounded
complex-values functions in L2(F). Then the set of finite sums of all possible
finite products of operators from s/ and s/o obviously form an algebra which
we will denote by stf.

Lemma 4.3. Ifh is an operator of multiplication by the function h(p) e L2(K, then

Uh = haU, K{p) = h(p - α). (4.13)

Besides, if a\, ..., as e sf then the relations (4.12) are valid.

Proof Relation (4.13) immediately follows from (1.19); it is easy to establish
(4.12) with the aid of (4.13). D

Returning to the calculation of the integrand in (4.6) and using Lemma 4.3,
we get

(χβ9{p(Ri-Rι)p(R2-R2))χQ)

= fa0, (χβp(Ri - R*)p(R2 - R2)χβ)η°)

= 2 Re{(χρpRipR2χρ)o - {χβpRιpR2Xβ)o} (4.14)

To calculate the latter expression, we shall need the following representations for
the resolvent:

R(z) = ( p 2_ z )- i_ r ? (4 1 5)

r =—^—{1 - xU)e\I - κeh\jγxe-\w + i)~l-^—, (4.16)
pλ — z pι — z

r = -e\l - κefoc-ιU) (I - κeh

f-z pi-z ( 4 Π )

where, for shortness, the arguments p and z of the functions 0, ί, c, w, /o are
omitted. Formulas (4.15) and (4.16) follow from equalities (1.14) and (3.5), while
formula (4.17) follows from (4.16) and (2.9). In the manner used in deriving
equality (3.26) we can get

MV 1 ^ ^ (4.18)— z) p +

{R^-ph^t < 4 1 9 )

- P{RMR2) — j ; 2 _ - + • + . ,4.20,
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Here and further on the subscripts 1 and 2 at the functions w, t, c and /o mean
that the arguments are z\ and Z2, respectively. Relations (4.15), (4.18), and (4.19)
imply

zι)(p2 -z2)

p2 - Zi) Wi + ϊ
(4.21)

To calculate the right-hand side of Eq. (4.21) we will introduce the auxiliary
functions

{p
2

zLτiy BHP) = ΰ { p ) b H p ) ' ( 4 2 2 )

= V^2(p) = pe±tίip)Bγ(p)e±t2{p)(B^f(p). (4.23)

Lemma 4.4. Let Y$ = {ζ G C : | Re£ — ρ| > δ, | Im ζ | < \a(δ)}, where a is the
function mentioned in Conditions V. Then for a small enough δ the functions bγ(p),
B±(p), V^Z2(p) are infinitely dijferrentiable at p G T, z, z\, z2 G Yβ. Besides

w y — w R ± γ — D± V — Ύ — V— (Λ?4.)
wλρ — w > ** λρ — ^ 5 v λρ — y yΛ.^ -t)

Proof Identities (4.24) obviously follow from Conditions V, while smoothness of
the functions b±, B± and V± immediately follow from Definitions (1.15), (4.22),
(4.23) and Lemma 2.2. D

In particular, Lemma 4.4 implies that if the Fourier expansion of the function

V± has the form

V± = Σ β±ηm (4.25)
meZ

and min{|/l — ρ|, \λ + φ — ρ\} = δ > 0, then for ε < a(δ)/2 and any natural n

\β%\ < C{n, δ) (\m\ + l)~n, (4.26)

where C(π, δ) is a quantity depending only on n and δ. Equalities (4.17), (4.23),
(4.25) and (4.11) imply

=ίp 2

V_ eh{I-κef^c^U){I-κ<

x
p2-z2

x (/ -
p2-z2
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^ Z ^ V K ^ Γ 1 + (1 - e*1+/*V)

x (1 _ e/αi+/i 2 y m Γ i ( 1 _ ( c * ) - i ) ] ^ - ^ ^ _ . (4.27)

The latter of the equalities obtained can be derived as was done in [6] in the
similar case. If we add and subtract 1 at c[γ in the latter equality, then, by using
the identity 1 — c~ι = —2i(w — i)~ι, we get

(Wi — ϊ) (W2 — ϊ) 1 _ e / o , i + / ( U y m J P 2 — Z 2

Combining the identity x(l — x) = ^[(1 + x) (1 — x)" 1 — 1] with Eqs. (4.22) and
(4.23) we, after simple algebra, get from the latter equality that

/ * \ 2 W l W *

P2 - z2) (w2 + ί)

+ Σ, (4.28)

. (4.29)

Thus, Eqs. (4.20) to (4.23), (4.28), and (4.29) will yield, after some elementary
transformations,

and further, using Lemma 4.4 and identity (4.24),

(χρP(Rι - R*)p(R2 - R*)Xs)o U+o

bf)= - 2 R e Z 0 |c=+o -2Re{(χρ, p2[£>Γ(&Γ + bf) - 2BfB+(B^Bί)*] | ε = + 0 χρ}

= - 2 R e Z o | 6 = + o , (4.30)

where
_ _ 1 J- pfo,l+ff)2vm

Σ0 = [η\ Ση«) = £/C/>V , + r (4-31)

Bringing together relations (4.6), (4.7), (4.14), (4.30) and (4.31), we get for λ j= ρ
and v < \\λ — ρ|,

σp(v, A) = 2v~ι ί Re ^ ( λ ' ) ^ . (4.32)

λ

Now we have only to note that if to use relations (4.26), (4.31) and (4.32) and
to repeat the argumentation concerning similar expressions from [6], then we get
that σp(v, λ) decrease for v j 0 faster that any power of v. Theorem 1.6 is proved.
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