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Abstract. On the unit circle, an infinite family of chiral operators is constructed,
whose exchange algebra is given by the universal R-matrix of the quantum
group SL(2),. This establishes the precise connection between the chiral algebra
of two dimensional gravity or minimal models and this quantum group. The
method is to relate the monodromy properties of the operator differential
equations satisfied by the generalized vertex operators with the exchange
algebra of SL(2),. The formulae so derived, which generalize an earlier
particular case worked out by Babelon, are remarkably compact and may be
entirely written in terms of “q-deformed” factorials and binomial coefficients.

1. Introduction

Quantum groups came out from the study of conformally invariant field theories
and integrable models [1-3]. In particular, Neveu and I [2,4] already wrote an
exchange algebra associated with SL(2), as early as 1983, by studying the
monodromy properties of the differential equation for chiral vertex operators [5, 6].
Our formulae did not look like the standard ones since they came out in a different
basis, but recently Babelon [3] explicitly established the connection for the simplest
set of operators in the chiral conformal family. Our results of ref. [2] concerning
the monodromy of conformal blocks have been rediscovered and generalized later
on [7,8]. However, apart from ref. [3], their precise connection with the quantum
group SL(2), remains to be established. Such is the aim of the present paper.

In an earlier work [4], we had devised a formalism, in order to handle the
chiral conformal Virasoro algebra, that is formulated in terms of two free fields
which play a symmetric role, contrary to the more standard Coulomb gas picture.
As we shall see this point is crucial. It is most simply explained by looking first
at the following classical structure which came out of our studies [2,4,5,9] and
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is of central importance in 2D gravity and minimal models. Consider a classical
c-number field p(c), defined on the unit circle (0 < o < 2x), which satisfies the
Poisson bracket (P.B.) relations

{p(01),p(02)} =218 (0, — 03). (1.1)

Primes denote o-derivatives. Let y be a free parameter that plays the role of the
coupling constant, and introduce the field

T(0) = 19*(0) + /70 (0). (12)
It easily follows from (1.1) that if we define

1 2n X 1
L,=— | doT(06)e" +—9, 1.3
Iy £ (0) g 0 (1.3)

we have a P.B. realization of the Virasoro algebra:
i{L,,L,}=(m—n)L,,,+ l—cz(m3 —m)d,, _p, (1.4)

where C = 3/y. The above expression may be rewritten as:

Th=(@)Y+¢"/\/y ¢=p, (1.5)

which is a chiral component of a deformed U(1) Sugawara stress-energy tensor.
This simple realization of the Virasoro algebra came out in a very natural way
from the canonical treatment of the Liouville theory [2,4,5,9]. It is the basis of
the Coulomb gas picture of conformal theories. In this connection Neveu and I
have pointed out [4] that the relationship between p and T so defined, which
coincides with the so-called Miura transformation of the KdV system, is not
one-to-one but two-to-one. Consider the equality (1.2), with a given function T'(0)
as an equation for the field p(s). From this viewpoint it is an equation of the
Riccati type which is well-known to have two independent solutions. This becomes

obvious if we let p= |///(|//ﬁ), obtaining the Schrodinger equation
—y"+ Ty =0. (1.6)

Denote by ¥;,j=1,2, two independent solutions of (1.6). Going backward one
obtains two p-fields, p; = ¥//(¥;1/7),j = 1,2, which are such that

T/y=p}+Pi/N/7 = P2+ Do/ (1.7)

Thus the correspondence between p and T is two-to-one as already stated. Since
the Schrodinger equation is linear, the y-fields are determined up to linear
combinations. The potential T of Eq.(1.6) being periodic in o, one has
Yo + 2m) = Miy (o). Generically one may diagonalize the monodromy matrix

J
M so that the Schrodinger wave functions are periodic up to multiplicative
constants (Bloch waves). With this choice the p;’s are periodic and one may write:

pi=y.e " pP. (1.8)
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For later use we note that it is convenient [2,5] to normalize the Schrédinger
wave functions as
_ . . e—imr
y;=de’ with ¢0)=qP+pPo+i Y —p, (1.9)
n#0 N
where the d; are integration constant that only depends upon p§’. The variable
q¥" is assumed to satisfy the P.B. relations’

{ad.pP} =1, (1.10)
so that the y’s are classical vertex functions similar to the standard string vertex,
q¥ and py playing the role of center of mass positions and total momenta

respectively. Equation (1.10) ensures, in particular, that the y’s satisfy the P.B.
relations:

i{L,,,l//j(a)}=e"”‘<——ii+nA>¢j(a); with A=—1. (1.11)
do 2

They are thus classical primary fields of weight — 1/2, that is, half differentials.
(Since we work on the unit circle, I adopt the corresponding definition of primary
fields: the coefficient of the A-term is n instead of the more standard n + 1. The
latter definition is recovered by mapping to the complex plane, since a primary
field of weight A is multiplied by €*4 if one performs the conformal transformation
z=e¢")

It obviously follows from (1.9) that (6 + 27) = ez""g)nll i(0). Standard Wronskian
arguments show that the determinant of the monodromy matrix is one, so that
the product of its eigenvalues is equal to one. Therefore

Py’ = —pd. (1.12)

As is well known, p{"’ = — p{» may be either real (in the so-called forbidden zones
where the Schrodinger wave functions decay or blow up exponentially over a
period), or pure imaginary (in the so-called allowed zones where the Schrodinger
wave functions are oscillatory). There are special cases, at the border between
allowed and forbidden zones where the monodromy matrix may not be
diagonalizable. We shall not consider this possibility (more about this later on).

Concerning the P.B. structure, Neveu and I have shown that it is completely
symmetric between p, and p,, namely both satisfy (1.1):

{P1(01),P1(03)} = {P2(6,), p2(02)} =275’ (6, — 7). (1.13)
The P.B. relations between p; and p, are complicated and not very illuminating.
The interesting structure is provided by the P.B. relations between the y’s, which
close in the sense that

{‘pi(al)’ '/’j(o'z)} = Z S?}'/’k(ﬁ)'/’t(az)a (1.14)

k=1,2;1=1,2

! Throughout this article, no summation over repeated indices is to be performed unless explicitly
indicated
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where s}; only depends upon p{’ and plays the role of a classical R-matrix. In ref.
[9] we remarked that letting A =y,/y, leads to ¥, = 1/\/4’,y, = A/\/A’, and
that — 2T is equal to the Schwarzian derivative of A. We worked out the P.B.
algebra of the A-field (Eq.(3.34) of ref. [9]) taking account of the periodicity
condition in ¢. Equation (1.14) is an immediate consequence of this last P.B.
structure. Its precise form will be given later on since it depends upon the choice
of the d;’s in Eq. (1.9). We shall see that it is related to a classical limit of the
exchange algebra of SL(2),.

The field T has conformal weight 2 up to a central term and defines a quadratic
differential on the circle. The p-fields transform as a linear differentials up to central
terms. Thus Eq. (1.2) may be regarded as defining linear differentials as square
roots of the given quadratic differential T. The existence of two independent p-fields
for a given T, that will play a crucial role in the following, is thus very natural.
Exchanging p, and p, is a canonical transformation that plays the same role as
the exchange of solutions of an algebraic equation. It is thus a generalized Galois
transformation. As we shall see this transformation is the basis of the quantum
group structure.

The results presented next follow the trend of my previous works with A. Neveu
and A. Bilal which is quite different from the more common line initiated by BPZ
[10]. Our main tools are operator differential equations which are derived without
invoking the decoupling of null states. It is thus possible to work for general value
of C and generic Verma modules that do not contain null vectors. In this situation,
the transformation between p, and p, fully extends to the quantum case [4]. (This
is the quantum equivalent of avoiding borders between allowed and forbidden
zones which we mentioned above.) In this article, I only discuss this generic
situation, which is also simpler because the corresponding representations of the
quantum group have g-values not equal to a root of the unity, and are thus simple
deformations of the standard group representations. In this philosophy, the rational
theories are recovered by taking limits of the general formulae discussed below. I
plan to retun to this in later publications.

2. The Conformal Structure in the Block Wave Basis

At the quantum level Neveu and I [4] have shown that the structure sketched
above survives with little modifications and that, for generic C, the symmetry
between ¢, and ¢, may be kept. One defines two normal ordering noted N and
N@ that are with respect to the modes of p, and p, respectively. Equations (1.13,
17) are replaced by:

[p1(61),p1(02)1=[P2(01), P2(02)] = 27ié (0, — 75,), Pgl) = ng),

ND(p2 + pi//7)=NP(p2 + p3/ /7). @.1)

The latter equation defines the parameter y at the quantum level. It is such that
the central charge is given by C = 1 + 3/y. Equation (1.9) becomes [2]

Vi = dNO(e ), 22)
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where? there are two choices for the number h

hy =%(1 —4y+ N —8y)=%(C— 13+ /(C=25(C—1). (23

For each i = 1,2 there are thus two different fields ¥ = . In the classification of BPZ
[10] both ¢ | and ¢ ; (respectively ¥ ; and ¥ ; ) correspond to the (1, 2) (respectively
(2,1)) chiral primary fields. In the standard Coulomb gas picture one only
introduces one of the two free fields, say, p,, and only ¥ £ is defined by (2.2). ¥ 5
are expressed in terms of ¥ ¥ and p, by means of the screening operators. From
the quantum group viewpoint it is better to remain symmetric as we do here. For
the time being we shall not consider the algebra that mixes the two choices of h.
It is thus not necessary to distinguish the two values of h, and I drop the indices
+. The complete algebra will be discussed in Sect. 4.

Neveu and I [2, 5] long ago derived the exchange algebra of the  fields from
the monodromy properties of the quantum differential equation® corresponding
to (1.6). If one looks at the exchange of y fields, our result is equivalent to:

Yi(o)y,lo) = . 22;:1 , SEW(aWi(o) 24
with the condition: o
d,(w)dy(w — 1) = I'(— wh/m)I ((w — 1)h/x), (2.5a)

that gives, as non-zero matrix elements,:
Sii=83=e""7
1 . 1] .
S12(w) = S2}(— w) = —eP/2-0) §2l(p) = §1}(—w) = Lot 1) nz (2.5b)
Lol Lw]

¢ is equal to the sign of 0 — ¢’,w is related to the zero mode of the free p-fields

by the relation
o =ip{ /277[, (2.6)

and we introduce the convenient notation:
sin (hx)
xl=——
sin (h)

The above formulae are not quite the expression derived in ref. [2]. The latter
involves I" functions. The d,’s are chosen such that they are replaced by trigono-
metric functions. Some more details are given in Appendix A.

Since they describe the exchange algebra of operators the above S do satisfy
the Yang—Baxter equations. However, they depend upon @ which is shifted by

2.7

2 Warning! The notation is different from ref. [2]: y,h +» and ho here are equal to A, hr]zt, and no
there, respectively. Moreover, I have rescaled p by /7
3 Which reflects the decoupling of Virasoro null vectors in the BPZ language
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the ¢ fields according to:
Vi f@)=flo+e) s &=—¢=1 (2.3)
Thus the Yang—Baxter equations read [2]:

Z S ;.((J), 0y — O-2) S ((D + £,05 — 63) s ”(CO + £,01 — 0'2)
Pidu
= ). StHw,0,—0a,) S +&,,0, — a3) Si" (0,0, — 03). (2.9)
[N
The basic point in deriving these properties is that the two-point functions of the
y fields satisfy hypergeometric differential equations. The exchange algebra is a
consequence of the well-known relation (for |arg(— x)| < 7):

oa Trb-a _ -a _ L 1
F(a,b,c,x)——————l_(b)r(c_b)( X) F<a,1 c+a;l—b+a; x)
I'(c) (a—b)

—x)"b _ 1 1)
F(a)r(c—b)( x) F<b,l c+b;1 a+b,x. (2.10)

Similarly, one may determine the fusion rules of the y fields to leading order from
the relation (for |arg(l — x)| < =):
Ir'erc—b-—a
I'c—aI(c—Db)
I'cI'(a+b—c¢)
I'(@I'(b)

F(a,b;c;x) = F@ba+b—c+1;1—x)

(1=xF"""tFc—ac—bc—a—b+1;1—x).
2.11)

These results may be extended to more general operators, since the two-point
function of one y field with any primary field is also given by a hypergeometric
function [2]. In this way one defines fields y*¥ for arbitrary positive u and v. (My
collaborators and I have repeatedly stated the general features of this family [5,11]
without giving their explicit derivation. This is done, to some extent, in Appendix
A.) In this connection it is simpler to temporarily restrict ourselves to the interval
1/8 >y >0, that is C > 25, where the leading term of the short distance operator
product expansion (OPE) just corresponds to adding the y’s and the v’s. In this
way, for instance, one has Y™ ~ Yy}, Y% oc NO(r#2501) 3 oc NO(e/h2nd2),
where ~ means that one takes the corresponding term in the short distance
expansion and removes the standard divergent piece. Once the conformal family
is derived one may continue to other values of y. The term considered becomes
non-leading but the construction remains valid.
The properties of the *’s may be obtained recursively from the fusion rules:

b gy L8 g 1)

It is convenient to adopt a notation ispired by SU (2). We let:
yP =yl mI*tm yyv=2J, v—p=2m (2.13)
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so that 2m is equal to the shift:
Y f(@)= f(o+2mys. (2.14)

Using the set of harmonic oscillator associated with p, or p,, one generates a
Fock space &, spanned by the states noted |, {N}) that are eigenstates of the
occupation number operators. The occupation-number-zero state |@,0) is a
highest-weight state with weight A =(C — 1)/24 — hw?/4n. It follows from (2.14)
that the operators ¥ are naturally defined in a Hilbert space 5# of the form:

H=PF,; o,=w,+r; rinteger. (2.15a)
Indeed o', {N'}|¥|w,{N}) is non-vanishing iff o' =w +2m, and 2m is an

integer. Physically, the natural choice for w, would be the SL(2,C) invariant
vacuum (with highest weight zero: A(w,) = 0), that is:

Wo = =1+ (2.15b)

The mathematical structure we are discussing does not specify w,, however;
and we give it an arbitrary value following the philosophy mentioned in the
introduction.

In (2.13) J determines the conformal weight of y{:

AJ)= —J —hJ(J + 1)/n. (2.16)

The quadratic term of this last expression coincides with the weights of the SU(2),
WZW model if one lets h = — n/(k + 2). This directly exhibits a relationship between
the present Virasoro chiral conformal family and a deformed WZW theory.
As shown in Appendix A, one may define the operators ¥, —J <m < J, such
that Eq. (2.5b) is generalized to
VioWPe)= Y SYMYIe )Y (o), (2.17a)

ji=1,2sn=—-J---J

where the non-vanishing matrix elements are given by

J .
S(J)Tr:l(w) = S(J);,T’,i( — (D) = M elhme,
o]
J .
S(J)rln"—nl,Z(w) — L_ii"ezha(l -m-o) _ S(J)z__'z:,l’l(w). (217b)

lw]
Finally, it is further shown in Appendix A, that the general fusion rules, to leading
order are given by:
YYD ~ N, m J' m'sw) YU Io) (2.18)

m+m' >

Jom-to+J+J +m+m —r|?tmtwo—J—J +m+m +5]

N="11

- 2.19)
F=0 lo+J+m—r] s=0 lo—J+m+s]

All the consistency conditions of conformal algebras are satisfied, but take an
unusual form since S and N depend upon w and thus do not commute with the
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primary fields. As we shall see, the operator product structure just displayed is
associated with the quantum group SL(2),. This fact is hidden at this moment and
will appear when we choose another basis of conformal primary fields. The present
basis has simple shift properties in view of (2.14), and the fields are periodic in ¢
up to a constant. However, this choice is inappropriate from the quantum group
viewpoint to be discussed in the next section.

Let us finally discuss the classical limit of this conformal structure in order to
make contact with what we recalled in the introduction. We shall let y go to zero.
In this limit h_ ~ 27y, and, letting h=h_ gives wjzdje‘/""f. If one retains only
the — operators, one goes smoothly back to the classical case. One expects that
commutators will behave as iy times the Poisson brackets. Looking at (1.13) one

sees that this will be true if p{’ ~ 1 /\/§. According to (2.6) this means that hw will
tend to a constant. With this information one immediately deduces from (2.4, 5a, 5b)
that
Y@ (o) = Y0 ) (o)(1 — inye),
, , . , 2nye—Mmz
Y1(oW2(0") = Y,(a" )1 (0)(1 + inye + 2my cot(hw)) + Y4 (W2 (0)| ——— ),
sin(2nyw)
2nye~Mws>
sin(2nyw) ’
2.22)

Y2(o)1(0") = Y1 (0" W2(0)(1 + inye — 27y cot(hw)) — !l/z(a’)l//1(6)<
This immediately leads to the PB exchange Eq. (1.14).

3. Connection with the Universal R Matrix

Introduce
&= Y uly; for a=1,2,
2

i=1,
with
ul = u2 = ehol2; yl = o~ i+ 12, u2 = o112 3.1

After some computation, one deduces [3] from (2.4, 5) that the ¢ fields so defined
satisfy the exchange algebra

84(0) Eplo’) = %plﬁ £,(0') &5(0),

where, for ¢ = 1, the only non-vanishing matrix elements are

11 _ 22 _ ,—ih2
pii=pir=e"?

21 _ 12 _ Likj2. 21 _ ,—i i

piz=pri=e? pll=e"M2_g3h2 (3.2)

This last expression coincides with the simplest R matrix of SL(2), with g =e™ "2,

It corresponds to J = 1/2 in the above family of primary fields, and our task is to

generalize this result to arbitrary J. Derivations will be sketched below. Details

are given in Appendix B, C and D. The general formulae are as follows. Let
o= Y |, o)y ¥o), (3.3)

-J=msJ
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where the coefficients |J, w)}, are given by:

ca,\'tM ( 2J ) .
J,o)" = e—th_g K eihmi2
W X ( a1> N\U+Mm

Sy e < J-M )( J+M )
(J —M +m—s)/2integer (J—-M+m—s)/2 (J+M+m+s)/2
34

The constants a;, and k; depend upon the normalizations of the ¢ fields. In
particular, the a;’s are such that £'7) = a, &, E0/P = a,&,, if we let ,, = a,. The
g-deformed binomial coefficients have been introduced by the formula:

(P ) __ Pl 3.5)

o/ 1e1P-Qlr
where
n]!= lj[1 [r1. (3.6)
The operators so defined satisfy the general exchange algebra
&) &) = ) I Nre €500 ER(0). (3.7

—JENSJ;-J SN'ST

The coefficients (J,J')}y &, of the R-matrix only depend upon the sign of 6 —¢’.
This matrix is conveniently written in terms of quantum group generators as
follows: Introduce a set of Hilbert spaces H; with states notes |J, M >, —J <M < J;
together with operators J ., J; such that:

J LMY= JIUFMIJ M+ 1)L, M 1) J3|J,M)=M|J,M). (3.8)
These operators satisfy the SL(2), commutation relation
W+, J-1=12J5] (3.9

For ¢ > ¢’, one has:
I =KL M|@ LI, M'DR(IJ,N>®|J,N'D), (3.10)

o 2 (1—
R=e( 2ihJ3®J3) 1+ }
n=1 |_n_|'

The last formula exactly reproduces the universal R matrix of SL(2), [1] with
q=e ™2 The case ¢ < ¢’ will be discussed below.

Moreover, to leading order in the singularity, at ¢ —¢’, the fusion rules are
given by:

£5(0) Eip)(0) ~ (1 — e ™) 2R (I My ', M) Eae),  (B12)

e2ih)neihn(n —-1)/2

e —iths(J+ y® e”'"h(J_)"), (3.11)

2J ) < 2J )
AU M0, My = Ko [N AMIAT * M'J qinwrs-ms (.13)
Ky < 20+2 )
J+J+M+M
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Proof. One proceeds by recursion starting from (3.1). Some details are given in
Appendix B, C and D. The basic requirement that determines the coefficients
|J, )y of (3.3) is that all w dependence disappear from the exchange algebra and
from the fusion rules. In Appendix B, Eq. (3.4) is established by studying the
exchange of &%/ with &Y for arbitrary J. In Appendix C, the coefficients
A(1/2, +£1/2;J, M) are first explicitly computed using the results of Appendix A.
Equation (3.13) is then established from the associativity of the short distance
operator product expansion. Finally, in Appendix D, the general exchange algebra
is derived from the requirement that the order between fusion and exchange be
irrelevant. This leads to recurrence formulae which are solved by first taking the
expression (3.11) with arbitrary coefficients as an ansatz, and showing that the
universal R-matrix is the solution. For this, a basic relation is

[JFMIIJ+M+p|
VFM-—p]lJEM]

)|, M) = |J,M+p) (3.14)

that easily follows from (3.8). Q.E.D.

Our next topic is the hermiticity relation of the conformal family we just
discussed. We shall assume at this point that h is real. On Eq. (2.3) one sees that
this is true for C > 25 (0 < y < 1/8) which is the weak coupling regime of 2D gravity
and for C < 1(y < 0) which is the standard regime of minimal models. In this case

w is real and Eq. (2.6) shows that p(!) = — p{?) are pure imaginary*. Thus
(§) = (3.15)

Neveu and I long ago argued [12] that the correct hermiticity relation is:
pl=p.. (3.16)

Indeed, it is compatible with (3.15) contrary to the standard hermiticity condition
for free chiral bosonic fields. Moreover Eq. (2.1) shows that the Virasoro generators
have two equivalent expressions:

2rdg 1 2rdg 1
L,= [ —N®Y(p?+p, +—8,0= | —NP@p2+p; +—46
g 4,V NG, g Omo g 4 Vw3 NG 5 Omo ,
17)

which are interchanged by (3.16) so that one correctly obtains the hermiticity
relation L} = L_,. As recalled in the introduction, p, and p, are related by a
generalized Galois transformation. It is a standard phenomenon that complex
conjugation may interchange solutions of an algebraic equation with real
coefficients and may therefore correspond to a Galois transformation. We now
show that the exchange algebras we have derived have simple transformation
properties under (3.16). The basic point is to recall that the fields ¥ do not

4 For simplicity, I only consider the case 0 <7y < 1/8 where h > 0. The case y <0 is treated similarly
[12]. There are some extra minus signs. In particular (3.16) is replaced by p: =-p,
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commute with @ as shown on (2.14). Equation (2.2) with j =1 gives
Yl = N2 2)q () = d, (0 + 1) N@(eVH2ré2)
di(@ + 1)d,(w)' I'(— (0 + )h/n) I (wh/x)
O ()

The last factor is real but not always positive. The general discussion may be
carried out if needed, but would be cumbersome. Here we only consider the values
of w where this factor is positive®. The we may choose the d;’s to be real and
d,(w + 1) = d,(w), obtaining ¥ = y,. Equation (2.5a) becomes:

d,(©) = dy(@ — 1) = /T (= wh/m)T (@ — 1)h/n) (3.19)

which also gives ¥} =,: the square of the complex conjugation is indeed the
identity. It is shown, in Appendix A that this extends to the higher y operators, as

¥,. (3.18)

2

W' =y, (3.20)
Concerning the ¢-operators, Eq. (3.3) leads to
£ =Y v (0)(1J, 0)5)" =Y (1), @ + 2m) ™) ¥ (o). (3.21)

P P . . .
Using the fact that <Q) = (P Q), it is easy to verify from (3.4) that, if we choose,
a,/a, = e™ and k; real, we have

(J, 0 + 2m) ;™) = |J, 0)T (3.22)
so that
EP(0) = EP(0) (3.23)

are hermitian fields. Concerning the exchange algebras, one may verify that the
scheme is completely consistent with the present hermiticity structure. Consider
in particular the hermitian conjugate of (3.7, 10). One obtains

L) Go)= ¥ ey SN G0 EQ(0), (3.24)

=N=J57J =

where ((J,J')} &)* is the complex conjugate of (J,J')¥¥.. In (3.7) the operators on
the left-hand side are ordered with decreasing arguments, while the opposite is
true in (3.24). The latter equation thus corresponds to the other R-matrix which
has been left out of the discussion so far. For consistency, it is convenient to define

(J,’ J)f{)’vlltl = ((J9 J,)xlliv{’)*’ (325)
so that

E4(0) £3P(0) = > )it EX(0) E57(0) (3.26)
- 5

JENZJ,-J' NS

5 This is true for instance if @ > 0 and (2q + 2)n/h > w + 1 > (2q + 1)n/h, q positive integer. The width
of this interval is n/h and thus involves several values of @ of the form (2.15a) iff x/h > 1. This last
condition holds if we choose h=h_
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has the same form as (3.7). It may also be written under a form similar to (3.10,11).
Using the fact that the matrix elements of J . and J; are real (see (3.8)), one easily
derives

D= (I M| @ (I, M)R(IJ, N> ®1J,N ), (3.27)

__ p—2ih\n ,—ihn(n—1)/2
(I—e*"e

ﬁ (2:hJ3®J3)(1 + Z

Ln]! e HhnI3(J_yr@eins(] )">. (3.28)
n=1 °

Applying (3.7) and (3.24) in succession must give the identity. This gives the
inverse relation:

) U IV DRy = O pOag (3-29)

-JENSJ;-J' SN2
whose proof is based on the interesting identity:

eih(n =m)(1—-N)/2

—-'——=0, if N>O. .
n+m=N;n§0,m§0( ) [n_l!l_m_l' ! > (330)

This latter equation is the g-deformation of a standard identity on binomial
coefficients. Its actual derivation is left to the dedicated reader.

As a general remark let us note that the hermiticity condition discussed here
is the quantum equivalent of the allowed region for the classical Schrodinger
equation (1.6). Indeed, for oscillatory waves the eigenvalues of the monodromy
matrix are complex conjugate and of modulus one. The two Bloch waves are
complex conjugate, which is the classical analogue of (3.20).

For the forbidden region of the classical Schrédinger equation, the Bloch waves
are real. Quantum mechanically this corresponds to p] = p;. This other hermiticity
relation is relevant for 1/8 <y < oo [5,12,13], where h, are complex and h_ = h*%.
Thus both values of h must be retained. This is the subject of the coming section.

4. The Complete Algebra

Let us finally derive the complete algebra by taking both values of h in (2.3) into
account. The notation of the above section must be doubled. It will be simplest
to still denote by h one of the two choices (for instance h_), and to write all
symbols related to it as in the previous sections. The other value (for instance h..)
will be denoted by k and its associated symbols distinguished by a hat. This avoids
clumsy notation, at the expense of the explicit symmetry between h and h. One
now has:

A

—lh/2 q e—xh/2 (41)

—ip® /" @ =ipd f‘ &= w— o= o)h @2)

,/,i =d, N(:)(ewx/Tn ) =d, N(i)(e(n/hﬂh‘/ﬂ ), 4.3)
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Some details are given in Appendix E. One arrives at a general family
YYD —J<m<J, —J<m<J. The fusion to leading order is given by:

lﬁ("")(a') !//(J J)(a)_’(l _e—l(v a))Axac(J+J J+750)— Akac(,J;C) = Akac(J’,J";C)

N, m,J, i J',m, T s ) Y9+ T4 T)(g), 4.4)

m+m' i+’

where
N, m, J, i J',m', J' i ) = (— 1207+ 37w = som)
‘N(J,m; J',m'; 0)N(J, i, I, i D). 4.5)
The divergent factor shows that the conformal welghts take the form
A= Ay, (J,J; C), where Ag,. is given by Kac’s formula:$

A U, T;0) = ———((J+J+1)./ —J=J/Cc= 2) 4.6)

In terms of the WZW A(J) given by (2.16), this may be written as
N A\ +f- h
A0, 3:0) = A<J ¥ %J>=A<J " —J), @)
T

which reflects the fact that, formally, YY) ~ Y FIEMO and YD ~ yQutm+I,
Although formal since for general h neither n/h nor h/m are integers, this connection
is of help in deriving the properties of the YY1 D as shown in Appendix E.
Equation (4.4) shows, in particular that

YO YOI ~ 0D YU O o (— 1207 -y ) (4.8)

The appropriate definition of the ¢ fields is
RPN AN . N
Eh@= % (— eI o T 6)E D). (@49)

—-JEmsJ;-Jsms]

The phase factor e~ M7 +M) jg guch that, under the hermitian structure discussed
in Sect. 3,

£ n(0) = (£ 1) (4.10)

are again hermitian fields. From (4.8) and (4.9) one deduces that
f(le)é‘;{l) ~ ein(Mf—ﬁJ)éﬁ-B’ 4.11a)
EDEQ ~ gintht -MI I D) (4.11b)

On the other hand, one finds that due to the relation (4.1), the y and i/ fields have
a trivial exchange algebra:

./,(JO)(O.)l/I(Oj)(O,I) = e—Zianel/’gOJ)(o. )l/I(JO)(O') (412)
which leads to

éﬁ’(ﬂ)é};’(o")=e—2i""js e2i1t(Mj—1ﬁJ) Eg)(al) é(b‘?(a) (4'13)

6 This particular form was first written in ref. [11]
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in agreement with (4.11a,b). Altogether, the properties of the complete family are
simple extensions of the ones derived in the previous section: making use of (4.11a, b)
and (4.13) one sees that the exchange algebra and the fusion coefficients are, up
to simple phase coefficients which are easily worked out, products of two copies
of the expressions worked out in Sect. 3, one with h, and the other with h. It is,
moreover, straightforward to discuss the hermiticity structure recalled at the end
of the previous section which corresponds to the classically forbidden zones. I
shall not do so here, since the method is very similar to one followed in Sect. 3.

5. Conclusion

We have thoroughly established the connection between SL(2), and a chiral
conformal family on the unit circle which one may call universal since its exchange
algebra is given by the universal R-matrix. Collecting (3.4) (or (B.21)) with (A.14)
and (A.13), one sees that

€ 05,01E0(0) | ,,0) = elo@i ~wphién

Z ]J, wz)z(cl—m,J+mDJ—m,J+m(w2) 5‘02_0)1_2"').

-J=sm=sJ
(5.0)

The last é-function selects out only one term (the coefficient will be non-zero only
for a finite number of w shifts), and this completely determines the matrix elements
of the £-fields between the highest weight states, that is all three-point couplings.
Such is a practical meaning of the quantities |J, w)f, C?~™/*m p7~mJ*m which
we have computed. In the generic case considered, the Verma modules are trivial
and from the covariance of the ¢-fields one deduces any matrix elements by applying
appropriate differential operators to (5.1). Moreover, since we have been working
with operators, we may go to the case of a higher genus by taking an appropriate
trace. For instance, the torus is obviously dealt with by considering, typically,
Trace (¢$(a)e™o).

Another point is that the N-point functions of the V*"’s are given by the
Coulomb gas picture [10]. For the ¢-fields one finds suitable linear combinations
of them that are determined from the explicit expressions of |J, w)%y, C'~™/*™
DJ -m,J+ m

Physically, the ¥ and |/7 fields are the basic chiral operators which allow us to
construct the conformal theories associated to A, in the Toda classification [5].
On the one hand, for C > 1, they naturally appear in the quantum solution of the
Liouville theory [2—5] which is the Toda theory associated with the simple algebra
A;. On the other hand, for C <1 they are the basic tools to recover the
(SU(2),®SU(2),)/SU(2),+, coset models [5].

The structure we have displayed is consistent with the quantum the group
realization:

Je&P =V FMIJ M +11EQ, . I3 =MEY. (5.2)
This precisely defines the quantum group structure that underlies 2D gravity and
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minimal models. As already indicated, the symmetry between , and ¢, is the
basis of the action of the quantum group generators. At this point a comment on
the connection between the present work and other related studies is in order.
The braiding matrix (2.5) was rediscovered in a recent article [8] which already
contains a discussion similar to the one carried out in Sect. 2 and Appendix A: a
recursion on the R-matrices based on the construction of the conformal families
given by fusion of the elementary (1,2) and (2, 1) fields. Furthermore, a connection
with quantum group has already been put forward in the literature and appears
in particular in ref. [8]. This article however only works with the equivalent of
our y-fields. It is important to stress that the viewpoint taken here on quantum
groups is different and that the main results of the present article are really new.
Indeed the connection between conformal theories and quantum group has been
made so far by considering the g — 6 —j symbols. It is clear that they provide
solutions of Yang and Baxter’s equation and are thus related to braiding matrices;
however, this connection is indirect and does not show how the fields transform
under the quantum group action. In the present paper, on the contrary, the &
fields are constructed in such a way that their exchange algebra coincides with
the universal R-matrix, and their OPE algebra is thus precisely connected with
the standard coproduct of SL(2),, if the action of the generators is given by (5.2).
In other words, the ¢ fields are such that the true quantum mechanical effects,
that is their non-commutativity as quantum operators in the Hilbert space of
states, coincides with the non-commutativity induced by the deformation from
SL(2) to SL(2),. The latter may thus be regarded as dictated by the former, and
the present article takes a basic step in establishing the connection between
quantum group and conformal models following a path initiated in ref. [3].

One of the forthcoming problems is to particularize this structure to rational
theories. For C <1 and C > 25, this involves specializing q to be a root of unity.
Indeed, if C=1—6(p—p')*/(pp’), one has h= — np/p’,q = exp (inp/(2p’)). Accor-
ding to (2.7), | x] vanishes if x is a multiple of p’. Clearly, the results of the present
paper do not blindly apply since denominators vanish in many places, such as,
for instance, in formula (3.11). Further work is needed. However, for generic h,
the operator product properties of the £ fields are entirely given by group theoretic
expressions. In particular, although we only determined one type of fusion
coefficient, it is clear that they are all given by the g deformed Clebsch Gordon
coefficients. Thus, the problem of specializing g to a root of unity has been
essentially reduced to the equivalent limit in the representation theory of quantum
groups. It is well known that the g-Clebsch—Gordon and g — 6j symbols become
singular unless the allowed values of J are restricted to J < p’/2. In general, the
limit h— — zp/p’ will be well defined in the corresponding truncated family. (This
phenomenon was recently discussed in connection with the relationship between
sine—Gordon theory and minimal model [14].) As a starting point, one may verify
that, for p >0, p’ > 0, formula (3.14) makes sense if one restricts J to J < P’/2 and
that J*, |J,M ) =0 with v=p’ —J T M. It should be straightforward to work out
this truncation in practice, and this should in particular reproduce the spectrum
of primary fields of minimal models. I leave this for a later publication since the
present article is already rather lengthy.
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For 1<C <25 h and h are complex conjugate. This is the strong coupling
regime of gravity in the conformal gauge. The special values which I derived with
Neveu [13], that is, C=17, 13, 19, lead to

2(C —13)

h+h < =—n,0,7 (5.3)

I

Since g =e~ ™2, one sees that /g is a fourth root of unity. This is the strong
coupling equlvalent of the rational case, and the introduction of the & and £ fields
sheds a new light on this difficult problem [15].

Appendix A

In this appendix, we establish the properties of the family of  operators which
will be connected with the quantum group SL(2), in the following. The precise
definition of ; is:

v =df@)V, (A1)
where
V= NO(e/W2m)) = eVi2nal] p—ia(tw+1/2)hi2n

em(sz“'W%m(th“‘m> (A2)
n<o0 n>0

where the + is + for V, and — for V,. The definition of primary fields is appropriate
the unit circle: [L,, 4,] = —ie™(d/do + inA)A ,. As usual, e"¥2%%" is a formal
exponential to be understood as a shift operator. It is such that:

e\/mq(()i)f(w) — f(w + si)e‘ h/z"qg) 82 = — 81 = 1 (A.3)

for any function f(w). Similarly one defines any powers of V; as

V4= NUO(er"2miy  integer (A.4)
with conformal weight
— h
A(p) =——<#+—#(ﬂ+ 2))- (A.5)
2 2n

From the differential equation satisfied by the V;’s one deduces [2]

<<602,0| V,(O’)A A(O"),O)I,O>> - eia”(wf—wi)h/41rei(a—a")(- 1/2 t wys)h/2n

‘(1 —e %~ *NBF(a, b;c;e " ~), (A.6)
a:ﬂ_ﬁih<w>; b:ﬂ_ﬁih(m); L
n 2% T 2n T
1 8hA
=—(1+h - /[1——— A7
p= MK ma+me A7)

where F(a, b; c; x) is the standard hypergeometric function, and |w,0) denotes the
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highest weight states introduced in Sect. 2. If the weight A is equal to A(y) for
some y, one finds:

h
ﬂ=—%=Aw+n—mw+Am) (A8)

which coincides with the expected singularity of the short distance expansion if u
is an additive variable. This is elementary for products of V; with V%

V(@) VH(0') ~ (1 — e~ie ) A+ D= 4= 4) yu+i(g) (A9)

However this is non-trivial for products of V; with V4 or V, with V4. In general,
one finds that, to leading order, the branching rules of the short distance expansion
do not depend upon j. This reflects the fact that

pV~p® for n- oo (A.10)

In general, one defines a two parameter family of operators V*¥ such that
yu0 =i YO = V4 One may show from (A.6-8) that they are defined recursively
from the relations

Py me ( I'(1 + oh/m)C (1 + (u+ v + 1)h/) )V” L (Allz)
'+ (o +v)h/m)I'(1 + (u+ 1)h/n)
N~< I'(l —wh/m)I'(1 +(u+ v+ 1)h/n)
2 I'(1+(—w+vWhn)I(1+©+ )h/n)

where ~ means that one retains the leading order at ¢ —¢’, and divides by the
factor:

)V“’““ (A.11b)

(1 _ e—i(o’—a’))d(u+v+l)— Alu+v)— A(l)'

Thus the weight of V*" is
A" = A(p+v). (A.12)

Moreover, the normalization of the operators is specified by the condition
02,0V *(0)| 0,0y = @i sz

Our next task is to determine the general ¥ fields such that all I" functions
are replaced by trigonometric functions. One finds:

Y = (C** D" (w)) V>, (A.14)
C1,0=C0,1=1; D1,0=d1; D0,1=d2,
dy(w)dy(w —1)=I'(— wh/m)I"((w — 1)h/m),
where the C coefficients are determined by the relations:
ST+ (p+v+ Dh/m)
I'(1+(u+ 1)h/n)
vl _ CMF(I +(u+v+ 1)h/n)
r'(1+(v+ 1)h/n)

(A.13)

w2—wytv—pu

Cu+ 1,v — Cu

(A.152)

C (A.15b)



274 J.-L. Gervais

with solution
+v
TI (1 + ri/n)
crr=— -1 - . (A.16)
1 (1 +sh/m) [1 T+ th/m)
s=1 t=1

Similarly, the D coefficients satisfy
I'(— (@ +v)h/n)

D* 'v((l)) = D"’V(w - l)mdl(w), (A.17a)
wv+1 ey I' (w0 — p)h/m)
DR a) = D* o+ 1) ) (A.17b)

For u > v, the solution reads:

wvion [ dlo—t+1) _ _
D (w)—,u<hr(( t)h/n)>]_[1"((w r)h/n))l_lf(( @ — s)h/m)). (A.18a)

For u < v, it is given by:

vou o dy(w+t
D**(w) = (*—7) I'((w—7r)h/n I'((—w—s)h/n
U\ Cazomm) L TC )/))H (= @ —9)h/m)).
(A.18Db)
Next the fusion coefficients to leading order
YR ~ N(p, v V5 )ty (A.19)
satisfy the recursions:
N+ Lvp,vio0)= N(u, v, (', vV;0 — I)N(I’O;ﬂ +H vtV o) (A.20)
N(1,0; p, v; w)
N(@©,1; g s
N(u,v+ L, v;0)= N(u,v; f',vV;0 + 1) OLutu,vty ,w)' (A.21)
N(O, 1, v; w)
An explicit computation based on (A.6) and (2.11) leads to:
N i) =2 N s L2 B (A
o] lw]
The general expression, equivalent to (2.19), is thereby derived:
n—1 ! v—1 —y —
N(pvp,vi0)=T] lotvvorlrrlo—p=p+s] (A.23)

=0 |lo+v—r] =0 lo—u+s]
Finally, using (A.6) and (2.10) one derives the exchange algebras:
I'(1 4+ wh/m)I ((0 — p+ v —1)h/z)
I'((w—p—Dh/m) (1 + (w + v)h/z)
(F(l +oh/m) [ ((—o+p—v+ 1)h/1z)>
I'(—vh/m)I"(1 + (u+ 1)h/n)
@2 u—v=20)h2 V““"‘l(a’)Vz(a), (A.24a)

V1<o)V"V(a'>=( )e-"“”‘""ﬂ VR(@)Vi(0)
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I'l—owh/m)I" ((—w+p—v—1)h/n)
I'(—w—v—1Dh/m) (1 +(—w + wh/n)

N <F(1 —oh/mt) I (0—p—v+ 1)h/7t)>
(= ph/))T(1+ (v + Dh/m)
2TV R 202 U= VR (G . (), (A.24b)

which through (A.14, 16, 18) lead to (2.17)".
Concerning the hermiticity structure discussed in Sect. 3, it is easily seen that
under (3.16), (V**)" = V**. Applying this relation to (A.14) leads to:

W*)t = CPY(D*¥(w — v + ) VR (A.25)
On the the other hand, the D**(w) read, in view of (3.19):

Vz(U)V"v(O")‘—'( >e-fe<~~vwz V(o' V(o)

o I'(—(w—t+ )h/n) - _ v o
D*Mw) = 131 (- Oh/n) rl;ll (@ r)h/n))s]jl I'((— w—s)h/n)),
(A.26a)

if u>v, and

un,v - ((l)+t l)h/n) v o
b*e) l:[ \/1"(( w — t)h/7) rl_[ (0 — r)h/n))sljl I'((— w—s)h/m)) (A.26b)

if u <v. They are thus real and a straightforward algebra shows that
D*(w — v + u) = DV*(w). (A.27)
Since, moreover, the coefficients C** are symmetric in g and v, it follows that:
Wt =y (A.28)
which is equivalent to (3.20).

Appendix B

In this section we derive Eq.(3.4) by studying the exchange matrix (1/2,J) for
arbitrary J. Considering ¢!, =a,¢,, and ¢ =a,&,, a; normalization
constants, we shall determine the general £$) fields so that the exchange algebra

E8N0)Ef (0 = Z (1/2, 1) E52(0') ¢ (0) (B.1)

has coefficients independent of w. It is convenient to define
pP(M)= (172, )M s p (M) =(1/2,0)475 32, (B.2)
PYM) =(1/2,0)1130%; ”’(M)— (h)(1/2 i (B.3)

7 Throughout the article we only consider the half circle 0 < o < = explicitly. In this way, ¢ is strictly
equal to the sign of its argument, since the latter goes from —= to n. For the other half circle ¢ is
continued, in agreement with (2.11)
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The rest of the calculation will show that p, vanishes. The exchange of ¢'/2), with
& thus gives

eI —m+1]|J, 0+ )" =o+J+mllJ,0— )5 — Lolp(M)|J, 0)y.
(B.4)
The exchange of £{/%? with &3P gives

M@ +m oMM w]|J, 0)7 4
— oM+ 1)/2<eimth +J+ mJ]J,a) — I)K'[ — lmhLCOJP‘J’(M)'J,O))"A:l)
—ehBer2tmi J _m+ 1], 0+ 1) 1. ()

Combining these two relations one obtains a recurrence relation with fixed m:

eMm 1D s (MY|J, 0)5 4 = — 2ie"™| 0 +J +m]|J,0 — 1)k

+— (eih(w+m)p(11)(M) _ e—ih(w+m)p(3.l)(M)>|J, w)z
sin (h) (B.6)
Particular cases: The exchange of £{!/? and &Y, gives:
pP(—D=e"™, (B.7)
. . 2J
J,(U L p—_ e—zhmwe~xh(m2—m/2) , B.8
P (¥) "
Kk, is a normalization constant. Equation (B.5) with M = — J gives
p§(— J)=exp(ihJ), (B.9)
m — 2ie” M2 ih(e+m) — i+
[J, )", =———| "™ T+ m]+ e ™" T —m] ||J,0)",, (B.10)
pa(—J)
which satisfies Eq. (B.4). Equation (B.6) with M = —J + 1 gives
pI(—=J + 1) =M THD; pD(—J 4 1)=e HTHD), (B.11)
—2ie” M2 _jeiWz/
[J,0) ., = (ez"'(“’+""LJ+mJLJ+m—lJ
T pa(=T+1) pu(=)

+2cos(h)LJ +mj|J —m]+e 2He+m) J _m||J —m— 1])|J,w)’f,.

(B.12)
The above examples lead to the following ansatz for the general solution:
P/2
|, @), p=CU, =J+P)J, @), 3 ™AL, m), (B.13)
r=—P/2
CU,-J)=1, Ad=1,
r is integer for P even and half integer for P odd. Assume:
— 2ie~ ™2
CUM+1)= C(J, M), (B.14)

p(M)
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Eq. (B.6), with p{"(M) =", and p{ (M) = e~ ™™, gives:
r __ Lik(P+1/2-7) P-1 r—1/2
AL (U,m)=e J+m—r—T AT, m)

+eu.(—p—1/2—r)[J_m+,._PT_1]A;,+1/2(J,m), (B.15)

The solution is:

J ! J—m]! P
Angymy=— LI ';J L ';‘)J o (B.16)
J+m———r | J—m——+r || =+
2 2 2
One may verify that p{”(M) is not determined. Contrary to the other p’s, it depends
upon the normalization of the &’s. The choice appropriate to the quantum group
connection is:

P (M) = — 2ieh? Z—‘\/LJ M+ 1J—M], (B.17)
2

cy M)=<e-"'ﬂ)”M | U-MI (B.18)
’ a, J+M2J)0

Indeed, with this choice, one has
(1/2,9)55¢ = (K1/2,¢|® <J, M)R'>I(|J, M)y ®1/2,0')), (B.19)
Rl/Z,J = e(—2ihS;.13)(1 + (1 — eZih)e—ihS3S+eth3J_), (BZO)

which leads to

where S, S5 correspond to the J = 1/2 representation.
Collecting everything together, one arrives at the remarkably compact formula:

a J+M 2J .
J,o)n = e"'—z) K < )e"‘""z
> )i ( a, N\I+Mm

. J—M J+M
. Z elhs(w+m) X
(J—M +m—s)/2integer (J—M+m—s)/2 (J+M+m+s)/2
(B21)

Applying this formula for J = 1/2 one sees that k,,, = a,e™>.

Appendix C

In this appendix we determine the fusion coefficients A(J, M;J’, M’), starting from

an explicit computation of 4(1/2, + 1/2;J', M’). Consider first the fusion of £/},
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with ¢Y),, .. Formulae (A.22) combined with (B.4) give

J
1/2) £ ih/2 J+1/2
6(_/1/)25(-)1+p~'<1/2e'/ Z '/’mtll/z

m=-J+1
.[M{ui+ufe"""2@—_—’]+—m_ﬂ}l~’,w—1)'ﬂnr
(o] LJ—m+1]
lo=J+m] 4p_s_1p ]
___—e‘ J, _1'2 . C.l
|_J_m+1_| |J, @ ) J+P ()

Substituting the explicit expressions one finds that the coefficient of y;,* /7 reads:

Kl/zethZeihw/Z C(J, —J + P) [Jl'f:):—:.ll-] ;elihr(m+m)eih(m+}’/2 -r
{120 +1—r—P)2JA%J,m)+ | P2+ 7+ 1]ALM(J, m)). (C2)
From (B.16) one sees that:
[12J +1—r—P2|A%WJ,m)+ P2 +r+ 1jAL 1 (J,m)
=[2J—-P+1]A(J +1/2,m—1/2). (C.3)

Equation (B.8) gives
eih(w/2+m)lJ w)m _ K 2 IJ cu)m—llz (C 4)
T Kys1212 +1] B '

Using Eq. (B.18) one finally finds:

2172, — /20, My =120 (U =M+ iyinnyz, (C.5)
Kyvi2 (20 +1]

A similar calculation based on the identity:

W+ 124 m—r—P/2]AY V2(J,m)+ LJ + 3/2—m+r + P/2| A% V2(J, m)
=AL, (J+1/2,m—1/2) (C.6)

leads to
2/2, 1720, M) ="12s IEMAL ag sz C.7)
opN 120+ 1]

Next the associativity of the OPE expansion gives the relations (¢« = + 1/2):
M1/2,05J,M) A(1/2 + J,0+ M; J', M) = A(J,M; J',M') 2(1/2,05J +J', M + M').

(C.8)
2J ) < 2J )
KKy J+M/\J'+M oHM T~ M)

Kyay ( 2 +2J )
J+J+M+M

The general solution is

ML, M J M) = (C.9)
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as one easily verifies afterward. It is interesting to note that the second coefficient
could be reabsorbed by a change of normalization of the ¢ fields, contrary to the
third one. This would simplify the fusion coefficients, but spoil the explicit
identification of the universal R-matrix to be considered next.

Appendix D
In this section, we determine the general exchange algebra

£0) &) = Y. (, T )a ER(07) ER0(0) (D.1)
N'N

from the requirement that the order between fusion and exchange should be
irrelevant: consider (o, f = + 1/2)
EMx) &3 (o) Eip(0) = Rl%ﬂ(J I he (12,08 ER(0") £572(x) EQ 4(0)-
(D.2)
Letting x — 0, and using (C.9) one gets
M1/2,050, M —o) (J+1/2,0) v =Y, (L)Y (1/2,0)8% A(1/2, B;J,N — P).

RNN'B
(D.3)
This gives:
o~ AM1/2, =120, N+1/2) 40 ,
J+12,J’NN,= ihN J,J’NN"'l/Z,, D4
UV TN =30 “imr s 1)’ O mennm (D4)
M(1/2,1/2;J,N — 1/2) o N
J+ 1 2 J’ = i A /2'
VU2 et Sz =12 i

A2, = YBILN+1/2) N
N —1)J,J)W-= 12,
azzam—12) Pr DO
(D.5)

which reduces to:

J+ 12, TN T N1z (D.6)

LJ—M41/2) " MruzMe

NN N2 J+N+1/2] .
T+ 12 TN, = v Mm\/: LI

+ (1 _ e2ih)eih(.l+ 1/2+N-M)

[J+N+1/2)

J+N|J-N+1]|(J,J)V-1N+1/2
LJ+M+1/2JL I 10T =12

(D.7)

These equations are solved by introducing the ansatz:

I = (I, M@ I, MR, NY® I, N'), (D.3)
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R= e(—2|'h.l3®.l3)<1 + Z B"e—ihnlg(J+)n®eith;(J_)n>, (D9)

n=1
where the B,’s are constants to be determined. Using (3.14), one sees that this
formula precisely solves (D.6) for arbitrary f,. Equation (D.7) leads to:
Bu=Bu- 1™~ V(1 —e*™)/Ln]. (D.10)

Equation (B.20) shows that f, = 1 — e Thus
__ p2ihyn ihkn(n—1)/2
g L=eT)e . QED. (D.11)
Ln]!

Appendix E

In this appendix, we give some details about Sect. 4. First let us generalize the
discussion of Appendix A. Remember Eq. (A.11a, b). Using again (A.6) and (2.11)
one derives similar relations:

I'(1 +wh/m) (1 4+ h/m+ g+ )
I'(1 + wh/n+ 9)I'(1 + h/m+ f)
I'l—owh/m)I’'(1 + h/n+ i+ )
I'l—owh/n+ I+ hin+ )
We have introduced V% following the general convention. Working out the
recurrence formulae similar to (A.15-18), one finds that

l/,(JJ)((,) = Cu.v;ﬁﬁDnvv;ﬁ,G(w) Vu.v;ﬁ,ﬁ(o), (E.2)

Vilo)VA¥(e’) ~ ( > y1oid(g),  (E.la)

V,(0)VA¥(0') = ( >V°’1““(a). (E.1b)

where 2J = p+v,2m=v—p, 2J =+ 9, 2h =9 — 4, and

utvi+v
[MIle h/m -+ F/n/h)
R R o : , (B3

191 CNZRENZDN ) §) CNCERENED
and choosing, for instance, p > v v,
.ﬁ( (w+r—1)m-(f—1)@)(@—&%#&%)
1 ((w—ny/in—ry/h) {1 11 (~(o+o1y/a s/

' (E4)

i ;-_-|=
T ﬁ

Dﬂ"ﬂ" DuvDuv

:l‘ u':||
]:t

r=1¢

All these formulae are invariant under h— h if one lets w — & = wh/n, p< fi, and
Vel
The recursion for the generalized fusion coefficients is determined by

N(1,0,0,0; 1, v, 2, ; w) = (— 1)*N(1,0; p, v; w),



Quantum Group Structure of 2D Gravity 281

N(0,0,1,0; 4, 4, %;0) = (— 1)"N(1,0; 4, %; &),

N(0,1,0,0; 4,v, 4, ;) = (— 1)’N(0, 1; 1, v; ),

N(0,0,0,1; u,v, 4, ¥; w) = (— 1)“1\7(0, L 4,9, ), (E.5)
obtaining

NGt v, 954,V 93 0) = (= DR E VRS
N, v; i, V; QN 5 21, 7, ), (E.6)
which is equivalent to (4.5).
Consider next the exchange. Making use of (A.6) and (2.10) one derives

I'(1 4+ oh/m)I (0 — Dh/m—p+9)
I'((w—Dh/m— )T (1 + wh/m + )

)eie(ﬁ —-V)n/2 i}ﬁ,\?(o.I) V1 (0')
(E.7a)

Vy(o)V¥(o") = (

I'(1 — wh/m)I(— (@ + )h/n + 4 — 9)
['(— (@ + Dh/n— ) (1 — wh/z + f)

)e‘“ﬁ W2 R (6" V(o).
(E.Tb)

Due to Eq. (4.1), that is hh = 72, in each formula there is only one term since the
second one involves the inverse of a I'-function with a negative integer argument.
Consider the first relation as an example. One derives an exchange algebra for the

Y fields after multiplying both sides by dl(w)é“"D“”(d) — n/h). From the above
discussion, we know that

V,(0)Vi(a') = (

D) =

id [C((—d+1—1)h/m) £ SN )

= b— )b (= (@ + $)k/n)),

N F(@—bivn) ;U()F((w )/n))g]:[() (= (@ + $)h/m)).
(E.8)

where we took ji > ¥ as an example. This may be transformed into:

T [Feet DD & b iy [] T~ 0+ /). (E9)
i=0 I'w—tn/h) i=o §=o

It follows from (4.2) (d = wn/h) that w is shifted by 1 when @ is shifted by =n/h. It
is thus clear on the last equation that D#%(&) and D**(& — n/h) may be related
using the relation I'(z + 1) =zI'(z). After some algebra one arrives at the very
simple relation

D) =

¥1(0) §P(0") = e D(a) Y, (0), (E.10)
which is also true if /i < 9. A similar calculation, starting from (E.1b) leads to:
V2(0) Y(0") = e~ D(0) Y5(0). (E.11)

Next one extends these formulae to the general ://i(a) operator by fusion. Using
the fact that the fusion coefficients (A.23) are products of terms of the form
Lo +al/lw + b], a and b, constants, which satisfy, for any integer r,

lo+ra/h+al |w+al

= , (E.12)
lo+ra/h+b] [w+b]
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one finds
Y(o) YP(e') = e 2T d(0") Y (o). (E.13)
Thus the exchange algebra between y's and §’s is trivial.
This is extended to the é-fields if one multiplies the last equation by

A/\ A
|J, 0)y|J, & —mn/h)y, (E.14)

and sums over m and . The crucial point for this is that the explicit expression
(B.21) is such that, for any integer r,

|J, @ + rr/h)gy = ™I ~M*m)| J gpm . (E.15)
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Note added in proof. Since this article was written, the research program which is discussed in the
conclusion has been fulfilled to a large extent. This will be the subject of forthcoming publications.








